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Abstract 1 

This study was aimed at preparing nanoemulsions with bacterial cellulose nanocrystals 2 

(BCNCs) and cinnamon essential oil (CEO) with and without fish gelatin. The effect of CEO 3 

concentration (0.2, 0.4, 0.8, 1.57, 2.34 and 3.1% v/w) and pH (3.5 and 5) on the droplet size, 4 

ζ-potential, morphology, and encapsulation efficiency (EE) of CEO/BCNC emulsions was 5 

investigated. It was observed that ζ-potential was approximately -25 mV for the BCNC 6 

emulsions, whereas it changed to positive values (from approximately 4 mV to 12 mV) in the 7 

systems containing gelatin (3% w/w). In addition, in the presence of gelatin, emulsions 8 

exhibited larger droplets (450-1000 nm) than did the CEO/BCNC emulsions (350-550 nm), 9 

as demonstrated by transmission electron microscopy. TEM analysis also revealed the 10 

surfactant activity of gelatin, which displaced between the hydrophobic CEO nanodroplets 11 

and the more polar BCNCs. The effect of pH on EE was significant for the emulsions in the 12 

presence of gelatin in that EE was higher at pH 5 than at pH 3.5 up to a CEO concentration of 13 

0.24% w/v. Finally, a direct relationship was established between CEO concentration and EE 14 

for emulsions with and without gelatin.  15 

 16 

Keywords: bacterial cellulose nanocrystals; essential oil; fish gelatin; stabilization. 17 
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Introduction 18 

Essential oils (EOs) extracted from plants (e.g., cinnamon, thyme, oregano, and clove) 19 

have inherent antimicrobial properties, including inhibiting the growth of bacteria, yeasts, 20 

and fungi. For this reason, their potential use to prolong the shelf life of food matrices has 21 

been widely investigated (Ju et al., 2019; Ribeiro-Santos, Andrade, Ramos de Melo, & 22 

Sanches-Silva, 2017). However, the use of EOs is severely hindered by two main drawbacks. 23 

Their high volatility and sensitivity to oxygen and light decrease EOs’ stability during 24 

processing and storage, eventually impairing their functional and economic efficiency. EO 25 

encapsulation is a powerful strategy that overcomes these limitations by controlling the 26 

release of the encapsulated agent through the degradation of the embedding material while 27 

enhancing the EO’s physical stability (Reineccius, 2019; Anal, Shrestha, & Sadiq, 2019). 28 

Although surfactants have been used extensively to decrease the interfacial tension in 29 

emulsions, new approaches that envision the use of nanoparticles as stabilizers have emerged 30 

in recent years (Wu, Luo, & Wang, 2012; Zhang et al., 2012; Jimenez et al., 2014; Campos et 31 

al., 2018; Silva et al., 2019). Emulsions stabilized by solid colloidal nanoparticles are referred 32 

to as Pickering emulsions. The solid particles are adsorbed onto the oil–water interface, 33 

forming long-term steric protection that is mechanically effective against droplet–droplet 34 

coalescence (Dickinson, 2019; Hu, Ballinger, Pelton, & Cranston, 2015). Previous studies 35 

demonstrated that spherical, rod-like, and plate-like particles can be used to obtain Pickering 36 

emulsions. For example, cellulose nanofibrils (Zhang et al., 2020; Li et al., 2019); protein 37 

nanoparticles from peanuts (Ning et al., 2020), soy (Ju et al., 2020), gelatin (Ding et al., 38 

2019), ovotransferrin (Wei, Cheng, & Huang, 2019), and hordein (Boostani et al., 2020); 39 

dietary fibers (He, Zhang, Li, Li, & Liu, 2020); polysaccharide nanoparticles (Yang, Liu, Li, 40 

& Tang, 2019); and polysaccharide/protein complex nanoparticles (Ma, Zou, McClements, & 41 

Liu, 2020; Sun, Zhao, Liu, Li, & Li, 2019; Li et al., 2019) have recently been used. 42 
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Gelatin has received extensive attention in the food industry as a surfactant due to its high 43 

stabilizing activity and good emulsifying properties (Rostami, Yousefi, Khezerlou, 44 

