The use of oral anticoagulant (OAC) therapy for stroke prevention in atrial fibrillation (AF) has been transformed by the availability of the nonvitamin K antagonist oral anticoagulants. Real-world studies on the use of nonvitamin K antagonist oral anticoagulants would help elucidate their effectiveness and safety in daily clinical practice. Apixaban was the third nonvitamin K antagonist oral anticoagulants introduced to clinical practice, and increasing real-world studies have been published. Our aim was to summarize current evidence about real-world studies on apixaban for stroke prevention in atrial fibrillation.

Methods—We performed a systematic review and meta-analysis of all observational real-world studies comparing apixaban with other available oral anticoagulant drugs.

Results—From the original 9680 results retrieved, 16 studies have been included in the final meta-analysis. Compared with warfarin, apixaban regular dose was more effective in reducing any thromboembolic event (odds ratio: 0.77; 95% confidence interval: 0.64–0.93), but no significant difference was found for stroke risk. Apixaban was as effective as dabigatran and rivaroxaban in reducing thromboembolic events and stroke. The risk of major bleeding was significantly lower for apixaban compared with warfarin, dabigatran, and rivaroxaban (relative risk reduction, 38%, 35%, and 46%, respectively). Similarly, the risk for intracranial hemorrhage was significantly lower for apixaban than warfarin and rivaroxaban (46% and 54%, respectively) but not dabigatran. The risk of gastrointestinal bleeding was lower with apixaban when compared with all oral anticoagulant agents (P<0.00001 for all comparisons).

Conclusions—Use of apixaban in real-life is associated with an overall similar effectiveness in reducing stroke and any thromboembolic events when compared with warfarin. A better safety profile was found with apixaban compared with warfarin, dabigatran, and rivaroxaban. (Stroke. 2018;49:98-106. DOI: 10.1161/STROKEAHA.117.018395.)

Key Words: apixaban ■ atrial fibrillation ■ major bleeding ■ stroke ■ warfarin

Real-World Use of Apixaban for Stroke Prevention in Atrial Fibrillation

A Systematic Review and Meta-Analysis

Marco Proietti, MD*; Imma Romanazzi, MD*; Giulio Francesco Romiti, MD; Alessio Farcomeni, PhD; Gregory Y.H. Lip, MD

Background and Purpose—The use of oral anticoagulant therapy for stroke prevention in atrial fibrillation has been transformed by the availability of the nonvitamin K antagonist oral anticoagulants. Real-world studies on the use of nonvitamin K antagonist oral anticoagulants would help elucidate their effectiveness and safety in daily clinical practice. Apixaban was the third nonvitamin K antagonist oral anticoagulants introduced to clinical practice, and increasing real-world studies have been published. Our aim was to summarize current evidence about real-world studies on apixaban for stroke prevention in atrial fibrillation.

Methods—We performed a systematic review and meta-analysis of all observational real-world studies comparing apixaban with other available oral anticoagulant drugs.

Results—From the original 9680 results retrieved, 16 studies have been included in the final meta-analysis. Compared with warfarin, apixaban regular dose was more effective in reducing any thromboembolic event (odds ratio: 0.77; 95% confidence interval: 0.64–0.93), but no significant difference was found for stroke risk. Apixaban was as effective as dabigatran and rivaroxaban in reducing thromboembolic events and stroke. The risk of major bleeding was significantly lower for apixaban compared with warfarin, dabigatran, and rivaroxaban (relative risk reduction, 38%, 35%, and 46%, respectively). Similarly, the risk for intracranial hemorrhage was significantly lower for apixaban than warfarin and rivaroxaban (46% and 54%, respectively) but not dabigatran. The risk of gastrointestinal bleeding was lower with apixaban when compared with all oral anticoagulant agents (P<0.00001 for all comparisons).

Conclusions—Use of apixaban in real-life is associated with an overall similar effectiveness in reducing stroke and any thromboembolic events when compared with warfarin. A better safety profile was found with apixaban compared with warfarin, dabigatran, and rivaroxaban. (Stroke. 2018;49:98-106. DOI: 10.1161/STROKEAHA.117.018395.)

