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• Simulation optimizes, designs, estimates costs and is a teaching tool for engineers 

• Simulations reduces experiments and indicates thermodynamic boundaries 

• Users are the main errors source: data input, model selected, wrong specifications 

• Proc Sim clusters: design, optimization, CO2 capture, biomass, and gasification 
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Summary

Process simulation software designs equipment, simulates operations, optimizes a
plant’s configuration (heat exchangers network, for example), estimates operating and
capital expenses, and serves as educational tools. However, mastering the theoretical
background minimizes common mistakes such as applying an incorrect thermody-
namic method, selecting improper algorithms in the case of tear systems, and set
irrational system specifications. Engineers and researchers will exploit this tool more
often in the future as constant advancements in simulation science as well as new
models are released continually. Process simulators ease the building of digital twins
and thus will facilitate implementation of the industry 4.0 guidelines. We highlight
the mathematical and technical features of process simulators, as well as the capa-
bilities and the fields of applications. A bibliometric map of keywords from articles
citing Aspen+, Aspen plus, Hysys, and Pro/II indexed by Web of Science between
2017 and 2020 identified the main research clusters such as: Design; Optimization;
Energy or Exergy; Biomass; H2 and CO2 capture; Thermodynamics; separations and
Techno-Economic analysis.
KEYWORDS:
Process simulation, Design, Thermodynamics, Optimization, Cost estimation

1 INTRODUCTION

Process simulators solve mathematical equations not only to
characterize reactors, distillation columns, heat exchangers,
pumps, compressors and other unit operations but also for
process design and optimization. Furthermore, they offer engi-
neers a tool to estimate plant costs—both operating expenses
(OPEX) and capital expense (CAPEX). Users input operat-
ing pressure, temperature, flow rates, composition, and ther-
modynamic packages and the software computes mass and
energy balances for each stream and module. Examples of the
first software date back to 1960s with PACER developed by
McMaster University for educational purposes. The University
of Houston developed in collaboration with industry CHESS

in 1968. It simulated the phase equilibria of more than 70
hydrocarbons. [1] PROCESS, by Simulation science, was dis-
tributed in 1966 and simulated distillation columns. It became
then PRO/II, first distributed by Scheider-Electrics and then by
AVEVA. Fortran expanded the capabilities of these programs
in the 70s. In the late 70s, MIT developed Advanced System
for Process ENgineering (ASPEN) that AspenTech™commer-
cializes in the 80s. Concurrently Profs. Bishnoi and Svercek at
the University of Calgary developed HYSYS. In the late 1980s
and early 1990s the PC-based simulators were developed. [2] In
2002 AspenTech™ acquired Hyprotech; however, the Federal
Trade Commission required AspenTech to divest the HYSYS
because they deemed it contravened anti-trust laws. Honeywell
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became the owner of HYSYS and created UniSim. Eventu-
ally, AspenTech™ re-acquired HYSYS in 2016 and now 91
simulators are on the market including open source software.
This mini-review on process simulation is part of a series of

articles dedicated to experimental methods in chemical engi-
neering. [3] Although practicing engineers and students use
these simulators for plant design and optimization, researchers
also apply them to calculate thermodynamics, identify equi-
librium compositions of reactions, verify the feasibility of
separation operations, and thus optimize experimental designs.
Here we discuss these features but address the mathematical
approaches to solve these large systems of equations, res-
olution algorithms, and applications. We describe the main
sources of error and how to avoid common mistakes that arise
at the set up of the flowsheet and include a bibliometric survey
that highlights the major applications.

2 THEORY

Steady-state models of most unit operations are nonlinear
systems of either algebraic or differential-algebraic equations
(e.g., PFR reactors and pipes). Discretization techniques con-
vert differential -algebraic equations into a system of algebraic
equations, so any steady-state process flowsheet is equivalent
to a large-scale system of nonlinear equations. Therefore, in
this section of the manuscript, we first review the rationale
of methods that solve these systems of nonlinear equations,
and then explain how simulation packages use them to solve
process flowsheets. We discuss both modular and equation-
oriented strategies for flowsheet simulation, comment on their
advantages and disadvantages, and provide guidelines on
when/how to apply each approach. [4, 5]

2.1 Numerical methods for systems of
nonlinear equations
The most general mathematical formulation of a system of
nonlinear equations, Eq 1, where every function gi represents
a nonlinear expression of the unknown variables xi (in a pro-
cess flowsheet, the functions gi represent steady-state mass,
energy and momentum balances, and discretization thereof or
design specifications, whereas the quantities xi are process
variables, e.g. temperatures, pressures, molar/mass fractions
and flowrates).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g1(x1, x2, x3, ..., xN ) = 0
g2(x1, x2, x3, ..., xN ) = 0
⋯

gN (x1, x2, x3, ..., xN ) = 0

⇔ g(x) = 0 (1)

The objective to solve this nonlinear system (xs), which
corresponds to a root of all the functions gi (gi(xs) = 0).
There exist no analytical method to accomplish this task, so
we only estimate an approximate value of xs through numer-
ical algorithms—Newton type and fixed-point methods. Both
these iterative procedures rely on a user-supplied initial value,
x0 and iteration (xn)n≥1 until they approach the solution vector
xs. These two families of algorithms differ with respect to the
procedure they apply to compute (xn)n≥1, their efficiency and
robustness, and their application domain.
Starting from the last known iteration, xn, Newton-type

methods calculate xn+1 with the following procedure:
1. Exact or approximate linearization of the nonlinear sys-

tems at xn. This step requires calculation of the Jacobian
matrix atxn or of an estimate thereof (thematrices J (xn)
and Bn, respectively);

2. Solution of the linearized system of equations and cal-
culation of the search direction dn, according to the first
line of Eq. 2 and Eq. 3;

3. Computation of the optimal step length an through a line
search strategy, performed along dn; [6]

4. Calculation of xn+1 from xn, an, and dn, according to
the second line of Eq. 2 and Eq. 3.

{

J (xn)dn = −g(xn)
xn+1 = xn + andn

∧ J (x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

)g1
)x1

)g1
)x2

⋯ )g1
)xN

)g2
)x1

)g2
)x2

⋯ )g2
)xN

⋮ ⋮ ⋱ ⋮
)gN
)x1

)gN
)x2

⋯ )gN
)xN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2)

{

Bndn = −g(xn)
xn+1 = xn + andn

∧ B(n) ≈ J (xn) (3)
These steps are repeated until convergence criteria are met,

e.g. the magnitude of the search direction (‖dn‖) becomes suf-
ficiently small, or the sequence (xn)n≥1 diverges (Fig. 1). The
sequence (xn)n≥1 follows the same type of pattern (Fig. 1) for
systems of any number of equations.
Newton-type methods do not guarantee convergence to a

solution of the nonlinear system, starting from any random
initial guess as this family of algorithms is only locally con-
vergent. However, their rate of convergence is superlinear.
Therefore, they are very effective when a good initial guess
is available. Another feature of Newton-type methods is their
capability of solving nonlinear systems of arbitrarily large
scale, provided that adequate computing power is available.
Fixed-point methods require a reformulation of the origi-

nal system of nonlinear equations, which consists of re-writing
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FIGURE 1 Typical sequence of iterations generated by a
Newton-type method. (A - convergent sequence; B - divergent
sequence). From the initial guess x0, the algorithm calculates
the direction vector di and the step length ai, moving towards
xS or without converging.

every equation gi(x) = 0 in the same form as Eq. 4 (this refor-
mulation is always possible, although not necessarily unique,
and may affect the convergence properties of the algorithm).

xi = fi(x) ∀i ∈ [1, N] (4)
After this preliminary step, starting from the last known

iteration xn, the next iteration xn+1 is calculated through the
following procedure:

1. Calculation of the functions fi at xn;
2. Selection of values for all the relaxation factors ai,n;
3. Application of Eq. 5.

xi,n+1 = ai,nfi(xn) + (1 − ai,n)xi,n ∀i ∈ [1, N] (5)
These steps are repeated until convergence criteria are met,

e.g. the norm of the difference between two consecutive itera-
tions (‖xn+1−xn‖) becomes sufficiently small, or the sequence

((xn)n≥1 diverges (the direct substitution recursion matches
Eq. 5 with all the relaxation factors ai,n = 1). The sequence
(xn)n≥1 follows a similar pattern for systems of two or more
equations (Fig. 2).

FIGURE 2 Typical sequence of iterations generated by direct
substitution (A–convergent sequence; B–divergent sequence).
From the initial guess x0, the algorithm calculates xi and
f (xi), moving towards xS or without converging.

As with Newton-type methods, fixed-point schemes do not
guarantee convergence to a solution of the nonlinear system,
starting from any random initial guess (these algorithms are
only locally convergent), but they are usually less sensitive to
the initial value. On the other hand, their rate of convergence is
slower than Newton-type methods. Thus, they are particularly
suitable for situations in which no good initial guess can be
computed. Note that, as opposed to Newton-type algorithms,
fixed-point methods can only solve small-scale/medium-scale
nonlinear systems, regardless of the amount of computing
power available. This limitation considerably restricts their
application domain.
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2.2 Computational Strategy
The barebones of a flowsheeting software differs from those
of others based on the computational strategies. The main
techniques are:

• Sequential Modular Approach (SM)

• Equation Oriented Approach (EO)

• Simultaneous Modular Approach
The SM solves the process units in sequence, starting from
the feed and tear the common streams in case of recycle.
Where an inlet stream is given, each block computes its out-
let stream. However, in the presence of a recycle, an iteration
is required. Very sturdy and reliable, this is the default method
of commercial and general software, especially for steady-
state calculations. On the other hand, The SM is weak and
time-consuming for [7]:

• Highly recycled processes;
• Highly-Heat integrated processes;
• Optimization;
• Simultaneous flowsheet and design specification loops;

and,
• Dynamic simulations.

In the EO approach the whole process is solved simultane-
ously as a system of nonlinear algebraic equation. EO requires
a more experienced simulator, is difficult to debug, and works
well only when the initial value is close to the solution. Never-
theless, it works better where SM is weak. The Simultaneous
Modular Approach is a combination of both SM and EO. [8]
The flowsheet is solved in an EO fashion, while the singu-
lar unit are solved sequentially. [9] So far, this approach finds
application in academia, [10–12] but not in commercial software.

2.3 Modular solution (SM) strategies for
process flowsheets
Any chemical process is a set of unit operations, primarily
connected in series as the number of recycles is usually signif-
icantly smaller than the total number of connections. Modular
solution strategies for process simulation leverage this sequen-
tial nature of chemical processes to first simplify and then
perform flowsheet calculations. The rationale of these solution
strategies is:

1. Given a certain process flow diagram (PFD), we first
convert it into a directed graph (the simulation flow dia-
gram (SFD)), whose vertices and edges represent units
and streams, respectively (Fig. 3).

2. Then, well-established algorithms, e.g. the connection
matrix method [13]or the depth-first search and backtrack
method [14], detect all the simple cycles in the flowsheet
graph (Fig. 3), which corresponds to identifying all the
recycles in the original process flowsheet.

3. Subsequently, we break all the simple cycles by tearing
a number of edges in the flowsheet graph (Fig. 4), thus
transforming the latter into a directed tree (the flowsheet
tree). This graphical operation corresponds to break-
ing all the recycles in the original process flowsheet,
by replacing specific process streams (the tear streams)
with pairs of new streams (the artificial streams), so as
to generate a simplified process flowsheet, in which all
the unit operations can be solved in series, once half
the artificial streams have been assigned (the remaining
artificial streams become simulation outputs). Note that
every recycle stream is literally torn at least once, thus
the name tear stream.

4. Finally, we exploit the connectivity information, stored
in the flowsheet tree, to solve all the unit operations and
compute all the process streams in the simplified process
flowsheet, under the additional requirement that every
pair of artificial streams be identical (these artificial con-
straints ensure that all the recycles are enforced). This is
mathematically equivalent to solving Eq. 6 (the recycle
problem), in which the vector x represents the process
variables of the artificial streams that must be assigned,
and the function f (x) denotes the process variables of
the artificial streams that are simulation outputs. f (x) is
an implicit function of x, as we can only evaluate it by
solving some/all of the unit operations in the simplified
process flowsheet).

x − f (x) = 0 (6)
Eq. 6 contains only a small fraction of the nonlinear

equations, which describe the original process flowsheet of
interest, provided that the latter contains a small number of
recycles (the scale of Eq. 6 is indeed proportional to the num-
ber of recycles). Therefore, modular solution strategies are
suitable for simulation of process flowsheets of arbitrary scale,
which contain few recycles. On the other hand, they should
never be used to solve process flowsheets with many recycles,
as the numerical solution of Eq. 6 becomes impractical.

2.3.1 Selection of the optimal tear streams
The identification of optimal tear streams is an element of any
modular solution strategy for process flowsheets because the
number and features of the tear streams influence the size and
numerical properties of the recycle problem (Eq. 6). Therefore,
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FIGURE 3 Simple process flowsheet complemented with its graph representation (S-N – Nth process stream; C-N – Nth simple
cycle or Nth recycle).

FIGURE 4 Reduction of the flowsheet graph to a directed tree by elimination of all the simple cycles (A - optimal tear streams
according to Barkley andMotard [15] and Christensen and Rudd; [16] B - optimal tear streams according to Upadhye and Grens [17]
and Motard and Westerberg. [18]).

many different tearing algorithms have been proposed over the
years. However, all of these algorithms can be grouped in three
different families, which rely on as many different underlying
ideas:

• According to Barkley and Motard, [15] the tear streams
should be selected as the smallest set of process streams
that break all the recycles in the process flowsheet
(Fig. 4).

• According to Christensen and Rudd, [16] the tear streams
should be selected as the set of process streams that

break all the recycles in the process flowsheet and min-
imize the size of the recycle problem (Fig. 4).

• According to Upadhye and Grens [17] and Motard and
Westerberg, [18] the tear streams should be selected as the
set of process streams that break all the recycles in the
process flowsheet, under the additional requirement that
the number of times every recycle is torn be minimum
(Fig. 4).

Although none of these three alternatives is fully satisfac-
tory, the best option depends on the numerical method, used
to solve the recycle problem. More specifically, if we solve the
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recycle problem with Newton-type methods, then the second
option represents the most appropriate choice from a com-
putational perspective. On the other hand, if we solve the
recycle problem with fixed-point algorithms, then the third
option is the most suitable from a computational point of
view (this tearing scheme maximizes the rate of convergence
of fixed-point methods, when they are applied to Eq. 6). For
computational (and historical) reasons, all the main software
were originally designed as SM simulators. Hence, the first
developers focused on the implementation of a single tearing
algorithm that worked best in a SM environment. Therefore,
most process simulation packages implement a single tear-
ing algorithm, which often resembles the third, so the user’s
choices are limited to what is available in existing process sim-
ulation software. Due to the mathematical complexity of the
tearing algorithm, we recommend a non expert user to operate
the default method.

