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Abstract

High-resolution (HR) medical images are preferred in clinical diagnoses and subsequent analysis. However, the acquisition of HR
medical images is easily affected by hardware devices. As an effective and trusted alternative method, the super-resolution (SR)
technology is introduced to improve the image resolution. Compared with traditional SR methods, the deep learning-based SR
methods can obtain more clear and trusted HR images. In this paper, we propose a trusted deep convolutional neural network-
based SR method named feedback adaptively weighted dense network (FAWDN) for HR medical image reconstruction in virtual
environment. Specifically, the proposed FAWDN can transmit the information of the output image to the low-level features by a
feedback connection. To explore advanced feature representation and reduce the feature redundancy in dense blocks, an adaptive
weighted dense block (AWDB) is introduced to adaptively select the informative features. Experimental results demonstrate that our
FAWDN outperforms the state-of-the-art image SR methods and can obtain more clear and trusted medical images than comparative
methods.

Keywords: Medical image super-resolution, trusted medical image reconstruction, deep convolutional neural network, feedback
mechanism, adaptive weighting

1. Introduction

Medical images are widely used for clinical diagnosis, in
which high-resolution (HR) images are preferred because they
can provide much more significant structure and texture details
than low-resolution (LR) images [1]. However, the acquisition
of HR medical images is limited by hardware devices.

As an effective and trusted alternative method, single im-
age super-resolution (SR) aims to reconstruct the HR image
from its LR counterpart. Image SR is initially proposed for
natural image. Lots of medical image SR methods have also
emerged in recent years, including interpolation-based [2, 3],
reconstruction-based [4, 5], and learning-based methods [6, 7].
Although the interpolation-based SR method is fast, the re-
constructed HR image of these methods is blurred. The
reconstruction-based methods consider image priors, e.g, non-
local [8] and self-similarity [9], but these methods always lead
to a lot of performance drop when the prior is inconsistent with
test images. Conventional learning-based methods, e.g., sparse
representation [6], compressed sensing [10], and random for-
est [11] have limited representation ability. Overall, the recon-
structed HR images obtained by above methods are blurred or
unreliable because these methods are susceptible to priors.

Recently, convolutional neural network (CNN) based SR
methods have achieved significant improvement in the perfor-

∗Corresponding author. Email:arielyang@scu.edu.cn

mance. Dong et. al. [12] propose the pioneering CNN-
based method, which uses a full convolution neural network
for natural image SR. After that, several SR networks focus
on deeper or wider network architecture design such as VDSR
[13], DRCN [14], SRDenseNet [15], and DRRN [16]. In ad-
dition to the CNN based methods, to obtain appealing visual
effect, perceptual loss [17] and generative adversarial network
(GAN) [18] are introduced into image SR. However, the tex-
tures and details generated by GAN may be different from the
ground truth. In medical image SR, numbers of deep learning-
based medical image SR methods have also been presented re-
cently. Pham et. al. [19] extend SRCNN to 3D cases for brain
MR images SR. As for 2D medical image SR, Wei et al. [20]
propose a deep network (DDSR) constructed by dense blocks
for MR and CT image SR. However, all of the above methods
are feedforward networks, in which the information can only
pass from the input to the output. It is known that there al-
ways exist difference between the reconstruction result and the
ground truth. In the feedforward network, its output cannot be
transmitted to the input for improving the performance. As a
consequence, these methods have limited ability to reconstruct
fine textures, especially for the images with complicated details
and textures.

To address the limitation of feedforward networks, we intro-
duce a feedback mechanism into SR networks and propose a
network denoted as Feedback Adaptive Weighted Dense Net-
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Figure 1: A simple illustration of our FAWDN. The input state is the output of
the input unit. The input of the hidden unit is the concatenation of the input
state and the hidden state of the previous time step.

work (FAWDN) for trusted medical image SR. The implemen-
tation of this feedback mechanism is based on recurrent neu-
ral networks (RNNs) since RNN is indispensable for the feed-
back mechanism [21]. Through the feedback mechanism, our
FAWDN can correct the error produced in the preceding time
step and obtain a clearer HR image step by step.