Mohammadi, & Jafari, 2019). While gelatin from mammalian sources has been widely used 45 

as a food additive, the use of marine gelatin has increased over the years. The reason for this 46 

is twofold: first, there is no risk associated with the use of fish gelatin as far as bovine 47 

spongiform encephalopathy (BSE) is concerned; second, fish gelatin meets the requirements 48 

of Kosher and Halal dietary regulations (Karim & Bhat, 2009).  49 

Cellulose nanofibrils (CNFs) and nanocrystals (CNCs) derived from plants and bacteria 50 

have recently emerged as promising nanoparticles due to their outstanding mechanical, 51 

thermal, and gas-barrier properties, which can be profitably exploited in various fields, 52 

including medical and biomedical devices, purification and cleaning systems (e.g., 53 

membranes), displays, green building materials (e.g., insulating panels), and packaging 54 

solutions (Rovera et al., 2018). More recently, it has been pointed out that cellulose 55 

nanomaterials such as CNFs and CNCs have the potential to develop emulsions because of 56 

their excellent mechanical properties, high aspect ratio, and good wet stability (Zhang et al., 57 

2020). Alike other nonspherical nanoparticles, CNCs can be more efficient in stabilizing 58 

emulsions than spherical ones for several reasons. For example, the mechanical properties of 59 

CNCs monolayers disclosed an exceptionally high surface modulus even at low surface 60 

coverage, resulting in in more elastic monolayers compared to aggregate networks of 61 

spherical nanoparticles of the same size (Cherhal, Cousin, & Capron, 2015). Anisotropic 62 

particles, such as CNCs, allow lowering the percolation threshold, which is of great 63 

importance when providing an interface with mechanical rigidity in order to prevent 64 

coalescence (Madivala, Vandebril, Fransaer, & Vermant, 2009). In addition, the simultaneous 65 

presence of peripheral hydroxyl groups and crystalline domains suggests that CNCs are 66 

significantly amphiphilic and can be involved in both polar and hydrophobic interactions 67 
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(Dankovich & Gray, 2011; Lindman, Karlstrom, & Stigsson, 2010). For these reasons, 68 

cellulose nanoparticles have been advantageously employed as stabilizers in Pickering 69 

emulsions. In previous studies, bacterial cellulose nanocrystals (BCNCs), in particular, have 70 

been used to emulsify olive oil (Yan et al., 2017), rice bran oil (Angkuratipakorna, Sripraia, 71 

Tantrawonga, Chaiyasitb, & Singkhonrata 2017), cinnamaldehyde, eugenol and limonene 72 

(Mikulcova, Bordes, & Kasparkova 2016), oregano essential oil (Zhou et al., 2018), 73 

peppermint oil (Kasiri & Fathi, 2018), canola oil (Varanasi et al., 2018), palm oil (Wang et 74 

al., 2016), and D-limonene (Wen et al., 2011) through stable Pickering emulsions. However, 75 

in these studies the final droplet size was in the range of a few microns, that is, the droplet 76 

size was much bigger than the size of the cellulose nanocrystals. This is in line with one 77 

distinct disadvantage of relying on the Pickering mechanism for the stabilization of 78 

emulsions: it normally involves the formation of rather large (micrometer-sized) droplets 79 

(Dickinson, 2019). 80 

In this study, we explored the possibility of preparing cinnamon essential oil (CEO) 81 

emulsions using BCNCs with and without fish gelatin, with final nanoscale dimension. The 82 

goal was to investigate the effect of BCNCs on the CEO nanodroplets, comparing the 83 

stabilization mechanism with that of a conventional Pickering emulsion (i.e., solid particles 84 

with smaller size than oil droplets). To this end, we used BCNCs obtained from the acid 85 

hydrolysis of bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans. Fish 86 

gelatin was used as a surfactant, and cinnamon bark served as the source of the EO. The 87 

effect arising from the addition of fish gelatin on the CEO nanoemulsions was investigated 88 

by means of size, morphology, ζ-potential, and encapsulation efficiency analyses as a 89 

function of both pH and EO concentration. 90 

 91 
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1. Material and methods 92 

