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Abstract. The Late Paleozoic Ice Age (LPIA) was the penultimate major glaciation of the 10 

Phanerozoic. Published compilations indicate it occurred in two main phases, one centered in the 11 

Late Carboniferous (~315 Ma) and the other in the Early Permian (~295 Ma), before waning 12 

over the rest of the Early Permian and into the Middle Permian (~290 Ma to 275 Ma), and 13 

culminating with the final demise of Alpine-style ice sheets in eastern Australia in the Late 14 

Permian (~260 to 255 Ma). Recent global climate modeling has drawn attention to silicate 15 

weathering CO2 consumption of an initially high Greater Variscan edifice residing within a static 16 

Pangea A configuration as the leading cause of reduction of atmospheric CO2 concentrations 17 

below glaciation thresholds. Here we show that the best available and least-biased paleomagnetic 18 

reference poles place the collision between Laurasia and Gondwana that produced the Greater 19 

Variscan orogen in a more dynamic position within a Pangea B configuration that had about 30% 20 

more continental area in the prime equatorial humid belt for weathering and which drifted 21 

northward into the tropical arid belt as it transformed to Pangea A by the Late Permian. The 22 

presence of widespread equatorial coal basins with Euramerica flora in the footprint of the 23 

Greater Variscan orogen during the Late Carboniferous is more compatible with a heterogeneous 24 

horst-and-graben morphology, characterized by uplifted crystalline massifs acting as loci of 25 

intense silicate weathering CO2 consumption and supplying sediment for proximal basins as 26 

venues of organic carbon burial, than a contiguous high mountain plateau, as assumed in recent 27 

climate modeling of the LPIA and its demise. The culminating phase of the LPIA occurred at 28 
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about 275 Ma with the transformation from Pangea B to Pangea A and the attendant reduction of 29 

continental area in the equatorial humid belt, as well as with continued northward drift that 30 

placed what remained of the Greater Variscan orogen into the Zechstein arid belt in the Late 31 

Permian, by which time the geologic landscape was largely blanketed with siliciclastics. The 32 

resulting warming from reduced silicate weathering and thus increasing pCO2 was interrupted at 33 

260 Ma with a cooling trend that coincided with emplacement of the Emeishan large igneous 34 

province on the equatorial South China Craton as well as the drift of the Cimmerian continental 35 

blocks through the equatorial humid belt due to opening of the Neo-Tethys. A return to ice age 36 

conditions from the increase in silicate weathering uptake of CO2 was avoided by drift of the 37 

Emeishan large igneous province out of the equatorial belt, that in conjunction with massive 38 

outgassing from emplacement of the Siberian Traps in high latitudes at the end of the Permian 39 

(252 Ma), helped steer the climate system to sustained non-glacial conditions. 40 

1. Introduction 41 

Gondwanan glaciations (Du Toit, 1937) constituting the Late Paleozoic Ice Age (LPIA) 42 

from ~330 Ma to ~255 Ma in the Carboniferous–Permian (Fielding et al., 2008b; Montañez and 43 

Poulsen, 2013) were the last major glacial episode preceding the current Late Cenozoic Ice Age 44 

that started at ~34 Ma in the Paleogene (e.g., Zachos et al., 1992). From some of the earliest 45 

climate modeling of the LPIA (Crowley and Baum, 1992; Crowley et al., 1991), its atypical cold 46 

climate was attributed to sustained low pCO2 (exacerbated by ~3% lower solar luminosity that is 47 

part of a long-term trend) with land-sea distributions of the Gondwana supercontinent apparently 48 

having only subsidiary effects (Crowley and Berner, 2001). This is the CO2 paradigm, 49 

postulating that long-term climate variations are fundamentally driven by varying concentrations 50 

of atmospheric carbon dioxide (pCO2) (Berner, 1990; Donnadieu et al., 2006), which ultimately 51 

vary as the net result of planetary outgassing and CO2 consumption from weathering of 52 

continental silicates and burial of organic carbon (Berner, 1990; Berner et al., 1983; Walker et 53 

al., 1981). Sensitivity studies with global climate modeling that include solar luminosity and 54 

continental drift confirm that pCO2 change was the likely primary control on Late Paleozoic 55 

glaciation (Lowry et al., 2014).  56 

Variable CO2 outgassing using ocean floor production as a proxy is the underlying driver 57 

of the GEOCARB family of carbon cycling models (e.g., Berner et al., 1983; Berner, 1994; Li 58 
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and Elderfield, 2013). The lower pCO2 required to explain the LPIA was thus attributed to 59 

reduced ocean floor production, which in the absence of contemporaneous ocean floor was 60 

inferred from sequence stratigraphy (Vail et al., 1977) and a presumed ridge volume dependence 61 

from seafloor generation (Gaffin, 1987; Berner, 1990). However, over the past 180 Myr when 62 

direct seafloor estimates are possible, the areal distribution of seafloor ages is not inconsistent 63 

with that expected from steady long-term ocean floor production (Rowley, 2002), a result 64 

confirmed within ±20% variation about a constant mean by Cogné and Humler (2004) who 65 

moreover found no clear correlation of the variations with changes in sea level. Given the 66 

determinative importance yet inherent uncertainty of any specific spreading-related outgassing 67 

function, especially for the Late Paleozoic, we assume the null hypothesis that CO2 volcanic 68 

outgassing was steady at about the modern level (~260 Mt CO2/yr or 6 x 1012 mol CO2/yr: Marty 69 

and Tolstikhin, 1998; Gerlach, 2011).  70 

The assumption of steady CO2 outgassing means that variations in carbon sinks from 71 

silicate weathering and organic carbon burial need to be sought to account for the effects of 72 

varying pCO2 concentrations on global climate on geologic time scales. CO2 consumption has 73 

often been described in terms of weatherability (Francois and Walker, 1992), the product of 74 

various factors that can affect chemical erosion of continents including lithology, relief, 75 

glaciation and plant coverage (Kump and Arthur, 1997). However, the weathering of Ca and Mg-76 

rich mafic crystalline rocks is clearly of the utmost importance for the global carbon cycle and 77 

climate regulation; for example, CO2 consumed by chemical weathering of basalts exposed in 78 

volcanic arcs, oceanic islands, and large igneous provinces today is estimated to constitute more 79 

than 30% of continental CO2 consumption (Gaillardet et al., 1999; Dessert et al., 2003). Of 80 

course, the basalts need to be exposed (weathering-limited rather than transport-limited; Stallard 81 

and Edmond, 1983) to realize their CO2 consumption potential, which requires topographic relief 82 

from tectonic uplift and exhumation as generally occur in arc-continent or continent-continent 83 

collision orogens. Finally, chemical weathering CO2 consumption of such epimafic rocks will 84 

depend on the availability of water especially under warm temperatures, environmental 85 

conditions optimally associated with the equatorial humid belt. We thus regard weatherability as 86 

simply the maximum potential weathering for CO2 consumption of a particular lithology, which 87 

for all practical purposes is for an epimafic rock. For example, the Siberian Trap and the Deccan 88 

Trap basalts may have essentially the same weatherability but because the Siberian Trap basalts 89 
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are in cold high latitudes, their area-weighted CO2 consumption rate today is more than an order 90 

of magnitude less than that of the Deccan Trap basalts (Dessert et al., 2003). The Cenozoic drift 91 

into the equatorial humid belt of the highly weatherable Deccan Trap continental basalts 92 

followed by obducted ophiolites in arc-continent collision zones like the Indonesian archipelago 93 

(Dessert et al., 2001, 2003; Kent and Muttoni, 2008, 2013; Macdonald et al., 2019) provide 94 

plausible scenarios for enhanced weathering drawdown of pCO2 to initiate the Late Cenozoic Ice 95 

Age.  96 

The decrease in pCO2 in the Late Paleozoic is commonly attributed to the expansion of 97 

land plants and concomitant increase in silicate rock weatherability (Algeo et al., 1995; Berner, 98 

2004; Bergman et al., 2004). Although the colonization of continents by vascular plants occurred 99 

much earlier than the onset of the LPIA, as did the emergence of lignin decomposers (Montañez, 100 

2016; Nelsen et al., 2016), the profound increase in biomass with the spread of seed plants in the 101 

Late Devonian could have set the stage for the LPIA in the Carboniferous and Permian (Algeo 102 

and Scheckler, 1998). In seeking a more proximal cause for a CO2 drawdown, Goddéris et al. 103 

(2017) used comprehensive climate and landscape models to argue for enhanced silicate 104 

weathering CO2 consumption associated with the mid-Carboniferous rise of a 5,000 m-high 105 

Variscan (=Hercynian) mountain plateau in the tropics of Pangea; subsequent erosive leveling of 106 

the mountain chain culminating with the development of a saprolith shield was supposed to have 107 

reduced CO2 weathering drawdown sufficiently to allow atmospheric CO2 concentration to build 108 

up and eventually lead to the meltdown of the LPIA by the Early Permian. The mountain uplift 109 

and erosion hypothesis of Goddéris et al. (2017) used paleogeographic reconstructions from 110 

Golonka (2002) that had an essentially static Pangea configuration from the Late Carboniferous 111 

(308 Ma) to the end of the Late Permian (272 Ma), which isolated topography as the main driver 112 

of CO2 drawdown in their scenario. Fluteau et al. (2001) had previously focused attention on 113 

topographic relief in carbon cycle modeling of Permian climate, and indeed, the LPIA was 114 

regarded as the notable exception for paleogeographic setting as the main driver of climate over 115 

the entire Paleozoic and well into the Mesozoic (Goddéris and Donnadieu, 2019).  116 

Given the importance of tectonics in modulating pCO2, we note that a generally 117 

overlooked context for understanding the LPIA is the supercontinent configuration known as 118 

Pangea B in the Carboniferous and Early Permian, its latitudinal drift history and its 119 

transformation to the more familiar Pangea A by the Late Permian (e.g., Muttoni et al., 2009a; 120 
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Gallo et al., 2017). Below we show that Pangea B is well-supported by the most consistent and 121 

least biased paleomagnetic data available for the Late Carboniferous and Early Permian and that 122 

this configuration essentially coincided with the LPIA. Moreover, the presence of extensive coal 123 

basins and extensional volcanism across the equatorial region of Euramerica in the Late 124 

Carboniferous–Early Permian is inconsistent with a Variscan mountain plateau reaching up to 125 

5000 m, suggesting that high topographic relief may not be the main driver controlling CO2 126 

drawdown. Instead, we point to evidence that the exhumation of Ca and Mg-rich Variscan 127 

crystalline rocks as well as organic carbon burial occurred in a complex geological and 128 

topographic landscape and played reinforcing roles in CO2 consumption as central Pangea drifted 129 

northward through the equatorial humid belt. The subsequent tectonic transformation from 130 

Pangea B to Pangea A in the mid-Permian coupled with steady northward drift of Pangea into the 131 

arid belt of the northern hemisphere reduced the land-to-sea areal distribution in the critical 132 

equatorial belt and thus the areal extent of prime venues for continental silicate weathering and 133 

equatorial coal forests for the culminating phase of warming and demise of the LPIA by the Late 134 

Permian (but not without a hiccup).  135 

Late Paleozoic Ice Age and Coal 136 

The LPIA is characterized by glacial deposits of Carboniferous and Permian age on 137 

virtually all Gondwana continents (high to mid-paleolatitude regions of South America, southern 138 

Africa, India, Antarctica, and Australia) including extensive glaciomarine deposits, which 139 

indicate that the ice sheets reached sea level and thus imply global cooling (Montañez and 140 

Poulsen, 2013). The LPIA extended from ~320 Ma in the Early Pennsylvanian (~Bashkirian) of 141 

the Carboniferous to ~260 Ma in the Middle Permian (Guadalupian), and perhaps to ~255 Ma in 142 

the Late Permian (Lopidigian) (Fig. 1A; geologic time scale (GTS2012) of Gradstein et al. 143 