2.3.2 Solution of the single unit operation
models
A key step of all modular solution strategies for process sim-
ulation is the solution of the recycle problem (Eq. 6), which
in turn requires repeated calculations of single unit opera-
tions. Since models of different types of unit operations exhibit
unique features, dedicated numerical methods to solve each
and every one of them have been developed over the years.
However, all these numerical algorithms belong to either parti-
tioning methods or simultaneous methods. Partitioning meth-
ods decompose unit operation models into blocks of equations,
which are then solved iteratively, in a predefined sequence,
until convergence criteria are met or the iterations diverge.
Internally, they rely on fixed-point methods, thus exhibit the
same numerical properties as this family of algorithms. Simul-
taneous methods do not decompose unit operation models
but rather solve them as nonlinear systems. Since they apply
Newton-type methods (possibly complemented with some
parametric continuation approach), they exhibit similar numer-
ical properties as these types of algorithms. Most process
simulation packages implement simultaneous methods for unit
operations but offer both partitioning and simultaneous alter-
natives for specific types of unit operations, e.g. distillation,
absorption and stripping towers (for completeness, the most
common partitioning solution scheme for separation towers is
the inside-out method by Boston and Sullivan, [19] Saeger and
Bishnoi [20] and Jelinek [21]). As a rule of thumb, we recom-
mend partitioning methods for solving mildly non-ideal sepa-
rations and simultaneous methods for solving highly non-ideal
or reactive separations. In addition, simultaneousmethodsmay
be more appropriate for specific tasks, such as running case
studies and/or performing flowsheet optimization, because of

their higher computational efficiency. Additional recommen-
dations on which numerical solution scheme to choose for
specific simulation problems are usually available on the user
guides of process simulation packages.

2.3.3 Solution of the recycle problem
The last key component of any modular solution strategy
for process flowsheets is the solution of the recycle problem
(Eq. 6), which apply either fixed-point or Newton-type meth-
ods. In the 60s and 70s, we witnessed the birth of several
new numerical algorithms, specifically designed to solve this
problem. Nowadays, those that are still implemented in pro-
cess simulation packages are the direct substitution method,
the Wegstein method, [22] the dominant eigenvalue method, [23]
the Newton-Raphsonmethod and the Broydenmethod. [24] The
rationale of each are:

• The direct substitution method is the simplest and oldest
fixed-point algorithm, whose recursion matches Eq. 5
with all the relaxation factors ai,n = 1.

• The Wegstein method is an accelerated version of direct
substitution, in which the relaxation factors ai,n are com-
puted by Eq. 7. We emphasize that Eq. 7 relies on the
assumption that every variable of the recycle problem is
independent of the others, so this numerical methodmay
not perform satisfactorily when the Jacobian matrix of
f (x) (Eq. 6) is not diagonally dominant.

• The dominant eigenvalue method is an improved ver-
sion of Wegstein, in which the relaxation factors ai,n
are computed by Eq 8. In this case, Eq 8 relies on the
assumption that the Jacobian matrix of f (x) (Eq. 6) has
a dominant eigenvalue, so this numerical method may
not perform satisfactorily when several variables of the
recycle problem are equally important.

• The Newton-Raphson method is the simplest and oldest
Newton-type scheme, whose recursion matches Eq. 2. It
relies on the actual Jacobian of Eq. 6, so it may be more
computationally efficient than Broyden when the recy-
cle problem is a small-scale/medium-scale nonlinear
system.

• The Broyden method is a Newton-type scheme, whose
recursion matches Eq. 3. It relies on an estimate of the
Jacobian of Eq. 6, computed by Eq. 9, so it may be more
computationally efficient than Newton-Raphson when
the recycle problem is a large-scale nonlinear system.

ai,n =
1

1 − si,n
∧ si,n =

fi(xn) − fi(xn−1)
xi,n − xi,n−1

∀i ∈ [1, N] (7)
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ai,n =
1

1 − �MAX
n

∧ �MAX
n =

‖xn − xn−1‖

‖xn−1 − xn−2‖
∀i ∈ [1, N] (8)

Bn = Bn−1 +
g(xn) − g(xn−1) − Bn−1dn−1

‖dn−1‖
2

dTn−1 ∧ B0 = J (x0)

(9)
All of these numerical approaches exhibit advantages and

limitations, which make themmore adequate for specific types
of process flowsheets. Tab. 1 collects a general set of rec-
ommendations to help select a numerical alternative for most
real-world simulation problems.

2.4 Equation-oriented (EO) solution strategies
As opposed to modular solution approaches, equation-oriented
solution strategies for process simulation do not attempt to sim-
plify flowsheet calculations by exploiting the sequential nature
of chemical processes. They construct the large-scale sparse
system of nonlinear equations, which describes the process
flowsheet of interest and includes unit operation models, pro-
cess streams and design specifications, and solve it using ded-
icated numerical methods. The numerical schemes, suitable
for flowsheet simulation, are Newton-type methods, combined
with some merit function minimization strategy and, very
often, some parametric continuation approach, which helps
the sequence of iterations converge whenever equations are
highly nonlinear, their Jacobianmatrix is locally rank deficient,
and/or a good initial guess cannot be computed. [6]
Regardless of any specific numerical details, equation-

oriented solution strategies solve any type of process flow-
sheets, independently of their scale and topology (note that
the performance of these solution schemes is unaffected by
the number of recycles in the process flowsheet, provided that
adequate computing power is available). However, they should
be primarily used to solve process flowsheets, which contain
many recycles, as modular solution approaches are more com-
putationally efficient for simulation of process flowsheets with
few recycles.

3 APPLICATIONS

The program VoSViewer generated a bibliometric map of key-
words generated from articles indexed byWeb of Science Core
Collection (WoS) from 2017 to April 2020. [25, 26] We queried
the database 4 times with ASPEN +, ASPEN Plus, HYSYS,
and PROII as topics, while simultaneously excluding forest.
(To avoid work related to Aspen trees and forests rather than
process simulation). We combined the four databases into one
and eliminated all duplicate and ended up with 2582 articles.
The Web of Science category energy & fuels had 930 articles

while the chemical engineering category was a close second
with 824 articles followed by thermodynamics (314 articles),
environmental engineering (224), and green & sustainable
science and technology (215).
We retained about 90 of the keywords that were cited most

frequently in these articles but excluded simulation, perfor-
mance, column, behaviour, and growth. VOSViewer grouped
the keywords into 5 clusters with Aspen+ at the centre of
the red cluster with the most articles (433) and the clus-
ter with the most keywords at 29 (Figure 5). This cluster
includes topics related to biomass (193 articles)— ethanol and
bioethanol (132), lignocellulosics, and cellulose (64). The two
other major topics relate to catalysis/kinetics (162) and techno-
economic analysis/economics (227) and other subjects related
to biomass.
Process simulation discriminates between process alterna-

tives (Design—246 articles), which comprises modelling (187
articles) and determines the dimensions of unit operations like
separation (126) including distillation (137 articles) (reactive
and extractive), heat integration (33), and dehydration (26).
Hung et al., for example, demonstrated that recovering dilute
acetic acid water solutions (between 30% to 70% by mass
of acid) with reactive distillation, amyl alchols among C1−C5alcohols minimizes the total annual cost (TAC), without any
stream pretreatment. [27] Pirola et al., simulated an extractive
distillation column employing p-xylene as entrainer to maxi-
mize acetic acid recovery. [28] Xiao et al. dimensioned a three-
column process to transesterify ethylene glycol with methyl
acetate, regressing reaction kinetics parameters and optimized
the design minimizing the TAC. [29] Wu et al. designed a
dividing-wall column, together with its control strategy, for
reformed gasoline. [30] Biodiesel and esterification are concepts
less related to process simulation as they are far from the
map center. This is because first- and second-generation bio-
fuels interest is dropping in recent years in favour of other
green technologies for the conversion of green house gases,
such as CO2 into fuels. [31–33] In fact, the magenta cluster cen-
tered around H2 (227 articles) concentrates on gasification
(biomass+steam with 239 articles), syngas (141), and reactors
and fluidized beds (84).
CO2 capture (193 articles), together with CO2 (162), and

CH4 dominate the yellow cluster that includes combustion
(87), absorption (82), and Hysys (66). This cluster spans a
large area covering technology related to carbon capture and
sequestration (CCS). Duhoux et al., for example, calculated the
optimal pressure and flowrate of a pressurized fluidized bed
combustion that sequestrates carbon dioxide via Calcium loop-
ing. [34] Joule has published the most cited article since 2019
(101 citations) that describes a plant to capture 1 Mt CO2 peryear with aqueous KOH sorbent and a calcium caustic recov-
ery loop. [35] In fact, the article spans many of the keywords in
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TABLE 1 Numerical methods for flowsheet simulation.

Numerical method Classification Robustness Efficiency Recommendations
Direct substitution Fixed-point Low Low Neither reliable nor efficient

Avoid its use.
Wegstein Fixed-point Medium Low Suitable for flowsheets

that contain weakly interacting recyclesa.

Dominant eigenvalue Fixed-point Medium Low
Applicable to process flowsheets with
weakly and/or strongly interacting recyclesa,b.
Use when Wegstein fails

Newton-Raphson Newton-like Low High
Fast but sensitive to initial guesses.
Useful for flowsheet optimization
and/or running case studies.

Broyden Newton-like Low Medium Equivalent to Newton-Raphson,
more efficient for large-scale process flowsheets.

a: A set of recycles exhibits weak interactions when changes in the properties of any recycle stream induce small variations in
the properties of all the other recycle streams.
b: A set of recycles exhibits strong interactions when changes in the properties of any recycle stream cause consistent variations
in the properties of all the other recycle streams.

the map—unit operations, capital cost estimates, and heat and
mass balances with ASPEN+.
The Optimization (266 articles) cluster is connected to both

Design and CO2 capture (Figure 5). Many of the subjects
relate to Process Intensification, which includes energy (228
articles) systems (215), energy/efficiency (127), and exergy
(163). [36, 37] Dynamic simulation analyzes process start-up and
shut downs, and closely connects to process design. [38]
Process simulation is an educational tool to demonstrate

many facets of design. [39, 40] Steady-state simulation repre-
sents the plant at stationary conditions while dynamic simu-
lation is required for the plant control strategies, for start up
and showdown operations, and for operator training by plant
virtualization. [41] The suggested approach for undergraduate
students is steady state simulation, [42] while dynamic simula-
tion is appropriate for graduate level courses. [43] For instance,
the Universidad Complutense of Madrid, introduced steady
state simulation software in the fourth year course of the
chemical engineering degree, [44] proposing a case study on
the reactive distillation for the production of MTBE. Simu-
lation in chemical plants educational courses guides students
through the principles of unit operations, and is a support in the
development of a whole process. [45] For example, simulations
reveal theoretical trends of processes, verify the kinetic and
thermodynamics of reactions, and calculate fluid phase mix-
ing and equilibria. [42] When proposing experimental activities
in parallel with theoretical lectures and simulation, a creative
environment that promotes team work is generated. [46]

Process simulation requires a solid theoretical background,
as well as a basic knowledge of the computational methods the
software are based on. For this reason, lectures on the simula-
tion suite and capabilities are propaedeutic to understand and
operate correctly.
Dynamic simulation is required for control strategies, for

start up and showdown operations, and for operator training
by plant virtualization. [47] The detailed representation of com-
mercial control algorithms, the high-realistic models of several
unit operations and the reproduction of the real behaviour of
pipes, vessels, and valves are the basis of the most advanced
dynamic simulation tools. [43] These options allow students to
interact with a virtual plant and to operate instruments. There,
the students engage at a practical level (starting up of a pump,
sampling, reading gauges, etc.) and in plant management and
control. This immersive simulation software combines aug-
mented reality, computational dynamics and computer graph-
ics. [48]
Augmented reality simulation examples concerning simu-

lated chemical plants are rare, while robotics and physical
sciences already developed commercial applications and uni-
versity courses, [49] Nevertheless, new educational proposals
are on-going, as for example Eye4Edu project at the Univer-
sity of Milano (Italy). Eye4Edu applies EYESIM software,
from AVEVA, that proposes the immersive virtualization of
a Crude Distillation Unit (CDU) plant with the representa-
tion of the detailed realistic 3D graphics of the whole plant
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FIGURE 5 VOSViewer keyword bibliometric map based on keywords (Aspen+, Aspen plus, Hysys, and Pro/II) derived from
articles thatWoSof Science indexed from 2017 to April 2020. [25, 26] The text font size and diameter of the circles are proportional
to the number of occurrences in the 2583 articles indexed during this time. Aspen+ (largest circle) appeared in 433 articles. The
smallest circles appear in 26 articles.

(Figure 6). [50] DYNSIM software simulates the plant and sup-
plies the physico-chemical properties. The main problems and
limitations of the software in education are: 1) the imperfect
reproduction of the reality, i.e. there is always some discrep-
ancy compared to the real world. It is therefore impossible to
recreate all the layouts of a real plant; 2) simulators are expen-
sive and require maintenance and constant updates; and, 3)
operators and teachers need training. Process simulators also
train senior engineers and field operators. [51–53] Commercial
software simulate mostly reactions, separations, design heat
integration and offer a variety of ideal reactors. [54, 55] Depend-
ing on the field of application, the software is integrated in the
design of a new process, in the simulation of an existing plant,
or both. [56] For instance, if we simulate and benchmark the
energy consumption of an existing plant, we increase its over-
all efficiency and save money. In 2017 and 2018, Panjeshahi
et al. demonstrated the efficacy of the process integration in
the cement [57] and the petrochemical industry, [58] with a total
duty saving of 24% and 14%, respectively. Cold and hot util-
ities consumption, energy requirements and emissions of oil
& gas, [59, 60] electric power, [61] biofuels, [62] chemical, phar-
maceutical and urban systems [63] existing plants can all be

FIGURE 6Operator Training Simulators (OTS) are an educa-
tive tool for master and undergraduate students. A dynamic
simulation of the plant calculates the consequences of each
operator’s actions and the student learns through experience.

reduced with a retrofit based on a simulated process. Optimize
a process, instead, requires setting economic, process or envi-
ronmental objective functions to satisfy. Commercial software,
such as AspenPlus, Hysys, PRO II or SuperPro Designer, are
designed to work with a fully defined problem (sum of degrees
of freedom equal to 0).
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3.1 Cost estimation
The log of the investment (log I) of a process unit and even an
entire plant is linearly correlated with the log of its capacity
(logQ). The slope of the curve depends on the equipment type,
specifically on its characteristic dimension, [64] and it varies
from 0.33 to 1.0 for equipment and from 0.38 to 0.90 for plants,
averaging to a value of 0.6 [65] (Eq. 10).