1.1. Materials 93 

Type A (i.e., extracted by acid pretreatment) fish gelatin (GelA, Kosher and Halal 94 

certified) with a gel strength of 200 Bloom was purchased from Weishardt (Graulhet, 95 

France). Cinnamon (Cinnamomum zeylanicum) bark EO (E-cinnamaldehye: 70.6%; E-96 

cinnamyl acetate: 5.3%; β-caryophyllene: 5.1%; linalool: 4.2%; eugenol: 3.7%; 1,8-cineole + 97 

β-phellandrene: 1.2% by GC-MS) was purchased from Plant Therapy Essential Oils 98 

Corporate (Twin Falls, USA). BC was produced by static fermentation using 99 

Komagataeibacter sucrofermentans DSM 15973 (Leibniz Institute DSMZ-German 100 

Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) according to the 101 

procedure described elsewhere (Rovera et al., 2018). Sulfuric acid (99% v/v), ethanol (96% 102 

v/v), and dialysis tubing cellulose membrane (12 kDa, average flat width 43 mm) were 103 

purchased from Sigma-Aldrich-Merck (Milano, Italy).  104 

 105 

1.2. BCNCs water dispersion preparation 106 

BCNCs were prepared by acid hydrolysis of BC. In brief, 0.914 g of dry BC was added to 107 

6.226 g of distilled water and 100 g of sulfuric acid (50% w/w, in distilled water). The solid 108 

particles were evenly dispersed using a DI 25 basic homogenizer with an S25 N – 18 G 109 

dispersing tool (Ika-Werke GmbH & Co, Stanfen, Germany) at 9500 rpm for 3 minutes. The 110 

hydrolysis reaction was carried out by stirring at 55ºC for 2 hours at 800 rpm. Afterward, the 111 

suspension was centrifuged for 50 minutes at 8000 rpm (5260 rcf or g-force) to facilitate the 112 

removal of excess sulfuric acid. After centrifugation, the supernatant was replaced with 113 

distilled water. After 5 washing cycles, equal aliquots of the suspension were transferred to 114 

two dialysis tubes and placed inside a beaker containing distilled water. The water was 115 

replaced every 4 hours until the solution’s pH reached 3.5 in one dialysis tube and 5 in the 116 
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other. These two pH values were selected to assess the pH influence on the properties of the 117 

final emulsions. In particular, based on preliminary trials, pH 3.5 was the lowest pH limit to 118 

keep the emulsion stable (i.e., with no visible phase separation) over time. The highest value 119 

(pH 5) was selected as a reference value (Wang et al., 2016). At this point, the BCNC water 120 

dispersions were put in a beaker and ultrasonicated for 5 minutes using a UP200St 121 

ultrasonicator (200 W, 26 kHz – Hielscher, Teltow, Germany) mounted with an S26d7D 122 

titanium sonotrode (surface area 42 mm2) at approximately 20 W (pulse: 25%, amplitude 123 

30%) to achieve full nanocrystal dispersion. Final water dispersions (BCNC concentration of 124 

0.4% w/w) were stored at 4°C before further preparation. 125 

 126 

1.3. CEO emulsion preparation 127 

To evaluate the influence of CEO concentration and pH on the emulsion’s final properties, 128 

2.25 g of BCNC suspension (BCNC concentration 0.4% w/w) at pH 3.5 and 5 (Fig. 1a) was 129 

added to various amounts of CEO (4.5, 9, 18, 36, 54, 72 µL). Hence, a series concentration of 130 

CEO at 0.2, 0.4, 0.8, 1.57, 2.34 and 3.1% v/w was obtained, then emulsified using the same 131 

ultrasonicator as before for 5 minutes at 40 W (pulse: 25%, amplitude 60%) in an ice bath to 132 

prevent sample overheating (Fig.1b).  133 

 134 

1.4. Addition of fish gelatin to CEO emulsion 135 

A stock solution (10% w/w) of fish gelatin was prepared by adding the gelatin powder to 136 

distilled water and heating the mixture to 60ºC under constant stirring (800 rpm) for 2 hours. 137 

