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Abstract
Edoxaban, a direct factor Xa inhibitor, is the latest non-vitamin K antagonist oral anticoagulants (NOACs). Despite being 

marketed later than other NOACs, its use is now spreading in current clinical practice, being indicated for both thrombo-

prophylaxis in patients with non-valvular atrial fibrillation (NVAF) and for the treatment and prevention of venous thrombo-

embolism (VTE). In patients with multiple conditions, the contemporary administration of several drugs can cause relevant 

drug-drug interactions (DDIs), which can affect drugs’ pharmacokinetics and pharmacodynamics. Usually, all the NOACs 

are considered to have significantly fewer DDIs than vitamin K antagonists; notwithstanding, this is actually not true, all of 

them are affected by DDIs with drugs that can influence the activity (induction or inhibition) of P-glycoprotein (P-gp) and 

cytochrome P450 3A4, both responsible for NOACs disposition and metabolism to a different extent. In this review/expert 

opinion, we focused on an extensive report of edoxaban DDIs. All the relevant drugs categories have been examined to report 

on significant DDIs, discussing the impact on edoxaban pharmacokinetic and pharmacodynamic and the evidence for dose 

adjustment. Our analysis found that, despite a restrained number of interactions, some strong inhibitors/inducers of P-gp 

and drug-metabolising enzymes can affect edoxaban concentration, just as it happens with other NOACs, implying the need 

for a dose adjustment. However, our analysis of edoxaban DDIs suggests that given the small propensity for interaction of 

this agent, its use represents an acceptable clinical decision. Still, DDIs can be significant in certain clinical situations and 

a careful evaluation is always needed when prescribing NOACs.

Key Points 

Despite a restrained number of interactions, some strong 

inhibitors/inducers of P-gp and drug-metabolising 

enzymes can affect edoxaban concentration, implying the 

need for a dose adjustment.

Notwithstanding, our analysis of edoxaban DDIs sug-

gests that given the small propensity for interaction of 

this agent, its use represents an acceptable clinical deci-

sion in most of the cases

DDIs can be significant in certain clinical situations and 

a careful evaluation is always needed during the pre-

scription process of any NOAC.
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supplementary material, which is available to authorized users.
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1 Introduction

Four non-vitamin K antagonist oral anticoagulants 

(NOACs) have been approved for clinical use by many 

regulatory medicines’ agencies around the world. The 

use of these drugs is increasing in routine practice for 

the treatment of non-valvular atrial fibrillation (NVAF) 

and venous thromboembolism (VTE). NVAF is the most 

common sustained arrhythmia in clinical practice, espe-

cially in the elderly [1–3] and, even if the arrhythmia is 

asymptomatic, it is associated with adverse outcomes, with 

a significantly increased risk of stroke, death and heart 

failure [4]. VTE, categorised as deep venous thrombosis 

(DVT) and pulmonary embolism (PE), is associated with 

high morbidity and a relevant financial burden on patients 

and health systems. Both acquired and hereditary risks 

factors contribute to VTE; in particular, VTE is a common 

complication of cancer and its therapy [5]. 

Oral anticoagulant therapy significantly reduces the risk 

of NVAF-related thromboembolic events and mortality, 

and is recommended in every patient at risk, according to 

guidelines [6, 7]. The new class of NOACs, also named 

Direct Oral Anticoagulants (DOACs) are nowadays an 

effective treatment with a safer profile compared to vita-

min K antagonist (VKA) and are currently implemented 

in “real-world” clinical practice, in patients with so-called 

NVAF and VTE, settings characterised by patients with 

complex clinical scenarios, in terms of comorbidities and 

polypharmacy. Comorbidity and polypharmacy have a 

high prevalence in elderly patients, a population where 

the estimated prevalence of NVAF is particularly high 

(9–10% for patients aged > 80 years and lower than 0.1% 

in patients aged < 55 years) [8–10]. In addition, NVAF is 

associated with a 4- to 5-fold increased risk of embolic 

stroke with an estimated increased stroke risk of 1.45-fold 

per decade in aging [11, 12]. Since VKA warfarin shows 

many clinically significant interactions with drugs, foods 

and herbal medicines [13, 14] resulting in frequent adjust-

ment of its dosage in order to achieve a safe and effective 

anticoagulant effect, the use of new NOACs may represent 

a significant clinical advantage. Among NOACs, edoxaban 

is the last to reach the market indicated for the prevention 

of stroke and systemic embolism in adult patients with 

NVAF and for treatment of DVT and PE, and prevention 

of recurrent DVT and PE [15, 16].

Thus, in view of the need to prescribe oral anticoagulants 

to patients with various concurrent disease and on treatment 

with various drugs or agents, we will focus this review on 

drug interactions, considering edoxaban, a NOAC with a 

favourable safety profile in terms of studied and predicted 

drug-drug interactions (DDIs) as well as interactions with 

herbs and natural products. Considering that many DDIs 

are not specifically studied, only theoretical pharmacologi-

cal considerations can be done of specific anticoagulants 

in order to predict if an interaction is possible (Fig. 1). In 

view of the increasing number of patients with oncologi-

cal pathologies who need treatment with anticoagulants, for 

VTE or NVAF [5, 17], we will include interactions between 

NOACs and chemotherapies. Moreover, taking into account 

the underweighted and commonly undisclosed use of nutra-

ceuticals or herbs in practice, which may account for up to 

half of the patients [18, 19], we will consider the basis for 

evaluating their potential interaction with edoxaban.

2  Pharmacodynamic and Pharmacokinetic 
Characteristics of Edoxaban

Edoxaban is an oral, selective, direct and reversible inhibi-

tor of activated clotting factor X (FXa), the serine protease 

responsible for the generation of thrombin [20]. The drug 

binds directly to the active site of FXa and blocks the inter-

action with prothrombin [21], thus eliciting its anticoagu-

lant activity. In vitro, edoxaban inhibits the human FXa in a 

Fig. 1  The complex interplay 
of factors influencing drugs 
pharmacokinetic and pharmaco-
dynamic and the possible effects 
on outcomes
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concentration-dependent and -competitive manner, with an 

inhibition constant (Ki) value of 0.561 nM [22].

Edoxaban is rapidly absorbed after oral administration 

with a time to peak plasma concentration of 1–2 h, and a 

bioavailability of 62% (Table 1) [23, 24]. Its absorption, 

which is not related to solubility, occurs predominantly in 

the proximal small intestine and it is limited in the colon 

(13%) [25].

Surgeries such as Roux-en-Y gastric bypass could reduce 

the absorption of edoxaban by shifting it to the distal small 

intestine and ascending colon, segments of the gastrointesti-

nal tract with low edoxaban absorption capability [26]. Dif-

ferences in the permeability of edoxaban along the length 

of the gastrointestinal tract rather than poor solubility per 

se, has been suggested to be the reason for reduced colonic 

absorption [25]. The solubility of edoxaban is pH dependent 

with maximal values at pH 3–5, while is slightly soluble at 

neutral pH (pH 6–7), and practically insoluble at a basic pH 

(8–9) [25]. Another interesting characteristic of edoxaban 

is that concomitant food intake has a clinically insignifi-

cant effect on its absorption [27] so its administration can 

be independent of meals.

Terminally ill or elderly patients with dysphagia may 

report reduced patient adherence to medications [28, 29]. 

Therefore, solid oral formulations crushed and mixed into 

food or provided as a water suspension via a nasogastric 

tube are often utilised as alternative methods of drug admin-

istration. However, these manipulations may alter the bio-

availability of a drug, also potentially exposing patients to 

unexpected DDIs [30]. Within this clinical setting, a Phase 

I, open-label, randomised trial was conducted to assess 

the pharmacokinetic, safety, and tolerability profiles of the 

edoxaban 60-mg tablet in healthy adults when crushed and 

administered either via a nasogastric tube or mixed with 

apple puree and ingested [31]. The results demonstrated 

that edoxaban tablet crushed and administered either via a 

nasogastric tube or with apple puree displays similar total 

exposure, although time to maximum plasma concentration 

was significantly shorter for the nasogastric tube suspen-

sion and apple puree versus the whole tablet [31]. Thus, 

edoxaban can be considered a valid option for patients who 

are unable to swallow solid oral dose formulations [31].

Edoxaban, as well as all other NOAC absorption is 

dependent on the intestinal P-glycoprotein (P-gp) system 

[32]. P-gp is an efflux transporter primarily expressed in the 

apical/luminal membrane of epithelia of the small intestine, 

hepatocytes, renal proximal tubules, and other sites. With 

broad substrate specificity and high transport capacity, P-gp 

can limit the systemic exposure of various xenobiotics by 

decreasing intestinal absorption and increasing renal excre-

tion and biliary excretion [33]. Indeed, Phase I studies after 

single- and multiple-dose administration showed a low inter-

subject variability and dose linearity, suggesting a predict-

able and consistent pharmacokinetic profile (Table 1) [24].

The mean apparent volume of distribution of edoxaban is 

approximately 300 L and 100 L after oral and IV administra-

tion, respectively [23, 24]. This difference indicates biliary 

excretion of edoxaban and a possible enterohepatic circula-

tion through a glucuronidation processes (data on file) [34]. 

The relatively high volume of distribution of edoxaban in 

comparison to other NOACs is not predicted to have any 

clinically relevant implication on the safety or efficacy of 

the drug according to the large experience in the Phase III 

trials, including patients with frailty [35, 36], obesity, older 

age [37] and mild-to-moderate CKD [38, 39].

Edoxaban shows a relatively low total plasma protein 

binding (≈ 55%), whereas the human-unique metabolite 

M-4 is approximately 80% bound to plasma proteins over a 

concentration range of 0.2–2 µg/mL [34].

Edoxaban is primarily eliminated unchanged in urine 

and through biliary secretion, with a mean elimination half-

life in the range of 10–14 h [24, 34]. The total clearance of 

edoxaban is estimated to be ≈ 22 L/h, with renal clearance 

estimated to be about 10 L/h [34]. Due to the relevant renal 

clearance, the edoxaban exposure has been shown in a phar-

macokinetic study of patients with NVAF in the ENGAGE 

AF-TIMI 48 study, to be higher in patients with creatinine 

clearance (CrCl) above 90 mL/min [40]. The lower expo-

sure of edoxaban is associated with an apparent lower rela-

tive efficacy for edoxaban compared to warfarin in patients 

Table 1  Geometric mean (% coefficient of variation) of pharmacokinetic parameters after single or multiple administration of 30 and 60 mg 
edoxaban. Modified from Ogata et al. [24]

AUC  area under the curve
a  Median (minimum – maximum)

Edoxaban dose 30 mg single (n = 10) 60 mg single (n = 10) 60 mg multiple (n = 9)

AUC 0–∞, ng/h/mL 993 (13.7) 1779 (11.6) 1572 (11.2)

Cmax, ng/mL 152 (21.8) 302 (33.9) 266 (25.3)

tmax,  h
a 1.00 (0.50–2.00) 1.27 (0.50–2.50) 2.00 (1.00–3.50)

T1/2, h 8.92 (36.2) 8.90 (20.2) 10.4 (30.2)

CLR0–48, mL/min 194 (9.21) 222 (15.9) 237 (28.0)
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with a CrCl > 95 mL/min [39]. On this basis, the Cardio-

renal Division of the US Food and Drug Administration 

recommended that edoxaban not be used in patients with a 

CrCl > 95 mL/min for stroke prevention in NVAF [41]. The 

position of FDA was not followed by other regulatory agen-

cies in Europe by the European Medicines Agency (EMA), 

in three Asian countries (Japan, Korea and Taiwan) [39] 

as well as in Canada [42], which did not restrict the use 

of edoxaban in these patients. In addition, further analysis 

showed a similar behaviour at high glomerular formulation 

rate (GFR) (> 95 CrCl) for other NOACs [43]. Notwith-

standing, the same analysis that documented the lower rela-

tive efficacy in patients with a CrCl > 95 mL/min, showed 

that the overall net clinical benefit of edoxaban remained 

unchanged irrespective of renal function [39].