As shown in Figure 1, our FAWDN is comprised of three
parts: the input unit, the hidden unit, and the output unit, respec-
tively. The input unit is utilized to extract low-level features as
the input state. Then, the concatenation of the input state and
the hidden state will be fed into hidden unit to obtain a new hid-
den state, while the initial hidden state is same with the input
state. At each time step, the hidden state is passed to output unit
to reconstruct HR images. Therefore, a reconstructed HR im-
age is outputted by the FAWDN every time step. These recon-
structed images have the same size but will be clearer with the
time step. Besides, it will be also transmitted to the hidden unit
at the next time step as the feedback signal to achieve the feed-
back mechanism. To obtain a superior hidden state, an adap-
tively weighted dense block (AWDB) is introduced into the hid-
den unit. AWDB is built on dense links [22, 15] because dense
links have features reusing and strong representation capability.
Furthermore, the dense link can eliminate gradient vanishing.
However, in traditional dense links, each convolutional layer
equally receives features from all previous convolutional lay-
ers, which makes the input features of each convolutional layer
extraordinarily redundant. Therefore, we improve the original
dense links by adding an adaptive weighting group before ev-
ery convolutional layer in AWDB. So the convolutional layer
can adaptively select informative features and reduce the fea-
ture redundancy.

In summary, the contributions of this paper are as follows:

1. To improve medical images resolution, we introduce
FAWDN for medical image SR as an alternative method.

Experimental results indicate that the introduced FAWDN
could obtain superior SR performance over comparative
image SR methods.

2. To enhance the quality of reconstructed HR images, a
feedback mechanism based on RNN is presented to cor-
rect the errors produced by the network at preceding time
steps.

3. To reduce the redundancy of input features of convolu-
tional layers in dense link, we introduce adaptive weight-
ing groups into AWDB to adaptively select informative
features. The adaptive weighting groups can be trained
with the FWADN.

2. Related work

2.1. Feedback mechanism

In computer vision community, feedback mechanisms have
been explored for some high-level tasks, such as classification
[23], human pose estimation [24], and crowded counting [25].
However, since the targets of high-level and low-level tasks are
different, it is inappropriate to directly transfer these methods
to low-level vision tasks such as image SR. Furthermore, these
networks achieve a feedback mechanism in a top-down manner,
in which only the high-level feature is transmitted to the next
time step. However, in control theory, the feedback mechanism
refers to that a system transmits the output information to its in-
put for correcting the errors in the previous output. Since only
high-level feature rather than the output information is transmit-
ted to the low-level convolutional layers in [26, 24, 25], their
feedback mechanism is actually not strict. Different from the
feedback manner in the above methods, the feedback mecha-
nism in our FAWDN agrees with the strict feedback mecha-
nism, which will be detailed in Section 3.1. Containing the in-
formation of the output image, the feedback signal in FAWDN
modifies the input of the hidden unit. Accordingly, our FAWDN
can obtain a clearer HR image step by step.

The most relevant works to our network are [21] and [27],
whereas both of them are introduced to natural image SR.
Moreover, [27] transmits multiple high-level features to low-
level layers, but only the highest-level features contain infor-
mation of the output image. In other words, [27] is also incom-
patible with the strict feedback mechanism. Furthermore, the
hidden unit of our FAWDN is completely different from hidden
unit of [27] and [21] .

2.2. Deep-learning based image SR

As the first attempt of the DL-based method, SRCNN is lim-
ited in the representation ability because of the shallow net-
work. Therefore, subsequent networks, such as VDSR [13],
DRCN [14], and DRRN [16], focus on widening or deepen-
ing the network to improve the performance. Since there is
no learnable upsampling method in early SR networks, all of
these networks interpolate the LR input to HR size and extract
features in HR space. In other words, these networks super-
resolve LR images in the HR space, which results in compli-
cated computations. Not until sub-pixel convolution [28] and
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deconvolution [29] were introduced, numbers of networks di-
rectly adopted LR images as the input. Although recently pro-
posed SR networks [30, 31, 32, 33, 34] have achieved a signif-
icant improvement in performance and computation efficiency,
these networks are unable to remove artifacts in complicated
images, especially for richly-textured medical images. There-
fore, the proposed FAWDN integrates the feedback mechanism,
which is capable of correcting the artifacts by the feedback
mechanism.