Key Words: apixaban ■ atrial fibrillation ■ major bleeding ■ stroke ■ warfarin

Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.117.018395

Prior RWS have analyzed and been pooled together for dabigatran and rivaroxaban, broadly confirming the results from their respective phase III clinical trials.5,5

Our aim was to perform a systematic review and meta-analysis of all observational RWS comparing apixaban with other available OAC drugs (warfarin, dabigatran, rivaroxaban, and edoxaban).

Methods—We performed a systematic review and meta-analysis of all observational real-world studies comparing apixaban with other available oral anticoagulant drugs.

Results—From the original 9680 results retrieved, 16 studies have been included in the final meta-analysis. Compared with warfarin, apixaban regular dose was more effective in reducing any thromboembolic event (odds ratio: 0.77; 95% confidence interval: 0.64–0.93), but no significant difference was found for stroke risk. Apixaban was as effective as dabigatran and rivaroxaban in reducing thromboembolic events and stroke. The risk of major bleeding was significantly lower for apixaban compared with warfarin, dabigatran, and rivaroxaban (relative risk reduction, 38%, 35%, and 46%, respectively). Similarly, the risk for intracranial hemorrhage was significantly lower for apixaban than warfarin and rivaroxaban (46% and 54%, respectively) but not dabigatran. The risk of gastrointestinal bleeding was lower with apixaban when compared with all oral anticoagulant agents (P<0.00001 for all comparisons).

Conclusions—Use of apixaban in real-life is associated with an overall similar effectiveness in reducing stroke and any thromboembolic events when compared with warfarin. A better safety profile was found with apixaban compared with warfarin, dabigatran, and rivaroxaban. (Stroke. 2018;49:98-106. DOI: 10.1161/STROKEAHA.117.018395.)

Key Words: apixaban ■ atrial fibrillation ■ major bleeding ■ stroke ■ warfarin

Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.117.018395

Received June 15, 2017; final revision received October 11, 2017; accepted October 18, 2017.

From the Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (M.P., I.R., G.F.R., G.Y.H.L.); Department of Neuroscience, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.P.); Department of Public Health and Infectious Disease, Sapienza-University of Rome, Italy (A.F.); and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Denmark (G.Y.H.L.).

*Drs Proietti and Romanazzi contributed equally.

The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.117.018395/-/DC1.

Correspondence to Gregory Y.H. Lip, MD, City Hospital, University of Birmingham Institute of Cardiovascular Sciences, Birmingham B18 7QH, United Kingdom. E-mail g.y.h.lip@bham.ac.uk

© 2017 American Heart Association, Inc.
or edoxaban and their impact on major adverse events on follow-up observation; (3) At least 100 patients, with 50 patients taking apixaban or a relevant subgroup of apixaban treated patients; (4) At least 3 months of follow-up. Exclusion criteria were as follows: (1) conference abstracts, letters, comments, case reports, and editorials; (2) studies not published in English. No explicit protocol was drafted to perform the systematic review. The systematic review and meta-analysis were performed according to PRISMA recommendations (http://www.prisma-statement.org/). The data that support the findings of this study are available from the corresponding author on reasonable request.

Search Strategy
A comprehensive literature search was performed using PubMed and Scopus databases up to 6 March, 2017. Search terms included atrial fibrillation, apixaban, dabigatran, rivaroxaban, and edoxaban. The electronic search was performed for peer-reviewed journals, and, if applicable, some further additional references were gathered from searches through bibliographies of identified papers and from authors' personal knowledge.

All details about studies selection, data extraction, outcomes definition, as well as on bias assessment, and statistical analysis have been reported in the online-only Data Supplement. All statistical analyses were undertaken using Review Manager (RevMan) version 5.3 (The Cochrane Collaboration 2014, Nordic Cochrane Centre, Copenhagen, Denmark).

Results
The original literature search retrieved a total of 9680 results from Pubmed and Scopus databases (Figure 1). After the selection process (Figure 1), a total of 173 studies underwent full-text assessment. After the exclusion of 158 papers and the addition of 2 papers, based on authors knowledge, a total of 16 studies7–22 were included in the systematic review and the final meta-analysis (Table).