(2012) used throughout). The LPIA is basically contemporaneous with the Kiaman Reverse 144 

Polarity Superchron, which extends from the Wanganui Reversal at ~316 Ma in the early part of 145 

the Late Carboniferous (Pennsylvanian) (Opdyke et al., 2000) to the Illawara mixed polarity 146 

zone at ~265 Ma in the Middle Permian (Lanci et al., 2013). Magnetostratigraphy is thus of 147 

limited use for global correlation of glacial and associated deposits of the LPIA. Fortunately, 148 

wider applications of U-Pb zircon geochronology are providing valuable means of correlations 149 

and age constraints in the Permo-Carboniferous (Griffis et al., 2019; Machlus et al., 2020; 150 
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Metcalfe et al., 2015). 151 

Ice centers or glacial pulses developed to their maximum extents in two main phases, one 152 

centered at ~310 Ma (Moscovian of the Pennsylvanian or Late Carboniferous) and the other at 153 

~295 Ma (Sakmarian in the Cisuralian or Early Permian), after which glacial frequency tailed off 154 

by ~280 Ma (through the Artinksian in the Cisuralian or Early Permian) as continental ice sheets 155 

were replaced by alpine glaciers with the remaining ones (in northeastern Australia) mostly gone 156 

by ~260 Ma, the beginning of the Late Permian (Crowell, 1999; Fielding et al., 2008b; Metcalfe 157 

et al., 2015; Montañez and Poulsen, 2013) (Fig. 1B). The classic chronology of the P1–P4 158 

glaciations in Australia (Fielding et al., 2008a; Fielding et al., 2008b) was updated by Metcalfe et 159 

al. (2015) using high precision U-Pb zircon geochronology, which indicated younger ages for the 160 

P3 and P4 glacial episodes, the latter episode now essentially confined to the Late Permian and 161 

quite possibly representing the youngest glaciation of the LPIA. 162 

Broadly coincident in time with the two main glacial episodes of the LPIA are vast areal 163 

extents of coal forests that led to the greatest accumulation of coal in Earth history (Cleal and 164 

Thomas, 2005; Feulner, 2017). Peak areal distributions of coal forests occurred in the 165 

Pennsylvanian (Late Carboniferous) across regions stretching from eastern North America, 166 

Europe, North Africa and Central Asia, with a second coal forest peak in the Cisuralian (Early 167 

Permian) mainly in China and the Far East (Ziegler et al., 2003) (Fig. 1C). There seems to be a 168 

strong associated signal for organic carbon burial calculated from δ13C data on marine 169 

carbonates (Veizer et al., 1999) (see below), which shows an increase in forg from around 0.25 at 170 

~330 Ma to a peak of around 0.35 by 310 Ma that coincides with the Late Carboniferous 171 

maximum in coal forest area (Fig. 1D). Significant organic carbon burial in the Late 172 

Carboniferous is supported by atmospheric pO2 concentrations, inferred from inertinite 173 

percentages in coals, that are higher than in today’s atmosphere (Glasspool et al., 2015), 174 

suggesting that terrestrial vegetation-CO2 entanglements were also capable of playing a key role 175 

in driving orbitally-paced expansions and contractions of continental ice sheets (Horton et al., 176 

2010; Montañez et al., 2016).  177 

The seawater carbonate 87Sr/86Sr curve (Chen et al., 2018; Korte and Ullmann, 2018) is 178 

consistent with continental silicate weathering that was enhanced (although not necessarily 179 

globally; Edmond, 1992; Kump and Arthur, 1997) in the Late Carboniferous and Early Permian, 180 
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decreasing in the late Early and Middle Permian, but then increasing in the Late Permian (Fig. 181 

1E). The low pCO2 concentrations that are generally associated with at least the initial part of the 182 

LPIA (Royer, 2014) (Fig. 1F) can be attributed to increased silicate weathering CO2 183 

consumption as suggested by the 87Sr/86Sr curve, and/or increased organic carbon burial, as 184 

suggested by the forg curve. Seawater temperatures inferred from δ18O measurements on 185 

conodonts (Chen et al., 2013) (Fig. 1G) show that the ultimate waning phase of the LPIA 186 

occurred at ~275 Ma in the latest Early Permian with a steep increase in temperatures to about 187 

260 Ma. However, temperatures then sharply decrease starting about 260 Ma coinciding with the 188 

emplacement of the Emeishan large igneous province (Chen et al., 2013) and at about the same 189 

time as the Late Permian increase in 87Sr/86Sr values (Fig. 1E), which may mark the passage of 190 

the Cimmerian continental blocks through the equatorial humid belt (see below). 191 

In the widely used GEOCARB-style models, the fuzzy increase in atmospheric pCO2 192 

concentrations toward the end of the LPIA (Montañez et al., 2007) has traditionally been 193 

attributed to an increase in CO2 outgassing (Berner, 1991, 1994, 2006; Berner and Kothalava, 194 

2001), an assertion that is difficult to verify or refute. More tractable to evaluate is an increasing 195 

pCO2 content resulting from decreasing silicate weatherability across an eroded landscape 196 

(Goddéris et al., 2017) with possibly decreasing organic matter burial (Birgenheier et al., 2010). 197 

Here we estimate the timing and magnitude of changes in land-sea distribution in the equatorial 198 

humid belt and resultant changes in silicate weatherability and terrestrial vegetation habitat from 199 

the collision of Gondwana and Laurasia that resulted in the Greater Variscan (Alleghenian-200 

Mauritanide-Hercynian) orogeny at the core of a Pangea B (rather than Pangea A) configuration, 201 

its continued northward drift across climate belts, and its transformation to Pangea A in the mid-202 

Permian (Fig. 1H) as the tectonic framework for the LPIA.  203 

Pangea B and transformation to Pangea A 204 

The familiar Wegenerian model of Pangea, similar to what has become the classic 205 

Bullard computer fit of the Atlantic-bordering continents (Bullard et al., 1965), is widely 206 

assumed to have persisted in basically the same configuration for practically the entire 150 Myr 207 

nominal lifespan of the supercontinent. In this popular view (e.g., Scotese and Langford, 1995; 208 

Veevers and Tweari, 1995; Torsvik et al., 2012), a Pangea A-type configuration started with the 209 

collision that produced the Greater Variscan orogen between the northern (Laurasia) and 210 
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southern (Gondwana) supercontinental assemblies at ~330 Ma until breakup and dispersal 211 

starting in the Jurassic at ~180 Ma. Pangea A of Golonka (2002) is the paleogeographic 212 

framework used by Goddéris et al. (2017) for modeling Late Paleozoic climate from 323 Ma to 213 

272 Ma; a reconstruction used in their climate model for the Moscovian (~308 Ma), when the 214 

Greater Variscan orogen was presumed to have had its greatest relief, is shown in Fig. 2 (top). 215 

There has nonetheless been a longstanding empirical discrepancy with the classic 216 

Wegenerian model of Pangea in the Carboniferous–Early Permian that developed in close 217 

relationship with the concept of Adria as a promontory of Africa (Argand, 1924; Channell and 218 

Horvath, 1976). The historical development of these ideas is described elsewhere (Muttoni and 219 

Kent, 2019a). In brief, Van Hilten (1964) showed that paleomagnetic data from Early Permian 220 

volcanics from the Southern Alps of northern Italy, part of Adria, implied paleolatitudes too 221 

northerly relative to those documented from now-adjacent parts of Europe but which were 222 

curiously compatible with the available paleomagnetic record from contemporaneous rock units 223 

in Africa. This creates a geometrical problem because Adria with Africa could not be 224 

reconstructed with Europe in a Pangea A-type configuration without untenable crustal overlap 225 

between the southern margin of Laurasia and the northern margin of Gondwana. Attempts to 226 

reconcile this discrepancy initially led to the concept of the ‘Tethys Twist’ (Van Hilten, 1964; de 227 

Boer, 1965), a tectonic dance of Laurasia and Gondwana that was soon disavowed because of its 228 

improbably long postulated duration and incompatibility with other evidence from the emerging 229 

strictures of plate tectonics (Zijderveld et al., 1970).  230 

Despite serial attempts at alternative explanations for the misfit in the paleomagnetic 231 

data, such as standing non-dipole fields and data selection artifacts (see discussion and references 232 

in Domeier et al. (2012)), straightforward analyses of reliable modern data continued to require a 233 

different configuration of Pangea in its earlier stage (Muttoni et al., 1996, 2003, 2009a, b; 234 

Rakotosolofo et al., 2006; Angiolini et al., 2007; Gallo et al., 2017). Based on these previous 235 

studies and the updated analyses presented below, we maintain that the most parsimonious 236 

paleocontinental model is Pangea B (Irving, 1977, 2004; Morel and Irving, 1981), a 237 

configuration with the northwestern margin of South America adjacent to eastern North America 238 

that lasted from the Early Carboniferous to the Early Permian, and which according to our 239 

interpretation of current paleomagnetic data, transformed by the Late Permian to a Pangea A-240 

type configuration (Bullard et al., 1965; Van der Voo and French, 1974), with the northwestern 241 
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margin of Africa now against eastern North America. Our model of Pangea B for the Late 242 

Carboniferous, based on the best available paleomagnetic data averaged in a 20 Myr time 243 

window centered on 310 Ma as described below, is illustrated in Fig. 2 (bottom).  244 

Some of the main differences apparent in the reconstructions shown in Figure 2 that are 245 

likely to have consequences in attempts to explain the LPIA according to the CO2 paradigm and 246 

motivate closer scrutiny of the paleogeographic context are: 1) the larger land area within the 247 

equatorial humid belt for Pangea B (Fig. 2 bottom) compared to Pangea A (Fig. 2 top); 2) the 248 

position of the Greater Variscan orogen, that was steadily eroded and the key pCO2 sink for the 249 

LPIA in the modeling of Goddéris et al. (2017), is closer to the equator in Pangea B than in this 250 

model of Pangea A; 3) the unexplained geographic juxtaposition of the supposed high Greater 251 

Variscan plateau with major coal basins in Europe, which may be significant sinks of organic 252 

carbon. 253 

Updated test for Pangea B 254 

The Pangea B configuration for the Early Permian proposed by Muttoni et al. (2009b) 255 

used paleomagnetic poles from igneous units from Europe to position Laurasia and from Africa 256 

(plus parauthocthonous Adria) to position Gondwana in a common latitudinal framework. A 257 

subsequent critical analysis (Domeier et al., 2012) questioned the use of paleopoles from 258 

parauthocthonous Adria as potentially rotated relative to stable Africa; indeed, Adria data have 259 

been excluded from most inventories of global reference poles because of this uncertain tectonic 260 

affiliation (e.g., Kent and Irving, 2010; Torsvik et al., 2012). On the other hand, pole listings like 261 

those of Torsvik et al. (2012) and Domeier et al. (2012) tend to be dominated by sedimentary 262 

poles that are likely to be biased by inclination error. We make a critical reappraisal of the global 263 

database listed in Torsvik et al. (2012) in an attempt to identify what might be the cause(s) of the 264 

deep disparity in interpretations of Pangea paleogeography in the Permian. The testable null 265 

hypothesis is Pangea A existed over the entire Permian, as advocated, for example, by Torsvik et 266 

al. (2012), Domeier et al. (2012) and Golonka (2002), and used for climate modeling of the LPIA 267 

by Goddéris et al. (2017). 268 

We extracted from the listing of paleomagnetic reference poles in Torsvik et al. (2012) 269 

those entries with assigned ages in the approximately 100 Myr interval (350-250 Ma) 270 

encompassing the Carboniferous and Permian Periods that are based on igneous units and 271 
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sedimentary units explicitly corrected for inclination error using E/I or I-methods (Tauxe and 272 