In healthy human subjects, six phase 1 metabolites (M-1, 

M-2, M-4, M-5, M-6 and M-8) and a glucuronide (M-3) 

were detected in plasma [34]. M-4 is the major metabo-

lite and it is produced from the hepatic carboxylesterase-1 

(CES1). Cytochrome P450 isoenzyme (CYP) 3A4 mediates 

the formation of M-5, while a minor metabolite M-8 derives 

spontaneously (non-enzymatically) from an intermediary, 

hydroxymethyl edoxaban, formed via CYP3A4/5 [34, 44].

Three of the metabolites (M-4, M-6 and M-8) have anti-

coagulant activity, with  IC50 values for anti-FXa of 1.8 nM 

(M-4), 6.9 nM (M-6) and 2.7 nM (M-8) [34]. However, due 

to the low plasma concentration and high protein binding, 

the most abundant metabolite, M-4, is not expected to con-

tribute significantly to the overall pharmacological activ-

ity of edoxaban [45]. Importantly, the relative increase in 

edoxaban and M-4 systemic exposure is identical, and the 

AUC ratio (M-4 over edoxaban) is constant over varying 

kidney function, body weight, and doses [45]; however, a 

significant increase of M-4/edoxaban ratio is predictable 

in the presence of drugs that induce edoxaban metabolism 

(see paragraph Interaction with antifungal, antibiotics and 

antiepileptic drugs).

Unlike the other factor Xa inhibitors rivaroxaban and 

apixaban, CYP3A4-type cytochrome P450-dependent 

elimination is marginally involved in the hepatic clearance 

of edoxaban [46].

3  Pharmacological Interactions

3.1  Pharmacologist and Clinician Point of View: 
General Considerations

As previously discussed, edoxaban and all other NOACs are 

substrates for P-gp, therefore strong inhibition of P-gp can 

increase absorption and exposure of NOACs, thus increas-

ing the bleeding risk. On the other hand, an induction of 

P-gp can reduce NOACs absorption, therefore reducing the 

antithrombotic therapeutic effect of edoxaban. Indeed, an 

important interaction mechanism for all.

NOACs consists of significant gastrointestinal re-secre-

tion over a P-gp transporter after absorption in the gut and in 

their renal clearance [47]. Conversely, edoxaban was shown 

not to be a substrate of uptake transporters like OATP1B1 

in the liver or OAT1, OAT3 and OCT2 in the kidney [32], 

thus excluding possible DDI with other substrates of these 

drug transporters.

The activity of the inhibition or induction of P-gp trans-

porters, can help predict the entity of the change in edoxa-

ban exposure (Table 1). This approach was adopted by the 

recently published “The 2018 European Heart Rhythm 

Association Practical Guide on the use of non-vitamin K 

antagonist oral anticoagulants in patients with atrial fibril-

lation” [6]. Thus, P-gp inhibitors may increase systemic 

absorption and decrease elimination of P-gp substrates, such 

as edoxaban, resulting in increased exposure. In this regard, 

it is relevant to consider that the extent of the inter-individ-

ual variability of a drug plasma concentration may have a 

significant impact of the interaction with P-gp inhibitors or 

inducers [48–50].

Since edoxaban metabolism, by CES1, CYP3A4 and via 

glucuronidation, is only marginally involved in its clear-

ance, inhibitors or inducers of these enzymes are unlikely 

involved in clinically relevant interactions with edoxaban 

[34]. Indeed, unlike other direct anti Xa inhibitors such as 

rivaroxaban and apixaban, edoxaban is minimally involved 

in hydrolysis, conjugation and oxidation through CYP3A4 

metabolism (< 4%) and theoretically we could expect fewer 

DDIs with agents that strongly inhibit or induce cytochrome 

P450 enzymes, in particular the CYP3A4 variant (Table 2).

In the following paragraphs we will summarise the clini-

cal evidence of DDI of edoxaban with different classes of 

drugs and with phytotherapy or nutraceuticals, but also 

some tools to predict non-studied DDIs. These predictions 

are based on the pharmacological profile of edoxaban and 

the profile of the specific class of drugs that are being con-

sidered. The issue of how to identify and distinguish the 

clinically relevant DDIs from non-relevant interactions will 

also be discussed.

4  Edoxaban Drug-drug Interactions (DDI)

4.1  DDIs with Rate and Rhythm Control Drugs

Many classes of cardiovascular drugs might interact with 

NOACs via inhibition of P-gp and/or CYP3A4, thus lead-

ing to increased exposure and possibly increased bleeding 

risk. Interestingly, the Phase III clinical trials ENGAGE AF 

TIMI 48 [52] and Hokusai VTE [53], were the only pivotal 

trials that contemplated dose reduction with concomitant 
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P-gp inhibitor drugs, in order to compensate for the increase 

in edoxaban absorption.

Many cardiovascular drugs are commonly prescribed 

with edoxaban in patients with NVAF (Table 3). For this 

reason, specific pharmacokinetic studies and post-hoc analy-

sis of Phase III clinical trial ENGAGE AF-TIMI 48 has been 

performed. In particular, Mendell et al., reported results 

from six studies evaluating the potential pharmacokinetic 

interactions between edoxaban and cardiovascular drugs 

such as digoxin, atorvastatin, verapamil, quinidine, amiodar-

one, and dronedarone [54]. The relevance of the inhibition 

of P-gp on the final exposure of edoxaban was strikingly 

demonstrated by comparing the effect of drugs displaying 

differing degrees of P-gp inhibition, with verapamil, quini-

dine, dronedarone, and amiodarone, which are recognised 

as strong P-gp inhibitors [6], while digoxin and atorvastatin 

are recognised P-gp substrates [6, 55]. Indeed, verapamil, 

quinidine, dronedarone and amiodarone increased the AUC 

of edoxaban by about 50%, while digoxin or atorvastatin had 

relatively minor effects on the pharmacokinetic of edoxaban 

[54]. Interestingly, quinidine increased edoxaban exposure 

by only 35% after intravenous administration, thus signifi-

cantly less than after oral administration (+ 77%) [54], fur-

ther assessing the effect of P-gp inhibition at gastrointestinal 

level on the bioavailability of edoxaban [23].

The potential clinically relevant effect of drug interaction 

between edoxaban and amiodarone was also investigated by 

a subgroup analysis of the ENGAGE AF-TIMI 48 trial. Ami-

odarone was associated with significantly increased trough 

levels of edoxaban 60 mg (high dose, HD). Specifically, the 

concentrations were 58.5 ± 53.2 ng/mL with amiodarone 

versus 43.2 ± 41.1 ng/mL without amiodarone [56]. No sig-

nificant interaction with respect to amiodarone use at base-

line was observed for HD edoxaban on efficacy endpoint and 

safety endpoint, although an increase in clinically relevant 

non-major bleeding compared with warfarin was observed 

[56]. The SmPC does not require reduction of edoxaban dos-

age with amiodarone concomitant use [16, 57].

As for quinidine and verapamil, pharmacological data 

show a total increase in edoxaban exposure of respectively 

77% and 53% [54], but after analysis of Phase III data these 

interactions alone were not considered clinically relevant 

Table 2  Main inducers and inhibitors of CYP3A and P-gp Modified from Stöllberger et al. [51]

CYP cytochrome P 450, P-gp P-glycoprotein

P-gp inhibitor Non-P-gp inhibitor P-gp inducer

Strong CYP3A inhibitor Itraconazole, ketoconazole, clarithromycin, lopina-
vir, indinavir, ritonavir, telaprevir

Voriconazole

Moderate CYP3A inhibitor Erythromycin, verapamil, diltiazem, amiodarone, 
dronedarone

None-identified Doxorubicin

Weak CYP3A inhibitor Lapatinib, quinidine, cyclosporine, felodipine, 
azithromycin, ranolazine

Cimetidine Vinblastine

CYP3A inducers Carbamazepine, phenytoin, phenobar-
bital, rifampin, dexamethasone, St 
John’s Wort

Table 3  Commonly co-prescribed cardiovascular drugs in patients with atrial fibrillation and effects on edoxaban exposure and indications of 
dosage recommendation

AUC  area under the curve, CYP cytochrome P 450, P-gp P-glycoprotein

Concomitant drug Effect on P-gp and CYP Effect on edoxaban concentration Indication and dosage recommendation 
for edoxaban

Cardiovascular drugs

 Amiodarone Moderate P-gp competitive inhibition  + 40% AUC [24] No dose adjustment (use with caution) 
[6, 59]

 Digoxin P-gp competitive inhibition No significant effect on AUC [24] No dose adjustment [6, 59]

 Diltiazem P-gp competitive inhibition and weak 
CYP3A4 inhibition

No significant effect on AUC predicted No dose adjustment [6]

 Dronedarone P-gp inhibitor and CYP3A4 inhibitor  + 85% AUC [24] Use edoxaban 30 mg [6, 59]

 Quinidine P-gp competitive inhibition  + 77% AUC [24] No dose adjustment (use with caution) 
[6, 59]

 Verapamil P-gp competitive inhibition and weak 
CYP3A4 inhibition

 + 53% AUC [23] No dose adjustment (use with caution) 
[6, 59]

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

A
u

th
o

r 
P

ro
o

f



U
N
C

O
R

R
EC

TED
 P

R
O

O
F

Journal : Large 40265 Article No : 1328 Pages : 19 MS Code : 1328 Dispatch : 31-5-2020

 A. Corsini et al.

so no dose reduction is required in the European SmPC, 

but caution if other factors that might increase edoxaban 

exposure are present [6]. No action is then recommended 

with atorvastatin and digoxin [6] that did not alter edoxaban 

exposure.

In this regard, it is important to point out that the char-

acterisation of edoxaban population pharmacokinetics and 

the identification of potential intrinsic and extrinsic fac-

tors affecting variability in edoxaban exposure, demon-

strated that edoxaban exposure in patients with moderate 

renal impairment receiving strong P-gp inhibitors could 

potentially increase the steady state AUC (AUC ss) and Cmin 

(Cmin,ss) exposure up to ~ 2.5- and threefold of the expected 

exposure in patients with normal renal function [58]. Thus, 

in the presence of a moderate renal impairment (creatinine 

clearance 30–50 mL/min), either quinidine or verapamil may 

significantly increase edoxaban exposure (Fig. 2).

In view of the pharmacokinetic and clinical data, the 

SmPC [16, 57] and European Heart Rhythm Association 

(EHRA) practical guide, it is suggested dose reduction in 

case of a co-treatment of edoxaban with dronedarone, no 

dose reduction, but caution with amiodarone (+ 40% of 

edoxaban AUC), quinidine (+ 77% of edoxaban AUC) and 

verapamil (+ 53% of edoxaban AUC) and no action with a 

digoxin [6] (Table 3).

4.2  DDIs with Antiplatelet and Antithrombotic 
Drugs

Given the common occurrence of coronary artery disease 

with NVAF, the possible interactions of edoxaban with anti-

platelet drugs could be clinically relevant (Table 4).