Despite our FAWDN is based on RNN, it is different from ex-
isted RNN based SR network [14, 16, 35]. The first RNN-based
SR networks DRCN [14], achieved by a single recurrent convo-
lution layer, aims to decrease the parameters of the network. To
mitigate gradient dilemma in deep RNN, i.e, gradient vanish-
ing and gradient exploding, Tai et. al. [16] adopt a multi-path
residual learning and global residual learning in their DRRN.
Exploring dual hidden state for SR, Han et. al. [35] present
DSRN that transmits two states, i.e., LR state and HR state,
over each time step. Our FAWDN is different from above RNN
methods in two aspects. First, the above presented RNN-based
SR networks have no feedback mechanism. One reason is that
information of the output image is scarcely contained in the out-
put of the hidden state. The other reason is that only the hidden
state is fed into the hidden unit, which means that no input state
can be affected by the feedback signal. Second, our FAWDN
is different from these methods in the hidden unit. The hidden
unit of our FAWDN consists of two 1 × 1 convolutional layers
and a AWDB, while DRCN and DRRN respectively consist of a
single convolutional layer and an enhanced residual block. The
proposed AWDB can not only eliminate the gradient dilemma
but also adaptively choose informative features for reusing.

2.3. GAN for Image super-resolution
In the image SR community, current deep learning-based im-

age SR methods can be roughly divided into two types, which
are the restoration-oriented methods and perceptual-oriented
methods, respectively. The restoration-oriented methods aim to
reconstruct a HR image that is as close as possible to the ground
truth. All methods mentioned in Section 2.2 are restoration-
oriented methods. Contrastly, the perceptual-oriented method
aims to recover an appealing and photo-realistic HR image,
which contains more details or textures.

To obtain a perceptually appealing image, Johnson et al. [17]
introduced perceptual loss into image SR. The perceptual loss
consists of feature reconstruction loss, which is implemented
by minimizing the L2 norm of the difference of feature maps
outputted by a pretrained network with input of the SR im-
age and the ground truth. To further improve the perceptual
quality of SR image, Christian et al. [18] integrated the GAN
loss into the perceptual loss, in which the GAN loss is used to
force the SR image distribution similar to natural image dis-
tribution. Furthermore, texture matching loss was proposed in
EnhanceNet [36] to enforce the local similarity between the SR
image and the ground truth. To utilize semantic information to
super-resolve images, Wang et al. [37] proposed SFTGAN, in
which a image semantic segmentation map obtained by a pre-
trained semantic segmentation network is fed into the generator

along with the LR images. Also, Wang et al. [38] improved the
generator by residual-in-residual dense block and used the rela-
tivistic GAN as the discriminator in their ESRGAN. To further
improve the visual quality of reconstruction images, Zhang et
al. [39] trained a ranker to optimize generator in the direction
of indifferentiable perceptual metrics (i.e., PI [40], NIQE [41],
and Ma [42]). Recently, a gradual learning process [43] was
introduced into GAN for image SR to accelerate training and
improve the stability of GAN. To enhance the robustness of the
GAN, Zareapoor et al. [44] proposed a DualGAN for image SR
by the game between two generators and two discriminators.

Although GAN models can reconstruct appealing details and
textures, these methods always obtain lower PSNR and SSIM
than the restoration-oriented methods because the recovered
details or texture may be inconsistent with the ground truth
[18, 36, 37, 38]. However, for trusted medical image SR, one
expects the reconstructed HR image is as close as possible to
the ground truth. Therefore, we proposed a restoration-oriented
method (i.e., the proposed FAWDN) for medical image SR
rather than a perceptual-oriented method.

2.4. Super-resolution for medical image
The early medical image SR methods reconstruct HR images

with multiple LR images. For instance, Irani et al. [45] applied
iterative back projection (IBP) to several spatially shifted LR
images to restore HR images. After that, POCS [46] as well as
IBP [45] were utilized to produce 3D MR volume from num-
bers of 2D slices. However, these methods are complicate at-
tributed to the registration and fusion of multiple LR images.
Therefore, Rousseau et al. [47] proposed the first single image
based medical image SR method in which some extra informa-
tion of another HR image was introduced to super-resolve the
LR image. However, these early medical image SR methods
achieve blurred reconstruction images and even introduce extra
artifacts, because these methods lack effective image priors and
features.