Kent, 2004; Bilardello and Kodama, 2010a) from Europe, Siberia and North America 273 

(representing Laurasia) and from South America, Africa (including Adria) and Australia 274 

(representing Gondwana). We chose data (Table S1) from intrusive and extrusive igneous rocks 275 

because these would not be affected by sedimentary inclination error; exceptions are entry #6 276 

with interbedded sediments, #14 an igneous breccia, and entries #56, #58, #61, #63, #66, #67, 277 

and #71, which comprise sedimentary data that were E/I or I-corrected for inclination 278 

shallowing. For Gondwana, we also included data as indicated below from Africa, Australia, and 279 

parauthocthonous Adria from igneous and E/I or I-corrected sedimentary units that were not used 280 

in Torsvik et al. (2012). The only igneous result excluded in this broad time window was the 281 

Punta del Agua pole from Argentina, which according to the original authors (Geuna and 282 

Escosteguy, 2004) could be affected by grossly incorrect age assignment and/or remagnetization 283 

and/or tectonic rotations.  284 

For Laurasia, these criteria yielded 66 poles ranging in age from 250 Ma to 335 Ma 285 

mainly from Europe (48 poles) plus the Siberian Traps (10 poles), and from North America (8 286 

poles), or 58% of the 113 reference poles listed by Torsvik et al. (2012) (Fig. 3A; Table S1). 287 

Paleomagnetic poles for Gondwana are much sparser; these criteria yielded only 12 poles 288 

ranging in age from 263 Ma to 348 Ma (6 from South America, 5 from Africa, and 1 from 289 

Australia), or only 29% of the 42 reference poles listed by Torsvik et al. (2012). To these we add 290 

3 igneous poles from Australia (Mt. Leyshon Intrusives and Tuckers Igneous Complex, dated at 291 

286±6 Ma (Clark and Lackie, 2003), and the Rocky Hills Syncline section, dated at ~313 Ma 292 

(Opdyke et al., 2000)), a recently published E/I corrected sedimentary pole from Late Permian 293 

(~266.5 Ma) Karoo redbeds in South Africa (Lanci et al., 2013), as well as seven entries from 294 

igneous units and an E/I corrected sedimentary unit from parauthocthonous Adria (Muttoni et al., 295 

2003; 2009a) also not listed in Torsvik et al. (2012), which provide a total of 24 poles for the 296 

Carboniferous and Permian of Gondwana (Fig. 3B, Table S1). 297 

As described, one-third (8) of the 24 accepted poles for the Carboniferous and Permian 298 

for Gondwana come from Adria (Table S1). Given the numerical weight of the Adria dataset and 299 

its neglect in most analyses of reference poles and Pangea paleogeography, we compare the 300 

mean of the Adria poles for the Early Permian (N=7, mean age 280 Ma; ID20 in Table 1) with 301 

the mean of the other Early Permian poles for Gondwana from NW Africa, NE Africa, Australia 302 
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and South America in NW African coordinates according to the preferred reconstruction 303 

parameters of Lottes and Rowley (1990) (N=5, age range 273-286 Ma, mean age 281 Ma; ID21). 304 

The mean poles are not significantly different, separated by only 3.6° arc distance and well 305 

within their respective circles of 95% confidence (Fig. 4). This supports the tectonic coherence 306 

of parauthochthonous Adria with NW Africa observed in paleomagnetic data of Permian as well 307 

as Triassic, Jurassic, Cretaceous, and Cenozoic age (e.g., Channell and Horvath, 1976; Channell 308 

et al., 1979; Muttoni et al., 2003; Muttoni and Kent, 2019b), which is the conceptual foundation 309 

of Pangea B in the Early Permian (Muttoni and Kent, 2019a). We are thus justified in freely 310 

incorporating Adria poles with those from NW Africa in calculating mean poles for Gondwana. 311 

We also note that a recent plate tectonic synthesis of the Mediterranean region (van Hinsbergen 312 

et al., 2019) implied a net relative rotation of some 18° of Adria with respect to NW Africa since 313 

the Permian; however, the corresponding correction would significantly separate the Adria and 314 

Gondwana mean 280 Ma poles (Fig. 4), invalidating this kinematic reconstruction of Adria.  315 

To facilitate comparisons with the inventory of Carboniferous and Permian poles 316 

compiled for Laurasia and Gondwana by Torsvik et al. (2012) we largely drew from, we 317 

calculated mean poles in 20 Myr sliding windows and focus on the independent mean poles 318 

centered on 260 Ma for the Late Permian, 280 Ma for the Early Permian, and 310 Ma for the 319 

Late Carboniferous (Table 1). The Late Carboniferous and Permian poles for Laurasia and 320 

Gondwana make northerly-trending swaths with respect to each supercontinent (Fig. 4). For 321 

Laurasia, the 260, 280 and 310 Ma means reported by Torsvik et al. (2012, their Table 5) and 322 

those we estimated here are generally within their respective circles of confidence, whether or 323 

not the sedimentary results had been corrected with the blanket flattening factor of 0.6 applied by 324 

Torsvik et al. (2012) (Fig. 4). This mutual agreement is most likely because more than half (66 325 

of 113) of the Carboniferous and Permian reference poles listed by (Torsvik et al., 2012) for 326 

Laurasia are igneous.  327 

The tally is about the opposite for Gondwana: more than 2/3 (71%, 30 of 42) of the 328 

Carboniferous and Permian poles listed in Torsvik et al. (2012) are from sedimentary units so 329 

that any application of an expedient blanket correction for inclination error to the predominant 330 

population of sedimentary unit results can be expected to have larger effects on the mean poles. 331 

And indeed, the 260 Ma and 280 Ma mean poles shift by 7.4° and 5.7°, respectively, with 332 

correction by a blind flattening factor of 0.6, and away from the appreciably more precise (up to 333 
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five times higher precision parameter K) igneous and E/I or I-corrected mean poles of 334 

corresponding window age deduced from our analysis (Table 1; Fig. 4). This behavior can be 335 

understood as due to overcorrection for inclination error, as might happen for heavily overprinted 336 

magnetizations, and strongly suggests that the appropriate flattening factor correction must be 337 

determined directly rather than assumed for each sedimentary result.  338 

The arc-distance between our 310 Ma and 260 Ma mean poles for Gondwana reflects 339 

20.2±8.9° of apparent polar motion, almost the same as that of Laurasia (21.4±8.6°) over a 340 

similar 310 to 260 Ma (Late Carboniferous to Late Permian) time interval. We speculate that this 341 

congruence of apparent motion of virtually all the world’s landmass could represent a candidate 342 

for true polar wander, a rotation about an equatorial Euler pivot of the solid body of Earth with 343 

respect to its spin axis (approximated by the time-averaged geomagnetic field according to the 344 

geocentric axial dipole hypothesis) that can arise from uncompensated redistributions of mass 345 

affecting the planet’s moment of inertia (Gold, 1955; Goldreich and Toomre, 1969; Tsai and 346 

Stevenson, 2007). Ice sheets, such as the Gondwana glaciations, may provide suitable load-347 

induced perturbations to the inertia tensor to drive true polar wander (Mitrovica and Wahr, 348 

2011).  349 

Proceeding to evaluate the paleogeographic consequences of Laurasia and Gondwana 350 

mean poles for the Carboniferous and Permian, we first test the null hypothesis of a Pangea A 351 

configuration in the Early Permian. For Laurasia, we use the well-populated 280 Ma window 352 

mean with igneous and E/I or I-corrected poles (ID4, N=26, average age 281 Ma) and compare it 353 

to the 280 Ma igneous and E/I or I-corrected mean pole for Gondwana (ID22, N=12, average age 354 

280 Ma) (Table 1). Although it may not be a decisive factor, we note that ‘Bullard fit’ Laurasia 355 

mean poles and ‘Lottes&Rowley fit’ Gondwana mean poles tend to be better grouped than mean 356 

poles obtained using the rotation parameters of Torsvik et al. (2012) and are thus preferred here. 357 

In any case, the test of Pangea A in the Early Permian fails (Fig. 5A). To avoid an untenable 358 

continental overlap between the facing margins of Laurasia and Gondwana, the most economical 359 

reconciliation is shifting Gondwana eastward relative to Laurasia (Fig. 5B); this is the 360 

operational basis of the Pangea B model (Irving, 1977; Morel and Irving, 1981) and the rationale 361 

for more recent models like Muttoni et al. (2009a). We stress that the Pangea A test fails with or 362 

without data from parauthocthonous Adria. The somewhat younger 260 Ma Laurasia and 363 

Gondwana igneous and E/I or I-corrected mean poles (ID1 and ID16, Table 1) do, however, 364 
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allow a Pangea A-type configuration by the Late Permian (Fig. 5C).  365 

Pangea A-type configurations are nevertheless typically used for the Early Permian (e.g., 366 

Fig. 19 in Golonka (2002), Fig. 22 in Domeier et al. (2012)), or the ‘Permo-Carboniferous’ (Fig. 367 

19 in Torsvik et al. (2012)). We diagnose the discrepancy as largely due to deficiencies of the 368 

Gondwana pole dataset and draw attention to the 20 Myr window mean poles of (Torsvik et al., 369 

2012) with sedimentary results uniformly deflattened with f=0.6 (their Table 7, all rotated to NW 370 

African coordinates in Table 1) that are shifted more than 10° compared to our Gondwana 371 

igneous and E/I or I-corrected mean poles (Fig. 4). For example, their mean 280 Ma pole with no 372 

flattening correction (ID24 in Table 1) falls 5.5° from our 280 Ma igneous and E/I or I-corrected 373 

mean pole (ID22) but their 280 Ma mean pole with blanket flattening correction with f=0.6 374 

(ID25) falls 10.7° from our mean 280 Ma pole. This suggests that blind application of a 375 

deflattening factor is overcorrecting inclinations for at least some of the sedimentary results, as 376 

evidenced also by the general decrease in precision with blanket corrections (Table 1).  377 

Despite mounting evidence for the prevalence of inclination error in sedimentary units 378 

(e.g., Tauxe and Kent, 2004; Bilardello and Kodama, 2010b; Kent and Irving, 2010), the lower 379 

precision with blanket application of a sedimentary deflattening factor points to exacerbating 380 

problems with the predominantly sedimentary poles for Gondwana (and probably Laurasia) in 381 

the listings of Torsvik et al. (2012). A blanket deflattening adjustment to sedimentary 382 

results contaminated by post-compaction chemical remagnetizations (e.g., see papers in Elmore 383 

et al., 2012) would introduce deviations by overcorrection while amplifying already large age 384 

uncertainties often associated with studied continental sediments. For example, sample 385 

demagnetization trajectories moving on great circle paths without reaching stable end-points and 386 

indicative of remagnetizations are frequently observed in various Carboniferous–Permian 387 

sedimentary units from north Africa (e.g., Derder et al., 1994, 2019) and South America (e.g., 388 

Font et al., 2012; Bilardello et al., 2018), whereas even those sedimentary units that may have 389 

survived remagnetization are frequently affected by poor age control. For example, the Santa Fé 390 

Group of Brazil has only a generic Permo-Carboniferous age attribution (Brandt et al., 2009), 391 

making it difficult to draw conclusive implications for Pangea geometry (e.g., see Figure 13 in 392 

Brandt et al. (2009)). Radiometric age estimates tend to be more available for the igneous units 393 

listed in Torsvik et al. (2012) although problems remain concerning outdated decay constants 394 

and/or large experimental errors that affect some of the vintage entries (see also Muttoni et al. 395 
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(2003) for a critical assessment of ages of Permian paleopoles). 396 

These caveats notwithstanding, the significant (~11°) difference between our 280 Ma 397 

Gondwana igneous and E/I or I-corrected mean pole (ID22, Table 1) and the 280 Ma Gondwana 398 

pole (ID25) with arbitrarily deflattened sedimentary results (and recommended by Torsvik et al. 399 