Dual-antiplatelet therapy with aspirin and  P2Y12 antago-

nist is currently recommended after percutaneous coronary 

Fig. 2  Edoxaban pharmacoki-
netic modifications according 
rate/rhythm control drugs and 
renal function. Red line shows 
20% increase in exposure, blue 
line shows 50% increase in 
exposure. Amio amiodarone, 
AUC  area under the curve, CLCR 
creatinine clearance, Quin qui-
nidine, Verap verapamil.  Modi-
fied from Salazar et al. [58]

Table 4  Predicted effects of antiplatelet and antithrombotic drugs on edoxaban exposure and indications of dosage recommendation

AUC  area under the curve, CYP cytochrome P 450, P-gp P-glycoprotein
a Expert opinion

Concomitant drug Effect on P-gp and CYP Effect on edoxaban concentration Indication and dosage recommendation 
for edoxaban

Cardiovascular drugs

 Aspirin No relevant interactions known/
assumed

Increased AUC for high doses of aspi-
rin; pharmacodynamically increased 
bleeding time [62]

No dose adjustment; Chronic use not 
recommended [59]

 Clopidogrel No relevant pharmacokinetic interac-
tions known/assumed

No significant effect on AUC predicted; 
pharmacodynamically increased 
bleeding time

No dose  adjustmenta

 Ticagrelor P-gp competitive inhibition [66, 67] Predicted increased of AUC; pharma-
codynamically increased bleeding 
time

No dose adjustment [6] (use with caution 
for harmacodynamics  effecta)

 Prasugrel P-gp substrate [68] Predicted pharmacodynamically 
increased bleeding time

No dose adjustment (use with caution for 
harmacodynamics effect)a
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intervention (PCI) with stent placement, and further oral 

anticoagulation is required for patients with NVAF. Therapy 

with a NOAC, aspirin, and clopidogrel  (P2Y12 inhibitor) 

is considered the standard of care for patients with NVAF 

following coronary stent placement. However, this triple 

therapy is associated with a 3- to 4-fold increased risk of 

bleeding complications [60, 61]. This was the rational of 

studying a possible pharmacokinetic and pharmacodynamic 

interaction between edoxaban and aspirin [62].

Low-dose aspirin (100 mg) did not alter the edoxaban 

pharmacokinetic parameter, whereas the combination with 

aspirin 325 mg increased edoxaban systemic exposure by 

approximately 30% (AUC) and 34% for Cmax [62]. The rea-

son for increased exposure with high-dose aspirin is not 

clear and unknown, but high-dose aspirin did not alter the 

effect of edoxaban on the coagulation biomarkers, and the 

inhibition of platelet aggregation (arachidonic acid induced) 

by aspirin was not affected by edoxaban [62]. Nevertheless, 

the administration of edoxaban with aspirin 100 mg (low 

dose), or aspirin 325 mg (high dose) resulted in an approxi-

mately additive effect of the agents administered alone with 

a final twofold increase in bleeding time [62], thus suggest-

ing a potential pharmacodynamics interaction between the 

two drugs [62].

The subgroup analysis of the ENGAGE AF-TIMI 48, 

observed that single antiplatelet therapy in addition to an 

anticoagulant had a similar risk of stroke/SEE and higher 

rates of bleeding than those not receiving the antiplate-

let drug. Edoxaban exhibited similar relative efficacy and 

reduced bleeding compared to warfarin, with or without con-

comitant use of antiplatelet therapies, including clopidogrel 

and ticagrelor [63]. Nevertheless, a potential pharmacody-

namic interaction with increasing risk of major bleeding is 

predictable in patients treated with NOACs under mono- or 

dual-antiplatelet therapy. Indeed, some of these drugs are 

substrates (clopidogrel, enoxaparin), or inhibitors (ticagre-

lor, naproxen) of P-gp [64–67], suggesting a possible phar-

macokinetic interaction with NOACs.

4.3  DDIs with Statins and Lipid-modifying Agents

Considering the high rate of CVD in the elderly, especially 

CHD in concomitance with NVAF, the co-administration of 

a lipid-modifying agent and NOACs is quite common. Sev-

eral statins interact with P-gp and CYP450, being both their 

substrates and inhibitors [69, 70] (Table 5). For example, 

atorvastatin, lovastatin and simvastatin inhibit or compete 

with P-gp-mediated drug transport and are metabolised by 

CYP3A4. These characteristics might lead to an increased 

absorption of NOACs [51]. Lovastatin is a CYP2C9- and 

P-gp inhibitor. In a population-based, nested case–control 

study involving 45,991 Ontario residents who started dabi-

gatran, the use of lovastatin was associated with a higher 

Table 5  Predicted effects of lipid-modifying agents on edoxaban exposure and indications of dosage recommendation

AUC  area under the curve, CYP cytochrome P 450, P-gp P-glycoprotein
a Expert opinion

Concomitant drug Effect on P-gp and CYP Effect on edoxaban concentration Indication and dosage recommendation 
for edoxaban

Lipid-lowering agents

 Atorvastatin P-gp substrate and moderate inhibi-
tors; CYP3A4 substrate and moder-
ate inhibitors

No significant effect on AUC pre-
dicted

No dose  adjustment(12. 6)

 Lovastatin, simvastatin P-gp substrate and moderate inhibi-
tors; CYP3A4 substrate

Minor effect on AUC predicted No dose  adjustmenta

 Pravastatin No relevant interactions known/
assumed

No significant effect on AUC pre-
dicted

No dose  adjustmenta

 Rosuvastatin CYP2C9 substrate No significant effect on AUC pre-
dicted

No dose  adjustmenta

 Fluvastatin CYP2C9 substrate and inhibitor No significant effect on AUC pre-
dicted

No dose  adjustmenta

 Gemfibrozil CYP2C8 inhibitor No significant effect on AUC pre-
dicted

No dose  adjustmenta

 Fenofibrate CYP3A4 inhibitor, moderate P-gp 
inhibition

Minor effect on AUC predicted No dose adjustment (use with caution)a

 Ezetimibe Minor CYP3A4 inhibition, P-gp 
substrate

No significant effect on AUC pre-
dicted

No dose  adjustmenta

 Evolocumab No relevant interactions known/
assumed

No significant effect on AUC pre-
dicted

No dose  adjustmenta
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risk of major haemorrhage [71]. Similar effects can also be 

predicted for edoxaban.

The pharmacokinetics of edoxaban is not affected by ator-

vastatin (weak inhibitor of P-gp) [55, 72]. Indeed, atorvas-

tatin induces a non-significant increase of 1.7% in edoxaban 

AUC and a decrease by 14.2% in Cmax [54]. Other statins 

such as pravastatin and rosuvastatin have limited involve-

ment in the CYP3A4 metabolism, while fluvastatin is metab-

olised by CYP2C9.

Other commonly used lipid-lowering agents that might 

interact with NOAC metabolism are fibrates. Medicaid 

claims data showed that fibrates that are metabolised by 

CYP3A4 appear to increase the risk of gastrointestinal 

bleeding in warfarin users [73]. Fenofibrate is an inhibitor of 

CYP3A4 [74] while gemfibrozil is not a CYP3A4 inhibitor, 

but it is a competitive inhibitor of CYP2C8 [75]. The only 

fibric acid that showed moderate P-gp inhibition in vitro 

is fenofibrate [76, 77]. By virtue of the minor involvement 

of CYP3A4 metabolism, the only fibrate that might alter 

edoxaban exposure is fenofibrate, because of the possible 

inhibition on the P-gp transporter, although this interaction 

may not be clinically relevant.

Another cholesterol-lowering agent that can be used alone 

or in combination with statins is ezetimibe. Ezetimibe does 

not induce or inhibit CYP3A4 or P-gp, interactions with 

NOACs seem to be improbable.

Finally, considering PCSK9 inhibitor evolocumab and 

alirocumab, no CYP and P-gp involvement is expected as 

its metabolism and elimination follow the immunoglobulin 

clearance pathways, resulting in degradation to small pep-

tides and individual amino acids [78]; thus, no interactions 

are predicted with edoxaban or other NOACs. To date, no 

pharmacokinetic studies of interaction between edoxaban 

and fibrates, ezetimibe and PCSK9 inhibitors exist.

4.4  DDIs with Antibiotics and Antifungal Drugs

It is well established that antibiotic and fungistatic medi-

cations have strong interference with VKAs. Among these 

drugs, erythromycin, clarithromycin, rifampin, ketocona-

zole, fluconazole, posaconazole may also alter NOAC con-

centrations by interfering with the P-gp pathway and with 

the CYP3A4 metabolism, and certain concomitant antibiotic 

treatments should require accurate evaluation and an even-

tual dose adjustment (Table 6).

Among the different classes of antibiotics, macrolides, 

such as clarithromycin and erythromycin, are the best-known 

P-gp inhibitors which reduce CYP3A4 activity. Macrolide 

antibiotics have been associated with increased exposure 

of NOACs, even though there are no data available about 

azithromycin [6, 79, 80]. The entity of the DDI between 

edoxaban and erythromycin has been investigated in a phar-

macokinetic study on healthy subjects [81]. Erythromycin 

decreased the total apparent clearance of edoxaban by about 

47%, which translated to a significant increase in both peak 

(+ 68%) and total exposure (+ 85%) of edoxaban. Similarly, 

Table 6  Predicted effects of antibiotics and antifungal drugs on edoxaban exposure and indications of dosage adjustment

AUC  area under the curve, BCRP breast cancer resistance protein, CYP cytochrome P 450, P-gp P-glycoprotein
a Expert opinion

Concomitant drug Effect on P-gp and CYP Effect on edoxaban concentration Reasonable indication and suggested 
dosage adjustment

Antibiotics

 Erythromycin P-gp substrate; CYP3A4 inhibition AUC: + 85% [81] Adjust dose to edoxaban 30 mg [6, 
59]

 Clarithromycin P-gp substrate; CYP3A4 inhibition Predicted increase of AUC Adjust dose to edoxaban 30 mg [59]

 Rifampin P-gp/ BCRP and CYP3A4/CYP2J2 
inducers

AUC: − 35%, compensatory
increase of active metabolites

No dose adjustment (use with cau-
tion) [6, 59]

 Metronidazole CYP3A4 inhibitor No significant effect on AUC 
predicted

No dose  adjustmenta

 Levofloxacin CYP1A2 inhibitor No significant effect on AUC 
predicted

No dose  adjustmenta

 Ciprofloxacin CYP1A2 inhibitor No significant effect on AUC 
predicted

No dose adjustment

 Meropenem CYP3A4 and CYP2C19 inhibition No significant effect on AUC 
predicted

No dose  adjustmenta

Antifungals

 Ketoconazole Potent P-gp and BCRP competitive 
inhibition; CYP3A4 inhibition

AUC: + 87% [81] Adjust dose to edoxaban 30 mg [6, 
59]

 Itraconazole, voriconazole Potent P-gp and BCRP competitive 
inhibition; CYP3A4 inhibition

Predicted increase of AUC Adjust dose to edoxaban 30 mg [6, 
59]
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the peak and total exposure of M-4 were approximately 75% 

and 78% higher, respectively, when administered with eryth-

romycin, with no change in the formation of M-4 metabolite 

[81]. Given the decreases in both apparent clearance and 

volume of distribution, these data suggest that bioavailability 

increased owing to inhibition of P-gp in the gut by erythro-

mycin [81]. This pharmacological interaction is considered 

clinically relevant and the EHRA indicated dose adjustment 

[6], in line with the SmPC [15, 57]. In addition, the expo-

sure to other NOACs increases if macrolides are taken in 

concomitance, but no specific dose reduction was studied 

in this contest. The EHRA 2018 practical guide suggests 

considering dose adjustment if another factor for increased 

exposure is present, while for other NOACs, dose adjustment 

is recommended only with other concomitant factors for risk 

reduction [6], given the pharmacological data on the impact 

of clarithromycin on their metabolism [79]. It is our expert 

opinion that with macrolides, edoxaban 30 mg could be a 

facilitating approach.