Recently, various of learning based methods including con-
ventional learning based methods [48, 49, 50] and DL-based
methods [19] have been proposed. The conventional learning
based medical image SR, such as sparse coding [48, 49] and
compressive sensing [51] -based method, have limit ability to
recover image with complicated details or textures. Benefiting
from the strong feature extracting ability of deep neural net-
works , some DL-based SR methods have also emerged in the
medical image processing community. Pham et al. [19] pro-
posed SRCNN3D for brain MR images SR. Since the shallow
layers of SRCNN3D, the representation and mapping ability
are insufficient for medical image SR. To obtain better perfor-
mance, Wei et al.[20] proposed a deep dense network (DDSR)
for MR image SR. Although DDSR utilized a deep architec-
ture, its input is interpolated to HR size, which will take more
computing resources and time. A common deficiency in these
two methods is that they rarely consider the difference between
natural images and medical images, which only extend the SR
networks for natural images to medical images. Differently, as
the self-similarity of the medical image is more obvious than
the natural image, the combination of the feedback mechanism
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Figure 2: The architecture of our FAWDN.

and AWDB can adaptively use informative features and similar
structures to construct HR images.

3. Feedback adaptive weighted dense network

3.1. Network architecture
To achieve a strict feedback mechanism in neural networks,

three indispensable conditions are required to be met. First, the
network inevitably is recurrent over time so that the feedback
signal could be routed to the input at next time step. Second,
the feedback signal has to contain the information of the out-
put image, thereby satisfying the condition of output to input.
Third, the low-level features are combined with feedback sig-
nals as the total input. This is because no input feature can be
revised by feedback signal if there is no low-level feature.

As described in above, RNN is a necessary condition of feed-
back mechanism, so we build our FAWDN by RNN with time
steps of T . As shown in Figure 2-(a), the unrolled FAWDN con-
tains T sub-networks. Each sub-network can be regarded as an
independent network at a specific time step. Each sub-network
includes three parts: the input unit, the hidden unit, and the out-
put unit. Similar to other RNN, the parameters of these three
parts in FAWDN are shared across time steps. To achieve the
strict feedback mechanism, the output of the network naturally
needs to be transmitted to the input of the network. However,
since the output size (i.e., the width and height) is inconsistent
with the input size, the output is unable to be directly routed
to the input of the network as the feedback signal. Having the
same size with input image, the hidden state is an alternative as
long as it contains the information of the output image. To ob-
tain a superior feedback performance, the hidden state is routed
to the input state rather than the input image. In this way, the

hidden state can directly refine low-level features. Besides, the
input state is a perfect alternative of the input image as it is
constant in a feedforward propagation. Since the parameters of
the input unit are shared across time step, once the input image
is determined, the input state is a constant in a forward propa-
gation. Therefore, the feedback mechanism in our FAWDN is
achieved by transmitting the hidden state to the input state.

Given the input image It of t-th time step, the output of
corresponding time step of the network is denoted as Ot. As
shown in Figure 2-(a), the output is obtained by the sum of
the residual image It

Res and the upsampled image. For imple-
menting the feedback mechanism, It has to be constant (i.e.,
I1 = I2 = · · · = IT ) in a forward propagation. Benefiting from
the feedback mechanism, Ot will be clearer and get closer to the
HR image as time step approaches T . Therefore, the proposed
FAWDN can be formulated as follows:

Ot = N(θ; It) + Iup (1 ≤ t ≤ T ), (1)

where N(θ; It) is our FAWDN with parameters of θ and the in-
put image of It, and Iup is a bilinear upsampled image of the
input image. Since T time steps is included, there are T outputs
in total. The size of these T outputs is same with that of the
ground truth, but the outputs will be closer to the ground truth
over time step due to the feedback mechanism. As aforemen-
tioned, Ot will become clearer step by step. Consequently, only
OT is chosen as the final reconstructed HR images, and other
outputs will be tied to the loss functions to make the hidden
state contain the information of the output image.

For each sub-network at a specific time step, the input unit
only consists of a single convolutional layer with kernel size of
3 × 3 and stride of 1 to extract low-level features. Thus, the
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Figure 3: The MR images in the dataset MRI13.

input state can be obtained by

xt = fin(It) = max(W ∗ It + b, 0), (2)

where xt and fin(·) are the input state of t-th time step and the
combined function of convolution and activation function, re-
spectively. The W and b are respectively the weight and bias of
the input unit. max(·, 0) and ∗ denote ReLU activation function
and convolutional operation, respectively. Since the parameters
of input unit is shared across time steps and It = I, xt is also
constant across time steps. Therefore, we can select the input
state xt as an alternative input for achieving feedback mecha-
nism.