(2012) as reliable), when each are compared to the 280 Ma mean poles for Laurasia that are 400 

dominated by igneous results and thus rather similar in mean direction whether or not the 401 

sedimentary results are deflattened (ID6 and ID7, Table 1), largely accounts for why the Pangea 402 

A test fails in the Early Permian when our preferred Gondwana mean 280 Ma pole (ID22) is 403 

used (Fig. 5A), whereas Pangea A is seemingly not precluded when the mean Gondwana pole 404 

with uniformly deflattened sedimentary results recommended by Torsvik et al. (2012) (ID25) is 405 

used. We suggest that the best available data provide little empirical evidence to reject Pangea B 406 

in the Early Permian (Fig. 5B) or the Carboniferous (see below).  407 

As for timing, specific evidence indicates that the transformation from Pangea B to 408 

Pangea A occurred after the Early Permian volcanic pulse that occurred across Europe, as 409 

represented for example by the well-dated volcanics of the Dolomites in northern Italy with U-Pb 410 

dates of 285–277 Ma (Schaltegger and Brack, 2007; Visonà et al., 2007) and which have 411 

paleomagnetic directions supportive of Pangea B (Muttoni et al., 2009a), but before deposition of 412 

the overlying sediments of Late Permian age with paleomagnetic directions that support Pangea 413 

A (Muttoni et al., 2003) and which also record magnetic polarity reversals of the Illawarra mixed 414 

polarity zone, just after the Kiaman reverse polarity superchron presently estimated at ~265 Ma 415 

(Lanci et al., 2013) (Fig. 1). Hence the Pangea B to Pangea A transformation occurred broadly 416 

between ~275 Ma and ~260 Ma. This event postdated cooling of the Variscan basement and its 417 

timing is independently supported by appropriately timed tectonic rotations about local vertical 418 

axes along the postulated right-lateral megashear between Laurasia and Gondwana of crustal 419 

blocks now preserved in Corsica-Sardinia and southern France (Aubele et al., 2012, 2014; 420 

Bachtadse et al., 2018) and possibly elsewhere such as the western Alps (Garde et al., 2015) and 421 

the Pyrenees (Şengör et al., 2013), but not to be confused with oroclinal rotations in Iberia, 422 

which are older (Carboniferous) and more plausibly linked with Laurasia-Gondwana 423 

convergence (Pastor-Galán et al., 2018). The Pangea B configuration places Africa far enough to 424 

the east to address the problem of the missing continental plate that collided with the European 425 

plate to produce the Variscan orogeny (Arthaud and Matte, 1977) and may also not exclude 426 
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involvement in the Carboniferous Ouachita-Marathon Orogeny if the Maya-Yucatan and similar 427 

blocks were placed way to the west along northwestern South America as revealed by U/Pb 428 

geochronology and provenance data (Martens et al., 2009). 429 

Pangea reconstructions 430 

Pangea reconstructions based on our mean igneous and E/I or I-corrected sedimentary 431 

poles for Laurasia and Gondwana for 260 Ma, 280 Ma, and 310 Ma are shown in Figure 6. Pole 432 

data supporting the reconstructions for 260 Ma (Late Permian; Fig. 6A) and 280 Ma (Early 433 

Permian; Fig. 6B) have been discussed above. Laurasia and especially Gondwana paleomagnetic 434 

data for 310 Ma (Late Carboniferous) are fewer and more poorly grouped (Fig. 4, Table 1) and 435 

thus allow a less definitive assessment with regard to Pangea configurations. However, given the 436 

aforementioned conformance with a Pangea B configuration of the more robust Early Permian 437 

pole datasets, it seems logical to make Pangea B the null hypothesis for the Late Carboniferous, 438 

for which the 310 Ma mean igneous and E/I or I-corrected poles (ID8 for Laurasia and ID26 for 439 

Gondwana) are not inconsistent (Fig. 6C). It thus appears that together with its probable 330 Ma 440 

(Early Carboniferous) antecedent (Fig. 6D; see also Figure 18 in Torsvik et al. (2012)), Pangea B 441 

persisted for at least 55 Myr (~330 Ma to 275 Ma) prior to its transformation to Pangea A. The 442 

temporal range of Pangea B overlaps with that of the LPIA, hinting at possible connections. 443 

In contrast, Correia and Murphy (2020) recently argued that paleobotanical evidence for 444 

an Iberian-Appalachian connection in the Late Pennsylvanian favored Pangea A (and thus ruled 445 

out Pangea B). They assume that through the Paleozoic, Iberia occupied a position relative to 446 

North Africa similar to today’s, reaching contiguity with eastern North America as a 447 

consequence of Variscan coalescence of Laurasia and Gondwana in a Pangea A geometry. 448 

Several studies of detrital zircon provenance and regional tectonostratigraphy have attempted to 449 

place Iberia (and other Armorican units) relative to the West African craton in the 450 

Neoproterozoic–Paleozoic, ranging from a position similar to today’s (e.g., Diez Fernández et 451 

al., 2010; Pastor-Galán et al., 2013; Stephan et al., 2019), and hence more consistent with Pangea 452 

A sensu assumptions of Correia and Murphy (2020), to a position closer to the Africa-South 453 

America embayment (Linnemann et al., 2004) that we observe would be more compatible with 454 

Pangea B. The concept that Iberia as part of the Armorican domain was attached to Africa for 455 

much of the Paleozoic has, however, been questioned by Franke et al. (2019), who cite 456 
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geological evidence pointing to the rifting of Armorican units (including Iberia) from peri-457 

Gondwana in the Early Paleozoic, postdating the time range of nearly all of the zircon data 458 

included in the recent and comprehensive review of Stephan et al. (2019) and before main 459 

Variscan coalescence starting in the Devonian. The ‘missing link’ between Iberia and the 460 

Appalachians found by Correia and Murphy (2020) would thus no longer be able to resolve the 461 

Pangea A versus Pangea B controversy. On the other hand, we suggest that the apparent 462 

southward migration of the dry-climate adapted Lesleya flora over Pennsylvanian time shown in 463 

Figure 4 of Correia and Murphy (2020) can be readily explained by northward drift of central 464 

Pangea B into the tropical arid belt (compare Fig. 6C and B). 465 

Changes in land area in equatorial humid belt 466 

The ~3500-3800 km tectonic translation from Pangea B to Pangea A, which took place at 467 

inferred speeds comparable to India’s convergence with Eurasia in the Late Cretaceous (Kumar 468 

et al., 2007), occurred obliquely within the equatorial humid belt. This had the effect of 469 

decreasing the land area in this optimal setting for silicate weathering as well as coal forests and 470 

mires. We assume the equatorial humid belt (precipitation exceeding evaporation) was nominally 471 

between 5°S and 5°N and whose latitudinal position was relatively insensitive to atmospheric 472 

CO2 concentration following Manabe and Bryan (1985) (Fig. 7A, B). More recent global climate 473 

modeling experiments confirm that the Hadley cells that control the position of the equatorial 474 

humid belt are indeed narrowly confined, within 10° of the equator (Tabor and Poulsen, 2008). 475 

More pertinently, the present-day watershed CO2 consumption estimates of basaltic provinces of 476 

Dessert et al. (2003) show a very high value for SE Asia straddling the equator, markedly 477 

decreased values for localities between 10° to about 30° latitude like Central America, Parana 478 

and Deccan, and low values at higher latitudes in places like the Cascades, Patagonia and Siberia 479 

(Fig. 7C). This pattern reflects the importance of water availability (net precipitation) to account 480 

for intense weathering close to the equator, much reduced but highly variable weathering 481 

because of monsoonal rains in the tropical arid belt to about ±30° latitude, and the overriding 482 

effects of lower annual temperatures in the temperate humid belt poleward of ±30° latitude to 483 

account for the consistently low CO2 consumption rates found in those mid- to high latitude 484 

locales.  485 

We estimate from the paleogeographic reconstructions (Fig. 6) that the Pangea 486 
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continental area within the 5°S to 5°N latitude band decreased from ~13 million square 487 

kilometers (Mkm2) for Pangea B in the Early Permian (and a similar area in the Late 488 

Carboniferous) to ~9 Mkm2 for Pangea A in the Late Permian. This represents a ~30% decrease 489 

in land area, or a reduction in land area from around 30% to around 20% of the total surface area 490 

in the 5°S-5°N latitudinal belt (44.5 Mkm2, or 8.7% of Earth’s 510 Mkm2 total surface area) with 491 

a complementary 13% increase (31.5 to 35.5 Mkm2) in oceanic area that incidentally usually has 492 

lower surface albedo than most land areas. Somewhat smaller relative changes in land area are 493 

estimated for the 10°S to 10°N latitude band: ~21.5 Mkm2 for Pangea B and ~18 Mkm2 for 494 

Pangea A (without the China-Cimmerian blocks), a decrease from ~24% to ~20% in land area in 495 

the ±10° latitude band (88.6 Mkm2, or 17.4% of Earth’s total surface area).  496 

The various East Asia (e.g., South and North China) and Cimmerian (e.g., Iran) 497 

continental blocks may account for an additional 1–3 Mkm2 of land area within 5° of the equator 498 

but their precise locations with time are at present difficult to estimate. Paleomagnetic data show 499 

that the North and South China cratons (NCB and SCB, respectively) were close to the equatorial 500 

belt over much of the Carboniferous and Permian, which we register as a more or less constant 1-501 

2 Mkm2 land presence there including during the Pangea B to Pangea A transformation. 502 

Moreover, the NCB and SCB become important venues in the Permian for low latitude coal 503 

mires (Cleal and Thomas, 2005), which largely ceased to form in the Euramerica part of 504 

equatorial Pangea after the Late Carboniferous (Ziegler et al., 2003) (Fig. 6). Other uncertainties 505 

concern the size of the Cimmerian microcontinental blocks (e.g., Iran, Qiangtang [Tibet], but 506 

also the less known Afghanistan and Karakorum terranes), which rifted off the northern margin 507 

of Gondwana during the opening of the Neo-Tethys in the Early Permian, and the timing of their 508 

drift across the equatorial humid belt in the Middle to Late Permian (Muttoni et al., 2009a, b). 509 

We budget 1.5 Mkm2 for the Cimmerian microcontinents and place them in the equatorial humid 510 

belt just after the transformation of Pangea B to Pangea A, which would counterbalance some of 511 

the associated land area reduction in central Pangea. A possible scenario is that the total (Pangea 512 

plus East Asia) land area within the 5°S to 5°N latitude band was ~14 Mkm2 for the Early 513 

Permian and ~12 Mkm2 for the Late Permian, in which case the reduction of equatorial land area 514 

would be a more modest ~2 Mkm2 or 14%. 515 

Geological landscape across Pangea B and its transformation to Pangea A  516 
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Pangea B and its eventual transformation to Pangea A were also accompanied by 517 

latitudinal and vertical movements in the evolution of the Greater Variscan orogen that played 518 

important roles in controlling CO2 drawdown from silicate weathering as well as organic carbon 519 

burial. In the Late Carboniferous–Early Permian, the orogen was associated with crustal thinning 520 

and localized subsidence with formation of intra-montane (intra-orogenic) basins, and extensive 521 

magmatism (Franke, 2014). This tectonic pattern was associated with the oblique convergence of 522 

Laurasia and Gondwana (with dextral shearing sensu Arthaud and Matte (1977)) starting by the 523 

Early Carboniferous and continuing into the Late Carboniferous–Early Permian. Topographic 524 

relief may have been focused along shear zones or exhumed crystalline massifs (Iberian, 525 

Armorican, Central, and Bohemian; Fig. 8A) but a significant signature of the orogen by the Late 526 