I2 = I1

(

Q2

Q1

)0.6

(10)
For modular units, the learning elasticity is proportional to this
exponent and the cost of these units decreases with multiple
units—learning/experience. [66] Lang elaborated a simplified
method to calculate the total installed cost of equipment based
on factors that vary according to the type of plant (solid
handling, solid-fluid, or fluids). [67–69]
A more detailed approach, proposed by Guthrie, estimates

the bare module cost of a unit, CBM , based on a characteristic
variable, A, (volume for a reactor or a column, surface for an
heat exchanger, etc.) corrected with pressure coefficients, Ci
and material coefficients, Bi (Eq. 11). [70, 71]

⎧

⎪

⎨

⎪

⎩

CBM = C0p (B1 + B2FMFP )
log10 C0p = K1 +K2 log10 A +K3

(

log10 A
)2

log10 FP = C1 + C2 log10 P + C3
(

log10 P
)2

(11)

FM the material factor, that is unity for carbon steel and > 1
for other materials, and FP is a pressure factor. In the case of
vessels, a different equation calculates FP ,vessel (Eq. 12)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

FP ,vessel =

(P + 1)D
2(850 − 0.6(P + 1))

+ 0.00315

0.0063
FP ,vessel = 1 if tvassel < 6.3mm
FP ,vessel = 1.25 if P < −0.05MPag

(12)

which is valid for a corrosion allowance of 3.15mm.
Ulrich and Vasudevan improved the method of Guthrie

and extended his correlation to 58 unit operations of the
chemical industry and updated the correlations with a larger
database. [72, 73] All the estimations are then actualized by an
inflation index like the Marshall & Swift equipment Cost
Index, the Chemical Engineering Plant Cost Index (CEPCI),
the Engineering News-Record (ENR) construction Index, or
the Nelson-Farrar Refinery Construction cost Index (NFRCI),
where CEPCI and NFRCI refer to the entire plant and the
others to either plant or equipment. [74] Simulation packages
have tools to estimate a units’ costs, that compute a com-
bination of the methods reported with vendors’ quotes/esti-
mates. [75] They prefer to implement algorithm-based methods
(Guthrie, Ulrich, Seider [76]) rather then cost-to-capacity or
the Lang-based methods. For instance, Aspen Capital Cost

Estimator (ACCE)—formerly APEA, the in-house Aspen esti-
mation software, couples design and equipment cost modules,
with proprietary time-proven, industry-based direct and indi-
rect factors based on company project history, vendor quotes.
These factors are updated regularly. [76] Industry and academia
developed dozens of integrated and stand-alone software to
estimate cost. Cleopatra and ACCE are the built-in software
of PRO/II and AspenOne, respectively. Another example is
the built-in Capital Cost Estimator of the CAPE-OPEN project
DWSIM. EstPro is a stand-alone process plant cost estimation
package from Gulf Production while CapCost, CCEP and DFP
are included with books. [74, 76, 77] EconExpert is web-based
software. Even software heavily based on updated vendor
quotes have errors of at least 25%. [75] We recommend to oper-
ate with one model (or software) to evaluate different plant
designs to generate comparable results.

3.2 Optimization
Most process synthesis problems have multiple feasible solu-
tions. Quantitative optimization techniques select the best of
these solutions, which corresponds to a process configuration
that maximizes a problem-specific measure of process perfor-
mance. Any process synthesis problem can be reformulated
as an equivalent optimization problem (Eq. 13) composed of
three principal components: an objective function, f (x, y)—a
problem-specific measure of process performance, some deci-
sion variables, continuous X (process variables), or binary y
(they specify the presence or absence of certain process units),
and a set of constraints, inequality g(x, y) (e.g., minimum
product purity, maximum allowable equipment cost, envi-
ronmental emission limits) and equality ℎ(x, y) (e.g., mass,
momentum and energy balances, mass and heat transfer corre-
lations, and phase equilibria). The numerical solution of this
optimization problem requires discrete or continuous solvers.

⎧

⎪

⎨

⎪

⎩

Minimize f (x, y)
Subject to g(x, y) ≤ 0, ℎ(x, y) = 0
x ∈ X, y ∈ {0, 1}

(13)

Examples of common objective functions include total cost,
profit, energy expenditure, exergy loss, environmental and/or
social impact, and the error over time of a control model.
When two or more conflicting objective functions must be
maximized/minimized simultaneously, a dedicated optimiza-
tion method solve this multi-objective optimization problem.
For example, Patel and Padhiyar [78] solved a bio-reactor design
problem, in which they simultaneously minimized the batch
time and maximized the process yield.
Additionally, Eq. 13 may have multiple solutions, called

local optima, and finding the best of these, i.e. the global
optimum, is essential. In this case, the user selects special
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types of optimization algorithms that offer global optimality
guarantees:

• Linear problems (LP): linear objective function and
constraints, and continuous decision variables,

• Mixed-integer linear problem (MILP): linear objective
function and constraints, and both discrete and continu-
ous decision variables,

• Non-linear problems (NLP); non-linear objective func-
tion and/or constraints, and continuous decision vari-
ables, and

• Mixed-integer non-linear problems (MINLP): non-
linear objective function and/or constraints, and both
discrete and continuous decision variables.

Scheduling, supply-chain and planning problems are usually
LPs or MILPs. NLPs and MINLPs characterize dynamic opti-
mization, design and process synthesis problems. Gradient-
based and derivative-free algorithms solve NLPs andMINLPs.
Both the algorithms are iterative: they start from an user-
supplied initial guess and progressively move towards a solu-
tion of the optimization problem (a set of optimal values of the
decision variables). Gradient-based methods rely on the val-
ues and the derivatives of constraints and objective functions
while derivative-free methods rely on the value of the func-
tions. Gradient-based algorithms are suitable for mildly non-
linear optimization problems with smooth objective functions
and constraints, given that the initial estimates are coherent.
Derivative-free methods are appropriate for highly non-linear
small-scale optimization problems with both smooth and non-
smooth objective function and constraints, even if a good initial
guess is unknown. These optimization algorithms are partially
complementary, which is the reason why process simulation
packages implement a few gradient-based and derivative-free
methods, and let the user excogitate on the one to select.
The LP simplex method for LPs, [79] sequential quadratic

programming (SQP) for NLPs, [80] and the branch & bound
(BB) method for MINLPs are examples of gradient-based
methods. [81] SQP is a quasi-Newton algorithm that is com-
putationally efficient but it relies on first and second order
derivatives of the objective function and constraints of the
optimization problem. For this reason, SQP solves smooth
problems best such as LPs and NLPs (Aspen Plus and PRO/II
feature SQP as default optimization method). Additionally,
SQP does not guarantee convergence to the global optimum.
Derivative-free optimization strategies include BOX, which

is a basic implementation of the Nelder-mead simplex
algorithm, [82] and COMPLEX, whose implementation details
are property of Aspen HYSYS and Aspen Plus. These built-in
algorithms handle simple optimization problems with a single

objective function, provided that a decent initial guess is avail-
able. [83, 84] However, complex or multi-objective optimization
problems may require external optimization packages (e.g.,
CPLEX and XPRESS for solving LPs and MILPs, CONOPT,
IPOPT andKNITRO for solvingNLPs, andDICOPT, BARON
and ANTIGONE for solving MINLPs), interfaced with the
simulation flowsheet. For instance, Galli et al. [85] applied
Monte Carlo optimization of operating costs and environmen-
tal impact of a plant for producing oxygen-enriched air, sim-
ulated with PRO/II). Quiroz-Ramírez [86, 87] optimized a bio-
butanol plant with AspenPlus, MATLAB, and a home-made
VBA script. Eslick et al. [88] optimized an amine absorption
process, with Excel, Aspen HYSYS, and the solver NSGAII.
Ponce-Ortega et al. [84] developed a procedure to tune any
commercial simulator to any multi-optimization algorithm
with MS Excel. In fact, they implemented a hybrid stochastic
algorithm called I-MODE to maximize the gross annual profit
and to minimize the CO2 emissions of a power and a biodiesel
plant. [89] Interfacing commercial simulation packages with
external optimization tools is a considerable task with respect
to computational power, and time, so we recommend this
technique only as a last resort.

3.3 Energy Integration Intensification
Since 1970, [90] pinch analysis has guided the placement of heat
exchanges and other unit operations (distillation, for example)
to minimize energy consumption. [9] We visualize each non-
reactive stream by a heat content H (kW)—temperature cou-
ple. When a differential heat flow dQ is added to a stream, it
increases its enthalpyH by CPdT :

Q =

T2

∫
T1

CP dT = CP(T2 − T1) = ΔH (14)

where T2 and T1 are the target and the supply temperature,
respectively. In this way, plotting the temperature in terms of
the heat content, we have, for each stream, a curve whose slope
is 1∕CP. For a single couple of hot-cold streams this approach
is of little use, because to a k hot load increase, corresponds
a k cold required duty increase. [91] However, the graphical
representation comes in handy when there are several streams
involved. In this case:

• First plot all the streams separately on a T ∕H graph.
Since we are interested in theΔH , we only have to place
the stream on the right interval of the y axes.

• Then add up all the cold and heat duties separately.
Since the slope of each stream represents its CP, when-
ever two or more streams share a temperature interval
T1 − T2, the heat available in this interval will be (CP,i +
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CP,ii +…CP,n)(T1 − T2). The outcome of this procedure
are the hot and cold composite curves.
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FIGURE 7 Example of hot (red) and cold (blue) composite
curves. The blue area is the minimum cooling duty required
Qc and the red area is the minimum heating duty required Qh.

When we plot these together, we identify (Fig.7):
• The minimum cooling duty required QC.
• The minimum heating duty required QH.
• The recovered duty where the curves overlap QREC .
• The point of closest approach, the pinch point. [90].

This means that as long as the heat exchange across the pinch
operates at the corresponding minimum ΔT , it is possible to
design an heat exchange network (HEN) who will recover
QREC . The only external heat for the process will only be QH
and QC . Lindhoff et al. [92] expanded the graphical concept of
the composite curve, to the Problem Table method. This latter
method, algebraically splits the process in a cascade of tem-
perature intervals. To do so, we adjust the hot or cold stream
temperatures of a negative or positive fraction of ΔTpinch. For
instance, we either shift the hot streams by -0.5ΔTpinch and the
cold streams by +0.5ΔTpinch, or the hot streams by −ΔTpinch
and leave the cold strea,s untouched. Setting the temperatures
this way guarantees that each interval will either have a positive
or a negative duty balance. Foreach interval iwe will therefore
have a balance:

ΔHi = (Ti − Ti+1)(ΣCP,h − ΣCP,c)i (15)
When we sum up theΔH for all the intervals, we obtain a pos-
itive and a negative heat residual. The only way to close the
energy balance is to introduce a cold and a hot utility. We have
to supply a QC and QH at a thermal level lower and higher
of the lowest and highest interval of the cascade. That is, if
the highest interval is at T = 160 °C, we include a hot util-
ity above 160 °C. Brown et al., [93] demonstrated how pinch

technology achieved an average of 25% cut on the site energy
bills, equivalent to 30 million pounds in 1989, for all the main
sectors in chemical engineering. Although other methods like
the composite curve method are equivalent, [76, 94] the inherent
modularity of the Problem Table method makes it perfect to
implement it in process simulators.
Process simulators perform pinch point analysis (PPA) to

design an optimal heat exchange network (HEN), minimize the
energy requirement of the process and the utilities consump-
tion. [54] Several software packages on the open market incor-
porate a PPA section such as HYSIM, HEXTRAN, ADVENT
by Aspen Tech, TARGET or, more recently, FI2EPI. [95]. Sim-
ulators couple PPA analysis with a UA heat exchange model,
in this way they work on the design of the network outside the
simulation environment. They share the possibility of import-
ing the H&M balance results from outside, and the presence of
at least a manual and an automatic design. However, we rec-
ommend completing individual PPA before integrating them
all into the entire network. In fact, the automatic mode will
achieve the target (minimum number of heat exchangers or
maximum energy saving), regardless the process engineering
of the system. For instance, it might suggest you to exchange
between stream 1 and stream 1000 of the plant, not consid-
ering the physical distance. Or it might suggest to split one
stream into five sub-streams, to maximize its heat exchange.
Or, based on what you are looking for, it might propose
uneconomical heat exchangers. On the other hand, this soft-
ware will not suggest you where to locate an equipment with
respect to the pinch. [9, 76] Furthermore, energy intensification
works as long as the plant operates at steady-state. However,
while the steady-state defines the baseline operation, [96] in
real life a plant alternates between steady-state and unsteady
state (start-up, shut-down, feed composition variations, for
example). [97–99] For this reason, we recommend understand-
ing the dynamics of all the operations in the simulation before
integrating energy.

3.4 Process simulation as research tool
Process simulators started as academical tools but soon there-
after industry adopted this software for design. Now this tool
is returning to academia and research: Saidi and Kadkho-
dayan [100] integrated an experimental Taguchi optimization
method to a process simulation to bridge industrial oper-
ation with laboratory scale experiments. Jafari simulated a
circulating fluidized bed with a sequential modular approach
and showed that it could be added to a commercial sim-
ulation. [101] Commercial software developers are expanding
their offering with non conventional components, such as
electrolytes, solids, or plastic [56]. Process simulators support
the experiments and approximate thermodynamic parameters
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with equations of state for those parameters difficult to mea-
sure. Shen et al. [102] studied a primary cooler for a Coke
Oven Gas LiBr heat pump. They relied on simulation results
to estimate operating parameters they were unable to mea-
sure experimentally to build a refrigerator pilot plant. They
retroactively validated the simulation with pilot plant data and
reported an error of 0% to 10% depending on the parameter.
Process simulators are also tools to calculate thermodynamic
properties—enthalpy, entropy, Gibb’s free energies, densities,
viscosity—as input to estimate reaction kinetics, heat duties,
and phase changes. analysis of a reaction. For example, to
define an experimental plan to studymethane partial oxidation,
we estimate the theoretical bound on conversion and selectiv-
ity as a function of temperature and pressure, then determine
the relationship between coking and oxygen partial pressures.
These data define the boundaries of the plan. PRO/II simulated
a Gibbs reactor (RGibbs) with the Peng-Robinson equation of
state. A case study varied the O2/CH4 ratio in the range 0.2 to
1.0 and the temperature of the reactor from 1000K to 1200K
(Figure 8).
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FIGURE 8 Thermodynamic (maximum) methane conversion
(dotted lines) and obtainable H2/CO ratio (full lines) for the
catalytic partial oxidation of methane at 1000K (black lines)
and 1200K (red lines). The simulator also identifies at which
ratio coke starts to form (points). We calculated the H2/COratio at which coke forms every 20K. The simulations took
less than 8min to complete.