Study Characteristics
Overall, a total of 170814 patients treated with apixaban were included in the 16 studies. Of these, 2 studies were published in 2015,8,9 7 studies were published in 2016,10–16 and 7 studies were published in 2017.7,17–22 Three of 16 studies were single-center cohort studies,8–10 6 studies were retrieved from insurance databases,7,17–20 and 6 studies were taken from nationwide registries.7,12,15,18–20,22 Eight studies were based in Europe while 6 studies were based in United States, 1 study was based in the Middle-East, and 1 study in Japan.

Mean/median age was consistent among most of the studies, ranging from 70 to 76 years; 1 study enrolled slightly younger patients, mean (SD) age 68.5 (12.4) years13 while another study enrolled significantly older patients, mean (SD) age 83.9 (8.2) years.22 Four studies enrolling patients with a high thromboembolic risk (CHA2DS2-VASc score ≥4 [congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke/transient ischemic attack, vascular disease, age 65–74 years, sex category]).14,16,17,22 Eight studies compared apixaban with warfarin, dabigatran, and rivaroxaban9,12,13,15,19,20,22; 4 studies compared

![Figure 1. Flow-chart of studies’ selection process.](http://ahajournals.org)
apixaban directly only with warfarin;7,13,16,21 and 4 studies compared apixaban with both dabigatran and rivaroxaban.10,14,17,18 No studies were retrieved comparing apixaban with edoxaban.

Data about use of reduced dose were available for 10 out of 16 studies.7,9,11,13–16,19–21 The lowest proportion of the reduced dose was 13.5%11 whereas the highest proportion reported was 37.8%.20; of note, 5 of 10 studies reported a proportion of reduced dose of >25%.7,9,15,19,20 One study comprised only patients prescribed with NOACs reduced dose.22