Carboniferous (contra the high altitude plateau model of Goddéris et al. (2017)) was extension 527 

and subsidence (Franke (2014) and references therein). In the Variscan foreland and cratonic 528 

basins of the North Sea, the occurrence of marine horizons within the Late Carboniferous coal-529 

bearing sequences is evidence of generally very low elevations in these peripheral regions of the 530 

orogen (Glennie, 1986); similarly, the presence of benthic foraminifera in the thick 531 

volcanoclastic succession filling the Early Permian intra-montane Collio Basin of the Southern 532 

Alps indicates it was at least partly at sea level (Sciunnach, 2001).  533 

Elevations were thus probably not all that high even though the Late Carboniferous–Early 534 

Permian geological landscape during the time of Pangea B was nonetheless dominated by 535 

exposures of deformed and metamorphosed Variscan crust dissected by normal faults that 536 

delimited troughs filled with variable amounts of volcanics, continental (e.g., lacustrine, coal-537 

bearing) and even marine sediments (Timmerman, 2004) (Fig. 8A). This can be observed across 538 

the Southern Alps where the stratigraphy of the Permian is particularly well exposed (Fig. 8B; 539 

Cassinis and Perotti, 2007; see also Muttoni and Kent, 2019a). The largest Late Carboniferous–540 

Early Permian extensional basins, however, developed in central-northern Europe and were filled 541 

by Late Carboniferous sediments and voluminous Lower Rotliegend volcanics with a regional 542 

pulse in the Early Permian (Stephenson et al., 2003; Heeremans et al., 2004). The more elevated 543 

portions of the orogen were presumably localized in the Iberian, Armorican, Central, and 544 

Bohemian Massifs (Fig. 7A) as well as in the Alleghenian collision zone in Mexico, Florida, and 545 

the Carolinas (Murphy et al., 2011) and are constituted by complex suites of Paleozoic rocks 546 

including felsic and intermediate (meta)magmatic units and mafic complexes with (meta)basalts 547 
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and (meta)gabbros interpreted as ophiolites related to the consumption of the Rheic Ocean (see 548 

also below). 549 

In the Middle to Late Permian, during and just after the Pangea B to Pangea A 550 

transformation, topographic relief was further reduced as subsidence and sediment 551 

accommodation space diminished and the basins were overlain by extensive blankets of 552 

continental siliciclastic sequences. This depositional pattern is observed in the Southern Alps 553 

(Verrucano-Valgardena sandstones, Fig. 8A,B; Cassinis and Perotti, 2007) and elsewhere in 554 

Europe, where the Upper Rotliegend sandstones expanded laterally much beyond the former 555 

Early Permian troughs (Heeremans et al., 2004) as observed for example in the Polish Basin 556 

(Stephenson et al., 2003) (Fig. 8A,C). The Greater Variscan geological landscape of equatorial 557 

Pangea in North America and Europe thus evolved from being characterized by highly subsiding, 558 

sometimes coal-rich basins (coal deposition occurred mainly in the Variscan foreland but also in 559 

intra-orogenic basins) bounded by crystalline-metamorphic massifs with ophiolites in the Late 560 

Carboniferous–Early Permian, to being generally flatter and largely covered by siliciclastics with 561 

scant coal preservation by the Late Permian. It is also worth noting that the orogen as the locus 562 

of bedrock exposures was near equatorial in the Late Carboniferous and Early Permian, and 563 

drifted substantially out of the prime equatorial weathering zone by the Late Permian after 564 

transformation of Pangea B to Pangea A (Fig. 8A; see also Fig. 6).  565 

Changes in temporal and geographic distribution of coal basins 566 

The Greater Variscan orogen was the locus of major coal basins of Europe and eastern 567 

North America (Cleal and Thomas, 2005; Greb et al., 2006; Rees et al., 2002; Tabor and 568 

Poulsen, 2008; Ziegler et al., 2003) as it drifted into the equatorial humid belt in the Late 569 

Carboniferous (Fig. 6C). As stressed by (Nelsen et al., 2016), ‘[e]xtensive foreland and cratonic 570 

basins, formed in association with the Pennsylvanian [Late Carboniferous]−Permian coalescence 571 

of Pangea and were positioned in the humid equatorial zone, ensuring the occurrence of both the 572 

subsidence requisite for long-term preservation of organic deposits and the climate necessary for 573 

promoting high water tables and biological productivity.’ These tectonically and 574 

paleogeographically controlled conditions that characterize the Greater Variscan orogen (Fig. 575 

8A) were what permitted high burial rates of organic carbon that most probably contributed to 576 

the drawdown of atmospheric CO2 that helped promulgate the LPIA (Feulner, 2017). 577 
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Coal deposits across equatorial North America and Europe decreased dramatically in 578 

areal extent from the Late Carboniferous (Fig. 6C) to the Early Permian (Fig. 6B) and virtually 579 

disappeared by the Middle to Late Permian (Fig. 6A) when the loci of tropical coal deposition 580 

with Euramerica flora shifted across the Tethys to coal deposits with Cathaysian flora of the East 581 

Asian blocks (e.g., Cleal and Thomas, 2005; Greb et al., 2006; Liu, 1990; Rees et al., 2002; Shao 582 

et al., 2012; Tabor and Poulsen, 2008; Wang et al., 2012; Ziegler et al., 2003) (see also Fig. 1). 583 

The virtual disappearance of equatorial coals in North America and Europe could be related, in 584 

part, to the moderate northward motion of the Greater Variscan orogen out of the equatorial 585 

humid belt and into the arid tropics, which eventually resulted in evaporite (Zechstein) 586 

deposition over central Europe by the Late Permian (Fig. 6A). Another factor was probably a 587 

preservation effect due to diminished accommodation space of the previously highly subsiding 588 

and coal-rich Late Carboniferous basins. For example, the Graissessac–Lodève Basin in southern 589 

France (Pochat and Driessche, 2011) has buried coal mires in the Late Carboniferous–Early 590 

Permian when it dwelled at paleolatitudes close to the 5°S-5°N equatorial humid belt (Fig. 9A). 591 

At this same (Late Carboniferous–Early Permian) time, the basin was characterized by relatively 592 

high sediment accumulation rates that more than halved by the Late Permian (Fig. 9B). 593 

Accumulation of coal in the Graissessac–Lodève basin thus occurred in the Late Carboniferous–594 

Early Permian when sediment accumulation rates were the highest and the basin was closest to 595 

the equator. Similar observations can be made for the much larger Donets basin of the Ukraine 596 

(Sachsenhofer et al., 2012) where the timing of coal accumulation is confined to the Late 597 

Carboniferous when the basin drifted northward across the equatorial humid belt (Fig. 9A) while 598 

experiencing the relatively highest accumulation rates (Fig. 9B).  599 

In this respect, the interpretation of aridification over equatorial Pangea from the 600 

Carboniferous to the Permian (e.g., Tabor and Poulsen, 2008; Ziegler et al., 2003) is worth 601 

reconsideration (Pochat and Driessche, 2011). The generalized transition from Late 602 

Carboniferous–Early Permian black shale-coal deposition to Late Permian red bed (and no coal) 603 

accumulation was more likely a natural outcome of the way these basins evolved and became 604 

filled during the Permian along with their northward drift into the boreal tropical arid belt rather 605 

than due to global changes in climate such as monsoons (e.g., Kutzbach and Gallimore, 1989). 606 

The debate is yet to be settled (Michel et al., 2015) but we would note that coal forests persisted 607 

into the Late Permian over the equatorial East Asia continental blocks (Fig. 6A; Greb et al., 608 
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2006; Rees et al., 2002) indicating no aridification in these equatorial basins where subsidence 609 

was evidently not a limiting factor for coal preservation (Wang et al., 2011). 610 

Unlike the European-North American and East Asia coals that are equatorial, the Siberian 611 

coals with Angaran flora are temperate. Moreover, the chronostratigraphy of the Kuznets basin 612 

(one of the largest coal basins of Siberia) can be interpreted to show that these areas of Siberia 613 

had to drift out of the northern tropical arid belt and into the boreal temperate humid belt before 614 

coals could accumulate (Davies et al., 2010) (Fig. 9A). Temperate latitude coals of Gondwana 615 

flora also developed in the Southern Hemisphere, sometimes interspersed with glacial deposits, 616 

but always outside (more southerly of) the austral tropical arid belt (Griffis et al., 2019; 617 

Montañez and Poulsen, 2013) (Fig. 6). Temperate latitude coals then dominate the Mesozoic and 618 

Cenozoic.  619 

Changes in CO2 consumption from silicate weathering and organic carbon burial 620 

Although it is difficult to directly inventory organic carbon burial and associated CO2 621 

consumption due to coal generation across the Greater Variscan orogen and elsewhere, the global 622 

contribution of organic carbon burial (marine and terrestrial; Magaritz and Holser (1990)) can be 623 

estimated as the fraction of total carbon consumption (forg) from marine carbonate δ13Ccarb data 624 

according to: 625 

 forg = (δ13Ccarb − δ13Cout)/(δ13Ccarb − δ13Corg)      (1) 626 

where δ13Cout is the nominal riverine or long-term volcanic carbon isotopic value of -5‰ and 627 

δ13Corg is contemporaneous organic carbon with an assumed photosynthetic carbon fractionation 628 

of -25‰ (Caves et al., 2016; Hayes et al., 1999; Kump and Arthur, 1999). We interpolated the 629 

forg data with a LOWESS function (Fig. 1D) although it should be noted that the δ13Ccarb data of 630 

Veizer et al. (1999) used to calculate forg are severely unevenly distributed in the Carboniferous–631 

Permian time interval (1259 observations from 360 to 295 Ma but only 122 from 295 to 250 Ma 632 

where the mean is consequently dashed in Fig. 1D).  633 

The δ13Ccarb data of Veizer et al. (1999) were plotted by Goddéris et al. (2017) who 634 

characterized them as mostly showing uniform high values from 360 to 260 Ma. However, we 635 

call attention to the significant increase in forg in the densely populated part of the record from 636 
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around 0.25 at 330 Ma to 0.32 at 320 Ma and peaking at 0.35 in the Moscovian (~310 Ma), a 637 

pattern that parallels the increase in coal forest area (Fig. 1C) and in glacial frequency (Fig. 1B). 638 

The increase in forg also broadly coincides with a peak at around 310 Ma in seawater 87Sr/86Sr 639 

values as a proxy for higher continental silicate weathering (Fig. 1E). The available δ13Ccarb data 640 

for the earliest Permian still have relatively high positive values (pointing to high forg), which 641 

might reflect enhanced organic carbon burial in equatorial coal mires in the Far East (Fig. 1C) or 642 

perhaps in the oceans (Chen et al., 2018), for example, the Permian Basin of West Texas (EIA, 643 

2018), but the data are too sparse to determine any systematic pattern of change in organic 644 

carbon burial for the rest of the Permian (younger than ~295 Ma). In any case, increased organic 645 

carbon burial may have amplified drawdown of pCO2 from silicate weathering CO2 646 

consumption, perhaps from higher input of nutrients like phosphorus (Schrag et al, 2002), to 647 

levels below the glacial threshold in the Late Carboniferous–Early Permian (Fig. 1F). 648 

More tractable to evaluate is CO2 consumption from continental silicate weathering. The 649 

modeling by Goddéris et al. (2017) estimated the contribution to global CO2 consumption from 650 

silicate weatherability of an initially highly elevated Greater Variscan orogen in five time slices. 651 

From a null amount at 350 Ma at its nascency, the Greater Variscan orogen contribution to 652 

global CO2 consumption peaked at 35% at 308 Ma from the effects of presumed peak altitudes of 653 

5,000 m with steep slopes, and decreased to about 11% at 272 Ma with maximum altitudes of 654 