4 UNCERTAINTY

4.1 Limitations
Commercial software licenses are expensive and to simulate
non-standard operation often additional code is required. The
commercial software models and algorithms are robust, and
most of the errors come from user-added inputs. Integrating

custom code into process simulators is cumbersome and takes
longer than writing a program from scratch.
To set up a simulation file, the following procedure applies:
• Define the units of measure, according to a predefined

set (metric, english or SI) or to a customized set,
• Select the components (from a databank),
• Choose a thermodynamic model,
• Check the simulation tolerances, and
• Build the flowsheet. In case of recycles see Section 2

Errors compound as the simulations proceeds from one step of
the process to the next. Simulators have no error assessment
capability.

4.2 Sources of error
4.2.1 Units of measure (UOM)
One of the most frequent error source is incorrect data entry,
i.e. the human error. Even though most of the commercial
simulation suites have a window dedicated to the selection of
UOMs, it is possible to change these inside all unit operations.
For example, if the ENGLISH system is set as default, but for
a specific distillation application the user knows that the distil-
late flowrate is 100 kmol h−1, inserting a value of 100 without
correcting the UOM will result in setting a distillate flow of
100 klbmol h−1, resulting in a error of 1∕2.2. The most likely
error is the simulation will not converge to a solution.
Another common mistake is when users define units of

measure in the reaction kinetics window. The user inputs the
main kinetic parameters—Arrhenius constants, Apre, activa-
tion energies,Ea,and reaction orders, �—for a kinetic model or
by defining a pseudo-homogeneous kinetic scheme (Eq. 16):

r = Apre exp
[

−
Ea
R

(

1
T
− 1
To

)]

⋅ T n ⋅
∏

a�i (16)
where a the activity of reagents and products (calculated as
the product concentration, molar fraction or according to a
thermodynamic model).
PRO/II permits the user to supply the values of these param-

eters and the volume and the pressure UOMs, as the r is always
defined as (molVolume−1 Time−1). Also, the value of the gas
constant R is 8.314 Jmol−1K−1. Therefore, the UOMs of pres-
sure and volume in the reaction windowmust be chosen to give
Jwhenmultiplied, i.e. or kPa and L, or Pa andm3, respectively.
On the other hand, when defining a kinetic procedure, the

user writes a FORTRAN or pseudo-FORTRAN code and cal-
culates the system of differential equation that the software will
integrate using a numerical method (typically Runge-Kutta).
In this case, the user should provide the proper rate expression
UOM to the solver, in molVolume−1 Time−1.
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4.2.2 Components selection
The selection of components means, for the software, to import
all the pure component properties, the fixed (molecular weight,
acentric factor, normal boiling point, critical point, Van der
Waals area and volume, etc.) and the temperature dependent
properties (density, vapor pressure, viscosity, heat capacity,
etc.).
We always recommend to employ components present in the

software database, as these are usually updated with one or
moremethods to estimate the component’s properties. Besides,
a good practice is to operate with less than 40 pure compounds
per simulation.
In the case of new components (those not yet in any

database), all the physical properties should be provided as
well; we recommend to retrieve the physical and thermo-
dynamic properties on databases such as NIST chemistry
WebBook [103] or Knovel. [104]
There are dozens of equation to estimate thermodynamic

properties. [105] This reference covers also electrolytes systems
and solids solubilities. We recommend to pay particular atten-
tion while operating with new materials and processes such
as:

• Green and biological processes,
• Molten organic and inorganic salts
• Nonconventional solids (i.g. solid with unknown chem-

ical formula)
• Electrolytes
• Novel materials (nanomaterials, composite materials,

copolymers, etc.)
Commercial software as ASPEN, PRO/II and ProSim estimate
new component’s properties from UNIFAC group contribu-
tion methods. [106] In this case, the flaws of the simulators rely
in the estimation of the physical properties, which are either
imprecise, [107] or incomplete.

4.2.3 Thermodynamics
One of the most critical points is the selection of a proper
thermodynamicmethod to calculatemixture properties (excess
Gibbs free energy or fugacity). Analyzing the system (Fig. 9)
leads to the selection of a 
 − � or a � − � approach. How-
ever, this is a simplified scheme as each component mixture
may show different non-idealities. For example, the system
water and acetic acid (fully miscible, condensed phase and no
supercritical gases dissolved) should be treated with an activ-
ity coefficient model. However, with UNIQUAC equations and
the binary parameters available in PRO/II database only, the
software calculates an non-existent azeotrope (Fig. 10). Only

adding a correction for the gas phase association of acetic acid
(Hyden-O’Connel equation [110]) or regressing with a robust
method experimental data led to a sound simulation. [28] There-
fore, we always recommend a literature analysis of the phase
equilibria of the systems involved. Gmehling et al. [111] pub-
lished a book regarding chemical thermodynamics and process
simulation. Gani and O’Connel [108] created a decision matrix
to select proper physical methods and thermodynamic models,
depending on the unit operation simulated and the operative
parameters.

4.2.4 Tolerances
Similar to any other iterative calculation algorithm, the solver
of a process simulator needs specific tolerances to terminate
the calculations. Generally the default parameters (1 × 10−3
for temperature and pressure —relative), 1 × 10−6 for com-
positions (absolute), and 1 × 10−4 for duties—relative) are
sufficient to guarantee the robustness of the termination crite-
ria.

4.2.5 Flowsheet
Any unit operation requires specifications to close the mass
and energy balances. Generally these specifications are tem-
peratures, pressures, or material flows (like the flow of distil-
late and residue for a distillation column) but any unit may
have peculiar specifications (reactor dimensions for a plug flow
or time for a batch reactor, reflux ratio for a distillation col-
umn, etc.). Converging to a viable solution depends on setting
these specifications correctly. Most of the error in this case are
related to the unit of measures of the specifications or to gross
errors such as setting a too high reflux ratio or a distillate flow
higher than the feed flow rate of the column.
Some specifications make the solver’s life harder. If the sim-

ulation never converges to a solution, the user should replace
some of them with equivalent specifications (e.g, instead of
decreasing the molar fraction of impurities in the distillate,
increase the reflux ratio until the composition reaches the
desired value). Another commonmistake is to set the composi-
tion of distillate or residue to a value impossible to obtain with
the number of theoretical trays specified (such as imposing
a distillate or residue purity higher than the minima/maxima
azeotropic compositions) for distillations, or imposing by mis-
take to concentrate the heavy component in the distillate rather
than in the residue stream.
If the user imposes extreme constraints (i.e. a separation

in which the molar fraction of impurities in the product is
less than 1 ppm), then they should start with a more relaxed
constraint (±5%) and tighten it up gradually.
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FIGURE 9 Simplified decisional flow diagram for the selection of a thermodynamic method (Tab 2). [108, 109]. Reprinted from
Computer Aided Chemical Engineering, Volume 13, Second Edition—Integrated design and simulation of chemical processes,
Alexandre C. Dimian, Costin S. Bildea, Anton A. Kiss, Chapter 6: Phase equilibria, 248, Copyright (2020), with permission
from Elsevier.

TABLE 2 Most employed thermodynamic models to calculate components’ fugacities or activity coefficients.

Model Advantages Limitations

Equation of State (EoS)
IDEAL Good for mixtures of similar fluids at low P and T P < 0.3MPa

Chao-Seader [112] Generalized correlation for hydrocarbon mixture P < 14MPa, T < 260 °C
Dissolved gas < 20% by mole

Lee-Kesler [113] Correlation for H̄ , S̄ and �̄ Not good for highly polar mixtures
Redlich-Kwong [114] Calculates hydrocarbons VLE accurately Not good for polar compounds
Peng-Robinson [115] Better than SRK with polar components Worse for hydrocarbonsmixtures
UNIWAALS [116] Predictive method Components’ liquid volumes required

Activity coefficients
Wilson [117] Polar or associating components Does not calculate LLE
NRTL [118] Strongly nonideal mixtures Very different molecules dimensions
UNIQUAC [119] Very good with most of systems No electrolytes
UNIFAC [120] Predictive method T << TC, P < 8.5MPa

4.2.6 Initialization
All numerical methods for the resolution of unit operations
require initial values to start iterating. However, all commer-
cial packages possess several initialization methods for each
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FIGURE 10 The correct selection of a thermodynamic
method (blue line) avoids the calculation of non-existent
azeotropes (red line) for the binary water-acetic acid sys-
tem, P = 101.325 kPa. UNIQUAC parameters: aij =
−118.309, bij = −0.124 345K−1, aji = 402.126 and bji =
−0.355 725K−1.

unit operation, and these algorithms vary from one unit to
another. For an exhaustive description of each method consult
the software manual.
For complex simulations, involving several units and recy-

cling streams, we recommend choosing initial conditions judi-
ciously, or to estimate them based on shortcut calculations
or literature data, to facilitate the algorithm convergence to
the solution. Poor initial guesses will increase the number of
iterations unnecessarily (if the simulation converges at all)..
To initiate the initial guess for tear streams, a good strategy

is to simulate the flowsheet with no recycle, and then connect
the recycles, so that the software stores after the first simula-
tion the initial values of flow rate, temperature, pressure, and
compositions of these streams.

4.3 Sources of error in the EO Approach
While thermodynamic, component selection, and flowsheets
are common for every computational architecture, the EO is
intrinsically free of any sources of error related to iteration.
However, since the EO solves all the units at the same time,
the initial values are essential. As a rule of thumb, we recom-
mend to first run the simulation in a SM environment, and then
implement the SM outcome as initial value for the EO. This
doesn’t mean that the SM needs to converge, but at least each
block has to be solved once. The closer the SM solution is to
the real solution, the easier it will be for the EO to converge
without error. While this initialization technique is the one cur-
rently present in commercial simulators, new approaches such
as the graphic approach, [121] or the pseudo-transient, [122] are
recently emerging.

5 CONCLUSIONS

Engineers design, control, optimize, retrofit, and estimate
the cost of a plants and equipment with process simula-
tors, which calculate thermodynamic properties, model vapor-
and/or liquid-liquid equilibria of mixtures and close mass and
energy balances. Process simulation will become ever more
present in a chemical engineer’s arsenal of tools to address
society’s desire for sustainable products that minimize waste
and maximize recyclability as the mathematical methods and
computational power improve such that any PC can run these
multi-objective optimization problems. The feedstocks of the
future will become more heterogeneous (bio-based, waste-
based, for example) and because of this complexity, new
models, unit operations and thermodynamic correlations will
be needed. Quantification of the uncertainty on model predic-
tions is another key aspect that should be further improved
in future simulators as well as adding stochastic optimization
capabilities to these tools.
Prospectives for future innovations include:
• generating kinetics databases (including packages like

Chemkin; [123]
• handling solids and other unconventional materials

(plastic mixtures, urban waste, sludge, and poorly char-
acterized complex mixtures);

• better dynamic simulators that consider the time scale of
reaction versus hydrodynamics contribution;

• new operating functions for process intensifica-
tion [124, 125] of current processes;

• more reliable safety assessments that autiomatically
identify hazardous operating conditions (HAZOP auto-
matic calculation of lower and upper explosion lim-
its, [126] identification of risk zones, improving the haz-
ard identification when streams mix);

• integrating computational fluid dynamics;
• dynamically query other databases on the internet

(NIST);
• integrating artificial intelligence and artificial neural

network algorithms for control and optimization;
• improving the thermodynamic packages for new

molecules (pharma and green chemistry);
• improving the predictive control of unit operations;
• expanding virtual reality that reproduces realistic plant

dimensions; and,
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• improving the integration between home-made code and
process simultators.