Table. Selected Studies for Systematic Review and Meta-Analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Study Cohort</th>
<th>Location</th>
<th>n*</th>
<th>Reduced Dose</th>
<th>Age (Mean)</th>
<th>CHA2DS2-VASC (Mean)</th>
<th>Comparator(s)</th>
<th>Main Outcomes</th>
<th>FU (Mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al8</td>
<td>2015</td>
<td>Single-center cohort</td>
<td>United Kingdom</td>
<td>53</td>
<td>NA</td>
<td>74</td>
<td>3 (median)</td>
<td>Warfarin, dabigatran, rivaroxaban</td>
<td>CVE, any bleeding, all-cause death, OAC switching</td>
<td>0.92 y</td>
</tr>
<tr>
<td>Shiga et al9</td>
<td>2015</td>
<td>Single-center cohort</td>
<td>Japan</td>
<td>102</td>
<td>36 (35.3%)</td>
<td>70</td>
<td>NA</td>
<td>Warfarin, dabigatran, rivaroxaban</td>
<td>Discontinuation, TE, major bleeding</td>
<td>1.83–2 y</td>
</tr>
<tr>
<td>Al-Khalili et al10</td>
<td>2016</td>
<td>Single-center cohort</td>
<td>Sweden</td>
<td>251</td>
<td>NA</td>
<td>73</td>
<td>3 (median)</td>
<td>Dabigatran, rivaroxaban</td>
<td>Any bleeding, discontinuation, TE, all-cause death</td>
<td>0.95–1.18 y</td>
</tr>
<tr>
<td>Coleman et al11</td>
<td>2016</td>
<td>Insurance database</td>
<td>United States</td>
<td>4332</td>
<td>671 (15.5%)</td>
<td>71</td>
<td>3.47</td>
<td>Warfarin</td>
<td>ICH, ischemic stroke</td>
<td>0.48–0.52 y</td>
</tr>
<tr>
<td>Larsen et al12</td>
<td>2016</td>
<td>Nationwide registries</td>
<td>Denmark</td>
<td>6349</td>
<td>0</td>
<td>71.3</td>
<td>2.8</td>
<td>Warfarin, dabigatran, rivaroxaban</td>
<td>Stroke/SE, ischemic stroke, all-cause death</td>
<td>1.9 y</td>
</tr>
<tr>
<td>Lip et al13</td>
<td>2016</td>
<td>Insurance database</td>
<td>United States</td>
<td>7438</td>
<td>1002 (13.5%)</td>
<td>68.5</td>
<td>2.8</td>
<td>Warfarin, dabigatran, rivaroxaban (PSM comparison)</td>
<td>Major bleeding</td>
<td>0.40–0.48 y</td>
</tr>
<tr>
<td>Noseworthy et al14</td>
<td>2016</td>
<td>Insurance database</td>
<td>United States</td>
<td>6565</td>
<td>1201 (18.3%)</td>
<td>73 (median)</td>
<td>4 (median)</td>
<td>Dabigatran, rivaroxaban (PSM comparison)</td>
<td>Stroke/SE, major bleeding</td>
<td>NA</td>
</tr>
<tr>
<td>Staerk et al15</td>
<td>2016</td>
<td>Nationwide registries</td>
<td>Denmark</td>
<td>6899</td>
<td>2547 (36.9%)</td>
<td>76 (median)</td>
<td>3.11</td>
<td>Warfarin, dabigatran, rivaroxaban</td>
<td>Stroke/SE, ICH</td>
<td>0.56–1.06 y</td>
</tr>
<tr>
<td>Yao et al16</td>
<td>2016</td>
<td>Insurance database</td>
<td>United States</td>
<td>7698</td>
<td>1393 (18.1%)</td>
<td>73 (median)</td>
<td>4 (median)</td>
<td>Warfarin</td>
<td>Stroke/SE, major bleeding</td>
<td>0.50 y</td>
</tr>
<tr>
<td>Abraham et al17</td>
<td>2017</td>
<td>Insurance database</td>
<td>United States</td>
<td>6576</td>
<td>NA</td>
<td>72.3</td>
<td>4.0</td>
<td>Dabigatran, rivaroxaban (PSM comparison)</td>
<td>GI bleed</td>
<td>NA</td>
</tr>
<tr>
<td>Altay et al18</td>
<td>2017</td>
<td>Nationwide registry</td>
<td>Turkey</td>
<td>625</td>
<td>NA</td>
<td>70.3</td>
<td>NA</td>
<td>Dabigatran, rivaroxaban</td>
<td>TE, any bleeding</td>
<td>0.9 y</td>
</tr>
<tr>
<td>Forslund et al19</td>
<td>2017</td>
<td>Regional registry</td>
<td>Sweden</td>
<td>3587</td>
<td>1126 (31.4%)</td>
<td>75</td>
<td>3.69</td>
<td>Warfarin</td>
<td>Any stroke/IS/TIA, major bleeding, all-cause death</td>
<td>1.07–1.61 y</td>
</tr>
<tr>
<td>Halvorsen et al19</td>
<td>2017</td>
<td>Nationwide registries</td>
<td>Norway</td>
<td>6506</td>
<td>1901 (29.2%)</td>
<td>74.5</td>
<td>2.93</td>
<td>Warfarin, dabigatran, rivaroxaban</td>
<td>Major/CRNM bleeding</td>
<td>0.39–0.58 y</td>
</tr>
<tr>
<td>Lamberts et al20</td>
<td>2017</td>
<td>Nationwide registries</td>
<td>Denmark</td>
<td>7963</td>
<td>3010 (37.8%)</td>
<td>75.4</td>
<td>3 (median)</td>
<td>Warfarin, Dabigatran, rivaroxaban</td>
<td>Major bleeding, persistence</td>
<td>0.73–1.4 y</td>
</tr>
<tr>
<td>Li et al21</td>
<td>2017</td>
<td>Insurance database</td>
<td>United States</td>
<td>38,470</td>
<td>6568 (17.1%)</td>
<td>70.9</td>
<td>3.2</td>
<td>Warfarin (PSM comparison)</td>
<td>Stroke/SE, major bleeding</td>
<td>0.55 y</td>
</tr>
<tr>
<td>Nielsen et al22</td>
<td>2017</td>
<td>Nationwide registries</td>
<td>Denmark</td>
<td>4400</td>
<td>100%</td>
<td>83.9</td>
<td>4.3</td>
<td>Warfarin, dabigatran, rivaroxaban</td>
<td>Stroke/SE, IS, hemorrhagic stroke, major bleeding, GI bleeding, any bleeding</td>
<td>2.3 y</td>
</tr>
</tbody>
</table>