2,000 m when thicker saproliths started to form. A Pangea A-type configuration was used for all 655 

these time slices. If instead a more appropriate Pangea B configuration is used for these time 656 

slices and all else kept the same, the addition of ~4 Mkm2 continental area in the equatorial 657 

humid belt ought to have made CO2 consumption proportionately higher by ~57% at 308 Ma and 658 

decreasing to ~18% at 272 Ma, which was then further reduced by ~30% because of the 659 

proportionate decrease in equatorial continental area resulting from the transformation from 660 

Pangea B to Pangea A by 260 Ma. This comparison assumes a similar areal distribution of 661 

weatherable rock types, which we attempt to delineate for our case. 662 

We estimate that the Greater Variscan orogen delineated by Golonka (2002) was about 663 

7.5±1 Mkm2 in extent (Fig. 2) and, by inspection of Figure 6, that about 1/2 of its footprint 664 

(3.75±0.5 Mkm2) resided within the equatorial humid belt (5°S to 5°N) at any given time, first its 665 

eastern sector in the Late Carboniferous, then its western sector in the Early Permian as Pangea 666 
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B drifted to the north. By the Late Permian, only about 1/3 (2.5±0.33 Mkm2) of the orogen (its 667 

western part) still resided in the equatorial humid belt as Pangea (now transformed to the A-type 668 

configuration) continued drifting northward. We assume as a gross estimate that the crystalline 669 

exposures potentially subject to silicate weathering were concentrated in the Variscan crystalline 670 

massifs (e.g., Iberian, Bohemian, Central, Armorican, Fig. 8A; see also Figure 2 in Murphy and 671 

Gutierrez-Alonso (2008)) that were locally exhumed (e.g., Zeh and Brätz, 2004; Corsini and 672 

Rolland, 2009; Pfeifer et al., 2018) relative to the surrounding lower relief orogen (Franke, 673 

2014). These massifs are composed of (i) silicate rocks such as Carboniferous–Early Permian 674 

felsic and intermediate magmatic rocks as well as basalts and gabbros pertaining to earlier 675 

Paleozoic ophiolitic suites and their derived metamorphic products such as orthogneisses, 676 

granitoids, metagabbros, and (ii) Ca- and Mg-poor lithologies such as Carboniferous–677 

Permian non-metamorphic quartzofeldspathic sediments as well as Devonian–Carboniferous 678 

metasediments of various composition (Fig. 8B,C and also Pfeifer et al., 2018; Pochat and 679 

Driessche, 2011).  680 

We consider three scenarios in which the areal percentage of the Greater Variscan orogen 681 

was constituted by exhumed and weatherable silicate rocks of mixed lithology (granitic-gneissic-682 

basaltic) in the various crystalline massifs that amounted to 30±5%, 50±5%, and 70±5%. In 683 

assigning CO2 consumption from silicate weathering, we note that Dessert et al. (2003) found 684 

that weathering of Ca- and Mg-rich mafic rocks that are exposed under optimal temperature and 685 

runoff conditions typical of the equatorial humid belt may consume anywhere from 84.5 t 686 

CO2/yr/km2 (t=tonne, 103 kg) as observed for modern SE Asia in toto (Fig. 7C) to 282 t 687 

CO2/yr/km2 as observed for the modern island of Java alone, suggesting a gross average of 688 

100±25 t CO2/yr/km2. Effective CO2 consumption from silicate weathering of intermediate rocks 689 

is much lower, for example, a granodiorite watershed in Puerto Rico with a high runoff (~360 690 

cm/yr) comparable to that of Java (and a 22°C mean annual temperature) has CO2 consumption 691 

of only ~55 t CO2/yr/km2 (Dessert et al., 2001; White and Blum, 1995). Accordingly, we assign 692 

nominally 1/2 of the weathering rate of basaltic terrain with a rough estimate of 25% uncertainty, 693 

or 50±12.5 t CO2/yr/km2, to mixed lithology (granitic-basaltic-gneissic) land areas under optimal 694 

weathering conditions.  695 

The estimated parameters for the Greater Variscan orogen area straddling the equatorial 696 

humid belt are then used to calculate CO2 consumption fluxes for B (Late Carboniferous–Early 697 
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Permian Pangea B) and A (Late Permian Pangea A):  698 

B (Mt CO2/yr) = 3.75±0.5 Mkm2 * x±0.05 * 50±12.5 t CO2/yr/km2   (2) 699 

A (Mt CO2/yr) = 2.5±0.33 Mkm2 * x±0.05 * 50±12.5 t CO2/yr/km2   (3) 700 

where x represents the crystalline fraction of the orogen expressed as 0.3 (30%), 0.5 (50%), and 701 

0.7 (70%) each with an assigned uncertainty (1𝜎 ) of 0.05. We evaluate these equations 702 

statistically by generating 5000 random combinations of the three parameters within their 703 

uncertainty bounds. For B (Late Carboniferous–Early Permian Pangea B), we obtain rounded 704 

mean estimates of 61±10 (1σ) Mt CO2/yr consumption for x=0.3, 98±16 Mt CO2/yr for x=0.5, 705 

and 135±22 Mt CO2/yr for x=0.7  (Fig. 10A); for A (Late Permian (Pangea A), we obtain 40.5±7 706 

(1σ) Mt CO2/yr for x=0.3, 66±11 Mt CO2/yr for x=0.5, and 91±15 Mt CO2/yr for x=0.7 (Fig. 707 

10B). We can express these CO2 consumption fluxes for the Greater Variscan orogen as 708 

percentages of global silicate weathering CO2 consumption required to balance the assumed 709 

outgassing flux of 260 Mt CO2/yr; the percentages are 12±2%, 19±3%, and 26±4% for Late 710 

Carboniferous–Early Permian Pangea B (Fig. 10A), and 8±1%, 13±2%, and 17.5±3% for Late 711 

Permian Pangea A (Fig. 10B), in each case for x=0.3, x=0.5, and x=0.7, respectively. 712 

 Considering the central option with x=0.5, tectonically sliding only about 1.25 Mkm2 of 713 

the Greater Variscan orogen hosting about 50% mixed silicate crystalline rocks out of the potent 714 

equatorial humid weathering belt would imply a reduction of 6 percentage points of global 715 

silicate weathering CO2 consumption from 19±3% in the Late Carboniferous–Early Permian to 716 

13±2% in the Late Permian. If we attempt to incorporate also the effects of orogen beveling and 717 

siliciclastic-saprolith cover development (transport-limitation), then we could consider the option 718 

with x=0.5 for the Late Carboniferous–Early Permian and the option with x=0.3 for the Late 719 

Permian. This would imply that a reduction of 11 percentage points (19±3% to 8±1%) of global 720 

silicate weathering CO2 consumption. To place these estimates in perspective, we note that the 721 

CO2 consumption rates estimated by Dessert et al. (2003) correspond to nearly 9% for just the 722 

modern SE Asia volcanic arc province, and to about 1/3 for all modern basaltic provinces, of 723 

total continental silicate weathering CO2 consumption. 724 

In fact, the arc-continent collision complex of SE Asia/Indonesia that straddles the 725 

equator and has extraordinarily high CO2 consumption  (Dessert et al., 2003) is the modern 726 
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analogue of the Greater Variscan orogen and is thought to be a major factor in maintaining low 727 

pCO2 for the ongoing Late Cenozoic Ice Age (Kent and Muttoni, 2013; Macdonald et al., 2019). 728 

Interestingly, SE Asia/Indonesia also has by far the greatest extent of tropical peatlands today 729 

(Page et al., 2011) even though the global ocean δ13Ccarb record does not point to increasing 730 

organic carbon burial in the latter part of the Neogene (Derry and France-Lanord, 1996; Katz et 731 

al., 2005). 732 

Demise of the LPIA with a final hiccup 733 

Following the CO2 paradigm, we suppose that the demise of the LPIA resulted primarily 734 

from increasingly transport-limited carbon sequestration from silicate weathering as the Greater 735 

Variscan orogen was flattened and accommodation space of the coal basins became reduced as 736 

these prime venues of carbon consumption drifted northward into the arid belt and continental 737 

area in the equatorial humid belt became reduced with transformation from Pangea B to Pangea 738 

A by the Late Permian. Indeed, the decrease in land area from the Pangea B to Pangea A 739 

transformation scaled to the modeling results of Goddéris et al. (2017) leads us to suggest that if 740 

higher pCO2 from collapse of an equatorial mountain belt led to the terminal throes of the LPIA 741 

by the Early Permian, the even higher pCO2 from reduction of equatorial land area could have 742 

ensured its final demise by the Late Permian.  743 

However, there was a notable attempt to reverse the Permian warming at around 260 Ma 744 

and through the Late Permian when δ18O values started to increase (cooler water temperatures) 745 

(Fig. 1G) and 87Sr/86Sr values also started to increase (more continental radiogenic sources) (Fig. 746 

1E). The reversal in trends coincides with: 1) the emplacement of the Emeishan flood basalt 747 

province at ~260 Ma (Xu et al., 2018) virtually at the equator on the South China Block (Huang 748 

and Opdyke, 1998) and which remained within the equatorial humid belt for the rest of the Late 749 

Permian (Fig. 11); and 2) drift into the equatorial humid belt of the Cimmerian continental 750 

blocks that rifted off the northern margin of Gondwana in the Early Permian (Fig. 6). The pre-751 

eruptive CO2 contents of flood basalts are estimated to be only around 0.2 to 0.5 weight% (e.g., 752 

Self et al., 2005) and even with a component of deep intrusive degassing (Black and Gibson, 753 

2019), CO2 emissions that occur only on the order of a million years or less as for the canonical 754 

Deccan Traps (Schoene et al., 2019; Sprain et al., 2019) might have little prolonged climate 755 

warming effect (Caldeira and Rampino, 1990). On the other hand, flood basalts are Ca and Mg-756 
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rich (~15 weight% for the Emeishan; Shellnut and Jahn, 2011) so that weathering of even a 757 

modest fraction of the Emeishan flood basalts (>0.5 Mkm2; Courtillot and Renne, 2003), as we 758 

suggest occurred during their ~10 Myr passage through the equatorial humid belt in the Late 759 

Permian, could have resulted in an appreciable drawdown of pCO2. The increasing 87Sr/86Sr 760 

values in the Late Permian, on the other hand, are better attributed to more intense weathering of 761 

the Cimmerian continental blocks passing through the equatorial humid belt; their silicate 762 

weathering would have further increased CO2 consumption and help explain the cooling trend in 763 

the Late Permian.  764 

Late Permian cooling ended with emplacement of the Siberian Traps flood basalts at 765 

around the Permian–Triassic boundary (252 Ma; Burgess et al., 2017). This was also about when 766 

the Emeishan flood basalt province drifted out of the equatorial humid weathering belt. Direct or 767 

indirect CO2 venting associated with the Siberian flood basalts may have been substantial given 768 

their vast size (Courtillot and Renne, 2003) and emplacement into organic-rich sediments 769 

(Svensen et al., 2009), and hence responsible for extreme albeit transient greenhouse conditions 770 

(Sun et al., 2012). Kump (2018) made the interesting suggestion that the CO2 emissions 771 

overwhelmed silicate weathering feedback regulation that was constrained by aridity associated 772 

with high continentality of Pangea and subdued global rock uplift. However, Pangea existed well 773 

before the Permian–Triassic boundary time and in fact, during the LPIA, whereas determining 774 

even regional uplift rates is strongly model-depend (e.g., Goddéris et al., 2017). Another 775 

explanation follows naturally from a combination of these discussed factors: 1) very low silicate 776 

weathering CO2 consumption compensating for emissions of the Siberian flood basalts due to 777 

cold polar latitudes of emplacement that inhibit silicate weathering (Fig. 7C); 2) northward drift 778 

of the highly weatherable Emeishan flood basalts out of the equatorial humid belt (Fig. 11); and 779 