Rifampin is one of the most relevant inducer of 

CYP3A4/5 and P-gp [82, 83]. Concomitant use of rifampin 

may lead to a decrease in edoxaban and NOAC exposure 

due to induction of P-gp and CYP3A4/CYP2J2. The effect 

of rifampin on edoxaban exposure has been evaluated in 

a specific pharmacokinetic study of multiple doses of the 

antibiotics on a single-dose of edoxaban and its active 

metabolites M-4 and M-6 [84]. Rifampin determined an 

approximate 34% decrease in total exposure to edoxaban 

(AUC), when compared with administration of edoxaban 

alone, and unlike other NOACs, a concomitant compensa-

tory 5- and 4-fold increase of Cmax values of metabolites 

M-4 and M-6, respectively [84]. These results demonstrate 

a significant drug interaction of edoxaban and its metabo-

lites with rifampin. However, the concomitant increase in 

both M-4 and M-6 metabolites led to a final neutral effect, 

suggesting that the co-administration of the two drugs is 

possible [16]. Edoxaban is the only NOAC that can be used 

with rifampin. Nevertheless, since not tested prospectively, 

the EHRA indicated that this combination should be used 

with caution, and avoided when possible [6]. Apart from 

edoxaban, other NOACs are contraindicated with rifampin 

in Europe [6]. Nonetheless, US SmPC suggest to avoid con-

comitant use, even though on scarce evidence [57].

Metronidazole is known for having a major interaction 

with VKAs and dose reductions are often necessary to main-

tain INR in range. There is no direct evidence with NOACs, 

but metronidazole has been reported to increase plasma con-

centration and toxicities in a number of CYP3A4 substrates 

[85]. It has been suggested that metronidazole, among other 

drugs, is a CYP3A4 inhibitor and concomitant administra-

tion of certain CYP3A4 substrates should be avoided [86]. 

In contrast, a pharmacokinetic study provided evidence that 

metronidazole does not act as an inhibitor of P-gp-mediated 

disposition in humans [87]. On the basis of current evidence, 

we do not recommend dose adjustment for metronidazole 

concomitant use.

The antifungals itraconazole, ketoconazole, and vori-

conazole, are strong inhibitors of P-gp, breast cancer resist-

ant protein (BCRP) and CYP3A4, suggesting a potential 

pharmacological interaction with NOAC, including edoxa-

ban. This hypothesis has been tested in an open-label, 

randomised, two-period, two-treatment crossover study in 

healthy subjects under co-treatment with ketoconazole and 

edoxaban [81]. As predicted, ketoconazole increased total 

exposure of edoxaban by approximately 90%. Exposure 

to the metabolite M-4 was higher when edoxaban was co-

administered with ketoconazole, with approximately 46% 

higher total exposures, potentially due to increased bio-

availability without a significant alteration of its formation 

mediated by CES-1. On the contrary, both peak and total 

exposure to the metabolite M-6, derived from the CYP3A4 

activity, was decreased by 51% and 43%, respectively [81]. 

The inhibitory effect of ketoconazole on CYP3A4 is also 

demonstrated by the fact that the metabolite-to-parent drug 

ratio was decreased from 4.44 to 1.45 [81]. From this analy-

sis, it is suggested to reduce the dose of edoxaban by 50% in 

case of a co-administration with antifungals (itraconazole, 

ketoconazole, and voriconazole) [6]. Similar indication has 

been decided for posaconazole, whereas fluconazole is not 

expected to interact with edoxaban [6]. While other NOACs 

are contraindicated in this eventuality, edoxaban can be 

used in concomitance reducing the dosage to 30 mg due to 

increased exposure [6, 81].

4.5  DDIs with Antineoplastic 
and Immune-modulating Agents

Cancer patients are at higher risk for thromboembolic events 

due to the presence of comorbidities, surgical interventions 

and chemotherapy [88]. Data on the use of NOACs in cancer 

patients is very limited and little clinical information is avail-

able when considering the effect that specific antineoplastic 

drugs might have on NOAC exposure. However, the results 

of the Hokusai VTE Cancer trial clearly demonstrated that 

treatment with a fixed once-daily dose of oral edoxaban for 

up to 12 months was noninferior to treatment with subcu-

taneous dalteparin with respect to the composite outcome 

of recurrent venous thromboembolism or major bleeding 

in patients predominantly with advanced cancer and acute 

symptomatic or incidental venous thromboembolism [89].

Among the 1046 patients enrolled in the study, only 16 

(3.0%) were, at randomisation, under treatment with P-gp 

inhibitors in the edoxaban group and 21 in the dalteparin 

group [89]. In more detail, the trial excluded patients antici-

pated to continue therapies with the P-gp inhibitors rito-

navir, nelfinavir, indinavir, or saquinavir, while the use of 
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ketoconazole, itraconazole, erythromycin, azithromycin or 

clarithromycin was permitted with appropriate dose reduc-

tion of edoxaban [89].

Patients in the edoxaban group, were exposed to many 

different classes of anticancer drugs, such as antimetabo-

lites, platinum-based chemotherapy, taxanes, topoisomerase 

inhibitors, alkylating agents, anthracyclines, vinca alkaloids, 

kinase inhibitors and antitumor antibiotics [89] (Table S1). 

These agents might have significant influence on CYP3A4 

and/or P-gp metabolism, thus altering NOAC exposure.

Since antineoplastic agents usually undergo hepatic 

metabolism and transformation, to a variable extent, the 

pharmacokinetic profile of edoxaban appears particularly 

favourable in this setting in view of its limited CYP3A4 

metabolism, even if the interaction with P-gp has to be care-

fully considered (Table S2). For example, the Bruton’s tyros-

ine kinase ibrutinib significantly increases risk of NVAF, 

with an estimated cumulative incidence of 5.9% at 6 months 

and increasing to 10.3% by 2 years of treatment [90]. The 

management of NVAF induced by ibrutinib is complicated 

by the fact that this drug is also a P-gp inhibitor, thereby 

increasing exposure to substrates such as NOACs [91]. It 

has been suggested that NOACs such as edoxaban and dabi-

gatran that have limited influence on CYP3A4 metabolism 

might have a lower risk of DDI with ibrutinib [92], but cau-

tion has been suggested with its use (Table S2).

Given the clinical evidence provided by the Hokusai VTE 

Cancer and the expert opinion [6] regarding the pharma-

cological interactions of NOACs and antineoplastic agents, 

edoxaban use might be a good choice in case of treatment 

with the following agents:

– Antimitotic agents: paclitaxel, docetaxel, vincristine.

– Topoisomerase inhibitors: etoposide.

– Anthracycline: idarubicin.

– Alkylating agents: ifosfamide, cyclophosphamide, lomus-

tine.

– Tyrosine kinase inhibitors: vemurafenib, dasatinib.

– Hormonal agents: bicalutamide, anastrozole.

– Immune-modulating agents: cyclosporine, prednisone, 

temsirolimus, sirolimus.

4.6  DDIs with Antiepileptic Drugs

Seizures are seen in up to 10% patients after stroke and and 

account for 30% to 40% of all cases of epilepsy in the elderly 

[93]. Most of these patients require long-term antiepilep-

tic drug treatment. Furthermore, the same drugs are also 

prescribed for neuropathic pain, migraine, headaches, or 

psychiatric disorders. Thus, it is conceivable to conclude 

that a considerable number of patients under treatment with 

NOACs would be on concomitant therapy with antiepilep-

tic drugs (Table 7). Little clinical evidence exists regarding 

interactions between antiepileptic drugs and NOACs. There 

is evidence that a number of these drugs induce CYP3A4 

and P-gp leading to reduced NOAC exposure [94].

Human, animals, and in vitro evidence has demonstrated 

that carbamazepine [95], levetiracetam [96], phenobarbital 

[97], phenytoin [98] are potent inducers of P-gp, and there-

fore may lead to reduced edoxaban and NOAC plasma con-

centrations and clinical efficacy. In the summary of product 

characteristics, it is suggested that edoxaban should be used 

with caution when co-administered with such P-gp inducers, 

although direct evidence for a clinically relevant pharmaco-

logical interaction with these drugs is still missing.

According to the EHRA practical guide, the use of car-

bamazepine, phenobarbital, and phenytoin is only possible 

with edoxaban and apixaban [6]. In this case the concomi-

tant use should be made with caution if it cannot be avoided, 

because there still is a decreased absorption that might lead 

to minor efficacy of these NOACs [6], even though no data 

about edoxaban are available.

A more stringent indication was deserved for valproic 

acid and levetiracetam, whose con-administration with 

edoxaban and all other NOACs is contraindicated [6], prob-

ably due to their more potent effect on P-gp [99, 100]. On 

the contrary, other antiepileptic drugs, that do not affect P-gp 

function, such as ethosuximide, gabapentin, lamotrigine 

[101], pregabalin [101], and zonisamide, are not predicted 

to interact with edoxaban [6]. Finally, the use of oxcarbaz-

epine and topiramate is possible without relevant DDIs only 

with edoxaban and dabigatran due to absence of CYP3A4 

metabolism. Unfortunately, the clinical relevance of these 

drug interactions is largely unknown since mainly data from 

in vitro and animal studies are available [94]. Although all 

NOACs are consider to interact with P-gp inducers [6], the 

influence of these drugs on edoxaban can be considered less 

problematic due to the compensatory increase of the active 

metabolite M-4. Indeed, in the EHRA guidelines, in con-

trast to dabigatran and rivaroxaban, the use of carbamaz-

epine, phenobarbital and phenytoin is not contraindicated 

with edoxaban and apixaban [6]. It can be hypothesised that 

antiepileptic drugs that do not have an effect on CYP3A4 

and P-gp, such as ethosuximide, gabapentin, lamotrigine, 

pregabalin and zonisamide, can be used with all NOACs 

without relevant pharmacological interaction [6, 94].

4.7  DDI with Antidepressants and Antipsychotic 
Drugs

It is estimated that 7.2% of the general European population 

in the EU had used antidepressant in 2010 [102]. Given the 

high prevalence of the use of this type of drug, it is quite 

common to have concomitant anticoagulant use in patients 

with atrial fibrillation or VTE, thus exposing the patients to 

the risk of pharmacological interactions (Table 8).
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Many psychotropic drugs interact with anticoagulants 

both on a pharmacokinetic and a pharmacodynamic level. 

For instance, it has been shown that selective serotonin 

reuptake inhibitors (SSRIs) can cause an antiplatelet 

effect [103]. Indeed SSRIs have been clinically associ-

ated with an increased risk in bleeding with concurrent 

coumarins [104], also with dabigatran, in the RE-LY study 

and with rivaroxaban in the clinical trial programme, 

where the association with SSRIs or serotonin norepi-

nephrine reuptake inhibitors (SNRIs) was related to an 

increased risk of bleeding in all treatment groups [105, 

106]. Due to its effect on platelets, SSRIs and SNRIs could 

have an increased risk of bleeding with all concomitant 

anticoagulants.

Considering the potential pharmacokinetic interactions, 

in vitro data showed that sertraline and paroxetine have a 

relevant P-gp inhibition, bearing a large potential to influ-

ence the absorption of co-administered drugs at the level 

of P-gp, while citalopram, venlafaxine had only a very 

weak inhibition [107]. Fluoxetine showed no significant 

effect on P-gp function in vitro or in vivo [108].