Then, 8.25 g of distilled water (60°C) was added to six vials, each containing 4.5 g of the 138 

stock solution. After decreasing the temperature to 40°C, 2.25 g of each CEO emulsion was 139 

added dropwise into the six gelatin solutions at a 0.5 mL/min rate by means of a 10 mL 140 

disposable syringe mounted on a syringe pump (mod. NE 1000, New Era Pump Systems Inc., 141 



 

 8

USA). The emulsion was then stirred for 15 minutes at 1000 rpm. The final emulsions (15 g) 142 

included BCNCs and gelatin at a concentration of 0.06% w/w and 3% w/w, respectively, 143 

while the final CEO concentrations were 0.03, 0.06, 0.12, 0.24, 0.36, and 0.48% v/w (Fig. 144 

1c). 145 

 146 

1.5. Characterization of BCNCs, CEO/BCNC emulsions, and CEO/BCNC emulsions after 147 

the addition of gelatin (CEO-GelA/BCNC). 148 

1.5.1. Particle size, polydispersity index and ζ-potential 149 

The size distribution and polydispersity index (PDI) of BCNCs and droplets in the 150 

emulsions were measured using a Nanotrac Flex analyzer based on 180° heterodyne dynamic 151 

light scattering (DLS, Microtrac, Montgomeryville, USA). A LitesizerTM 500 (Anton Paar, 152 

Rivoli, Italy) was used to measure the ζ-potential of BCNC water dispersions and the 153 

emulsions. Before the DLS analysis, a 1/100 (w/w) dilution in phosphate-citrate buffer (0.05 154 

M, pH = 5) was performed for the CEO/BCNC emulsions, and a 1/20 (w/w) dilution in the 155 

same buffer was performed for the CEO/BCNC emulsions in the presence of gelatin. A 156 

dilution of 1/15 (w/w) with phosphate-citrate buffer (0.05 M, pH = 5) was performed for both 157 

emulsions before the ζ-potential measurements. All measurements were conducted in 158 

triplicate at 25 ± 0.5°C. 159 

 160 

1.5.2. Transmission electron microscopy  161 

Transmission electron microscopy (TEM) was used to observe the morphological features 162 

of BCNCs and CEO/BCNC emulsions (e.g., size and droplet coverage) with and without 163 

gelatin. A LEO 912 AB energy-filtering transmission electron microscope (Zeiss, 164 

Oberkochen, Germany) operating at 80 kV was used to capture the images. Digital images 165 

were recorded with a ProScan 1K Slow-Scan CCD camera (ProScan, Scheuring, Germany). 166 
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Samples for the TEM analyses were prepared according to the negative staining technique by 167 

drop-casting 10 µL of dispersion (1/10 dilution) onto a glow discharged Formvar-coated Cu 168 

grid (400-mesh), letting the samples rest for 5 minutes, then blotting the excess of suspension 169 

and contrasting with uranyl acetate (2% w/v in water). 170 

 171 

1.5.3. Encapsulation efficiency 172 

The encapsulation efficiency (EE) of the CEO/BCNC and CEO-GelA/BCNC emulsions 173 

was measured spectrophotometrically using a Lambda 650 UV-visible spectrophotometer 174 

(PerkinElmer Inc., Waltham, USA) according to a slightly modified version of the method 175 

proposed by Jiulin et al. (2015) and Silva et al. (2018). Emulsions were centrifuged at 12000 176 

rpm (7890 rcf or g-force) for 30 minutes to separate the nanoparticles and the liquid phase. 177 

The supernatant was then transferred into Falcon tubes covered with aluminum foil. The 178 

absorbance of the supernatant at 287 nm was recorded and inserted into the regression 179 

equation of the standard curve, y = 11.258 x (R2 = 0.9915), which was obtained using a series 180 

of known CEO concentrations in the range 5-50 µL/L. The EE was determined using the 181 

following equation: 182 

( )EE % 100
W C V

W

− × = × 
 

     (1) 183 

where W (g) is the total amount of encapsulated CEO, C (g/mL) is the concentration of CEO 184 

in the supernatant, and V (mL) is the total volume of the emulsion.  185 

 186 

2. Results and Discussion 187 

2.1. Characterization of BCNCs 188 

Table 1 displays the average size (length, nm), PDI, and ζ-potential (mV) of BCNCs at pH 189 