To implement the feedback mechanism, the hidden unit
needs to receive both the input state and the feedback signal.
In the proposed FAWDN, we use the previous hidden state ht−1
as the feedback signal of recurrent time step t. Therefore, the
hidden unit can be formulated as follows:

ht = fh(θh; [xt, ht−1]), (3)

where fh(θh; ·) represents the function of the hidden unit with
parameters of θh. [xt, ht−1] denotes concatenation of xt and ht−1,
where h0 = x1.

In order to make the hidden state contain the information of
the output image, it is necessary to feed the hidden state into
the output unit so that a output image can be generated by the
output unit. Then, the information of the output image can be
restricted in hidden state by tying a loss function to the output
image. The output unit is comprised of one or two deconvolu-
tional layers followed by a convolutional layer. For x2 and x3
upscale, a single deconvolutional layer is used to upsample the
features. For x4 upscale, two deconvolutional layers for x2 up-
scale are stacked to upsampled the features. Therefore, we can
obtain the output of FAWDN at t-th time step by

Ot = fo(θo; ht), (4)

where the fo(θo, ·) refers to the function of the output unit with
parameters of θo.

If the loss function only tied to the last time step, the hidden
state of previous time steps cannot obtain the information of
the output image, thereby failing to achieve the feedback mech-
anism. When the loss function only tied to the last time step,
only the last hidden state hT can be used to reconstruct HR im-
ages, while other hidden states are unable to be used to recon-
struct HR images. In that case, these intermediate hidden states
have no information of the output image, which is inconsistent
with the strict feedback mechanism. As the hidden state is fed
into the output unit to generate the HR image every time step,
we tie a loss to the HR image every time step to make all hid-
den states contain the information of the output image. In our
FAWDN, the L1 loss function is employed. The loss of t-th
time step can be obtained by:

Lt=
1
N

N∑
i=1

∥∥∥Ot
i − yi

∥∥∥
1, (5)

where N and yi respectively denote the number of batch size
and the i-th HR image in the batch. For FAWDN, the total loss
function can be obtained by L= 1

T
∑T

i=1(WtLt), where the Wt is
the weight of t-th loss function, and every Wt is set to 1 in our
experiments.

3.2. Hidden Unit

As shown in Figure 2-(b), the hidden unit consists of two
1 × 1 convolutional layers (i.e., C-In and C-Out) and an adap-
tive weighted dense block (AWDB). To achieve the feedback
mechanism, the hidden unit simultaneously receives both the
input state and the hidden state. C-In is used to modify the low-
level feature in input state with the hidden state. Then, AWDB
is utilized to further extract more informative and advanced fea-
tures. These features are adopted to reconstruct the HR image
at current time step as well as modify the low-level feature at
the next time step. Since numerous features are produced by
AWDB, finally, these features are compressed by C-Out as the
hidden state.
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Figure 4: The collected medical image SR dataset. (a) the distribution of images from various data sources; (b) the distribution of image types.

To correct the low-level feature in the input state, the hidden
state is routed to the input state as the feedback signal. First,
the low-level features is modified with the feedback signal by
C-In as follows:

u0 = fcin([xt, ht−1]), (6)

where fcin(·) denotes the function of C-In. [xt, ht−1] represents
the concatenation of the input state and the hidden state of the
previous time step. u0 represents the modified low-level feature.

Then, the modified feature u0 is fed into AWDB to extract
informative high-level features by adaptive weighted dense
links. As shown in Figure 2-(b), the dense links in AWDB are
weighted by the adaptive weighting group before each convolu-
tional layer. Through the adaptive weighting group, each con-
volutional layer in AWDB can adaptively select the informative
features according to its demands. Due to the dense link, lots
of feature maps {u1, u2, · · · , uD} are produced in AWDB as fol-
lows:

{u1, u2, · · · , uD} = fawdb(u0) (7)

where fawdb(·) denotes the function of AWDB. D and u j are the
number of layers and the output of the j-th layer in AWDB,
respectively. As shown in Figure 2-(b), every layer in AWDB
is comprised of an adaptive weighting group (see Figure 2-(c)),
a convolutional layer, and an activation function ReLU [52].
The output of each layer contains G (also named growth rate in
[15, 32]) feature maps and can be obtained by

u j = max( f j([w
j
0 · u1,w

j
1 · u2, · · · ,w

j
j−1 · u j−1]), 0) (8)

where f j(·) and max(·, 0) denote the function of the j-th con-
volutional layer and the ReLU activation function, respectively.
[·] represents the operation of concatenation. w j

c(0 ≤ c < j)
denotes the weight for the output of the c-th features inputted
to the j-th adaptive weighting group.