On this basis, we could hypothesise that edoxaban and 

the other NOACs might interact especially with paroxetine 

and sertraline.

Examining the inf luence on the metabolism of 

cytochromes, the only SSRI that appears to moderately 

inhibit CYP3A4 is fluvoxamine, while sertraline, citalopram, 

paroxetine, venlafaxine, duloxetine have no any effect on 

CYP3A4 and fluoxetine has only a mild effect [109]. Fluvox-

amine, therefore, might influence the metabolism of NOACs 

that are metabolised by CYP3A4.

Other psychoactive drugs that might bear potential for 

interaction with NOACs are antipsychotics, such as clo-

zapine, risperidone, olanzapine, quetiapine, sertindole, 

ziprasidone, aripiprazole and amisulpride. These drugs are 

substrates of P450 cytochrome, but are unlikely to interfere 

with the elimination of other drugs through this path [110]. 

However, most antipsychotics act as inhibitors of P-gp, and 

can therefore influence plasma and brain concentrations of 

other drugs. Risperidone and olanzapine are the most likely 

agents that may relevantly inhibit P-gp activity [111, 112]. 

Therefore, we could predict that these antipsychotics have 

Table 7  Predicted effects of antiepileptic drugs on edoxaban exposure and indications of dosage recommendation.  Modified from Steffel et al. 
[6]

AUC  area under the curve, CYP cytochrome P 450, P-gp P-glycoprotein

Concomitant drug Effect on P-gp and CYP Effect on edoxaban concentration Indication and dosage recommendation 
for edoxaban

Carbamazepine Strong CYP3A4/P-gp induction; 
CYP3A4 competitive inhibition

Decrease in AUC [59] No dose adjustment (use with caution for 
potential decrease of plasmatic concen-
tration) [59]

Ethosuximide CYP3A4 competitive inhibition; no 
relevant interaction known/assumed

No significant effect on AUC predicted No dose  adjustment(6)

Gabapentin No relevant interactions known/
assumed

No significant effect on AUC predicted No dose adjustment [6]

Lamotrigine P-gp competitive inhibition; no relevant 
interaction known/assumed

No significant effect on AUC predicted No dose adjustment [6]

Levetiracetam P-gp induction; P-gp competitive 
inhibition

Significant decrease in AUC predicted Should not be used [6]

Oxcarbazepine CYP3A4 induction; P-gp competitive 
inhibition

No significant effect on AUC predicted No dose adjustment [6]

Phenobarbital Strong CYP3A4/P-gp induction; P-gp 
competitive inhibition

Decrease in AUC [59] No dose adjustment (use with caution for 
potential decrease of plasmatic concen-
tration) [12]

Phenytoin Strong CYP3A4/P-gp induction; P-gp 
competitive inhibition

Decrease in AUC [59] No dose adjustment (use with caution for 
potential decrease of plasmatic concen-
tration) [59]

Pregabalin No relevant interactions known/
assumed

No significant effect on AUC predicted No dose adjustment [6]

Topiramate CYP3A4 induction; CYP3A4 competi-
tive inhibition

No significant effect on AUC predicted No dose adjustment [6]

Valproic acid CYP3A4/P-gp induction Significant decrease in AUC predicted Should not be used [6]

Zonisamide CYP3A4 competitive inhibition; no 
relevant interactions known/assumed

No significant effect on AUC predicted No dose adjustment [6]
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the highest potential to interfere with edoxaban and other 

NOAC concentrations.

4.8  DDIs with Antiparkinsonian 
and Anti-Alzheimer’s Disease Drugs

Age is the most important risk factor for the most highly 

prevalent diseases in Western countries and neurodegenera-

tion is a particularly relevant concern in the elderly patient. 

Along with the ageing of the population, neurodegenerative 

diseases such as Alzheimer’s disease (AD) and Parkinson’s 

disease (PD) are becoming more common [113, 114]. PD 

affects 1–2 per 1000 of the population at any time and it 

affects 1% of the population above 60 years [115]. Demen-

tia is especially prevalent in North America and Western 

Europe (6.4 and 5.4% of the population at age 60) with the 

risk that rises exponentially with age [116].

Given the high prevalence of NVAF, many of these 

patients are treated in concomitance with antiparkinsonian 

or AD medication and NOACs but the direct pharmacologi-

cal evidence for DDIs is poor. For some of these patients, 

other clinical concerns could emerge such as the risk of fall-

ing that might increase the haemorrhage risk or compliance 

issues that might reduce the efficacy of NOACs (Table S3).

Considering pharmacokinetics, levodopa is reported to 

be a P-gp substrate [117, 118], but neither levodopa nor 

carbidopa are reported to influence P-gp or CYP3A4 so a 

relevant pharmacokinetic interaction between edoxaban and 

levodopa/carbidopa seem to be improbable.

Dopamine agonists like pergolide, bromocriptine or 

pramipexole are substrates of the P-gp transporter system but 

only bromocriptine is reported to be a P-gp inhibitor [118]. 

Bromocriptine is also a strong CYP3A4 inhibitor in vitro, 

while pergolide and pramipexole are CYP2D2 inhibitors 

[119].

Taking into account MAO-B inhibitors, there is no evi-

dence of interaction between P-gp and selegiline, rasagil-

ine and safinamide [120, 121]. Safinamide seem to have no 

activity on the CYP systems [122]; moreover, rasagiline and 

selegiline are metabolised by the CYP1A2 and CYP2D6 

[121] respectively, but do not have any inhibitory or induc-

tion influence on the cytochrome CYP. Taking into account 

these considerations an interaction with edoxaban or other 

NOACs seem to be unlikely.

With respect to catechol O-methyltransferase (COMT) 

inhibitors, the DDIs with edoxaban seem to be equally 

improbable. Entacapone, nebicapone and opicapone 

were not identified in vitro as P-gp substrates [123, 124]. 

Table 8  Predicted effects of antidepressants and antipsychotic drugs on edoxaban exposure and indications of dosage recommendation

AUC  area under the curve, CYP cytochrome P 450, P-gp P-glycoprotein
a Expert opinion

Concomitant drug Effect on P-gp and CYP Effect on edoxaban concentration Indication and dosage recom-
mendation for edoxaban

SSRI

 Sertraline, paroxetine P-gp inhibition, CYP2D6 inhibi-
tion

Possible increase of AUC pre-
dicted

No dose adjustment (use with 
caution)a

 Citalopram Weak P-gp inhibition, CYP2D6 
inhibition

No significant effect on AUC 
predicted

No dose  adjustmenta

 Fluoxetine Mild CYP3A4 inhibition, CYP2D6 
inhibition, CYP2C19 inhibition, 
CYP2C9/10 inhibition

No significant effect on AUC 
predicted

No dose  adjustmenta

 Fluvoxamine Moderate CYP3A4 inhibi-
tion, CYP2C19 inhibition, 
CYP2C9/10 inhibition, CYP1A2 
inhibition

No significant effect on AUC 
predicted

No dose  adjustmenta

SNRI

 Duloxetine No relevant interactions known/
assumed, CYP2D6 inhibition

No significant effect on AUC 
predicted

No dose  adjustmenta

 Venlafaxine Weak P-gp inhibition, No significant effect on AUC 
predicted

No dose  adjustmenta

Antipsychotics

 Risperidone, olanzapine P-gp inhibition Possible increase of AUC pre-
dicted

No dose adjustment (use with 
caution)a

 Clozapine, quetiapine, sertin-
dole, ziprasidone, aripiprazole, 
amisulpride

Possible P-gp inhibition No significant effect on AUC 
predicted

No dose  adjustmenta
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Tolcapone and entacapone might inhibit CYP2C9; thus, 

influencing warfarin INR [125, 126], but this would have 

little or no influence on edoxaban, as its metabolism is mini-

mally involved through the cytochrome system.

Another drug used to treat side effects of PD is the anti-

viral agent amantadine. This medication was shown to be a 

non-substrate for P-gp [127] so a DDI with edoxaban seems 

unlikely.

Considering the most commonly prescribed medications 

in patients affected by AD, donepezil is reported to have 

a low P-gp affinity and a weak CYP3A4 inhibition [128] 

so any DDIs in vivo seem to be improbable with edoxa-

ban. The same might apply with galantamine—a CYP3A4 

and CYP2D6 substrate [129], but has no effect on warfarin 

cynetics and INR and no P-gp inhibition is reported [130]. 

Rivastigmine, on the other hand, is not involved in the CYP-

450 metabolism [131], but was shown to have an inductive 

effect on P-gp in the mouse model [132]. Further studies are 

necessary to determine if the same could apply to human 

P-gp, and in that case a reduction of NOACs and edoxaban 

absorption could verify.

4.9  DDIs with Anti-human Immunode"ciency (HIV) 
and Anti-hepatitis C Virus (HCV) Drugs

Several combinations of agents belonging to at least two 

drug families are recommended for treating HIV [133] 

(Table 9). Integrase inhibitors (e.g. dolutegravir or ralte-

gravir) and non-nucleoside analogue polymerase inhibitors 

(e.g. rilpivirine) are currently the preferred third agents 

used along with a two nucleos(t)ide analogue backbone, 

either abacavir/lamivudine or tenofovir/emtricitabine [134]. 

The use of HIV protease inhibitors has progressively been 

deferred, due to increased potential for DDIs and metabolic 

complications. Darunavir boosted with ritonavir or cobicistat 

is the only protease inhibitor still recommended as first-line 

HIV therapy [135]. With the exception of tipranavir, all HIV 

protease inhibitors are inhibitors of CYP3A4 [136], with 

ritonavir being the most potent and saquinavir the least. 

Ritonavir is also a strong P-gp inhibitor interfering with 

many drugs, and it may be expected to increase edoxaban 

exposure. Therefore, its co-administration with edoxaban, as 

well as other NOACs is not recommended [6]. Similarly, the 

pharmaco-enhancer cobicistat, in addition to being a potent 

inhibitor of cytochrome CYP3A4, also inhibits P-gp and 

BCRP transporters [137], and is predicted to increase the 

bioavailability of edoxaban and other NOACs [138].

Among the HCV protease inhibitors, simeprevir is a 

substrate and inhibitor of CYP3A4 and P-gp enzymes and 

through this action may increase the exposure of substrates 

for P-gp, such as edoxaban (Table 10). Paritaprevir is an 

HCV protease inhibitor that is boosted with ritonavir and 

thus this combination is predicted to increase the exposure 

of edoxaban. Grazoprevir is not a P-gp inhibitor based on 

Table 9  Predicted effects of anti-HIV therapies on edoxaban exposure and indications of dosage recommendation Modified from West et al. 
[133]

3TC lamivudine, ABC abacavir, ATVc atazanavir + cobicistat, CYP cytochrome P450, DRVc darunavir + cobicistat, DRVr darunair + ritonavir, 
DTG dolutegravir, EFV efavirenz, EVG elvitegravir, FTC emtricitabine, P-gp P-glycoprotein, RAL raltegravir, RPV rilpivirin, TAF tenofovir 
alafenamide, TDF tenofovir disoproxil fumarate

Concomitant drug Effect on P-gp and CYP Effect on edoxaban concentration Indication and dosage 
recommendation for 
edoxaban

DTG + ABC/TDF + 3TC No inhibition No significant effect predicted No dose adjustment

DTG + TDF/TAF + FTC No inhibition No significant effect predicted No dose adjustment

RAL + TDF/TAF + FTC No inhibition No significant effect predicted No dose adjustment

EVGc + TAF/TDF + FTC Cobicistat is a potent CYP3A4 and P-gp inhibitor Possible increased exposure Not recommended

DRVc + ABC + 3TC Cobicistat is a potent CYP3A4 and P-gp inhibitor 
and darunavir is a CYP3A4 inhibition

Possible increased exposure Not recommended

DRVc + TDF/TAF + FTC Cobicistat is a potent CYP3A4 and P-gp inhibitor 
and darunavir is a CYP3A4 inhibition

Possible increased exposure Not recommended

ATVc + TDF/TAF + FTC Cobicistat is a potent CYP3A4 and P-gp inhibitor Possible increased exposure Not recommended

DRVr + TDF/TAF + FTC Ritonavir is a potent CYP3A4 and P-gp inhibitor Likely increased exposure Not recommended

DRVr + ABC + 3TC Ritonavir is a potent CYP3A4 and P-gp inhibitor Likely increased exposure Not recommended

EFV + TDF/TAF + FTC Inhibition of CYP3A4 and P-gp Likely increased exposure Not recommended

RPV + TDF/TAF + FTC Inhibition of CYP3A4 and P-gp Likely increased exposure Not recommended

AZT + 3TC + EFV Inhibition of CYP3A4 and P-gp Likely increased exposure Not recommended

TDF + 3TC/FTC + EFV Inhibition of CYP3A4 and P-gp Likely increased exposure Not recommended

TDF + 3TC/FTC + NVP Inhibition of CYP3A4 and P-gp Likely increased exposure Not recommended
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in vitro data, and thus it is not expected to interact with 

edoxaban.