3.5 and 5. Previous studies on the acid hydrolysis of BC using H2SO4 reported an average 190 
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length of approximately 855 nm (Kalashnikova, Bizot, Cathala, & Capron, 2011), 290 ± 130 191 

nm (George & Siddaramaiah, 2012), 260 nm (Yan et al., 2017), and from 231 to 296.5 nm 192 

(Singhsa, Narain, & Manuspiya 2018). Our results (approximately 320 nm) are in line with 193 

the literature, and differences are ascribable to different experimental procedures (e.g., time 194 

of hydrolysis and concentration of the acid). Interestingly, there was no statistically 195 

significant difference in size between BCNCs stored at pH 3.5 and pH 5, suggesting that the 196 

pH values did not change the nanocrystals’ state of aggregation.  197 

Concerning the ζ-potential, highly negative values are expected for H2SO4-hydrolized 198 

BCNCs due to the presence of the sulfate (-SO3
¯) groups along the molecular backbone (Lu 199 

& Hsieh, 2010). In this study, ζ-potential values of -25.6 ± 0.91 and -27.72 ± 0.16 were 200 

obtained for BCNCs stored at pH 3.5 and pH 5, respectively. The more negative ζ-potential 201 

values recorded at higher pH values are in line with the decreased concentration of H+ ions 202 

due to an extended dialysis process.  203 

Our values are in line with previous works. Singhsa et al. (2018) reported BCNC ζ-204 

potential values slightly lower than -30 mV, which can be explained by the fact that they 205 

continued the dialysis process until neutrality. Yan et al. (2017) reported BCNC emulsion ζ-206 

potential values of about -34.8 mV. This emulsion was derived from carboxyl groups 207 

introduced by oxidation on the pyranose ring mediated by hydrogen peroxide. The ζ-208 

 potential values obtained in this work are negative enough to generate a sufficient 209 

electrostatic repulsion to prevent the aggregation of BCNCs, hence their adequate 210 

dispersibility and stability in water.  211 

 212 
 213 

2.2. Effect of pH and CEO concentration on the size and ζ-potential of emulsions  214 

Various parameters such as oil/water ratio, pH, particle concentration, and solid particles 215 

concentration affect the stability of emulsions prepared in the presence of solid nanoparticles 216 
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(Leal-Calderon, Thivilliers, & Schmitt, 2007). Oil and solid particle concentrations in 217 

particular affect the size of the droplets and their stability to coalescence (Aveyard, Binks, & 218 

Clint, 2003). In addition, pH plays an important role in adjusting electrostatic interactions 219 

between adjacent nanoparticles at the oil–water interfaces (Zoppe, Venditti, & Rojas, 2012). 220 

In this work, the average particle size obtained by DLS increased when the CEO 221 

concentration increased for both emulsions (with and without gelatin) (Fig.2a and b). This 222 

trend, which is in agreement with the results reported by Cherhal, Cousin, & Capron (2015), 223 

Mikulcova et al. (2016.), Yan et al. (2017), and Zhou et al. (2018), can be explained by the 224 

increase in the droplets’ interfacial area due to the increased CEO concentration. Because the 225 

amount of BCNCs was the same for all the formulations, less cellulose is available to 226 

stabilize the interfacial area. Hence, an increase in the CEO concentration would lead to a 227 

less extensive coverage of the surface of the droplets by the available BCNCs, resulting in an 228 

increase of the droplet volume in order to decrease the total interfacial area. 229 

In the case of the emulsions encapsulated in gelatin (Fig. 2b), a marked increase in the 230 

droplet size occurred at the lowest pH (3.5). This can be tentatively explained by the 231 

isoelectric point (pI) of type A gelatin, which is approximately 8.5 (Duthen et al., 2018; 232 