As shown in Equation 7, since lots of features are produced
by AWDB, it will need a lot of parameters and computational
burden to transfer all features to low-level feature. Therefore,
we use C-Out (see Figure 2-(b)) to compress the features, and
then the compressed features (i.e., the hidden state) are trans-
mitted to the next time step as the feedback signal. Therefore,
the hidden unit ht can be obtained by

ht = fcout ([x0, x1, · · · , xD]) (9)

where fcout(·) denotes the function of the second 1 × 1 convolu-
tional layer.

Table 1: The detail of the proposed FAWDN. Conv(cin, cout , k, s, p) and
Deconv(cin, cout , k, s, p) respectively denote the convolutional layer and the de-
convolutional (also named transposed convolutional) layer, where cin and cout
denote the number of input channel and out channel of the corresponding layer,
respectively. k, s, and p respectively represent the kernel size, stride and
padding of the convolutional or deconvolutional layer. W(16d) indicates the
adaptive weighting group with 16d weights. D denotes the total number of
convolutional layers in AWDB.

Input Unit Conv(3, 16, 3, 1, 1)
ReLU()

Hiden Unit

C-In: Conv(16, 282, 1, 1, 0)

1st Layer
W(16 × 1)
Conv(16×, 161, 3, 1, 1)
ReLU()

2nd Layer
W(16 × 2)
Conv(16 × 2, 16, 3, 1, 1)
ReLU()

...
...

D-th Layer
W(16D)
Conv(16 × D, 16, 3, 1, 1)
ReLU()

C-Out: Conv(16D, 256, 1, 1, 0)

Output Unit

×2: Deconv(256, 3, 4, 2, 1)
or ×3: Deconv(256, 3, 7, 3, 2)

or ×4: Deconv(256, 3, 4, 2, 1)
Deconv(256, 3, 4, 2, 1)

Conv(3, 256, 3, 1, 1)

3.3. Architecture and implementation details
Architecture details. The details of the proposed FAWDN is
shown in Table 1. Following SRDenseNet [15], we set the
number of the output channel of the convolutional layer in both
AWDB and the input unit to 16. The number of feature maps
of hidden state is set to 256. Therefore, the number of the input
channel of C-In (see Figure 2-(b)) is 16+256. We set the kernel
size, stride and padding of all convolutional layers in ADWB to
3, 1 and 1, respectively. The kernel size, stride, and padding of
C-In and C-Out are set to 1, 1 and 0, respectively. The setting
of the deconvolutional layer is shown in Table 1. For the task
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Figure 5: The different version our FAWDN. The red cross indicates that the
corresponding connection is broken. (a) The full version of FAWDN; (b)
FAWDN only tied loss function to the 2nd time step; (c) FAWDN only with
input state at the 1st time step.
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Figure 6: The investigation of the feedback mechanism.

of ×2 and ×4 image SR, the setting is set according to [15].
For the task of ×3 image SR, the parameters of the deconvolu-
tion layer is set according to [21]. The number of the input and
output channel of FAWDN is set to 3 for both gray and color
images. For the gray image, we copy the image three times and
then feed the counterpart into FAWDN. To match the number
of channel of the ground truth, the ground truth is also copied
three-times for training.

Table 2: Study of the feedback mechanism.
Methods w/o feedback w/ top-down feedback w/ strict feedback
PSNR 32.89 32.79 32.80
SSIM 0.9065 0.9063 0.9069

Datasets. To fairly compare with other natural image SR net-
works [14, 15, 29, 35], we use the DIV2K [53] as the training
set and Set5 [54] as the validating set to train our FAWDN.
Besides, to investigate the performance of network trained on
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Figure 7: The investigation of adaptive weighting groups.

Table 3: The test results of ×4 upsampling on MRI13. ‘Recurrent ’ represents
if the network is RNN, ‘AW’ denotes the adaptive weights, and the ‘FB’ repre-
sents the strict feedback mechanism.