Non-structural protein 5AB (NS5B) polymerase inhibi-

tor, sofosbuvir, depicts an excellent pharmacokinetic profile, 

without significant interactions with other drugs because its 

metabolism does not involve the CYP450 pathway although 

it is a P-gp substrate [139].

Daclatasvir was the first-in-class developed HCV non-

structural protein 5A (NS5A) replication complex inhibitor. 

Daclatasvir is a substrate for CYP3A4 and P-gp, and mod-

erately inhibits P-gp and OATP1B1 [140]. Its interaction 

with edoxaban has not been evaluated; however, daclatasvir 

increases rosuvastatin exposure [140, 141], thus a similar 

effect with the OATP and/or BCRP substrates are pre-

dicted, including edoxaban [142]. A similar effect has been 

observed with ledipasvir, a substrate and inhibitor of P-gp/

BCRP [143].

4.10  DDIs with Antacid Drugs

Consult the Supplementary Materials.

4.11  DDIs with NSAIDs Drugs

Consult the Supplementary Materials.

4.12  DDIs with Monoclonal Antibodies 
and Interleukin 6 (IL6)

Consult the Supplementary Materials.

4.13  DDIs with Omega-3 Polyunsaturated Fatty 
Acids

Consult the Supplementary Materials.

4.14  DDIs with Dietary Supplements, 
Nutraceuticals and Herbs

Consult the Supplementary Materials.

5  Conclusions

DDIs have received a great deal of recent attention from the 

regulatory, scientific, and health care communities world-

wide. A large number of drugs are introduced every year, 

and new interactions between medications are increasingly 

reported. The co-administration of multiple therapies (poly-

pharmacy) in patients with concomitant comorbidities may 

determine a significant and clinically relevant modification 

of a drug’s absorption, distribution, metabolism and excre-

tion phases.

The different pharmacokinetic properties of each NOAC 

may significantly influence the potential DDIs, although 

some similitudes exist. For instance, all NOACs are sub-

strate of the P-gp and their bioavailability may be influenced 

by the presence of inducers or inhibitors of this drug trans-

porter. For this reason, the inter-individual variability of 

drug plasma concentrations, lower for apixaban and edoxa-

ban and higher for rivaroxaban and dabigatran, is a deter-

mining factor for triggering a clinically significant DDI.

The DDIs of NOACs can also be affected by induc-

ers or inhibitors of CYP3A4. Edoxaban involvement in 

cytochrome catalysed elimination is negligible, thus 

less prone to interaction with inducers or inhibitors of 

CYP3A4 compared to other anti-Xa inhibitors. Further-

more, through hydrolysis, edoxaban metabolism pro-

duces the active metabolite M-4. For this reason, the 

reduction of edoxaban exposure by strong inducers of 

Table 10  Predicted effects of anti HCV drugs on edoxaban exposure and indications of dosage recommendation

AUC  area under the curve, BCRP breast cancer resistance protein, CYP cytochrome P 450, P-gp P-glycoprotein
a Expert opinion

Concomitant drug Effect on P-gp and CYP Effect on edoxaban concentration Indication and dosage recommendation 
for edoxaban

HCV protease inhibitors

 Simeprevir Substrate and inhibitor of CYP3A4 and 
P-gp

Possible increase in AUC predicted No dose adjustment (use with caution)a

 Grazoprevir No relevant interactions described No significant effect on AUC predicted No dose  adjustmenta

NS5B polymerase inhibitors

 Sofosbuvir P-gp substrate No significant effect on AUC predicted No dose  adjustmenta

 Ledipasvir P-gp/BCRP substrate and inhibitor Possible increase in AUC predicted No dose  adjustmenta

NS5A replication complex inhibitor

 Daclatasvir CYP3A4 and P-gp substrate, P-gp and 
OATP1B1 moderate inhibition

Possible increase in AUC predicted No dose  adjustmenta
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drug-metabolising enzymes, i.e. rifampin, may be partially 

compensated by the formation of M-4, an effect that is not 

observed with other NOACs.

In response to anticipated DDIs, possible strategies are 

recommended, including dosage reduction or different 

times of administration. In particular, in order to avoid 

the DDIs, it is possible to administer edoxaban two hours 

before the interacting drug or six hours after the use of 

P-gp inhibitors. It is then important not to underestimate 

the potential interactions of NOACs with dietary supple-

ments, nutraceuticals and herbs, often utilised in elderly 

patients.

The introduction of NOACs in the clinical practice has 

certainly facilitated the use of anticoagulant therapies in 

patients under polypharmacy, with a significantly lower 

incidence of clinically relevant DDIs as compared to war-

farin. However, additional studies and/or sub-analysis will 

be necessary to ascertain the DDIs, which currently are 

mainly derived from hypothetical conclusions.

The differences found between EU and US labelling, 

as well as with expert documents, could make it difficult 

to make specific decisions in some circumstances. It is 

important to underline the need for more data. The inte-

gration between all available data, together with the assis-

tance of expert opinions, can help when making decisions, 

but this will need to be managed cautiously.

The present review/expert opinion has focused on edoxa-

ban and on its DDIs with other commonly prescribed drugs 

and, although not every possible interaction has been studied 

from a clinical or pharmacological point of view, there are 

many situations in clinical practice where a decision must be 

made even if the evidence is sometimes weak. In accordance 

with EHRA suggestion, we point out how specific atten-

tion is needed with some drugs classes that present already 

known or possible significant DDIs. An evaluation of all the 

concomitant drugs is pivotal, addressing the more relevant 

ones, and eventually changing prescriptions of concomitant 

drugs. In this regard, the analysis of edoxaban DDIs suggests 

that the small propensity for interaction of this agent make 

its use a fairly acceptable clinical decision if the DDIs have 

been properly considered and correctly evaluated.
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Table S1. Anticancer drug therapies continuing after randomization to edoxaban or dalteparin. From Raskob G.E et 
al. [1] 

 
 

Anticancer drugs Edoxaban (N=522) Dalteparin (N=524) 

Antimetabolites – no. (%) 124 (23.8) 118 (22.5) 

Platinum-based chemotherapy – no. (%) 105 (20.1) 107 (20.4) 

Monoclonal antibodies – no. (%) 42 (8.0) 54 (10.3) 

Bevacizumab – no. (%) 13 (2.5) 17 (3.2) 

Taxanes – no. (%) 40 (7.7) 47 (9.0) 

Hormonal therapy – no. (%) 41 (7.9) 37 (7.1) 

Topoisomerase inhibitors – no. (%) 30 (5.7) 48 (9.2) 

Alkylating agents – no. (%) 30 (5.7) 38 (7.3) 

Anthracyclines – no. (%) 22 (4.2) 25 (4.8) 

Vinca alkaloids – no. (%) 16 (3.1) 18 (3.4) 

Kinase inhibitors – no. (%) 18 (3.4) 18 (3.4) 

Immunomodulating agents – no. (%) 16 (3.1) 9 (1.7) 

Proteasome inhibitors – no. (%) 7 (1.3) 8 (1.5) 

Antitumor antibiotics – no. (%) 5 (1.0) 5 (1.0) 

Miscellaneous – no. (%) 14 (2.7) 14 (2.7) 



Table S2. Predicted Effects of antineoplastic drugs on edoxaban exposure and indications of dosage 
recommendation; Modified from Steffel et al. [2] 

Concomitant Drug Effect on P-gp and CYP Effect on edoxaban 
concentration 

Reasonable indication and 
dosage recommendation for 
edoxaban 

Antimitotic agents  

Paclitaxel Moderate CYP3A4 induction; CYP3A4/P-
gp competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Vinblastine Strong P-gp induction; CYP3A4/P-gp 
competitive inhibition 

significant decrease in 
AUC predicted 

Not recommended due to 
reduced plasma levels 

Docetaxel, Vincristine Moderate CYP3A4 induction; CYP3A4/P-
gp competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Vinorelbine Moderate CYP3A4 induction; CYP3A4/P-
gp competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Antimetabolites    

Metotrexate P-gp competitive inhibition; no relevant 
interaction anticipated 

no significant effect on 
AUC predicted no dose adjustment 

Pemetrexed, Purine 
analogs, Pyrimidine 
analogs 

No relevant interaction anticipated no significant effect on 
AUC predicted no dose adjustment 

Topoisomerase inhibitors 

Topotecan No relevant interaction anticipated no significant effect on 
AUC predicted no dose adjustment 

Irinotecan CYP3A4/P-gp competitive inhibition; no 
relevant interaction anticipated 

no significant effect on 
AUC predicted no dose adjustment 

Etoposide Mild CYP3A4 induction; CYP3A4/P-gp 
competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Anthracyclines / Anthracenediones 

Doxorubicin 
Strong P-gp induction; Mild CYP3A4 
inhibition;  CYP3A4/P-gp competitive 
inhibition 

significant decrease in 
AUC predicted 

Not recommended due to 
reduced plasma levels 

Idarubicin Mild CYP3A4 inhibition; P-gp competitive 
inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Daunorubicin  P-gp competitive inhibition; no relevant 
interaction anticipated 

no significant effect on 
AUC predicted  no dose adjustment 

Mitoxantrone no relevant interaction anticipated no significant effect on 
AUC predicted no dose adjustment 

Alkylating agents 

Ifosfamide Mild CYP3A4 inhibition; CYP3A4 
competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Ciclophosphamide Mild CYP3A4 inhibition;  
CYP3A4 competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Lomustine Mild CYP3A4 inhibition no significant effect on 
AUC predicted no dose adjustment 

Busulfan CYP3A4 competitive inhibition; no relevant 
interaction anticipated 

no significant effect on 
AUC predicted no dose adjustment 

Bendamustine P-gp competitive inhibition; no relevant 
interaction anticipated 

no significant effect on 
AUC predicted no dose adjustment 

Chlorambucil, 
Melphalan, Carmustine, 
Procarbazine, 
Dacarbazine, 
Temozolomide 

No relevant interaction anticipated no significant effect on 
AUC predicted no dose adjustment 

Platinum-based agents 

Cisplatin, Carboplatin, 
Oxaliplatin No relevant interaction anticipated no significant effect on 

AUC predicted no dose adjustment 

Intercalating agents 

Bleomycin, 
Dactinomycin No relevant interaction anticipated no significant effect on 