CRNM indicates clinically relevant nonmajor; CVE, cerebrovascular events; FU, follow-up; GI, gastrointestinal; ICH, intracranial hemorrhage; IS, ischemic stroke; NA, not available; OAC, oral anticoagulant; PSM, propensity score matching; SE, systemic embolism; TE, thromboembolic events; and TIA, transient ischemic attack.

*nNumber of patients is referred to number of patients treated with apixaban.
Study Results

In most of the studies comparing apixaban with warfarin, apixaban was associated with a lower risk for stroke and systemic embolic events, as well as for major bleeding, particularly intracranial hemorrhage (ICH).11,16,21 Only in the study by Forslund et al, no difference was found between apixaban and warfarin.

Overall, the studies that compared apixaban with dabigatran and rivaroxaban found that apixaban was broadly comparable with dabigatran in terms of stroke/systemic embolic events with unclear differences compared with rivaroxaban.10,14,18 Conversely, apixaban demonstrated a significant lower risk for major bleeding events.10,14,17,18 In the study by Abraham et al,17 the lower risk of gastrointestinal bleeding (GIB) with apixaban was independent of age strata.

Risk of Bias Evaluation

A bias evaluation was performed (Table I in the online-only Data Supplement). Overall, most studies reported a low risk of bias (11 studies) while 3 studies10,12,22 had a moderate risk of bias and 2 studies8,18 had a high risk of bias. We did not find significant publication bias in the main primary outcomes, for comparisons between apixaban, warfarin, and dabigatran (Figures I and II in the online-only Data Supplement) while a small effect could be detected for rivaroxaban, particularly for the any thromboembolic event outcome (Figure III in the online-only Data Supplement) and similarly for dabigatran, particularly for the major bleeding outcome (Figure IIB in the online-only Data Supplement).

Meta-Analysis of Selected Studies

Apixaban Versus Warfarin

When comparing apixaban and warfarin, there was overall no significant difference in any thromboembolic events (odds ratio [OR], 0.92; 95% confidence interval [CI], 0.71–1.17; Figure 2A). In the regular dose group, there was a significant reduction in risk of any thromboembolic event (OR, 0.77; 95% CI, 0.64–0.93); conversely, the reduced dose subgroup had a significant 27% relative risk increase in any thromboembolic event (P<0.0001 for subgroup differences).

For stroke, no significant difference was found between apixaban and warfarin, both in the regular and reduced dose subgroups (Figure 2B). Conversely, hemorrhagic stroke risk was significantly reduced in apixaban treated patients (36% relative risk reduction [RRR]; P=0.0003), especially for the regular dose group (Figure IV in the online-only Data Supplement).

Compared with warfarin, major bleeding risk was significantly lower for patients treated with apixaban (OR, 0.62; 95% CI, 0.51–0.75), with consistency for regular and low dose subgroups (Figure 2C). Risk reduction with apixaban was even greater when considering ICH (46% RRR; P<0.0001) or GIB (OR, 0.63; 95% CI, 0.57–0.70; P<0.0001) compared with warfarin (Figure V in the online-only Data Supplement). The risk for any bleeding was also lower in apixaban patients (P=0.009; Figure VI in the online-only Data Supplement).

Given the extremely high level of heterogeneity, we did not perform meta-analysis for occurrence of all-cause death. Currently, only a limited number of RWS reported on all-cause death risks comparing apixaban and warfarin (Figure 2).