Methods SRDenseNet SRDenseNet* FAWDN w/o AW FAWDN
Recurrent × × X X
AW × X × X
FB × × X X
PSNR 32.92 32.97 33.03 33.22
SSIM 0.9075 0.9076 0.9087 0.9098

medical images, we collect a medical image SR dataset (called
MRIMP) from GoogleMR1, IXI [55], ADNI [56], KneeMR
[57], and LSMRI [58]. This collected medical image dataset
includes different parts of human body, and its distribution is
shown in Figure 4. However, the network trained only on the
medical image dataset will be overfitting in the training dataset
(see Section 4.3). Therefore, we train the proposed network by
the mixture of the medical image dataset and 200 natural im-
ages from DIV2K, and denote this network as FAWDN+. As
we focus on medical image SR, we use medical images uti-
lized in DDSR [20] as the test dataset. This medical dataset
denoted as MRI13 includes 13 MR images. As shown in Fig-
ure 3, MRI13 covers different parts of the human body, which is
a great dataset to test network performance for medical image
SR. Furthermore, we respectively collect two other test datasets
named ADNI100 and OASIS100 from ADNI [56] and OASIS
[59]. Each dataset includes 100 images, which are not con-
tained in the training dataset. In this paper, following SRCNN
[12], SRDenseNet [15], and LapSRN [60], we only consider the
most common degradation model used in image SR, i.e, Bicu-
bic downsampling. To evaluate different methods objectively,
two commonly used metrics, i.e., PSNR and SSIM, are adopted
to test result images of different methods. A higher value of
PSNR or SSIM indicates a better result.

Training details. In the training stage, we employ the Adam
[61] with β1 = 0.9, β2 = 0.999, and ε = 10−8 as the optimizer,
and totally optimizes FAWDN 5 × 105 iterations. The initial

1GoogleMR: images crawled from the Google image by key words, such as
‘MRI foot’ and ‘MRI lung’.
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Figure 8: The investigation of the network depth D.

Table 4: The average results of different number of convolutional layers on
MRI13.

D 40 48 56 64
PSNR 32.82 32.97 32.94 32.96
SSIM 0.9062 0.9079 0.9078 0.9078

learning rate of Adam is set to 0.0002, and it is halved every
2× 105 minibatch iteration. The minibatch size and LR size are
set to 16 and 40 for FAWDN, respectively. For FAWDN+, since
the resolution of some medical images is lower than 160× 160,
the LR size cannot be set to 40×40. Therefore, we set LR size to
30 × 30 and batch size to 16 for training FAWDN+. Following
[62], data augmentation is conducted in our experiments. All
experiments of FAWDN are conducted based on Pytorch 1.1.0
in desktops with an Nvidia GTX1080Ti/RTX2080Ti GPU.

4. Experiments and results

4.1. Ablation study

Effectiveness of the feedback mechanism. To verify the effec-
tiveness of the feedback mechanism, we conduct a comparison
experiment about three networks, which are illustrated in Fig-
ure 5. The first network is our FAWDN with network depth
D = 40 and growth rate G = 8 because small D and G can re-
duce training time. The second network has the same structure
as the first one except for the loss function. We removed the
loss function at the 1st time step of the second network so it no
longer satisfies the condition of the strict feedback mechanism,
but meets the top-down feedback mechanism. In the third net-
work, only the hidden state is fed into the hidden unit at the 2nd
time step. Therefore, the third network cannot meet the condi-
tion of the strict feedback mechanism. As shown in Figure 6,
the curve of PSNR on Set5 reveals the network with the feed-
back mechanism is superior to the other two networks. The test
results on MRI13 are listed in Table 2. It is interesting that the
network without feedback mechanism achieves the best results.
We guess it is resulted from the difference of natural and med-
ical images, since these networks are trained on natural images

Figure 9: The investigation of the time step T .

but test on medical images. It can be verified by the results
of the validation dataset that the network with strict feedback
mechanism achieves the best results.

Table 5: The average results of different time step on MRI13 of ×4 upsampling
task.

T 2 3 4
PSNR 32.82 32.79 32.83
SSIM 0.9062 0.9060 0.9063

Effects of adaptive weighting groups. To demonstrate the ef-
fectiveness of the adaptive weighting groups, we also compare
two groups of networks. In the first group, one network is SR-
DenseNet, and another is the modified SRDenseNet denoted as
SRDenseNet* in this paper. SRDenseNet* is obtained by re-
placing the dense block in SRDenseNet by our AWDB. In the
second group, one of the networks is FWADN, while another
is a counterpart of FWADN but without the adaptive weight-
ing group before every convolution layer. The curves of PSNR
on Set5 are shown in Figure 7. The test results of these two
groups are also listed in Table 3. From Figure 7 and Table 3,
we can observe that the adaptive weighting groups can improve
the performance of the network with the feedback mechanism
as well as the network without the feedback mechanism. This
is because the adaptive weighting group is capable of selecting
the most useful features for various networks. In addition, we
can find that the improvement benefiting from adaptive weights
to the network with the feedback mechanism is more significant
than that to SRDenseNet. It is because the adaptive weights can
select more informative features as the feedback signal.