AUC predicted no dose adjustment 

Mitomycin C No relevant interaction anticipated no significant effect on 
AUC predicted no dose adjustment 

Tyrosine kinase inhibitors 

Imatinib, Crizotinib Strong P-gp inhibition; Moderate CYP3A4 
inhibition;  CYP3A4/P-gp competitive 

significant increase in 
AUC predicted 

Not recommended due to 
increased plasma levels 



inhibition 

Nilotinib, Lapatinib 
Moderate-to-strong P-gp inhibition; mild 
CYP3A4 inhibition;  CYP3A4/P-gp 
competitive inhibition 

possible increase in AUC 
predicted 

use with caution - Consider 
dose adjustment if another 
moderate to strong P-gp 
inhibitor is used  

Vemurafenib Moderate CYP3A4 induction; CYP3A4/P-
gp competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Dasatinib Mild CYP3A4 inhibition; CYP3A4/P-gp 
competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Vandetanib, Sunitinib Strong P-gp induction;  CYP3A4 
competitive inhibition 

significant decrease in 
AUC predicted 

Not recommended due to 
reduced plasma levels 

Erlotinib, Gefatinib CYP3A4 competitive inhibition, No 
relevant interaction anticipated 

no significant effect on 
AUC predicted no dose adjustment 

Ibrutinib P-gp inhibitor; CYP3A4 competitive 
inhibition 

possible increase in AUC 
predicted 

no dose adjustment (use with 
caution) 

Monoclonal antibodies 

Brentuximab CYP3A4 competitive inhibition; No 
relevant interactions anticipated 

no significant effect on 
AUC predicted no dose adjustment 

Rituximab, 
Alemtuzumab, 
Cetuximab, 
Trastuzumab, 
Bevacizumab 

No relevant interactions assumed no significant effect on 
AUC predicted no dose adjustment 

Hormonal agents 

Abiraterone 
Moderate CYP3A4 inhibition; Strong P-gp 
inhibition;  CYP3A4/P-gp competitive 
inhibition 

significant increase in 
AUC predicted 

Not recommended due to 
increased plasma levels 

Enzalutamide 
Strong CYP3A4 induction; Strong P-gp 
inhibition;  CYP3A4/P-gp competitive 
inhibition 

significant increase in 
AUC predicted 

Not recommended due to 
increased plasma levels 

Bicalutamide Moderate CYP3A4 inhibition no significant effect on 
AUC predicted no dose adjustment 

Tamoxifen Strong P-gp inhibition; Mild CYP3A4 
inhibition; CYP3A4 competitive inhibition 

possible increase in AUC 
predicted 

use with caution - Consider 
dose adjustment if another 
moderate to strong P-gp 
inhibitor is used  

Anastrozole Mild CYP3A4 inhibition no significant effect on 
AUC predicted no dose adjustment 

Flutamide CYP3A4 competitive inhibition; No 
relevant interactions anticipated 

no significant effect on 
AUC predicted no dose adjustment 

Letrozole, Fulvestrant CYP3A4 competitive inhibition; No 
relevant interactions anticipated 

no significant effect on 
AUC predicted no dose adjustment 

Raloxifene, Leuprolide, 
Mitotane No relevant interactions anticipated no significant effect on 

AUC predicted no dose adjustment 

Immune-modulating-agents 

Cyclosporine 
Strong to moderate P-gp inhibition, 
moderate CYP3A4 inhibition; CYP3A4/P-
gp competitive inhibition 

+73% AUC [3] use edoxaban 30 mg [4] 

Dexamethasone Strong CYP3A4/P-gp induction;  
CYP3A4/P-gp competitive inhibition 

significant decrease in 
AUC predicted 

Not recommended due to 
reduced plasma levels 

Tacrolimus 
Strong to moderate P-gp inhibition, mild 
CYP3A4 inhibition; CYP3A4/P-gp 
competitive inhibition 

significant increase in 
AUC predicted use edoxaban 30 mg 

Prendisone Moderate CYP3A4 induction; CYP3A4 
competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Temsirolimus, 
Sirolimus 

Mild CYP3A4 inhibition; CYP3A4/P-gp 
competitive inhibition 

no significant effect on 
AUC predicted no dose adjustment 

Everolimus CYP3A4 competitive inhibition; No 
relevant interactions anticipated 

no significant effect on 
AUC predicted no dose adjustment 

AUC Area under the curve, CYP Cytochrome P 450, P-gp P-glycoprotein. 

  



Table S3. Predicted effects of antiparkinsonian and anti-Alzheimer’s disease drugs on edoxaban exposure and 
indications of dosage recommendation. 
Concomitant 
Drug 

Effect on P-gp and CYP Effect on edoxaban 
concentration 

Indication and dosage 
recommendation for edoxaban 

L-dopa 
L-dopa/ 
carbidopa 

substrate for P-gp inhibitors no significant effect on AUC 
predicted 

no dose adjustment* 

Dopamine agonists 

Pergolide substrate for P-gp Cyp2D2 inhibition 
[5] 

no significant effect on AUC 
predicted 

no dose adjustment* 

Bromocriptine P-gp inhibitor 51; CYP3A4 inhibition 
[5, 6] 

possible increase of AUC 
predicted 

no dose adjustment (use with caution)* 

Pramipexole substrate for P-gp and CYP2D2 
inhibition [5, 6] 

no significant effect on AUC 
predicted 

no dose adjustment* 

MAO B inhibitors 

Selegiline CYP2D6 substrate no significant effect on AUC 
predicted 

no dose adjustment* 

Rasagiline CYP1A2 substrate no significant effect on AUC 
predicted 

no dose adjustment* 

Safinamide No relevant interactions 
known/assumed 

no significant effect on AUC 
predicted 

no dose adjustment* 

COMT inhibitors 

Tolcapone CYP2C9 inhibitor no significant effect on AUC 
predicted 

no dose adjustment* 

Entacapone CYP2C9 inhibitor no significant effect on AUC 
predicted 

no dose adjustment* 

Others 

Amantadine No relevant interactions 
known/assumed 

no significant effect on AUC 
predicted 

no dose adjustment* 

Acetylcholinesterase inhibitors 
Donepezil weak CYP3A4 inhibition no significant effect on AUC 

predicted 
no dose adjustment* 

Galantamine CYP3A4, CYP2D6 substrate no significant effect on AUC 
predicted 

no dose adjustment* 

Rivastigmine P-gp induction Possible decrease in AUC 
predicted 

no dose adjustment (use with caution)* 

* Expert opinion 
AUC Area under the curve, CYP Cytochrome P 450, P-gp P-glycoprotein. 
  



DDIs with antacid drugs 
The prevalence of gastro-esophageal reflux disease (GERD) is significant worldwide and evidence indicate, especially 
in the western countries, an increase in its incidence [7]. This suggests that an increasingly higher portion of the 
population is using antacid medication. 

Theoretically, antacid medications are not devoid of risk of DDIs with NOACs. Especially considering gastric 
acidity might play a role in NOAC absorption (Table S4). From a pharmacological point of view, a small reduction of 
dabigatran bioavailability has been observed with concomitant PPIs or H2-blockers, while no effect has been 
observed with other NOACs [2]. Also, PPIs can have an influence on cytochrome P450 metabolism, especially 
CYP2C19 [8] and some PPIs like omeprazole, lansoprazole and pantoprazole can also have an inhibitory influence on 
P-gp [9]. In a pharmacological study, esomeprazole was shown to have no significant effect on the peak and total 
exposure of edoxaban during concurrent dosing [10]. 

The histamine II receptor blocker cimetidine was shown to inhibit certain cytochrome P450 enzymes, including 
CYP1A2, CYP2C9, CYP2D6 and CYP3A3/A4, and CYP2C18 [11], while ranitidine has a minor effect on the CYP 
isoenzymes [12].  

Aluminum-Magnesium Hydroxide Tablets have no influence on P-gp or CYP isoenzymes but they might alter 
the absorption of drugs that are concomitantly administered if taken within 1 hour [13]. 

 

Table S4. Predicted effects of antacid drugs on edoxaban exposure and indications of dosage recommendation. 

Concomitant Drug Effect on P-gp and CYP Effect on edoxaban 
concentration 

Indication and dosage 
recommendation for edoxaban 

PPIs 

Esomeprazole  CYP2C9 and CYP2C19 
inhibition,  

no significant effect on AUC 
observed 

Minor effects (no dose adjustment) 

Omeprazole CYP2C19 inhibition; 
CYP3A4 substrate; 
moderate P-gp inhibition 

no significant effect on AUC 
predicted 

no dose adjustment* 

Pantoprazole,  P-gp inhibition no significant effect on AUC 
predicted 

no dose adjustment* 

Lansoprazole CYP2C19 inhibition, P-gp 
inhibition 

no significant effect on AUC 
predicted 

no dose adjustment* 

H2 antagonists 

Cimetidine Inhibition of CYP1A2, 
CYP2C9, CYP2D6, 
CYP3A3/A4, CYP2C18 

no significant effect on AUC 
predicted 

no dose adjustment* 

Ranitidine No interactions predicted no significant effect on AUC 
predicted 

no dose adjustment* 

Aluminium-magnesium 
hydroxide 

No interactions predicted no significant effect on AUC 
predicted 

no dose adjustment* 

* Expert opinion 
AUC Area under the curve, CYP Cytochrome P 450, P-gp P-glycoprotein. 
 

  



DDIs with NSAIDs drugs  
Patients with AF tend to be elderly and to have other inflammatory disorders, which may require the use of 
nonsteroidal anti-inflammatory drugs (NSAIDs). NSAIDs increase bleeding risk with NOACs due to a 
pharmacodynamics interaction and the chronic use is not permitted by the respective SmPCs (Table S5). 
 Mendell et al, conducted a pharmacokinetic study to assess the potential pharmacokinetic/pharmacodynamic 
interactions between edoxaban and the NSAID naproxen [14]. Naproxen undergoes to an extensive metabolism 
through the CYP1A2 and CYP2C9 [15], therefore, the likelihood of pharmacokinetic interaction with edoxaban is 
minimal, although, a pharmacodynamic interaction is likely. Indeed, no significant effect of naproxen was observed in 
systemic exposure to edoxaban (AUC and Cmax) whereas it was shown an additive effect on bleeding time [14]. 
Interestingly, naproxene has shown to increase apixaban exposure by more than 50%, an effect potentially related to 
the inhibition of the intestinal efflux transporter P-gp [16]. Naproxene use and has not been studied with other NOACs 
[2]. For the acute concomitant use of naproxene, edoxaban could constitute a reasonable choice for a concomitant 
anticoagulant.  
 

Table S5. Predicted effects of NSAIDs drugs on edoxaban exposure and indications of dosage recommendation. 
Concomitant 
Drug 

Effect on P-gp and 
CYP Effect on edoxaban concentration Indication and dosage 

recommendation for edoxaban 
NSAIDs 
Naproxen P-gp competitive 

inhibition; CYP1A2 and 
CYP2C9 inhibition 

no significant effect on AUC; 
Pharmacodynamically increased 
bleeding time effect [14] 

no dose adjustment; Chronic use 
not recommended [4] 

Aspirin No relevant interactions 
known/assumed 

Increased AUC for high doses of 
aspirin; Pharmacodynamically 
increased bleeding time [14] 

no dose adjustment; Chronic use 
not recommended [4]  

* Expert opinion 
AUC Area under the curve, CYP Cytochrome P 450, P-gp P-glycoprotein. 
  