Also, the integration of multiobject optimization on perfor-
mance key indicators not only based on economic parameters,
such as the CO2 equivalent or the water footprint of a pro-
cess (environmental impact) or the hazard and operability
analysis, which at the moment is feasable via open platform
communication. [127].
As stated by John E. Coon et al. in 1998 “It is the responsi-

bility of the engineer to validate the quality of process design,
troubleshoot, and optimization results from simulation tools”
and that wrong answers are “the results of getting the correct
answer to a poorly chosen question”. [128]

NOMENCLATURE

A Characteristic variable of an equipment
a Optimal step length
ACCE Aspen capital cost estimator
Apre Arrhenius pre-exponential factor
ai Activity of component i
B() Jacobian matrix estimation
Bi Material coefficients
CBM Cost of bare module
CCS Carbon capture and sequestration
CDU Crude distillation unit
CEPCI Chemical Engineering Plant Cost Index
Ci Pressure coefficients
CP Specific heat
D Diameter of a vessel
dn search direction vector
Ea Reaction activation energy
ENR Engineering news-record
EO Equation oriented approach
EoS Equation of State
FM Material factor
FP Pressure factor
H̄i Enthalpy of component i in mixture
HOC Hyden-O’Connel
I Investment
J () Jacobian matrix
Ki Cost coefficient of an equipment
LLE Liquid-liquid equilibrium
LP Linear problem
MILP Mixed integer liner problem
MINLP Mixed integer non-liner problem
MTBE Methyl-tertbutil ether
NFRCI Nelson-Farrar Refinery Construction cost Index

NLP Non-linear problem
OTS Operator training simulator
P Pressure
PPA Pinch point analysis
PR Peng-Robinson
Q Plant capacity
Qc Minimum cooling duty
Qh Minimum heating duty
Qrec Recovered duty
R Gas constant
r reaction rate
S̄i Entropy of component i in mixture
SM Sequential modular approach
SQP Successive quadratic programming
SRK Soave-Redlich-Kwong
T Temperature
TC Critical temperature
tvessel Vessel wall thickness
TAC Total annual costs
UOMs Unit of measures
VLE Vapor-liquid equilibrium
xn solution vector at the iteration n
xs solution vector

Greek Letters

 activity coefficient
� reaction order
� fugacity
�̄i Density of component i in mixture
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Summary

Process simulation software designs equipment, simulates operations, optimizes a
plant’s configuration (heat exchangers network, for example), estimates operating and
capital expenses, and serves as educational tools. However, mastering the theoretical
background minimizes common mistakes such as applying an incorrect thermody-
namic method, selecting improper algorithms in the case of tear systems, and set
irrational system specifications. Engineers and researchers will exploit this tool more
often in the future as constant advancements in simulation science as well as new
models are released continually. Process simulators ease the building of digital twins
and thus will facilitate implementation of the industry 4.0 guidelines. We highlight
the mathematical and technical features of process simulators, as well as the capa-
bilities and the fields of applications. A bibliometric map of keywords from articles
citing Aspen+, Aspen plus, Hysys, and Pro/II indexed by Web of Science between
2017 and 2020 identified the main research clusters such as: Design; Optimization;
Energy or Exergy; Biomass; H2 and CO2 capture; Thermodynamics; separations and
Techno-Economic analysis.
KEYWORDS:
Process simulation, Design, Thermodynamics, Optimization, Cost estimation

1 INTRODUCTION

Process simulators solve mathematical equations not only to
characterize reactors, distillation columns, heat exchangers,
pumps, compressors and other unit operations but also for
process design and optimization. Furthermore, they offer engi-
neers a tool to estimate plant costs—both operating expenses
(OPEX) and capital expense (CAPEX). Users input operat-
ing pressure, temperature, flow rates, composition, and ther-
modynamic packages and the software computes mass and
energy balances for each stream and module. Examples of the
first software date back to 1960s with PACER developed by
McMaster University for educational purposes. The University
of Houston developed in collaboration with industry CHESS

in 1968. It simulated the phase equilibria of more than 70
hydrocarbons. [1] PROCESS, by Simulation science, was dis-
tributed in 1966 and simulated distillation columns. It became
then PRO/II, first distributed by Scheider-Electrics and then by
AVEVA. Fortran expanded the capabilities of these programs
in the 70s. In the late 70s, MIT developed Advanced System
for Process ENgineering (ASPEN) that AspenTech™commer-
cializes in the 80s. Concurrently Profs. Bishnoi and Svercek at
the University of Calgary developed HYSYS. In the late 1980s
and early 1990s the PC-based simulators were developed. [2] In
2002 AspenTech™ acquired Hyprotech; however, the Federal
Trade Commission required AspenTech to divest the HYSYS
because they deemed it contravened anti-trust laws. Honeywell
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became the owner of HYSYS and created UniSim. Eventu-
ally, AspenTech™ re-acquired HYSYS in 2016 and now 91
simulators are on the market including open source software.
This mini-review on process simulation is part of a series of

articles dedicated to experimental methods in chemical engi-
neering. [3] Although practicing engineers and students use
these simulators for plant design and optimization, researchers
also apply them to calculate thermodynamics, identify equi-
librium compositions of reactions, verify the feasibility of
separation operations, and thus optimize experimental designs.
Here we discuss these features but address the mathematical
approaches to solve these large systems of equations, res-
olution algorithms, and applications. We describe the main
sources of error and how to avoid common mistakes that arise
at the set up of the flowsheet and include a bibliometric survey
that highlights the major applications.

2 THEORY

Steady-state models of most unit operations are nonlinear
systems of either algebraic or differential-algebraic equations
(e.g., PFR reactors and pipes). Discretization techniques con-
vert differential -algebraic equations into a system of algebraic
equations, so any steady-state process flowsheet is equivalent
to a large-scale system of nonlinear equations. Therefore, in
this section of the manuscript, we first review the rationale
of methods that solve these systems of nonlinear equations,
and then explain how simulation packages use them to solve
process flowsheets. We discuss both modular and equation-
oriented strategies for flowsheet simulation, comment on their
advantages and disadvantages, and provide guidelines on
when/how to apply each approach. [4, 5]

2.1 Numerical methods for systems of
nonlinear equations
The most general mathematical formulation of a system of
nonlinear equations, Eq 1, where every function gi represents
a nonlinear expression of the unknown variables xi (in a pro-
cess flowsheet, the functions gi represent steady-state mass,
energy and momentum balances, and discretization thereof or
design specifications, whereas the quantities xi are process
variables, e.g. temperatures, pressures, molar/mass fractions
and flowrates).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g1(x1, x2, x3, ..., xN ) = 0
g2(x1, x2, x3, ..., xN ) = 0
⋯

gN (x1, x2, x3, ..., xN ) = 0

⇔ g(x) = 0 (1)

The objective to solve this nonlinear system (xs), which
corresponds to a root of all the functions gi (gi(xs) = 0).
There exist no analytical method to accomplish this task, so
we only estimate an approximate value of xs through numer-
ical algorithms—Newton type and fixed-point methods. Both
these iterative procedures rely on a user-supplied initial value,
x0 and iteration (xn)n≥1 until they approach the solution vector
xs. These two families of algorithms differ with respect to the
procedure they apply to compute (xn)n≥1, their efficiency and
robustness, and their application domain.
Starting from the last known iteration, xn, Newton-type

methods calculate xn+1 with the following procedure:
1. Exact or approximate linearization of the nonlinear sys-

tems at xn. This step requires calculation of the Jacobian
matrix atxn or of an estimate thereof (thematrices J (xn)
and Bn, respectively);

2. Solution of the linearized system of equations and cal-
culation of the search direction dn, according to the first
line of Eq. 2 and Eq. 3;

3. Computation of the optimal step length an through a line
search strategy, performed along dn; [6]

4. Calculation of xn+1 from xn, an, and dn, according to
the second line of Eq. 2 and Eq. 3.

{

J (xn)dn = −g(xn)
xn+1 = xn + andn

∧ J (x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

)g1
)x1

)g1
)x2

⋯ )g1
)xN

)g2
)x1

)g2
)x2

⋯ )g2
)xN

⋮ ⋮ ⋱ ⋮
)gN
)x1

)gN
)x2

⋯ )gN
)xN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2)

{

Bndn = −g(xn)
xn+1 = xn + andn

∧ B(n) ≈ J (xn) (3)
These steps are repeated until convergence criteria are met,

e.g. the magnitude of the search direction (‖dn‖) becomes suf-
ficiently small, or the sequence (xn)n≥1 diverges (Fig. 1). The
sequence (xn)n≥1 follows the same type of pattern (Fig. 1) for
systems of any number of equations.
Newton-type methods do not guarantee convergence to a

solution of the nonlinear system, starting from any random
initial guess as this family of algorithms is only locally con-
vergent. However, their rate of convergence is superlinear.
Therefore, they are very effective when a good initial guess
is available. Another feature of Newton-type methods is their
capability of solving nonlinear systems of arbitrarily large
scale, provided that adequate computing power is available.
Fixed-point methods require a reformulation of the origi-

nal system of nonlinear equations, which consists of re-writing
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FIGURE 1 Typical sequence of iterations generated by a
Newton-type method. (A - convergent sequence; B - divergent
sequence). From the initial guess x0, the algorithm calculates
the direction vector di and the step length ai, moving towards
xS or without converging.

every equation gi(x) = 0 in the same form as Eq. 4 (this refor-
mulation is always possible, although not necessarily unique,
and may affect the convergence properties of the algorithm).

xi = fi(x) ∀i ∈ [1, N] (4)
After this preliminary step, starting from the last known

iteration xn, the next iteration xn+1 is calculated through the
following procedure:

1. Calculation of the functions fi at xn;
2. Selection of values for all the relaxation factors ai,n;
3. Application of Eq. 5.

xi,n+1 = ai,nfi(xn) + (1 − ai,n)xi,n ∀i ∈ [1, N] (5)
These steps are repeated until convergence criteria are met,

e.g. the norm of the difference between two consecutive itera-
tions (‖xn+1−xn‖) becomes sufficiently small, or the sequence

((xn)n≥1 diverges (the direct substitution recursion matches
Eq. 5 with all the relaxation factors ai,n = 1). The sequence
(xn)n≥1 follows a similar pattern for systems of two or more
equations (Fig. 2).

FIGURE 2 Typical sequence of iterations generated by direct
substitution (A–convergent sequence; B–divergent sequence).
From the initial guess x0, the algorithm calculates xi and
f (xi), moving towards xS or without converging.

As with Newton-type methods, fixed-point schemes do not
guarantee convergence to a solution of the nonlinear system,
starting from any random initial guess (these algorithms are
only locally convergent), but they are usually less sensitive to
the initial value. On the other hand, their rate of convergence is
slower than Newton-type methods. Thus, they are particularly
suitable for situations in which no good initial guess can be
computed. Note that, as opposed to Newton-type algorithms,
fixed-point methods can only solve small-scale/medium-scale
nonlinear systems, regardless of the amount of computing
power available. This limitation considerably restricts their
application domain.
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2.2 Computational Strategy
The barebones of a flowsheeting software differs from those
of others based on the computational strategies. The main
techniques are:

• Sequential Modular Approach (SM)

• Equation Oriented Approach (EO)

• Simultaneous Modular Approach
The SM solves the process units in sequence, starting from
the feed and tear the common streams in case of recycle.
Where an inlet stream is given, each block computes its out-
let stream. However, in the presence of a recycle, an iteration
is required. Very sturdy and reliable, this is the default method
of commercial and general software, especially for steady-
state calculations. On the other hand, The SM is weak and
time-consuming for [7]:

• Highly recycled processes;
• Highly-Heat integrated processes;
• Optimization;
• Simultaneous flowsheet and design specification loops;

and,
• Dynamic simulations.

In the EO approach the whole process is solved simultane-
ously as a system of nonlinear algebraic equation. EO requires
a more experienced simulator, is difficult to debug, and works
well only when the initial value is close to the solution. Never-
theless, it works better where SM is weak. The Simultaneous
Modular Approach is a combination of both SM and EO. [8]
The flowsheet is solved in an EO fashion, while the singu-
lar unit are solved sequentially. [9] So far, this approach finds
application in academia, [10–12] but not in commercial software.

2.3 Modular solution (SM) strategies for
process flowsheets
Any chemical process is a set of unit operations, primarily
connected in series as the number of recycles is usually signif-
icantly smaller than the total number of connections. Modular
solution strategies for process simulation leverage this sequen-
tial nature of chemical processes to first simplify and then
perform flowsheet calculations. The rationale of these solution
strategies is:

1. Given a certain process flow diagram (PFD), we first
convert it into a directed graph (the simulation flow dia-
gram (SFD)), whose vertices and edges represent units
and streams, respectively (Fig. 3).

2. Then, well-established algorithms, e.g. the connection
matrix method [13]or the depth-first search and backtrack
method [14], detect all the simple cycles in the flowsheet
graph (Fig. 3), which corresponds to identifying all the
recycles in the original process flowsheet.

3. Subsequently, we break all the simple cycles by tearing
a number of edges in the flowsheet graph (Fig. 4), thus
transforming the latter into a directed tree (the flowsheet
tree). This graphical operation corresponds to break-
ing all the recycles in the original process flowsheet,
by replacing specific process streams (the tear streams)
with pairs of new streams (the artificial streams), so as
to generate a simplified process flowsheet, in which all
the unit operations can be solved in series, once half
the artificial streams have been assigned (the remaining
artificial streams become simulation outputs). Note that
every recycle stream is literally torn at least once, thus
the name tear stream.

4. Finally, we exploit the connectivity information, stored
in the flowsheet tree, to solve all the unit operations and
compute all the process streams in the simplified process
flowsheet, under the additional requirement that every
pair of artificial streams be identical (these artificial con-
straints ensure that all the recycles are enforced). This is
mathematically equivalent to solving Eq. 6 (the recycle
problem), in which the vector x represents the process
variables of the artificial streams that must be assigned,
and the function f (x) denotes the process variables of
the artificial streams that are simulation outputs. f (x) is
an implicit function of x, as we can only evaluate it by
solving some/all of the unit operations in the simplified
process flowsheet).

x − f (x) = 0 (6)
Eq. 6 contains only a small fraction of the nonlinear

equations, which describe the original process flowsheet of
interest, provided that the latter contains a small number of
recycles (the scale of Eq. 6 is indeed proportional to the num-
ber of recycles). Therefore, modular solution strategies are
suitable for simulation of process flowsheets of arbitrary scale,
which contain few recycles. On the other hand, they should
never be used to solve process flowsheets with many recycles,
as the numerical solution of Eq. 6 becomes impractical.

2.3.1 Selection of the optimal tear streams
The identification of optimal tear streams is an element of any
modular solution strategy for process flowsheets because the
number and features of the tear streams influence the size and
numerical properties of the recycle problem (Eq. 6). Therefore,
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FIGURE 3 Simple process flowsheet complemented with its graph representation (S-N – Nth process stream; C-N – Nth simple
cycle or Nth recycle).

FIGURE 4 Reduction of the flowsheet graph to a directed tree by elimination of all the simple cycles (A - optimal tear streams
according to Barkley andMotard [15] and Christensen and Rudd; [16] B - optimal tear streams according to Upadhye and Grens [17]
and Motard and Westerberg. [18]).

many different tearing algorithms have been proposed over the
years. However, all of these algorithms can be grouped in three
different families, which rely on as many different underlying
ideas:

• According to Barkley and Motard, [15] the tear streams
should be selected as the smallest set of process streams
that break all the recycles in the process flowsheet
(Fig. 4).

• According to Christensen and Rudd, [16] the tear streams
should be selected as the set of process streams that

break all the recycles in the process flowsheet and min-
imize the size of the recycle problem (Fig. 4).

• According to Upadhye and Grens [17] and Motard and
Westerberg, [18] the tear streams should be selected as the
set of process streams that break all the recycles in the
process flowsheet, under the additional requirement that
the number of times every recycle is torn be minimum
(Fig. 4).

Although none of these three alternatives is fully satisfac-
tory, the best option depends on the numerical method, used
to solve the recycle problem. More specifically, if we solve the
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recycle problem with Newton-type methods, then the second
option represents the most appropriate choice from a com-
putational perspective. On the other hand, if we solve the
recycle problem with fixed-point algorithms, then the third
option is the most suitable from a computational point of
view (this tearing scheme maximizes the rate of convergence
of fixed-point methods, when they are applied to Eq. 6). For
computational (and historical) reasons, all the main software
were originally designed as SM simulators. Hence, the first
developers focused on the implementation of a single tearing
algorithm that worked best in a SM environment. Therefore,
most process simulation packages implement a single tear-
ing algorithm, which often resembles the third, so the user’s
choices are limited to what is available in existing process sim-
ulation software. Due to the mathematical complexity of the
tearing algorithm, we recommend a non expert user to operate
the default method.