Farris, Cozzolino, Introzzi & Piergiovanni, 2009). At the lowest pH used in this work (3.5), 233 

the higher positive charge density on the gelatin backbone is expected promote a more 234 

intense unfolding of the protein due to electrostatic repulsion between positively-charged 235 

amino groups of lysine (Schrieber & Gareis, 2007). In turn, this would positively affect the 236 

coverage of CEO nanoparticles by gelatin, with an ultimate increased size (diameter) of the 237 

spherical nanoparticles.  238 

TEM images (Fig. 3) showed that in the absence of gelatin (Figure 3a), some CEO 239 

nanodroplets were partially covered by BCNCs via random jammed packing (Kalashnikova, 240 

Bizot, Bertonini, Cathala, & Capron, 2013). However, some other particles (especially the 241 
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smallest ones) were not adequately surrounded by BCNCs, due to the hindrance caused by 242 

the bigger size of the solid particles compared to the CEO nanoparticles. This represents a 243 

distinctive difference between the emulsion prepared in this study and a conventional 244 

Pickering emulsion.  In the presence of fish gelatin (Figure 3b), it was possible to visualize 245 

the successful coverage of CEO by gelatin (see the dark shell around the nanodroplets), with 246 

BCNCs forming a cage-like structure around the CEO-GelA complex. It can be thus 247 

highlighted the amphiphilic behavior of gelatin, which acted as a surfactant by interacting 248 

with BCNCs most likely through polar interactions (e.g., electrostatic and dipole-dipole 249 

forces) and CEO by weak dispersive forces (e.g., van der Waals interactions). From TEM 250 

images, it was also possible to confirm the overall larger size observed for CEO-GelA/BCNC 251 

emulsions. Under this scenario, it can be highlighted that BCNCs and gelatin played a 252 

different role toward the CEO nanoemulsion. On the one hand, gelatin acted as a true 253 

emulsifier, forming a continuous shell around CEO nanoparticles that stabilized the emulsion 254 

by both reducing the interfacial tension and acting as a physical barrier to coalescence. At the 255 

same time, gelatin layer can be seen as a protective barrier against light and oxygen (Farris, 256 

Introzzi & Piergiovanni, 2009), which may represent two main factors of degradation of the 257 

essential oil. On the other hand, the outer BCNCs acted more like a scaffold around the CEO-258 

GelA droplets, contributing to the stability of the emulsion by preventing gravitational 259 

separation of CEO droplets (i.e., creaming). However, BCNCs did not contribute to protect 260 

the CEO nanoemulsion (e.g., against light and oxygen) due to uneven coverage (Figure 3c). 261 

Compared to previous studies, we were able to produce emulsions in the presence of 262 

BCNCs with an overall smaller size. Kalashnikova, Bizot, Cathala, & Capron (2011) reported 263 

a minimum average diameter of approximately 4 µm; Wen et al. (2011) obtained an average 264 

size of 4.2 µm and 6.9 µm; Cherhal et al. (2015) obtained particles of approximately 4 µm, 265 

and Wang et al. (2016) reported an average size of approximately 3 µm; Angkuratipakorn et 266 
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al. (2017) obtained particles with a minimum diameter of 4.45 µm; Laitinen, Ojala, Sirvio, &  267 

Liimatainen,  (2017) reported droplet sizes between 7 µm and 10 µm, whereas the size of the 268 

particles obtained by Yan et al. (2017) ranged between 5 µm and 15 µm; Varanasi et al. 269 

(2018) obtained two groups of particles with sizes of 2.5 µm and 2.7 µm, respectively, 270 

whereas Zhou et al. (2018) measured an average droplet diameter of 1.2 µm and 2.9 µm. To 271 

explain these values, it must be considered that in all the studies mentioned above, a much 272 

higher volume of oil was used to prepare the final Pickering emulsions. In this study, the 273 

lower volume of CEO led to nano-sized particles smaller than the BCNCs, differently than 274 

what would occur in a typical Pickering emulsion. This is also the reason why the mechanism 275 

underlying the stabilization of the CEO emulsion by BCNCs is different from a conventional 276 

Pickering emulsion, as described before.    277 

Fig. 4 shows the influence of CEO concentration on the ζ-potential of CEO/BCNC (Fig. 278 