Figure 2. Efficacy and safety of apixaban vs warfarin. A, Any thromboembolic events; (B) stroke; (C) major bleeding; and (D) intracranial hemorrhage. CI indicates confidence interval.
VII in the online-only Data Supplement). These studies reported varying results with 1 study suggesting a significant protection for apixaban, 1 study suggesting no difference, and 1 study indicating a higher risk for apixaban even though it compared warfarin with apixaban reduced dose.

Number of events for Forslund et al was retrieved from hazard ratios (see Methods in the online-only Data Supplement). A sensitivity analysis excluding that study showed superimposable results (data not shown).

Apixaban Versus Dabigatran
Overall, there were nonsignificant differences between apixaban and dabigatran in risk of any thromboembolic event ($P=0.30$) although a lower risk was found in apixaban patients prescribed with the reduced dose (OR, 0.86; 95% CI, 0.75–0.99; Figure 3A). No difference was seen for stroke risk (Figure 3B).

Major bleeding risk was significantly lower in apixaban patients compared with dabigatran patients (35% RRR; $P<0.00001$) even though only 1 study was included in the reduced dose subgroup (Figure 3C). Although no difference was found for ICH (Figure 3D), patients prescribed apixaban had a significantly lower risk for GIB ($P<0.00001$) and any bleeding (57% RRR; $P<0.00001$; Figures VII and IX in the online-only Data Supplement). No difference was found in all-cause death between apixaban and dabigatran (Figure X in the online-only Data Supplement).

Number of events for Noseworthy et al was retrieved from hazard ratios (see Methods in the online-only Data Supplement). A sensitivity analysis excluding that study showed superimposable results (data not shown).

Apixaban Versus Rivaroxaban
Compared with apixaban, there was a significant superiority for rivaroxaban for any thromboembolic event (OR, 1.27; 95% CI, 1.13–1.43) and stroke (OR, 1.31; 95% CI, 1.15–1.50), mainly driven by the treatment effect found in the reduced dose subgroup (Figure 4A and 4B). No difference was found for hemorrhagic stroke occurrence although few studies were available for evaluation (Figure XI in the online-only Data Supplement).

The risk of major bleeding was significantly lower in patients treated with apixaban compared with rivaroxaban (46% RRR; $P<0.00001$), consistent with doses subgroups (Figure 4C). There was a significant risk reduction in ICH (OR, 0.46; 95% CI, 0.25–0.85; Figure 4D) and GIB for apixaban compared with rivaroxaban (64% RRR; $P<0.00001$; Figure XII in the online-only Data Supplement), as well as for any bleeding (OR, 0.56; 95% CI, 0.50–0.61; Figure XIII in the online-only Data Supplement). There was a significant reduction for all-cause death with apixaban compared with rivaroxaban with the regular dose subgroup (50% RRR; $P<0.00001$; Figure XIV in the online-only Data Supplement).

Number of events for Noseworthy et al was retrieved from hazard ratios (see Methods in the online-only Data Supplement). A sensitivity analysis excluding that study showed superimposable results (data not shown).

Bias-Stratified Sensitivity Analysis
A sensitivity analysis was performed, grouping studies according to risk of bias verifying all the outcomes for which a significant treatment effect was found, either for apixaban or any of the comparators. No significant differences were found for

Figure 3. Efficacy and safety of apixaban vs dabigatran. A, Any thromboembolic events; (B) stroke; (C) major bleeding; and (D) intracranial hemorrhage. CI indicates confidence interval.
most of the outcomes analyzed (data not shown). For the comparison of apixaban versus warfarin for any thromboembolic event, bias-stratified analysis found a 25% RRR (P < 0.00001) when considering only low risk of bias studies (Figure XV in the online-only Data Supplement). The risk reduction for any thromboembolic event occurrence with rivaroxaban was driven by the moderate/high risk of bias studies (OR, 1.38; 95% CI, 1.19–1.59) while no significant difference was found for the low risk of bias subgroup (OR, 1.10; 95% CI, 0.89–1.35; Figure XVI in the online-only Data Supplement).