2.3.2 Solution of the single unit operation
models
A key step of all modular solution strategies for process sim-
ulation is the solution of the recycle problem (Eq. 6), which
in turn requires repeated calculations of single unit opera-
tions. Since models of different types of unit operations exhibit
unique features, dedicated numerical methods to solve each
and every one of them have been developed over the years.
However, all these numerical algorithms belong to either parti-
tioning methods or simultaneous methods. Partitioning meth-
ods decompose unit operation models into blocks of equations,
which are then solved iteratively, in a predefined sequence,
until convergence criteria are met or the iterations diverge.
Internally, they rely on fixed-point methods, thus exhibit the
same numerical properties as this family of algorithms. Simul-
taneous methods do not decompose unit operation models
but rather solve them as nonlinear systems. Since they apply
Newton-type methods (possibly complemented with some
parametric continuation approach), they exhibit similar numer-
ical properties as these types of algorithms. Most process
simulation packages implement simultaneous methods for unit
operations but offer both partitioning and simultaneous alter-
natives for specific types of unit operations, e.g. distillation,
absorption and stripping towers (for completeness, the most
common partitioning solution scheme for separation towers is
the inside-out method by Boston and Sullivan, [19] Saeger and
Bishnoi [20] and Jelinek [21]). As a rule of thumb, we recom-
mend partitioning methods for solving mildly non-ideal sepa-
rations and simultaneous methods for solving highly non-ideal
or reactive separations. In addition, simultaneousmethodsmay
be more appropriate for specific tasks, such as running case
studies and/or performing flowsheet optimization, because of

their higher computational efficiency. Additional recommen-
dations on which numerical solution scheme to choose for
specific simulation problems are usually available on the user
guides of process simulation packages.

2.3.3 Solution of the recycle problem
The last key component of any modular solution strategy
for process flowsheets is the solution of the recycle problem
(Eq. 6), which apply either fixed-point or Newton-type meth-
ods. In the 60s and 70s, we witnessed the birth of several
new numerical algorithms, specifically designed to solve this
problem. Nowadays, those that are still implemented in pro-
cess simulation packages are the direct substitution method,
the Wegstein method, [22] the dominant eigenvalue method, [23]
the Newton-Raphsonmethod and the Broydenmethod. [24] The
rationale of each are:

• The direct substitution method is the simplest and oldest
fixed-point algorithm, whose recursion matches Eq. 5
with all the relaxation factors ai,n = 1.

• The Wegstein method is an accelerated version of direct
substitution, in which the relaxation factors ai,n are com-
puted by Eq. 7. We emphasize that Eq. 7 relies on the
assumption that every variable of the recycle problem is
independent of the others, so this numerical methodmay
not perform satisfactorily when the Jacobian matrix of
f (x) (Eq. 6) is not diagonally dominant.

• The dominant eigenvalue method is an improved ver-
sion of Wegstein, in which the relaxation factors ai,n
are computed by Eq 8. In this case, Eq 8 relies on the
assumption that the Jacobian matrix of f (x) (Eq. 6) has
a dominant eigenvalue, so this numerical method may
not perform satisfactorily when several variables of the
recycle problem are equally important.

• The Newton-Raphson method is the simplest and oldest
Newton-type scheme, whose recursion matches Eq. 2. It
relies on the actual Jacobian of Eq. 6, so it may be more
computationally efficient than Broyden when the recy-
cle problem is a small-scale/medium-scale nonlinear
system.

• The Broyden method is a Newton-type scheme, whose
recursion matches Eq. 3. It relies on an estimate of the
Jacobian of Eq. 6, computed by Eq. 9, so it may be more
computationally efficient than Newton-Raphson when
the recycle problem is a large-scale nonlinear system.

ai,n =
1

1 − si,n
∧ si,n =

fi(xn) − fi(xn−1)
xi,n − xi,n−1

∀i ∈ [1, N] (7)

Page 28 of 43

John Wiley & Sons

2t-S-1Ed-D-P

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

de Tommaso ET AL 7

ai,n =
1

1 − �MAX
n

∧ �MAX
n =

‖xn − xn−1‖

‖xn−1 − xn−2‖
∀i ∈ [1, N] (8)

Bn = Bn−1 +
g(xn) − g(xn−1) − Bn−1dn−1

‖dn−1‖
2

dTn−1 ∧ B0 = J (x0)

(9)
All of these numerical approaches exhibit advantages and

limitations, which make themmore adequate for specific types
of process flowsheets. Tab. 1 collects a general set of rec-
ommendations to help select a numerical alternative for most
real-world simulation problems.

2.4 Equation-oriented (EO) solution strategies
As opposed to modular solution approaches, equation-oriented
solution strategies for process simulation do not attempt to sim-
plify flowsheet calculations by exploiting the sequential nature
of chemical processes. They construct the large-scale sparse
system of nonlinear equations, which describes the process
flowsheet of interest and includes unit operation models, pro-
cess streams and design specifications, and solve it using ded-
icated numerical methods. The numerical schemes, suitable
for flowsheet simulation, are Newton-type methods, combined
with some merit function minimization strategy and, very
often, some parametric continuation approach, which helps
the sequence of iterations converge whenever equations are
highly nonlinear, their Jacobianmatrix is locally rank deficient,
and/or a good initial guess cannot be computed. [6]
Regardless of any specific numerical details, equation-

oriented solution strategies solve any type of process flow-
sheets, independently of their scale and topology (note that
the performance of these solution schemes is unaffected by
the number of recycles in the process flowsheet, provided that
adequate computing power is available). However, they should
be primarily used to solve process flowsheets, which contain
many recycles, as modular solution approaches are more com-
putationally efficient for simulation of process flowsheets with
few recycles.

3 APPLICATIONS

The program VoSViewer generated a bibliometric map of key-
words generated from articles indexed byWeb of Science Core
Collection (WoS) from 2017 to April 2020. [25, 26] We queried
the database 4 times with ASPEN +, ASPEN Plus, HYSYS,
and PROII as topics, while simultaneously excluding forest.
(To avoid work related to Aspen trees and forests rather than
process simulation). We combined the four databases into one
and eliminated all duplicate and ended up with 2582 articles.
The Web of Science category energy & fuels had 930 articles

while the chemical engineering category was a close second
with 824 articles followed by thermodynamics (314 articles),
environmental engineering (224), and green & sustainable
science and technology (215).
We retained about 90 of the keywords that were cited most

frequently in these articles but excluded simulation, perfor-
mance, column, behaviour, and growth. VOSViewer grouped
the keywords into 5 clusters with Aspen+ at the centre of
the red cluster with the most articles (433) and the clus-
ter with the most keywords at 29 (Figure 5). This cluster
includes topics related to biomass (193 articles)— ethanol and
bioethanol (132), lignocellulosics, and cellulose (64). The two
other major topics relate to catalysis/kinetics (162) and techno-
economic analysis/economics (227) and other subjects related
to biomass.
Process simulation discriminates between process alterna-

tives (Design—246 articles), which comprises modelling (187
articles) and determines the dimensions of unit operations like
separation (126) including distillation (137 articles) (reactive
and extractive), heat integration (33), and dehydration (26).
Hung et al., for example, demonstrated that recovering dilute
acetic acid water solutions (between 30% to 70% by mass
of acid) with reactive distillation, amyl alchols among C1−C5alcohols minimizes the total annual cost (TAC), without any
stream pretreatment. [27] Pirola et al., simulated an extractive
distillation column employing p-xylene as entrainer to maxi-
mize acetic acid recovery. [28] Xiao et al. dimensioned a three-
column process to transesterify ethylene glycol with methyl
acetate, regressing reaction kinetics parameters and optimized
the design minimizing the TAC. [29] Wu et al. designed a
dividing-wall column, together with its control strategy, for
reformed gasoline. [30] Biodiesel and esterification are concepts
less related to process simulation as they are far from the
map center. This is because first- and second-generation bio-
fuels interest is dropping in recent years in favour of other
green technologies for the conversion of green house gases,
such as CO2 into fuels. [31–33] In fact, the magenta cluster cen-
tered around H2 (227 articles) concentrates on gasification
(biomass+steam with 239 articles), syngas (141), and reactors
and fluidized beds (84).
CO2 capture (193 articles), together with CO2 (162), and

CH4 dominate the yellow cluster that includes combustion
(87), absorption (82), and Hysys (66). This cluster spans a
large area covering technology related to carbon capture and
sequestration (CCS). Duhoux et al., for example, calculated the
optimal pressure and flowrate of a pressurized fluidized bed
combustion that sequestrates carbon dioxide via Calcium loop-
ing. [34] Joule has published the most cited article since 2019
(101 citations) that describes a plant to capture 1 Mt CO2 peryear with aqueous KOH sorbent and a calcium caustic recov-
ery loop. [35] In fact, the article spans many of the keywords in
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TABLE 1 Numerical methods for flowsheet simulation.

Numerical method Classification Robustness Efficiency Recommendations
Direct substitution Fixed-point Low Low Neither reliable nor efficient

Avoid its use.
Wegstein Fixed-point Medium Low Suitable for flowsheets

that contain weakly interacting recyclesa.

Dominant eigenvalue Fixed-point Medium Low
Applicable to process flowsheets with
weakly and/or strongly interacting recyclesa,b.
Use when Wegstein fails

Newton-Raphson Newton-like Low High
Fast but sensitive to initial guesses.
Useful for flowsheet optimization
and/or running case studies.

Broyden Newton-like Low Medium Equivalent to Newton-Raphson,
more efficient for large-scale process flowsheets.

a: A set of recycles exhibits weak interactions when changes in the properties of any recycle stream induce small variations in
the properties of all the other recycle streams.
b: A set of recycles exhibits strong interactions when changes in the properties of any recycle stream cause consistent variations
in the properties of all the other recycle streams.

the map—unit operations, capital cost estimates, and heat and
mass balances with ASPEN+.
The Optimization (266 articles) cluster is connected to both

Design and CO2 capture (Figure 5). Many of the subjects
relate to Process Intensification, which includes energy (228
articles) systems (215), energy/efficiency (127), and exergy
(163). [36, 37] Dynamic simulation analyzes process start-up and
shut downs, and closely connects to process design. [38]
Process simulation is an educational tool to demonstrate

many facets of design. [39, 40] Steady-state simulation repre-
sents the plant at stationary conditions while dynamic simu-
lation is required for the plant control strategies, for start up
and showdown operations, and for operator training by plant
virtualization. [41] The suggested approach for undergraduate
students is steady state simulation, [42] while dynamic simula-
tion is appropriate for graduate level courses. [43] For instance,
the Universidad Complutense of Madrid, introduced steady
state simulation software in the fourth year course of the
chemical engineering degree, [44] proposing a case study on
the reactive distillation for the production of MTBE. Simu-
lation in chemical plants educational courses guides students
through the principles of unit operations, and is a support in the
development of a whole process. [45] For example, simulations
reveal theoretical trends of processes, verify the kinetic and
thermodynamics of reactions, and calculate fluid phase mix-
ing and equilibria. [42] When proposing experimental activities
in parallel with theoretical lectures and simulation, a creative
environment that promotes team work is generated. [46]

Process simulation requires a solid theoretical background,
as well as a basic knowledge of the computational methods the
software are based on. For this reason, lectures on the simula-
tion suite and capabilities are propaedeutic to understand and
operate correctly.
Dynamic simulation is required for control strategies, for

start up and showdown operations, and for operator training
by plant virtualization. [47] The detailed representation of com-
mercial control algorithms, the high-realistic models of several
unit operations and the reproduction of the real behaviour of
pipes, vessels, and valves are the basis of the most advanced
dynamic simulation tools. [43] These options allow students to
interact with a virtual plant and to operate instruments. There,
the students engage at a practical level (starting up of a pump,
sampling, reading gauges, etc.) and in plant management and
control. This immersive simulation software combines aug-
mented reality, computational dynamics and computer graph-
ics. [48]
Augmented reality simulation examples concerning simu-

lated chemical plants are rare, while robotics and physical
sciences already developed commercial applications and uni-
versity courses, [49] Nevertheless, new educational proposals
are on-going, as for example Eye4Edu project at the Univer-
sity of Milano (Italy). Eye4Edu applies EYESIM software,
from AVEVA, that proposes the immersive virtualization of
a Crude Distillation Unit (CDU) plant with the representa-
tion of the detailed realistic 3D graphics of the whole plant
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FIGURE 5 VOSViewer keyword bibliometric map based on keywords (Aspen+, Aspen plus, Hysys, and Pro/II) derived from
articles thatWoSof Science indexed from 2017 to April 2020. [25, 26] The text font size and diameter of the circles are proportional
to the number of occurrences in the 2583 articles indexed during this time. Aspen+ (largest circle) appeared in 433 articles. The
smallest circles appear in 26 articles.

(Figure 6). [50] DYNSIM software simulates the plant and sup-
plies the physico-chemical properties. The main problems and
limitations of the software in education are: 1) the imperfect
reproduction of the reality, i.e. there is always some discrep-
ancy compared to the real world. It is therefore impossible to
recreate all the layouts of a real plant; 2) simulators are expen-
sive and require maintenance and constant updates; and, 3)
operators and teachers need training. Process simulators also
train senior engineers and field operators. [51–53] Commercial
software simulate mostly reactions, separations, design heat
integration and offer a variety of ideal reactors. [54, 55] Depend-
ing on the field of application, the software is integrated in the
design of a new process, in the simulation of an existing plant,
or both. [56] For instance, if we simulate and benchmark the
energy consumption of an existing plant, we increase its over-
all efficiency and save money. In 2017 and 2018, Panjeshahi
et al. demonstrated the efficacy of the process integration in
the cement [57] and the petrochemical industry, [58] with a total
duty saving of 24% and 14%, respectively. Cold and hot util-
ities consumption, energy requirements and emissions of oil
& gas, [59, 60] electric power, [61] biofuels, [62] chemical, phar-
maceutical and urban systems [63] existing plants can all be

FIGURE 6Operator Training Simulators (OTS) are an educa-
tive tool for master and undergraduate students. A dynamic
simulation of the plant calculates the consequences of each
operator’s actions and the student learns through experience.

reduced with a retrofit based on a simulated process. Optimize
a process, instead, requires setting economic, process or envi-
ronmental objective functions to satisfy. Commercial software,
such as AspenPlus, Hysys, PRO II or SuperPro Designer, are
designed to work with a fully defined problem (sum of degrees
of freedom equal to 0).
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3.1 Cost estimation
The log of the investment (log I) of a process unit and even an
entire plant is linearly correlated with the log of its capacity
(logQ). The slope of the curve depends on the equipment type,
specifically on its characteristic dimension, [64] and it varies
from 0.33 to 1.0 for equipment and from 0.38 to 0.90 for plants,
averaging to a value of 0.6 [65] (Eq. 10).