DDIs with monoclonal antibodies and interleukin 6 (IL6) 
The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve CYP450-mediated metabolism 
or interaction with P-gp, therefore their pharmacokinetic interactions with small molecule drugs are limited. However, 
P$EV� GLUHFWHG� DJDLQVW� FLUFXODWLQJ� F\WRNLQHV�� VXFK� DV� LQWHUOHXNLQ� �,/����� ,/��ȕ�� RU� 71)�Į�� IRU� WKH� WUHDWPHQW� RI�
immunologic disorders like rheumatoid arthritis, celiac disease, and Crohn’s disease may have a significant impact on 
drug metabolism. Specific studies have, indeed, demonstrated that IL-6 reduces the CYP3A4, 2B6 and 2C8 mRNA 
expression [17, 18]. Even more relevant for NOAC disposition, is the observation that IL-6-treated mice displayed a 
70% reduction in protein expression of all P-gp isoforms [19]. On these basis, it is possible that tocilizumab, a 
monoclonal antibody anti IL-6, may induce P-gp and reducing NOAC intestinal absorption. A case report of possible 
DDI between tocilizumab and dabigatran has been described. The authors claim that the coadministration of 
tocilizumab with dabigatran had induced a progressively decreased anticoagulant effect of dabigatran, favoring 
mesenteric arterial thrombosis [20]. A possible interaction can also be predicted for edoxaban. 
 Similar effect can be hypothesized with the monoclonal antibody dupilumab that inhibits IL-4 and IL-13 
signaling. An open-label drug–drug interaction study was performed to assess whether a possible interaction of 
dupilumab with the pharmacokinetics of drugs metabolized by cytochrome P450 (CYP450) enzymes, including 
warfarin. The results clearly show no significant DDI of drugs metabolized by CYP3A, CYP2C19, CYP2C9, CYP1A2, 
and CYP2D6 after IL-4/IL-13 signaling inhibition by dupilumab [21]. 
 
DDIs with omega-3 polyunsaturated fatty acids 
Omega-3 polyunsaturated fatty acids (n3-PUFA) are an important component of human metabolism and cellular 
function [22]. After some initial evidence of a beneficial role in reducing significantly the risk of all-cause death, n3-
PUFA have been largely investigated as possible beneficial dietary supplement to reduce the risk of major adverse 
cardiovascular events [22]. Notwithstanding, current evidence available pointed out that only a small advantage is due 
to the consumption of n3-PUFA, which seems to possibly increase over time [22]. 

Metabolism of n-3 PUFA does not involve P-gp or any CYP450 [23], so no direct effect on edoxaban 
pharmacokinetic and concentration, nor any other NOAC, is predicted. Conversely, it is known that n-3 PUFA have a 
significant role in modulating platelet activation [23], hence this action associated with the concomitant assumption of 
antiplatelet agents or other anticoagulant drugs has been hypothesized to increase the risk of bleeding, even though 
no evidence seems to support this hypothesis [24]. Currently, no evidence is available to recommend any dose 
adjustment for edoxaban nor any other NOACs. 
 
DDIs with dietary supplements, nutraceuticals and herbs 
Approximately half of the older population taking prescription medication also regularly use dietary supplements [25] 
and the often-unregulated nature of supplements means that potential interactions with NOACs should be considered.  
 Herbs and supplements for the prevention and treatment of cardiovascular disease have been associated with 
adverse effects and interactions [26-34]. For example, garlic inhibits platelet aggregation and can cause significant 
anticoagulation, and the Chinese herb danshen (Salvia miltiorrhiza) may potentiate warfarin [35].   
 Dong quai is a Chinese herbal medicine used for the treatment of menstrual cramping, irregular menses, and 
menopausal symptoms. Dong quai has a number antithrombotic constituents, particularly coumarins, and a case 
report of DDI with warfarin has been reported [36].  
 Practitioners should be aware of the possibility of such an interaction that cannot be excluded with NOACs. 
Green tea contains significant quantities of vitamin K and therefore may antagonize the anticoagulant effect of 
warfarin [37]. Considering the vitamin K-independent mechanism of action of NOAC, it is not expected a significant 
DDI with green tea.  
 Horse chestnut (Aesculus hippocastanum) is used as an herbal medicine for chronic venous insufficiency. 
The main constituents of horse chestnut are triterpene saponins (escin), flavonoids (e.g., quercetin, kaempferol, EC, 
proanthocyanidin A2, anthocyanins), and coumarins (e.g., esculin, esculetin) [38]. Clinical trials are suggested to 
investigate whether or not the coumarins, present in horse chestnut, may play a therapeutic role in reducing 
hypercoagulation [39]. The combination of vitamin E and alpha-lipoic acid increases bleeding tendencies and 
therefore may have an impact on long-term anticoagulant therapies [40]. Beyond the effect on coagulation system and 
platelet function, many foods and herbal drugs may modulate P-gp activity, as well as CYP3A4 metabolism and thus 
NOACs exposure (Table 4) [41].  Camellia sinensis, Hypericum perforatum, Ginkgo biloba increase P-gp activity while 
Curcumin from Curcuma longa, piperine and silymarin inhibit this protein. Grapefruit juice is a strong CYP3A4 and P-
gp inhibitor and may lead to increased exposure of drugs metabolized in this manner or P-gp substrates, such as 
NOACs [42].  In addition, a study by Honda and colleagues showed that grapefruit and orange juice extracts and their 
constituents also inhibited P-gp transcellular transport [43]. At present, however, none of the NOACs is cautioned with 
grapefruit juice.  



 Additionally, St. John’s Wort is one of the most commonly used herbal remedies for minor and major 
depression. Use of St. John’s Wort often goes unreported to medical practitioners, despite safety concerns about its 
tendency for clinically relevant drug interactions [44].   
 The effect of St. John’s wort affects both the expression level of P-gp and CYP3A4 and therefore a series of 
interactions that lead to the decrease of P-gp and CYP3A4 substrates have been reported [45].  
 It is noteworthy that a single-dose administration of St. John’s wort decreases intestinal P-glycoprotein 
expression, while the opposite effect is observed if the same substance is administered long-term [46]. Due to the 
frequent use of this substance, the non standardized dosages and the expected increased plasma concentrations with 
all NOACs, their use should be avoided in concomitance [41, 47]. 
 Taken together, the scenario of potential interaction of herbal medicine with NOACs is mainly unexplored, 
excluding the well established P-gp inducer St. John’s Wort, which is contraindicated with any NOACs [2]. 
 Table 16 lists a series of substances that are present in many commonly used medicinal plants and their 
potential effect on P-gp and Cythochromes. These substances, theoretically, might have the potential to alter NOAC 
plasmatic concentration thus, their use should be limited or carefully evaluated in case of concomitant administration.  
Considering that CYP3A4 is involved to a minor extent in the metabolism of edoxaban, the substances that alter this 
path might have less influence on edoxaban compared to other anti-Xa inhibitors. 
 

Table 16. Effect of herbs and derived substances on P-glycoprotein activity and function. Modified from Bogacz A et 
al and Di Minno A, et al [41, 46] 
Substance Herb source of 

substance  
Induction of 
P-gp   

Inhibition  of 
P-gp   

Effect on CYP450 

Apigenin  Matricaria chamomilla  X [26] Inhibition of CYP3A4 
Berberine  Berberis  X [27] Inhibition of CYP2D6, 2C9, and CYP3A4 
Capsaicin Capsicum (chili peppers)  X [28] Induction of CYP3A4 
Carum Ajowan Carum copticum   Inhibition of CYP3A4 
Citrus aurantium  Orange   Inhibition of CYP3A4 
Coraria lactone Alisma orientalis 

(Alismataceae) 
X   

Curcumin  Curcuma longa 
(Zingiberaceae)  

 X Inhibition of CYP3A4 

Dehydroepiandrosterone  Soybean (Glycine max)   Inhibition of CYP3A4 
Echinacea purpurea and/or 

angustifolia 
  Inhibition of CYP3A4 

Ephedrine Angelica sinensis 
(Apiaceae) 

 X  

Eucalyptus Eucalyptus globulus   Inhibition of CYP1A2, 2C9, 2C19, 3A4 
Fo-ti-root Fallopian multiflora   Inhibition of CYP1A2, 2C9, 2C19, 3A4 
Garlic extract garlic  X  Inhibition of CYP2C9, 2C19, 3A4 
Ginkgo biloba extract Ginkgo biloba 

(Ginkgogaceae) 
 X [29]  

Glabridin Glycyrrhiza glabra 
(Glycyrrhizaceae) 

 X Inhibition of CYP3A4 

Glycyrrhetinic acid Licorice X  Inhibition of CYP3A4 
Grape juice Vitis vinifera   Induction of CYP1A2, 3A4 
Grapefruit juice Grapefruit  X [30] Inhibition of CYP3A4 
Guggulsterone Guggul (Commiphora 

mukul) 
 X [10] CYP3A4 induction 

Honokiol Pseudolarix kaempferi 
(Pinaceae) 

 X  

Hydrastis canadensis 
extract 

goldenseal   Inhibition of CYP3A4 

Hyperforin, hypericin St. John’s wort 
(Hipericaceae)  

X (at long 
term) [31] 

X (acute)  Induction of CYP1A2, 2C9, 3A4 

Kava  Piper methysticum X  Inhibition of CYP1A2, 2C9, 2C19, 3A4 
Licorice root Glycyrrhiza glabra X [31, 32]  CYP3A4 induction 
Lime extract  Lime   Inhibition of CYP3A4 
Paeoniflorin Paeonia alba 

(Paeoniaceae) 
X   



Phellamurin Phellodendron wilsonii 
(Rutaceae) 

 X  

Piperine Piper nigrum; Piper 
longum (Piperaceae) 

 X [33] Inhibition of CYP3A4 

Pyranocoumarins Peucadanum 
praeruptorum (Apiaceae) 

 X  

Polyphenols Green tea leaf 
(Theaceae) 

X  short-term inhibition, and longterm 
induction of CYP3A4 

Protopanaxatriol 
ginsenosides 

Panax ginseng 
(Araliaceae) 

X  Potent CYP3A4 competitive inhibition; 
moderate CYP2C9 inhibition 

Prunus avium extract wild cherry   CYP3A4 inhibition 
Quercetin  Dietary flavonoids X [31]  Inhibiton of CYP1A2, induction of 

CYP2A6 
Resveratrol Vaccinium corymbosum, 

Rubus idaeus, Morus 
nigra 

  Inhibition of CYP1A2, 3A4 

Rutin  Carpobrouts edulis  X [26] Potent CYP3A4 inhibition 
Scutellaria  Lamiaceae X [31]  CYP3A4 inhibition 
Silymarin Silybum marianum 

(Asteraceae) 
 X CYP3A4 inhibition 

Soy milk and miso  soybeans X [32]  CYP3A4 induction [32] 
Sucralose   X [34]  CYP3A4 induction [32] 

Tanacetum parthenium feverfew   Inhibition of CYP1A2, 2C9, 2C19, 3A4 
Tenacissimoside A Marsdenia tenacissima 

(Asclepiadaceae) 
 X  

Tetrandrine Stephania tetrandra 
(Menispermaceae) 

 X Moderate CYP3A4 inhibition 

Trifolium pretense Red clover   Inhibition of CYP1A2, 2C9, 2C19, 3A4 

Uncaria Una de gato   CYP3A4 inhibition 
Valerenic acid Valeriana officinalis   CYP3A4 inhibition 

Vauqueline Angelica sinensis 
(Apiaceae) 

 X  

AUC Area under the curve, BCRP breast cancer resistance protein, CYP Cytochrome P 450, P-gp P-glycoprotein. 
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