Absolute Risk Reductions and Number-Needed to Treat Compared With Warfarin

To assess the effectiveness of apixaban compared with warfarin in RWS, we estimated absolute risk reduction (ARR) and number-needed to treat (NNT). Compared with warfarin, apixaban resulted in a similar effect reducing any thromboembolic event (ARR: 0.23%), with a slightly better effectiveness in reducing risk of stroke (ARR: 0.48%). Comparing RWS data with the ARISTOTLE trial (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation),23 apixaban allowed a consistently higher NNT for any thromboembolic event while a similar clinical effectiveness was found for stroke events (Figure 5).

Discussion

Our systematic review and meta-analysis show that use of apixaban in real-life is associated with an overall nonsignificant difference in stroke and any thromboembolic events when compared with warfarin. A better safety profile was demonstrated when comparing apixaban use to warfarin, dabigatran, or rivaroxaban.

Compared with the phase III ARISTOTLE trial,23 RWS data showed that apixaban seems to have a similar effectiveness than warfarin in reducing any thromboembolic event occurrence, as seen in the randomized clinical trial context, with a slightly better effect for stroke event occurrence. Moreover, apixaban was as effective as dabigatran and rivaroxaban in reducing the risk of thromboembolic events. Importantly, apixaban was found to be safer than warfarin in reducing major bleeding, particularly ICH and GIB. Also, apixaban was safer than both dabigatran and rivaroxaban in reducing bleeding events. Data on mortality reduction were inconclusive in our analysis.

Since their introduction in daily practice, NOACs have been increasingly used, contributing to the increase in OAC uptake seen in several studies,24–26 even though treatment gaps still remain.27 NOACs are currently recommended over vitamin K antagonists in most of the international guidelines.28–30 Nevertheless, many patients eligible for use of NOACs are treated with a reduced dose, outwith the label

Table A: Any Thromboembolic Event

<table>
<thead>
<tr>
<th>Study and Subgroup</th>
<th>Apixaban</th>
<th>Rivaroxaban</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of bias</td>
<td>331.2</td>
<td>240.0</td>
<td>1.38</td>
<td>1.19–1.59</td>
<td>0.001</td>
</tr>
<tr>
<td>Moderate/high risk</td>
<td>217.7</td>
<td>107.0</td>
<td>1.38</td>
<td>1.19–1.59</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table B: Stroke

<table>
<thead>
<tr>
<th>Study and Subgroup</th>
<th>Apixaban</th>
<th>Rivaroxaban</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of bias</td>
<td>331.2</td>
<td>240.0</td>
<td>1.38</td>
<td>1.19–1.59</td>
<td>0.001</td>
</tr>
<tr>
<td>Moderate/high risk</td>
<td>217.7</td>
<td>107.0</td>
<td>1.38</td>
<td>1.19–1.59</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table C: Major Bleeding

<table>
<thead>
<tr>
<th>Study and Subgroup</th>
<th>Apixaban</th>
<th>Rivaroxaban</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of bias</td>
<td>331.2</td>
<td>240.0</td>
<td>1.38</td>
<td>1.19–1.59</td>
<td>0.001</td>
</tr>
<tr>
<td>Moderate/high risk</td>
<td>217.7</td>
<td>107.0</td>
<td>1.38</td>
<td>1.19–1.59</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table D: Intracranial Hemorrhage

<table>
<thead>
<tr>
<th>Study and Subgroup</th>
<th>Apixaban</th>
<th>Rivaroxaban</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of bias</td>
<td>331.2</td>
<td>240.0</td>
<td>1.38</td>
<td>1.19–1.59</td>
<td>0.001</td>
</tr>
<tr>
<td>Moderate/high risk</td>
<td>217.7</td>
<td>107.0</td>
<td>1.38</td>
<td>1.19–1.59</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Figure 4. Efficacy and safety of apixaban vs rivaroxaban. A, Any thromboembolic events; B, stroke; C, major bleeding; and D, intracranial hemorrhage. CI indicates confidence interval.
recommendations for this reduced dose treatment. In an analysis from the ORBIT-AF II (Outcomes Registry for Better Informed Treatment of Atrial Fibrillation phase II), 9.4% of patients were undertreated with reduced dose NOACs, with up to 11.8% of apixaban users prescribed with reduced dose, with reduced dose associated with increased rate of major adverse outcomes. Our data showed that even greater proportion of patients are treated with the reduced dose, and our results suggest that treating patients with apixaban reduced dose is associated with worse outcomes. The finding that reduced dose apixaban was found more effective than dabigatran was unexpected. There is relatively limited evidence on direct or indirect comparisons of various reduced dose NOACs, so these data have to be cautiously interpreted. Indeed, we should consider the real-world observational nature of reported studies, where residual confounding may still be evident. Also, patients prescribed low or reduced dose in RWS may be older and more fragile because of multiple comorbidities (or at least, perceived to be so).