3) drift of the already flattened Greater Variscan orogen into the Zechstein arid belt that already 780 

reduced this once powerful sink of CO2 consumption by the Late Permian (Fig. 6A).  781 

Conclusions 782 

• Within the CO2 paradigm of climate change, we make the case that the Late Paleozoic Ice 783 

Age (LPIA) resulted from silicate weathering CO2 consumption driven by the Greater 784 

Variscan (Alleghenian-Mauritanide-Hercynian) collision zone between the southern margin 785 

of Laurasia and the northern margin of Gondwana forming Pangea B that was of wide 786 
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meridional extent as it drifted northward into the equatorial humid belt by the Late 787 

Carboniferous where exhumed massifs experienced intense silicate weathering and shed 788 

sediment into nearby coal basins providing organic carbon burial. Horst exhumation and 789 

graben subsidence largely started to wane in the Early Permian and culminated with the 790 

tectonic transformation to Pangea A along a dextral shear zone that reduced continental area 791 

in the equatorial humid belt as the eroded orogen drifted into the tropical arid belt by the Late 792 

Permian. This tectonic scenario is strongly supported by the best available, least-biased 793 

paleomagnetic data that provide practically the only independent means of determining 794 

ancient latitudes. 795 

• The LPIA coincides with the most extensive coal forests in Earth history whose inception 796 

correlates to increased organic carbon burial based on the δ13C marine carbonate record and 797 

which are closely related geographically and temporally with and quite possibly fertilized by 798 

enhanced silicate weathering of the equatorial Greater Variscan orogen as the driver for 799 

reduced pCO2.  800 

• The northward motion of Pangea and its transformation from Pangea B to Pangea A acted 801 

conjointly to produce an overall 30% reduction of continental land area within what we 802 

suggest was a narrow equatorial humid belt from the Late Carboniferous–Early Permian to 803 

the Late Permian, including a proportionate (~one-third) reduction of areal extent of the 804 

Greater Variscan orogen by which time the eroded terrane drifted farther northward into the 805 

Zechstein arid belt that further reduced CO2 consumption from silicate weathering.  806 

• The Emeishan continental flood basalt province that was emplaced on the South China 807 

Craton in an equatorial setting at ~260 Ma seemed to have reinvigorated CO2 weathering 808 

drawdown and thereby initiated a cooling trend in the Late Permian until the province drifted 809 

into the tropical arid belt by the Early Triassic.  810 

• In contrast, the emplacement at the end of the Permian of the massive Siberian Traps in polar 811 

latitudes largely mitigated their weathering and CO2 consumption. Indeed, the volcanic and 812 

contact metamorphic emissions may well have overwhelmed a silicate weathering machine 813 

weakened from drift of weatherable Emeishan flood basalts and flattened Greater Variscan 814 

orogen out of the equatorial humid belt and helped inaugurate a greenhouse world that 815 

effectively lasted until the Late Cenozoic Ice Age.  816 
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Figure captions 827 

Fig. 1. Chronostratigraphic context for the Late Paleozoic Ice Age and related phenomena in the 828 

Carboniferous and Permian. Conditions reflecting or more conducive to glaciated conditions 829 

increase to the right on the data plots. A) Geologic Time Scale 2012 (GTS2012; Gradstein et al., 830 

2012) with the geomagnetic polarity time scale (GPTS, compiled from Belica et al. (2017), Lanci 831 

et al. (2013) and Opdyke et al. (2000)); B) glacial deposit frequency on Gondwana continents 832 

(Montañez and Poulsen, 2013) and age ranges of well-dated glacial deposits in eastern Australia 833 

(Fielding et al., 2008a; Metcalfe et al., 2015); C) coal forest areas in four main regions (Cleal 834 

and Thomas, 2005); D) fraction organic carbon burial (forg) based on compilation of δ13C 835 

carbonate values from Veizer et al. (1999) ported to GTS2012 (Gradstein et al., 2012) and 836 

interpolated with a LOWESS function (LOcally WEighted Scatterplot Smoothing) using Past 837 

3.24 (Hammer et al., 2001) with 0.2 smoothing factor and bootstrapped 95% confidence limits 838 

(outer blue lines) about mean (central red line, dashed where data are sparse younger than 295 839 

Ma) (see text and Table S2); E) seawater 87Sr/86Sr curve from marine carbonates for the 840 

Carboniferous (Chen et al., 2018) and Permian (Korte and Ullmann, 2018) interpolated with a 841 

LOWESS function with 0.2 smoothing factor and bootstrapped 95% confidence limits (outer 842 

blue dotted lines) about mean (central red line); F) atmospheric CO2 proxy estimates (Royer, 843 

2014) shown as ±1𝜎 envelope around a 10-Myr moving average of the proxy data after Goddéris 844 

et al. (2017) with the green dashed lines representing CO2 thresholds below which a continental-845 

scale glaciation could be initiated (Lowry et al., 2014); G) conodont apatite 𝛿18O record from 846 

South China (Chen et al., 2013) interpolated with a LOWESS function with 0.2 smoothing factor 847 

and bootstrapped 95% confidence limits (outer blue dotted lines) about mean (central red line); 848 

H) continental surface area between 5°N and 5°S for Pangea B (based on reconstruction for 280 849 

Ma) and for Pangea A (based on a reconstruction for 260 Ma), with a linear interpolation for the 850 

transformation of Pangea B to Pangea A between ~275 and ~260 Ma, calculated from 851 

reconstructions in Figure 6. Em is chronostratigraphic level of emplacement of Emeishan LIP on 852 

equatorial South China Craton, Si of Siberian Traps on high-latitude Asia, and Ci is equator 853 

crossing of Cimmerian continental blocks in Tethyan realm. 854 

Fig. 2. Comparison of different Pangea configurations proposed for the Late Carboniferous. A) 855 

Conventional Pangea A reconstruction for 308 Ma after Golonka (2002) used by Goddéris et al. 856 



Thursday, April 16 2020 LPIA rev 3.7 Kent & Muttoni 30 

(2017) for modeling CO2 consumption from silicate weathering dependent on topographic relief 857 

of Greater Variscan orogen (outlined in yellow with high elevations in red). B) Preferred Pangea 858 

B reconstruction for 310 Ma showing superposed outline of Variscan Orogen (as in A) from 859 

Golonka, (2002) and Goddéris et al. (2017). Green shaded areas are latitudinal belts with positive 860 

net precipitation from generalized global climate model of Manabe and Bryan (1985) (see also 861 

Fig. 7). 862 

Fig. 3. Histogram of Carboniferous and Permian reference poles in 20 Myr age bins for Laurasia 863 

(top) and Gondwana (bottom) from compilation in Torsvik et al. (2012) plus additional igneous 864 

and E/I or I-corrected results from Gondwana (see text and Table S1). 865 

Fig. 4. Mean poles for independent 20 Myr age bins centered at 260 Ma, 280 Ma and 310 Ma for 866 

Laurasia (European coordinates) and Gondwana (NW Africa coordinates) for igneous and E/I or 867 

I-corrected results only compiled here (stars with A95s in filled blue) compared to those that 868 

include results from sedimentary units before (no-f) and after (f) blanket correction factor of 869 

f=0.6 from Torsvik et al. (2012) (diamonds with open A95s as labeled). See Table 1 for listings. 870 

Inset shows comparison of Adria mean pole for 280 Ma and for rest of Gondwana for 281 Ma; 871 

also shown (Adria-rot) is the Adria mean pole rotated with respect to NW Africa according to 872 

tectonic kinematic model for Mediterranean region of van Hinsbergen et al. (2019). 873 

Fig. 5. Paleogeographic consequences of reconstructing Pangea according to different mean 874 

poles for Laurasia and Gondwana. A) Attempt at a Pangea A-type fit for the Early Permian using 875 

optimized 280 Ma mean poles (only igneous and E/I or I-corrected sedimentary results) for 876 

Laurasia and Gondwana (ID4 and ID22, Table 1), which causes a prohibitively large overlap in 877 

continental crust. B) Pangea B reconstruction for Early Permian that satisfies within A95s same 878 

poles as in (A) by sliding Gondwana eastward by about 35° relative longitude. C) Pangea A-type 879 

reconstruction in Late Permian allowed within A95s by optimized 260 Ma mean poles (igneous 880 

and E/I or I-corrected sedimentary results) for Laurasia and Gondwana (ID1 and ID16, Table 1). 881 

Cape Hatteras locality on seaboard of eastern North America (C. Hatteras: presently 35.3°N 882 

75.5°W) and Cape Blanc locality on seaboard of NW Africa (C. Blanc: presently 21.0°N 883 

17.0°W) are shown for reference. 884 

Fig. 6. Paleogeographic reconstructions for (A) Late Permian Pangea A at 260 Ma, (B) Early 885 

Permian Pangea B at 280 Ma and (C) Late Carboniferous Pangea B at 310 Ma, based on 886 
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published igneous and E/I or I-corrected sedimentary poles from Laurasia and Gondwana as 887 

tabulated in Table S1 with the mean poles for reconstruction ages in Table 1. Mollweide full 888 

globe projections drawn using PaleoMac software (Cogné, 2003) with latitudinal positions of 889 

continental assemblies based on geocentric axial dipole hypothesis and within circles of 95% 890 

confidence of mean poles in Table 1 (260 Ma, poles ID1 and ID16; 280 Ma, ID4 and ID22; 310 891 

Ma, ID8 and ID26). Cape Hatteras locality on seaboard of eastern North America (C. Hatteras: 892 

presently 35.3°N 75.5°W) and Cape Blanc locality on seaboard of NW Africa (C. Blanc: 893 

presently 21.0°N 17.0°W) are shown for reference. (D) Tentative reconstruction for the Early 894 

Carboniferous at 330-350 Ma obtained using the (sparse) igneous poles from Laurasia (entries 895 

#65-66, Table S1; mean pole ID12, Table 1) compared to the only Early Carboniferous igneous 896 

pole from Gondwana (entry #90, Table S1; same as mean pole ID30, Table 1). Cimmerian 897 

continents (e.g., Iran) are placed after Muttoni et al. (2009a,b). For the East and SE Asia blocks 898 

at 260 Ma in (A), we use for Indochina pole P3 ‘Cam Thuy Fm.’ in Yan et al. (2018), for South 899 

China pole P2 ‘Emeishan, Yunnan’ in Yan et al. (2018), for North China pole P2 ‘Red shale, 900 

Mudstone Taiyuan, Shanxi’ in Zhang et al. (2018), for Tarim pole P2 ‘Xiaotikanlik Fm. (P2, 901 

Artinskian to early Chinhsian)’ in Yan et al. (2018), for Qiangtang pole P3 ‘Tuoba Fm.’ (Huang 902 

et al., 1992) in Yan et al. (2018). For the East and SE Asia blocks at 280 Ma in (B), we use for 903 

Indochina pole P1-2 ‘Tak Fa+Nong Pong+Khao Khwang’ of Yan et al. (2018), for South China 904 

pole P1 ‘Xingshan, Hubei’ in Yan et al. (2018), for North China pole P1 ‘Hancheng’ in Zhang et 905 

al. (2018), for Tarim pole P1 ‘Sishichang, Kaipaizileike of Aksu’ in Yan et al. (2018), for 906 

Mongolia pole ‘Argalintu’ in Zhang et al. (2018), for Qiangtang pole P1-2 ‘Changshehu and 907 

Xueyuanhe Fm.’ in Yan et al. (2018), for Sibumasu pole from the Woniushi Fm. of Huang and 908 

Opdyke (1991). For the East and SE Asia blocks at 310 Ma in (C), we used for South China pole 909 

C2-C3 ‘Dushan & Pingzhang, Guizhou’ in Yan et al. (2018), for North China pole C3 910 