4a) and CEO-GelA/BCNC (Fig. 4b) emulsions at pH values of 3.5 and 5. For both systems 279 

(CEO/BCNC and CEO-GelA/BCNC) and for a same pH, an increase in CEO concentration 280 

caused no statistically significant change in ζ-potential, which can be ascribed to the 281 

nonpolar and uncharged nature of the EO. In addition, for both CEO/BCNC (Fig. 4a) and 282 

CEO-GelA/BCNC (Fig. 4b) emulsions it was possible to observe that the ζ-potential 283 

evolution at the two different pH values followed the same trend, with the experimental 284 

points obtained for the lower pH (3.5) shifted toward more positive values. This reflects the 285 

different charge properties of BCNCs prepared at the two different pH values, with more 286 

positive ζ-potential values at pH 3.5. (see Table 1).  Finally, if we compare the two emulsion 287 

types (i.e., with and without fish gelatin), the presence of gelatin in the BCNC emulsion led 288 

to a dramatic increase in the ζ-potential to positive values, as can be observed by comparing 289 

the plots in Fig. 4a and b. This marked increase can be explained by the extensive positive 290 

charge along the gelatin molecules at acidic pH values (a pI value of approximately 8.5 for 291 
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type A gelatin), especially at pH 3.5 (hence the higher ζ-potential values at pH 3.5 than at pH 292 

5). However, the positive ζ-potential is much less than 30 mV, which implies a theoretical 293 

lower stability for CEO-GelA/BCNC emulsions than CEO/BCNC emulsions. However, both 294 

systems (CEO/BCNCs and CEO-GelA/BCNCs) proved stable for 30 days at 42°C, as shown 295 

by the digital camera images displayed in Figure S1. It must also be noted that, from a 296 

practical point of view, the stability of the CEO-GelA/BCNCs is somehow preserved by the 297 

sol-gel transition of the gelatin-based emulsions on cooling (that is, from approximately 40°C 298 

to room temperature). During this transition, the gelatin chains partially recover the original 299 

triple-helix structure of collagen through a disorder–order rearrangement (Farris, Schaich, 300 

Liu, Piergiovanni, & Yam, 2009). This transition takes place within a few hours, during 301 

which the emulsions encapsulated with gelatin are stable (no phase separation was visually 302 

observed throughout the experiments before solidification). At the same time, this transition 303 

is reversible and the original conditions can be restored on melting for temperatures slightly 304 

above 40°C. 305 

The effect of CEO concentration and pH on the EE is shown in Fig. 5. For CEO/BCNC 306 

and CEO-GelA/BCNC emulsions, an overall EE increase from approximately 30-40% up to 307 

80% was observed as a function of CEO concentration. In particular, for both emulsion 308 

systems (i.e., CEO/BCNCs and CEO-GelA/BCNCs) the EE increased steeply in 309 

correspondence of the two lowest CEO concentrations, and eventually reached a linear trend 310 

at the highest CEO concentration. This seems in contrast to previous works in which gelatin 311 

was used to encapsulate essential oils (Jiulin et al., 2015; Silva et al., 2018). We are prone to 312 

consider this deviation from the non-linearity as a consequence of the centrifugation step, 313 

which plausibly was not able to separate adequately the finest (smallest) emulsion droplets 314 

that remained in the main continuous phase. In practice, this would lead to an 315 
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underestimation of the EE for the lowest CEO concentrations (0.2 and 0.4% v/w for the 316 

CEO/BCNC emulsions and 0.03 and 0.06% v/w for the CEO-GelA/BCNCs emulsions).  317 

The effect of pH on EE was not statistically significant for the CEO/BCNC emulsions. 318 

This suggests that BCNCs’ ability to entrap the oil droplets was not affected by pH, probably 319 

because this change did not significantly affect the system’s overall stability (see the ζ-320 

potential values in Fig. 4). On the contrary, a significant effect of pH on EE was observed for 321 

the emulsions stabilized with gelatin up to a CEO concentration of 0.24% v/w, with the 322 

highest EE values determined at the highest pH. In line with our previous discussion, the fact 323 

that this significant difference concerned the non-linear part of the EE evolution suggests that 324 

the recovery of CEO by centrifugation was probably more effective at pH 5, i.e., for the 325 

highest negative charge density on the BCNCs and the lowest positive charge density of 326 

gelatin. This seems to be corroborated by the fact that: i) as discussed before, coverage of 327 