Thus far, many RWS papers have been released about the use and comparisons of either NOACs versus warfarin or 1 NOAC versus other NOAC. performed a meta-analysis of dabigatran versus warfarin in RWS and found that dabigatran was associated with a lower risk of stroke and major bleeding. Although a lower ICH risk was seen, an increased risk for GIB was reported for dabigatran 150 mg. In another meta-analysis of RWS focused on rivaroxaban, reported that rivaroxaban compared with warfarin was associated with a significant reduction in thromboembolic events but with a similar risk for major bleeding and GIB. Rivaroxaban was found to be as effective as dabigatran for prevention of thromboembolic events but was associated with an increased risk of major bleeding.

Our article extends prior meta-analyses in understanding the impact of apixaban in real-life clinical practice. Compared with warfarin, regular dose apixaban was associated with a marginally improved effectiveness in reducing thromboembolic events even though overall the difference was nonsignificant and NNT indicated a higher number of subjects to be treated to avoid 1 thromboembolic event and a similar NNT for stroke prevention; however, a better safety profile, consistent with other RWS with other NOACs, was evident. In addition, apixaban had a similar effectiveness but a substantially better safety profile than dabigatran and rivaroxaban. Reassuring data about NOACs as a valid alternative to vitamin K antagonists from RWS have also been reported recently for secondary stroke prevention.

Thus far, all NOACs have been considered broadly similar in effectiveness, with some possible differences in safety. Our data, even though based on indirect comparisons, and therefore to be interpreted cautiously, suggest that in the context of currently available RWS evidence apixaban could possibly represent the best alternative for OAC therapy, balancing effectiveness and safety for many patients with AF.

Limitations

Our study has various limitations. First, we could not account for quality of anticoagulation control, for the studies comparing apixaban with warfarin, nor adherence or persistence to NOACs. Indeed, these aspects are highly relevant in determining clinical outcomes. Another limitation is the relatively shorter follow-up of apixaban-treated patients compared with other NOACs and differences in length of exposure need to be considered for such comparisons. In addition, several meta-analyses are based on studies with high heterogeneity as testified by large I² values. Also, the reduced number of studies included in some of the secondary comparisons has to be taken in consideration when interpreting the overall results. Finally, being based on RWS, the presence of unaccountable confounders has to be taken under consideration when interpreting our results.

Figure 5. Number needed-to-treat comparison between real-world studies and ARISTOTLE trial. GIB indicates gastrointestinal bleeding; ICH, intracranial hemorrhage; RWS, real-world studies; and TE, thromboembolic events.
Summary
In this systematic review and meta-analysis, the use of apixaban in real-life is associated with an overall similar effectiveness in reducing stroke and any thromboembolic events when compared with warfarin. A better safety profile was found for apixaban when compared with warfarin, dabigatran, and rivaroxaban.

Disclosures
Dr Proietti is a consultant for Boehringer Ingelheim. Dr Lip is a consultant for Bayer/Janssen, BMS/Pfizer, Biotronik, Medtronic, Boehringer Ingelheim, Microlife, and Daichi-Sankyo and speaker for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, Microlife, Roche, and Daichi-Sankyo. The other authors report no conflicts.

References
22. Proietti et al Apixaban in Real-World Studies on AF 105
24. Proietti et al Apixaban in Real-World Studies on AF 105