‘Zhongwei, Ningxia’ in Yan et al. (2018), for Tarim pole C2-P1 ‘Tagarqi and Azgan Fm.’ in Yan 911 

et al. (2018), for Mongolia pole C2 ‘Gobi-Mandach ’ in Zhang et al. (2018), for Qiangtang pole 912 

C3-P1 ‘Zharigen and Nuoribagaribao Fm.’ in Yan et al. (2018). Intra-Pangea dextral shear zone 913 

(Irving, 2004) basically developed within the Greater Variscan orogen (dashed blue lines) and 914 

was active to transform Pangea B to Pangea A from ~275 to 260 Ma (Muttoni et al., 2009a). 915 

Green shaded bands highlight the equatorial and temperate humid belts (precipitation greater 916 

than evaporation) from a general circulation model of a coupled ocean-atmosphere system with 917 
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an idealized geography and whose boundaries were found to be relatively insensitive to a wide 918 

range of atmospheric CO2 concentrations (Manabe and Bryan, 1985) (see Fig. 7). Extent of 919 

LPIA glaciations is sketched in the Late Carboniferous (C) and Early Permian (B) 920 

reconstructions following Isbell et al. (2012) and Montañez and Poulsen (2013). Generic 921 

distribution of Permo-Carboniferous coal deposits is from Cleal and Thomas (2005), Greb et al. 922 

(2006), and Ziegler et al. (2003), Liu (1990) for North and South China blocks, and Huang et al. 923 

(1992) for Qiangtang. The Late Permian Zechstein evaporite basin of central Europe is indicated 924 

on the 260 Ma reconstruction (A). Loci of 260 Ma Emeishan large igneous province and the 252 925 

Ma Siberian Traps are shown by stars as labeled in Pangea A reconstruction (A).  926 

Fig. 7. Mean annual temperature (A) and net annual moisture (precipitation minus evaporation, 927 

P-E) (B) versus absolute latitude for pre-industrial (300 ppm), half pre-industrial (150 ppm) and 928 

eight times pre-industrial (2400 ppm) pCO2 from a global climate model with idealized 929 

geography (Manabe and Bryan, 1985) compared to CO2 consumption flux (C) for various 930 

modern watershed areas in basalts (from Table 2 in (Dessert et al., 2003)). The climate model 931 

and weathering data suggest that continental silicate weathering is likely to be most intense in the 932 

tropics (light orange shading in A) within the equatorial humid belt extending 5° (green shading) 933 

to perhaps 10° (lighter green shading in B) from the equator, but much less intense in the tropical 934 

arid belt to ~30° latitude due to decreased moisture and in the temperate humid belt (medium 935 

green shading in B) and higher latitudes due to lower surface temperatures. The high silicate 936 

weathering region was assumed more generously to extend over the annual migration of the 937 

modern intertropical convergence zone producing a rain belt extending to ±20° latitude by 938 

Jagoutz et al. (2016) or ±10° to 20° latitude by Macdonald et al. (2019). 939 

Fig. 8. A) General geologic landscape of Europe for the time of Pangea B (Late Carboniferous–940 

Early Permian) (redrawn from Pochat and Driessche, 2011; Timmerman, 2004; Arenas	et	al.	941 

2016) showing exposed/uplifted Variscan massifs with magmatic and ophiolitic rocks of 942 

variable metamorphic grade (dark gray), which represent preferred loci of silicate weathering, 943 

and foreland and intra-orogenic subsiding basins, which represent preferred loci of organic 944 

carbon burial. Also indicated are reference paleolatitudes from our paleomagnetic-based 945 

paleogeographic reconstructions at 310 and 280 Ma (0° = equator), and 260 Ma (20°N) marking 946 

the persistent northward drift of Pangea before (310 and 280 Ma) and after (260 Ma) its 947 

transformation from Pangea B to Pangea A. B) Transect across the Southern Italian Alps 948 
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(redrawn after Cassinis and Perotti, 2007) and C) transect across the Polish Basin (redrawn after 949 

Stephenson et al., 2003) showing the general evolution of the Variscan orogen from a horst-950 

graben type morphology in the Late Carboniferous–Early Permian, characterized by uplifted 951 

basement shoulders bounding subsiding basins, to a beveled morphology with less differential 952 

relief in the Late Permian when Upper Rotliegend and similar siliciclastics prograded over much 953 

of the continent, suturing the orogen and effectively reducing silicate weathering and organic 954 

carbon burial in reduced accommodation-space basins. 955 

Fig. 9. Latitudinal drift and depositional history of selected Late Paleozoic coal basins. A) 956 

Paleolatitude (this study) versus age (ported to Gradstein et al. (2012) timescale) of sedimentary 957 

successions in Graissessac–Lodève (France; Pochat and Driessche, 2011), Donets (Ukraine; 958 

Sachsenhofer et al., 2012), and Kuznet (Siberia; Davies et al., 2010; Reichow et al., 2009) basins 959 

including nominal time windows of coal occurrence. B) Sediment thickness versus age of 960 

Graissessac–Lodève (Pochat and Driessche, 2011) and Donets (Sachsenhofer et al., 2012) basins 961 

showing the reduction in sedimentation (accommodation space) from the Late Carboniferous–962 

Early Permian to later in the Permian. Coal burial occurs when subsidence and zonal climate 963 

conspire favorably to maximize sediment accumulation. 964 

Fig. 10. Histogram frequency distributions and fitted kernel functions of 5000 randomized 965 

simulations of CO2 consumption rates for the Greater Variscan equatorial orogen in (A) Late 966 

Carboniferous–Early Permian Pangea B, and B) Late Permian Pangea A, assuming the fractional 967 

exposure area consisted of 0.3±0.05, 0.5±0.05, or 0.7±0.05 mixed silicate lithologies (granitic-968 

basaltic-gneissic) weathering at a nominal CO2 consumption rate of 50±12.5 t CO2/yr/km2 969 

extrapolated from data in Dessert et al. (2003) (see text). CO2 consumption expressed in units of 970 

Mt CO2/yr and as percentage of global continental silicate weathering required to balance 971 

outgassing of 260 mT CO2/yr. 972 

Fig. 11. Paleolatitudal progression of the ~260 Ma Emeishan large igneous province (star; 973 

present location at 27° N 102°E; Xu et al., 2018) as a function of geologic time based on the 974 

apparent polar wander path for the South China Craton (Wu et al., 2017).  975 
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Fig. 3.  1498 
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Fig. 4.  1500 
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Fig. 6.   1504 
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Fig. 8.  1508 
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Fig. 10.  1512 
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Table 1. Carboniferous and Permian mean paleomagnetic poles for Laurasia and Gondwana. 1516 
             1517 
 1518 
ID C.Age M.Age  Lat  Lon A95 N K Reference  Notes   1519 
 (Ma) (Ma) (°N) (°E) (°) 1520 
             1521 
Mean paleopoles for Laurasia in European coordinates 1522 
 1523 
1  260  254±7 54.7 147.7 3.3  10 210 #1–10 (250-269 Ma)  EUR poles only 1524 
2  260    51.6 151.0 2.3  25 148 Torsvik et al. (2012)  no f 1525 
3  260    54.0 149.5 1.9  25 217 Torsvik et al. (2012)  f 1526 
 1527 
4  280  281±6 45.9 165.5 2.8   26 102 #11–36 (270-289 Ma) Bullard fit 1528 
5  280  281±6 45.6 162.7 3.3   26  73 #11–36 (270-289 Ma) Torsvik fit 1529 
6  280    45.0 161.8 2.6  39  74 Torsvik et al. (2012)  no f 1530 
7  280    45.6 162.0 2.6  39  74 Torsvik et al. (2012)  f 1531 
 1532 
8  310  311±8 35.3 160.5 7.9   8  50 #56–63 (303-322 Ma) Bullard fit 1533 
9  310  311±8 33.9 154.6 0.5  8  29 #56–63 (303-322 Ma) Torsvik fit 1534 
10 310    37.9 156.4 6.2  14  36 Torsvik et al. (2012)  no f 1535 
11 310    38.3 156.5 6.4  14  34 Torsvik et al. (2012)  f 1536 
 1537 
12 330  334±2 15.7 156.8 8.9   3 195 #64-66 (332-335 Ma) Bullard fit 1538 
13 330  334±2 14.8 153.6 3.5   3 1232 #64-66 (332-335 Ma) Torsvik fit 1539 
14 330    19.0 153.1 6.3   7  71 Torsvik et al. (2012)  no f 1540 
15 330    17.7 153.1 6.0   7  78 Torsvik et al. (2012)  f 1541 
 1542 
Mean paleopoles for Gondwana in NW Africa coordinates: 1543 
 1544 
16 260  263±5.5 52.7 238.6 5.7  6 138 #67-72  (252-267 Ma)  Lottes&Rowley fit 1545 
17 260  263±5.5 47.9 240.1 5.8  6 133 #67-72 (252-267 Ma) Torsvik fit 1546 
18 260    49.1 246.5 8.0  10  31 Torsvik et al. (2012)  no f 1547 
19 260    43.7 239.2 8.4  10  28 Torsvik et al. (2012)  f 1548 
 1549 
20 280  280±3 42.7 242.1 5.9  7 105 #75-81 (ADR only) 1550 
21 280  281±5 39.7 244.7 6.6  5 134 #73,74,82–84 (no ADR) Lottes&Rowley fit 1551 
 1552 
22 280  280±3 41.4 243.2 4.0  12 119 #73–84 (273-286 Ma) Lottes&Rowley fit 1553 
23 280  280±3 40.5 244.2 4.5  12  93 #73–84 (273-286 Ma) Torsvik fit 1554 
24 280    38.5 237.1 6.5   17  27 Torsvik et al. (2012)  no f  1555 
25 280    37.2 230.5 7.4   17  21 Torsvik et al. (2012)  f  1556 
 1557 
26 310  311±8 36.2 230.6 8.2   5  87 #85–89 (300-321 Ma) Lottes&Rowley fit 1558 
27 310  311±8 30.3 232.4 8.2   5  87 #85–89 (300-321 Ma) Torsvik fit 1559 
28 310    29.6 233.5 3.9  14  92 Torsvik et al. (2012)  no f 1560 
29 310    25.0 225.9 4.4  14  72 Torsvik et al. (2012)  f 1561 
 1562 
30 348  348 18.8 211.2 7.5  1  #90   Only one pole 1563 
31 340  348 18.8 211.2 7.5  1  Torsvik et al. (2012)  Same one pole 1564 
                 1565 
ID is mean pole, C.Age is the central age of Torsvik et al. (2012) mean paleopole, M.Age is the mean age of mean paleopole from 1566 
this study with ±1 standard deviation. Lat and Lon = latitude (°N) and longitude (°E) of mean paleopoles in European or NW Africa 1567 
coordinates, N = number of paleopoles in overall mean, K = Fisher’s precision parameter. Reference, either to item # in Table 1 or 1568 
to Torsvik et al. (2012). Notes: no f = mean paleopole without inclination flattening correction, f = mean paleopole with f=0.6 blind 1569 
inclination flattening correction (see Torsvik et al. (2012) for details); Bullard fit is for Laurasia into European coordinates using 1570 
parameters from Bullard et al. (1965), Lottes&Rowley fit is for Gondwana into NW Africa coordinates using parameters from Lottes 1571 
and Rowley (1990), Torsvik fit is for Laurasia into European coordinates and for Gondwana into NW Africa coordinates using 1572 
parameters from Torsvik et al. (2012). Poles ID 2, 3, 6, 7, 10, 11, 14, and 15 are from Table 5 of Torsvik et al. (2012); poles ID 18, 1573 
19, 24, 25, 28, 29, and 31 are from Table 7 of Torsvik et al. (2012) rotated to NW African coordinates using rotation parameters of 1574 
Torsvik et al. (2012). Arc distance between ID20 and ID21 = 3.6° 1575 
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