I2 = I1

(

Q2

Q1

)0.6

(10)
For modular units, the learning elasticity is proportional to this
exponent and the cost of these units decreases with multiple
units—learning/experience. [66] Lang elaborated a simplified
method to calculate the total installed cost of equipment based
on factors that vary according to the type of plant (solid
handling, solid-fluid, or fluids). [67–69]
A more detailed approach, proposed by Guthrie, estimates

the bare module cost of a unit, CBM , based on a characteristic
variable, A, (volume for a reactor or a column, surface for an
heat exchanger, etc.) corrected with pressure coefficients, Ci
and material coefficients, Bi (Eq. 11). [70, 71]

⎧

⎪

⎨

⎪

⎩

CBM = C0p (B1 + B2FMFP )
log10 C0p = K1 +K2 log10 A +K3

(

log10 A
)2

log10 FP = C1 + C2 log10 P + C3
(

log10 P
)2

(11)

FM the material factor, that is unity for carbon steel and > 1
for other materials, and FP is a pressure factor. In the case of
vessels, a different equation calculates FP ,vessel (Eq. 12)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

FP ,vessel =

(P + 1)D
2(850 − 0.6(P + 1))

+ 0.00315

0.0063
FP ,vessel = 1 if tvassel < 6.3mm
FP ,vessel = 1.25 if P < −0.05MPag

(12)

which is valid for a corrosion allowance of 3.15mm.
Ulrich and Vasudevan improved the method of Guthrie

and extended his correlation to 58 unit operations of the
chemical industry and updated the correlations with a larger
database. [72, 73] All the estimations are then actualized by an
inflation index like the Marshall & Swift equipment Cost
Index, the Chemical Engineering Plant Cost Index (CEPCI),
the Engineering News-Record (ENR) construction Index, or
the Nelson-Farrar Refinery Construction cost Index (NFRCI),
where CEPCI and NFRCI refer to the entire plant and the
others to either plant or equipment. [74] Simulation packages
have tools to estimate a units’ costs, that compute a com-
bination of the methods reported with vendors’ quotes/esti-
mates. [75] They prefer to implement algorithm-based methods
(Guthrie, Ulrich, Seider [76]) rather then cost-to-capacity or
the Lang-based methods. For instance, Aspen Capital Cost

Estimator (ACCE)—formerly APEA, the in-house Aspen esti-
mation software, couples design and equipment cost modules,
with proprietary time-proven, industry-based direct and indi-
rect factors based on company project history, vendor quotes.
These factors are updated regularly. [76] Industry and academia
developed dozens of integrated and stand-alone software to
estimate cost. Cleopatra and ACCE are the built-in software
of PRO/II and AspenOne, respectively. Another example is
the built-in Capital Cost Estimator of the CAPE-OPEN project
DWSIM. EstPro is a stand-alone process plant cost estimation
package from Gulf Production while CapCost, CCEP and DFP
are included with books. [74, 76, 77] EconExpert is web-based
software. Even software heavily based on updated vendor
quotes have errors of at least 25%. [75] We recommend to oper-
ate with one model (or software) to evaluate different plant
designs to generate comparable results.

3.2 Optimization
Most process synthesis problems have multiple feasible solu-
tions. Quantitative optimization techniques select the best of
these solutions, which corresponds to a process configuration
that maximizes a problem-specific measure of process perfor-
mance. Any process synthesis problem can be reformulated
as an equivalent optimization problem (Eq. 13) composed of
three principal components: an objective function, f (x, y)—a
problem-specific measure of process performance, some deci-
sion variables, continuous X (process variables), or binary y
(they specify the presence or absence of certain process units),
and a set of constraints, inequality g(x, y) (e.g., minimum
product purity, maximum allowable equipment cost, envi-
ronmental emission limits) and equality ℎ(x, y) (e.g., mass,
momentum and energy balances, mass and heat transfer corre-
lations, and phase equilibria). The numerical solution of this
optimization problem requires discrete or continuous solvers.

⎧

⎪

⎨

⎪

⎩

Minimize f (x, y)
Subject to g(x, y) ≤ 0, ℎ(x, y) = 0
x ∈ X, y ∈ {0, 1}

(13)

Examples of common objective functions include total cost,
profit, energy expenditure, exergy loss, environmental and/or
social impact, and the error over time of a control model.
When two or more conflicting objective functions must be
maximized/minimized simultaneously, a dedicated optimiza-
tion method solve this multi-objective optimization problem.
For example, Patel and Padhiyar [78] solved a bio-reactor design
problem, in which they simultaneously minimized the batch
time and maximized the process yield.
Additionally, Eq. 13 may have multiple solutions, called

local optima, and finding the best of these, i.e. the global
optimum, is essential. In this case, the user selects special
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types of optimization algorithms that offer global optimality
guarantees:

• Linear problems (LP): linear objective function and
constraints, and continuous decision variables,

• Mixed-integer linear problem (MILP): linear objective
function and constraints, and both discrete and continu-
ous decision variables,

• Non-linear problems (NLP); non-linear objective func-
tion and/or constraints, and continuous decision vari-
ables, and

• Mixed-integer non-linear problems (MINLP): non-
linear objective function and/or constraints, and both
discrete and continuous decision variables.

Scheduling, supply-chain and planning problems are usually
LPs or MILPs. NLPs and MINLPs characterize dynamic opti-
mization, design and process synthesis problems. Gradient-
based and derivative-free algorithms solve NLPs andMINLPs.
Both the algorithms are iterative: they start from an user-
supplied initial guess and progressively move towards a solu-
tion of the optimization problem (a set of optimal values of the
decision variables). Gradient-based methods rely on the val-
ues and the derivatives of constraints and objective functions
while derivative-free methods rely on the value of the func-
tions. Gradient-based algorithms are suitable for mildly non-
linear optimization problems with smooth objective functions
and constraints, given that the initial estimates are coherent.
Derivative-free methods are appropriate for highly non-linear
small-scale optimization problems with both smooth and non-
smooth objective function and constraints, even if a good initial
guess is unknown. These optimization algorithms are partially
complementary, which is the reason why process simulation
packages implement a few gradient-based and derivative-free
methods, and let the user excogitate on the one to select.
The LP simplex method for LPs, [79] sequential quadratic

programming (SQP) for NLPs, [80] and the branch & bound
(BB) method for MINLPs are examples of gradient-based
methods. [81] SQP is a quasi-Newton algorithm that is com-
putationally efficient but it relies on first and second order
derivatives of the objective function and constraints of the
optimization problem. For this reason, SQP solves smooth
problems best such as LPs and NLPs (Aspen Plus and PRO/II
feature SQP as default optimization method). Additionally,
SQP does not guarantee convergence to the global optimum.
Derivative-free optimization strategies include BOX, which

is a basic implementation of the Nelder-mead simplex
algorithm, [82] and COMPLEX, whose implementation details
are property of Aspen HYSYS and Aspen Plus. These built-in
algorithms handle simple optimization problems with a single

objective function, provided that a decent initial guess is avail-
able. [83, 84] However, complex or multi-objective optimization
problems may require external optimization packages (e.g.,
CPLEX and XPRESS for solving LPs and MILPs, CONOPT,
IPOPT andKNITRO for solvingNLPs, andDICOPT, BARON
and ANTIGONE for solving MINLPs), interfaced with the
simulation flowsheet. For instance, Galli et al. [85] applied
Monte Carlo optimization of operating costs and environmen-
tal impact of a plant for producing oxygen-enriched air, sim-
ulated with PRO/II). Quiroz-Ramírez [86, 87] optimized a bio-
butanol plant with AspenPlus, MATLAB, and a home-made
VBA script. Eslick et al. [88] optimized an amine absorption
process, with Excel, Aspen HYSYS, and the solver NSGAII.
Ponce-Ortega et al. [84] developed a procedure to tune any
commercial simulator to any multi-optimization algorithm
with MS Excel. In fact, they implemented a hybrid stochastic
algorithm called I-MODE to maximize the gross annual profit
and to minimize the CO2 emissions of a power and a biodiesel
plant. [89] Interfacing commercial simulation packages with
external optimization tools is a considerable task with respect
to computational power, and time, so we recommend this
technique only as a last resort.

3.3 Energy Integration Intensification
Since 1970, [90] pinch analysis has guided the placement of heat
exchanges and other unit operations (distillation, for example)
to minimize energy consumption. [9] We visualize each non-
reactive stream by a heat content H (kW)—temperature cou-
ple. When a differential heat flow dQ is added to a stream, it
increases its enthalpyH by CPdT :

Q =

T2

∫
T1

CP dT = CP(T2 − T1) = ΔH (14)

where T2 and T1 are the target and the supply temperature,
respectively. In this way, plotting the temperature in terms of
the heat content, we have, for each stream, a curve whose slope
is 1∕CP. For a single couple of hot-cold streams this approach
is of little use, because to a k hot load increase, corresponds
a k cold required duty increase. [91] However, the graphical
representation comes in handy when there are several streams
involved. In this case:

• First plot all the streams separately on a T ∕H graph.
Since we are interested in theΔH , we only have to place
the stream on the right interval of the y axes.

• Then add up all the cold and heat duties separately.
Since the slope of each stream represents its CP, when-
ever two or more streams share a temperature interval
T1 − T2, the heat available in this interval will be (CP,i +
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CP,ii +…CP,n)(T1 − T2). The outcome of this procedure
are the hot and cold composite curves.
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FIGURE 7 Example of hot (red) and cold (blue) composite
curves. The blue area is the minimum cooling duty required
Qc and the red area is the minimum heating duty required Qh.

When we plot these together, we identify (Fig.7):
• The minimum cooling duty required QC.
• The minimum heating duty required QH.
• The recovered duty where the curves overlap QREC .
• The point of closest approach, the pinch point. [90].

This means that as long as the heat exchange across the pinch
operates at the corresponding minimum ΔT , it is possible to
design an heat exchange network (HEN) who will recover
QREC . The only external heat for the process will only be QH
and QC . Lindhoff et al. [92] expanded the graphical concept of
the composite curve, to the Problem Table method. This latter
method, algebraically splits the process in a cascade of tem-
perature intervals. To do so, we adjust the hot or cold stream
temperatures of a negative or positive fraction of ΔTpinch. For
instance, we either shift the hot streams by -0.5ΔTpinch and the
cold streams by +0.5ΔTpinch, or the hot streams by −ΔTpinch
and leave the cold strea,s untouched. Setting the temperatures
this way guarantees that each interval will either have a positive
or a negative duty balance. Foreach interval iwe will therefore
have a balance:

ΔHi = (Ti − Ti+1)(ΣCP,h − ΣCP,c)i (15)
When we sum up theΔH for all the intervals, we obtain a pos-
itive and a negative heat residual. The only way to close the
energy balance is to introduce a cold and a hot utility. We have
to supply a QC and QH at a thermal level lower and higher
of the lowest and highest interval of the cascade. That is, if
the highest interval is at T = 160 °C, we include a hot util-
ity above 160 °C. Brown et al., [93] demonstrated how pinch

technology achieved an average of 25% cut on the site energy
bills, equivalent to 30 million pounds in 1989, for all the main
sectors in chemical engineering. Although other methods like
the composite curve method are equivalent, [76, 94] the inherent
modularity of the Problem Table method makes it perfect to
implement it in process simulators.
Process simulators perform pinch point analysis (PPA) to

design an optimal heat exchange network (HEN), minimize the
energy requirement of the process and the utilities consump-
tion. [54] Several software packages on the open market incor-
porate a PPA section such as HYSIM, HEXTRAN, ADVENT
by Aspen Tech, TARGET or, more recently, FI2EPI. [95]. Sim-
ulators couple PPA analysis with a UA heat exchange model,
in this way they work on the design of the network outside the
simulation environment. They share the possibility of import-
ing the H&M balance results from outside, and the presence of
at least a manual and an automatic design. However, we rec-
ommend completing individual PPA before integrating them
all into the entire network. In fact, the automatic mode will
achieve the target (minimum number of heat exchangers or
maximum energy saving), regardless the process engineering
of the system. For instance, it might suggest you to exchange
between stream 1 and stream 1000 of the plant, not consid-
ering the physical distance. Or it might suggest to split one
stream into five sub-streams, to maximize its heat exchange.
Or, based on what you are looking for, it might propose
uneconomical heat exchangers. On the other hand, this soft-
ware will not suggest you where to locate an equipment with
respect to the pinch. [9, 76] Furthermore, energy intensification
works as long as the plant operates at steady-state. However,
while the steady-state defines the baseline operation, [96] in
real life a plant alternates between steady-state and unsteady
state (start-up, shut-down, feed composition variations, for
example). [97–99] For this reason, we recommend understand-
ing the dynamics of all the operations in the simulation before
integrating energy.

3.4 Process simulation as research tool
Process simulators started as academical tools but soon there-
after industry adopted this software for design. Now this tool
is returning to academia and research: Saidi and Kadkho-
dayan [100] integrated an experimental Taguchi optimization
method to a process simulation to bridge industrial oper-
ation with laboratory scale experiments. Jafari simulated a
circulating fluidized bed with a sequential modular approach
and showed that it could be added to a commercial sim-
ulation. [101] Commercial software developers are expanding
their offering with non conventional components, such as
electrolytes, solids, or plastic [56]. Process simulators support
the experiments and approximate thermodynamic parameters
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with equations of state for those parameters difficult to mea-
sure. Shen et al. [102] studied a primary cooler for a Coke
Oven Gas LiBr heat pump. They relied on simulation results
to estimate operating parameters they were unable to mea-
sure experimentally to build a refrigerator pilot plant. They
retroactively validated the simulation with pilot plant data and
reported an error of 0% to 10% depending on the parameter.
Process simulators are also tools to calculate thermodynamic
properties—enthalpy, entropy, Gibb’s free energies, densities,
viscosity—as input to estimate reaction kinetics, heat duties,
and phase changes. analysis of a reaction. For example, to
define an experimental plan to studymethane partial oxidation,
we estimate the theoretical bound on conversion and selectiv-
ity as a function of temperature and pressure, then determine
the relationship between coking and oxygen partial pressures.
These data define the boundaries of the plan. PRO/II simulated
a Gibbs reactor (RGibbs) with the Peng-Robinson equation of
state. A case study varied the O2/CH4 ratio in the range 0.2 to
1.0 and the temperature of the reactor from 1000K to 1200K
(Figure 8).
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FIGURE 8 Thermodynamic (maximum) methane conversion
(dotted lines) and obtainable H2/CO ratio (full lines) for the
catalytic partial oxidation of methane at 1000K (black lines)
and 1200K (red lines). The simulator also identifies at which
ratio coke starts to form (points). We calculated the H2/COratio at which coke forms every 20K. The simulations took
less than 8min to complete.