CEO droplets by gelatin is less effective at pH 5; ii) CNCs with higher surface charge density 328 

form less stable emulsions (Kalashnikova, Bizot, Cathala, & Capron, 2012). 329 

 330 

3. Conclusions 331 

In this study, oil-in-water emulsions were prepared using CEO and BCNCs. The stability 332 

of the CEO/BCNC emulsions was successfully achieved through both electrostatic repulsion 333 

(ζ-potential values of approximately -25 mV) and the entrapment of the oil droplets in 334 

BCNCs scaffolds that primarily prevented creaming. The addition of gelatin led to a different 335 

scenario, with the protein acting as a surfactant that adsorbed onto the oil surface fully 336 

covering the CEO nanodroplets and offered steric protection against oil droplet coalescence 337 

even after 30 days. This study’s findings can be used profitably in the food industry to design 338 

new systems that can benefit from the effect arising from a conventional surfactant and solid 339 

nanoparticles of biological origin. This type of systems might function as carriers of 340 
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encapsulated bioactive compounds mixed directly into the food matrix or as films and 341 

coatings.  342 
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Figure captions 535 

Fig. 1. Addition of CEO in the 6 series concentration BCNCs water dispersions (a), 536 

CEO/BCNC emulsions after ultrasonication (b), and CEO/BCNCs emulsions encapsulated in 537 

fish gelatin (c). Both emulsions were prepared at pH 3.5. A zoomed image is provided at the 538 

left of each panel. 539 

 540 

Fig. 2. Evolution of the particle size of CEO/BCNC (a) and CEO-GelA/BCNC (b) emulsions 541 

as a function of CEO concentration and at two different pH values. 542 

 543 

Fig. 3. (a) Transmission electron microscopy images of CEO/BCNC and (b) CEO-544 

GelA/BCNC emulsions at the highest CEO concentration (3.1 and 0.48% v/w, respectively). 545 

Schematic representation of CEO/BCNC emulsion with and without gelatin (c). 546 

 547 

Fig. 4. Variation of the ζ-potential of CEO/BCNC (a) and CEO-GelA/BCNC (b) emulsions 548 

as a function of CEO concentration and at two different pH values. 549 

 550 

Fig. 5. Variation of the encapsulation efficiency (EE) of CEO/BCNC (a) and CEO-551 

GelA/BCNC (b) emulsions as a function of CEO concentration and at two different pH 552 

values. 553 

 554 

 555 

 556 

 557 
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 558 

Tables 559 

 560 

Table 1 Size, polydispersity index and ζ-potential of BCNCs at two different pHs. 561 

 562 

pH Length (nm) PDI ζ-potential (mV) 

3.5 319.64 ± 16.22a 0.527 ± 0.047b -25.60 ± 0.91c 

5 322.08 ± 30.02a 0.340 ± 0.117b -27.72 ± 0.16d 

 563 
 564 
Values are reported as average ± standard deviation. The superscripts refer to statistically 565 

significant differences within the same group (i.e., within the same parameter) (p < 0.05). 566 
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Highlights 

 

• An oil-in-water emulsion was obtained using cinnamon essential oil 

• Bacterial cellulose nanocrystals (BCNCs) were used as solid nanoparticles 

• Emulsions with and without fish gelatin were also prepared  

• Oil concentration and pH affected several physical properties of the emulsions  

• Nanoemulsions stabilized by gelatin and BCNCs were obtained  



Conflict of interest 

 

Declarations of interest: none. 



Author statement 

 

Conceptualization: M.R. and S.F.; methodology, M.R. and S.F.; formal analysis, M.F., C.R. and 

F.F.; investigation, M.F., C.R. and F.F.; writing—original draft preparation, M.R., C.R.; writing—

review and editing, A.G., A.N. and S.F.; visualization, S.F.; supervision, S.F. All authors have read 

and agreed to the published version of the manuscript. 

 