4 UNCERTAINTY

4.1 Limitations
Commercial software licenses are expensive and to simulate
non-standard operation often additional code is required. The
commercial software models and algorithms are robust, and
most of the errors come from user-added inputs. Integrating

custom code into process simulators is cumbersome and takes
longer than writing a program from scratch.
To set up a simulation file, the following procedure applies:
• Define the units of measure, according to a predefined

set (metric, english or SI) or to a customized set,
• Select the components (from a databank),
• Choose a thermodynamic model,
• Check the simulation tolerances, and
• Build the flowsheet. In case of recycles see Section 2

Errors compound as the simulations proceeds from one step of
the process to the next. Simulators have no error assessment
capability.

4.2 Sources of error
4.2.1 Units of measure (UOM)
One of the most frequent error source is incorrect data entry,
i.e. the human error. Even though most of the commercial
simulation suites have a window dedicated to the selection of
UOMs, it is possible to change these inside all unit operations.
For example, if the ENGLISH system is set as default, but for
a specific distillation application the user knows that the distil-
late flowrate is 100 kmol h−1, inserting a value of 100 without
correcting the UOM will result in setting a distillate flow of
100 klbmol h−1, resulting in a error of 1∕2.2. The most likely
error is the simulation will not converge to a solution.
Another common mistake is when users define units of

measure in the reaction kinetics window. The user inputs the
main kinetic parameters—Arrhenius constants, Apre, activa-
tion energies,Ea,and reaction orders, �—for a kinetic model or
by defining a pseudo-homogeneous kinetic scheme (Eq. 16):

r = Apre exp
[

−
Ea
R

(

1
T
− 1
To

)]

⋅ T n ⋅
∏

a�i (16)
where a the activity of reagents and products (calculated as
the product concentration, molar fraction or according to a
thermodynamic model).
PRO/II permits the user to supply the values of these param-

eters and the volume and the pressure UOMs, as the r is always
defined as (molVolume−1 Time−1). Also, the value of the gas
constant R is 8.314 Jmol−1K−1. Therefore, the UOMs of pres-
sure and volume in the reaction windowmust be chosen to give
Jwhenmultiplied, i.e. or kPa and L, or Pa andm3, respectively.
On the other hand, when defining a kinetic procedure, the

user writes a FORTRAN or pseudo-FORTRAN code and cal-
culates the system of differential equation that the software will
integrate using a numerical method (typically Runge-Kutta).
In this case, the user should provide the proper rate expression
UOM to the solver, in molVolume−1 Time−1.
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4.2.2 Components selection
The selection of components means, for the software, to import
all the pure component properties, the fixed (molecular weight,
acentric factor, normal boiling point, critical point, Van der
Waals area and volume, etc.) and the temperature dependent
properties (density, vapor pressure, viscosity, heat capacity,
etc.).
We always recommend to employ components present in the

software database, as these are usually updated with one or
moremethods to estimate the component’s properties. Besides,
a good practice is to operate with less than 40 pure compounds
per simulation.
In the case of new components (those not yet in any

database), all the physical properties should be provided as
well; we recommend to retrieve the physical and thermo-
dynamic properties on databases such as NIST chemistry
WebBook [103] or Knovel. [104]
There are dozens of equation to estimate thermodynamic

properties. [105] This reference covers also electrolytes systems
and solids solubilities. We recommend to pay particular atten-
tion while operating with new materials and processes such
as:

• Green and biological processes,
• Molten organic and inorganic salts
• Nonconventional solids (i.g. solid with unknown chem-

ical formula)
• Electrolytes
• Novel materials (nanomaterials, composite materials,

copolymers, etc.)
Commercial software as ASPEN, PRO/II and ProSim estimate
new component’s properties from UNIFAC group contribu-
tion methods. [106] In this case, the flaws of the simulators rely
in the estimation of the physical properties, which are either
imprecise, [107] or incomplete.

4.2.3 Thermodynamics
One of the most critical points is the selection of a proper
thermodynamicmethod to calculatemixture properties (excess
Gibbs free energy or fugacity). Analyzing the system (Fig. 9)
leads to the selection of a 
 − � or a � − � approach. How-
ever, this is a simplified scheme as each component mixture
may show different non-idealities. For example, the system
water and acetic acid (fully miscible, condensed phase and no
supercritical gases dissolved) should be treated with an activ-
ity coefficient model. However, with UNIQUAC equations and
the binary parameters available in PRO/II database only, the
software calculates an non-existent azeotrope (Fig. 10). Only

adding a correction for the gas phase association of acetic acid
(Hyden-O’Connel equation [110]) or regressing with a robust
method experimental data led to a sound simulation. [28] There-
fore, we always recommend a literature analysis of the phase
equilibria of the systems involved. Gmehling et al. [111] pub-
lished a book regarding chemical thermodynamics and process
simulation. Gani and O’Connel [108] created a decision matrix
to select proper physical methods and thermodynamic models,
depending on the unit operation simulated and the operative
parameters.

4.2.4 Tolerances
Similar to any other iterative calculation algorithm, the solver
of a process simulator needs specific tolerances to terminate
the calculations. Generally the default parameters (1 × 10−3
for temperature and pressure —relative), 1 × 10−6 for com-
positions (absolute), and 1 × 10−4 for duties—relative) are
sufficient to guarantee the robustness of the termination crite-
ria.

4.2.5 Flowsheet
Any unit operation requires specifications to close the mass
and energy balances. Generally these specifications are tem-
peratures, pressures, or material flows (like the flow of distil-
late and residue for a distillation column) but any unit may
have peculiar specifications (reactor dimensions for a plug flow
or time for a batch reactor, reflux ratio for a distillation col-
umn, etc.). Converging to a viable solution depends on setting
these specifications correctly. Most of the error in this case are
related to the unit of measures of the specifications or to gross
errors such as setting a too high reflux ratio or a distillate flow
higher than the feed flow rate of the column.
Some specifications make the solver’s life harder. If the sim-

ulation never converges to a solution, the user should replace
some of them with equivalent specifications (e.g, instead of
decreasing the molar fraction of impurities in the distillate,
increase the reflux ratio until the composition reaches the
desired value). Another commonmistake is to set the composi-
tion of distillate or residue to a value impossible to obtain with
the number of theoretical trays specified (such as imposing
a distillate or residue purity higher than the minima/maxima
azeotropic compositions) for distillations, or imposing by mis-
take to concentrate the heavy component in the distillate rather
than in the residue stream.
If the user imposes extreme constraints (i.e. a separation

in which the molar fraction of impurities in the product is
less than 1 ppm), then they should start with a more relaxed
constraint (±5%) and tighten it up gradually.
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FIGURE 9 Simplified decisional flow diagram for the selection of a thermodynamic method (Tab 2). [108, 109]. Reprinted from
Computer Aided Chemical Engineering, Volume 13, Second Edition—Integrated design and simulation of chemical processes,
Alexandre C. Dimian, Costin S. Bildea, Anton A. Kiss, Chapter 6: Phase equilibria, 248, Copyright (2020), with permission
from Elsevier.

TABLE 2 Most employed thermodynamic models to calculate components’ fugacities or activity coefficients.

Model Advantages Limitations

Equation of State (EoS)
IDEAL Good for mixtures of similar fluids at low P and T P < 0.3MPa

Chao-Seader [112] Generalized correlation for hydrocarbon mixture P < 14MPa, T < 260 °C
Dissolved gas < 20% by mole

Lee-Kesler [113] Correlation for H̄ , S̄ and �̄ Not good for highly polar mixtures
Redlich-Kwong [114] Calculates hydrocarbons VLE accurately Not good for polar compounds
Peng-Robinson [115] Better than SRK with polar components Worse for hydrocarbonsmixtures
UNIWAALS [116] Predictive method Components’ liquid volumes required

Activity coefficients
Wilson [117] Polar or associating components Does not calculate LLE
NRTL [118] Strongly nonideal mixtures Very different molecules dimensions
UNIQUAC [119] Very good with most of systems No electrolytes
UNIFAC [120] Predictive method T << TC, P < 8.5MPa

4.2.6 Initialization
All numerical methods for the resolution of unit operations
require initial values to start iterating. However, all commer-
cial packages possess several initialization methods for each
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FIGURE 10 The correct selection of a thermodynamic
method (blue line) avoids the calculation of non-existent
azeotropes (red line) for the binary water-acetic acid sys-
tem, P = 101.325 kPa. UNIQUAC parameters: aij =
−118.309, bij = −0.124 345K−1, aji = 402.126 and bji =
−0.355 725K−1.

unit operation, and these algorithms vary from one unit to
another. For an exhaustive description of each method consult
the software manual.
For complex simulations, involving several units and recy-

cling streams, we recommend choosing initial conditions judi-
ciously, or to estimate them based on shortcut calculations
or literature data, to facilitate the algorithm convergence to
the solution. Poor initial guesses will increase the number of
iterations unnecessarily (if the simulation converges at all)..
To initiate the initial guess for tear streams, a good strategy

is to simulate the flowsheet with no recycle, and then connect
the recycles, so that the software stores after the first simula-
tion the initial values of flow rate, temperature, pressure, and
compositions of these streams.

4.3 Sources of error in the EO Approach
While thermodynamic, component selection, and flowsheets
are common for every computational architecture, the EO is
intrinsically free of any sources of error related to iteration.
However, since the EO solves all the units at the same time,
the initial values are essential. As a rule of thumb, we recom-
mend to first run the simulation in a SM environment, and then
implement the SM outcome as initial value for the EO. This
doesn’t mean that the SM needs to converge, but at least each
block has to be solved once. The closer the SM solution is to
the real solution, the easier it will be for the EO to converge
without error. While this initialization technique is the one cur-
rently present in commercial simulators, new approaches such
as the graphic approach, [121] or the pseudo-transient, [122] are
recently emerging.

5 CONCLUSIONS

Engineers design, control, optimize, retrofit, and estimate the
cost of a plants and equipment with process simulators, which
calculate thermodynamic properties, model vapor- and/or liq-
uid-liquid equilibria of mixtures and close mass and energy
balances. Process simulation will become ever more present
in a chemical engineer’s arsenal of tools to address soci-
ety’s desire for sustainable products that minimize waste and
maximize recyclability as the mathematical methods and com-
putational power improve such that any PC can run these
multi-objective optimization problems. The feedstocks of the
future will become more heterogeneous (bio-based, waste-
based, for example) and because of this complexity, new
models, unit operations and thermodynamic correlations will
be needed. Quantification of the uncertainty on model predic-
tions is another key aspect that should be further improved
in future simulators as well as adding stochastic optimization
capabilities to these tools.
Prospectives for future innovations include:
• generating kinetics databases (including packages like

Chemkin; [123]
• handling solids and other unconventional materials

(plastic mixtures, urban waste, sludge, and poorly char-
acterized complex mixtures);

• better dynamic simulators that consider the time scale of
reaction versus hydrodynamics contribution;

• new operating functions for process intensifica-
tion [124, 125] of current processes;

• more reliable safety assessments that autiomatically
identify hazardous operating conditions (HAZOP auto-
matic calculation of lower and upper explosion lim-
its, [126] identification of risk zones, improving the haz-
ard identification when streams mix);

• integrating computational fluid dynamics;
• dynamically query other databases on the internet

(NIST);
• integrating artificial intelligence and artificial neural

network algorithms for control and optimization;
• improving the thermodynamic packages for new

molecules (pharma and green chemistry);
• improving the predictive control of unit operations;
• expanding virtual reality that reproduces realistic plant

dimensions; and,
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• improving the integration between home-made code and
process simultators.

Also, the integration of multiobject optimization on perfor-
mance key indicators not only based on economic parameters,
such as the CO2 equivalent or the water footprint of a pro-
cess (environmental impact) or the hazard and operability
analysis, which at the moment is feasable via open platform
communication. [127].
As stated by John E. Coon et al. in 1998 “It is the responsi-

bility of the engineer to validate the quality of process design,
troubleshoot, and optimization results from simulation tools”
and that wrong answers are “the results of getting the correct
answer to a poorly chosen question”. [128]

NOMENCLATURE

A Characteristic variable of an equipment
a Optimal step length
ACCE Aspen capital cost estimator
Apre Arrhenius pre-exponential factor
ai Activity of component i
B() Jacobian matrix estimation
Bi Material coefficients
CBM Cost of bare module
CCS Carbon capture and sequestration
CDU Crude distillation unit
CEPCI Chemical Engineering Plant Cost Index
Ci Pressure coefficients
CP Specific heat
D Diameter of a vessel
dn search direction vector
Ea Reaction activation energy
ENR Engineering news-record
EO Equation oriented approach
EoS Equation of State
FM Material factor
FP Pressure factor
H̄i Enthalpy of component i in mixture
HOC Hyden-O’Connel
I Investment
J () Jacobian matrix
Ki Cost coefficient of an equipment
LLE Liquid-liquid equilibrium
LP Linear problem
MILP Mixed integer liner problem
MINLP Mixed integer non-liner problem
MTBE Methyl-tertbutil ether
NFRCI Nelson-Farrar Refinery Construction cost Index

NLP Non-linear problem
OTS Operator training simulator
P Pressure
PPA Pinch point analysis
PR Peng-Robinson
Q Plant capacity
Qc Minimum cooling duty
Qh Minimum heating duty
Qrec Recovered duty
R Gas constant
r reaction rate
S̄i Entropy of component i in mixture
SM Sequential modular approach
SQP Successive quadratic programming
SRK Soave-Redlich-Kwong
T Temperature
TC Critical temperature
tvessel Vessel wall thickness
TAC Total annual costs
UOMs Unit of measures
VLE Vapor-liquid equilibrium
xn solution vector at the iteration n
xs solution vector

Greek Letters

 activity coefficient
� reaction order
� fugacity
�̄i Density of component i in mixture
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