4.2. Investigation of D and T

To explore the trade-off between networks capacity and per-
formance, we study the performance of various network depth
D and time step T .

Since a small change of D will result in inconspicuous vari-
ation in performance, we set the variation stride of D to 8. The
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Figure 10: From left to right, curves of train loss, valid loss, and PSNR values are presented.

𝐼1,𝑟𝑒𝑠
1 (w/o FB)𝐼ℎ𝑟 − 𝐼𝑢𝑝 𝐼1,𝑟𝑒𝑠

2 (w/o FB) 𝐼2,𝑟𝑒𝑠
1 (w/ FB) 𝐼2,𝑟𝑒𝑠

2 (w/ FB)

Figure 11: The residual image outputted by the output unit. (a) the outputs at different time step of the network only tied loss function to the last time step; (b) the
outputs at different time step of the network tied loss function to all time step. The left column plots the output at the 1st time step and the right column plot the
output at the 2nd step time.

Table 6: The performance of the proposed network trained on different training
sets. FAWDN, FAWDN+, and FAWDN++ are trained with DIV2K, MRIMP+,
and MRIMP, respectively.

MRI13 ADNI100 OASIS100
FAWDN 32.22/0.9098 28.30/0.8117 30.05/0.8957
FAWDN+ 32.21/0.9086 28.81/0.8259 30.38/0.8895
FAWDN++ 32.13/0.9079 28.87/0.8228 31.57/0.9075

validation results on Set5 are illustrated in Figure 8. We can ob-
serve that deeper networks always achieve better results. How-
ever, this phenomenon barely appears in the MRI13 as shown
in Table 4. It can be found that the performance of the network
is saturated as the depth of AWDB reaches more than 48 lay-
ers. Nevertheless, the deeper network achieves better results on
validation dataset. To further improve the performance, we set
the depth of AWDB to 64.

To investigate the time step T , we train three FAWDNs, of
which the time steps are respectively set to 2, 3, and 4. In this
experiment, we set D to 8 for fast training. The results of vali-
dation dataset and test dataset are shown in Figure 9 and Table
5, respectively. According to the two groups results, we can
find the performance of FAWDN is insensitive to the time step.
A latent reason is FAWDN without long-term memory so that
FAWDN can only correct the output of the nearest time step.
Therefore, the time step is set to 2 in FAWDN.

4.3. Investigation of the training dataset

Since most existing medical image datasets only include im-
ages of one part of the human body, these datasets are not suit-

able to train a SR network for the reconstruction of images
of multiple parts of the human body. Therefore, we collect a
medical image dataset named MRIMP. MRIMP includes im-
ages from GoogleMR, IXI [55], ADNI [56], KneeMR [57], and
LSMRI [58]. As shown in Figure 4, this medical image dataset
includes images of many parts of the human body. We inves-
tigate the networks trained on three different datasets: DIV2K,
MRIMP, and MRIMP+ (i.e., the mixture of MRIMP and 200
images from DIV2K). As shown in Figure 10, despite images
of multiple parts included in this medical image dataset, the
training loss decreases with the number of the training iteration
while validating loss increasing with the number of the training
iteration. It means that the network is overfitting in the train-
ing dataset. Besides, it can be observed that the training loss
on MRIMP is lower than that on MRIMP+. However, the valid
loss presents the opposite results, which means the overfitting
is much worse on the medical image dataset than on MRIMP+.
In other words, adding extra natural images can mitigate the
overfitting when medical images are insufficient.

In addition, we test the networks trained on the three datasets
using the test datasets. Although a smaller patch size is used
in the network trained on MRIMP or MRIMP+, these two net-
work achieves better results than the one trained on DIV2K.
The network trained on MRIMP achieves the best results on
ADNI100 and OASIS100 while much worse results on MRI13.
Nevertheless, both ADNI100 and OASIS only contain MR im-
ages of the head, while MRI13 includes MR images of various
parts of the human body. This phenomenon also indicates that
the generalization of the network trained on MRIMP is worse
than the one trained on MRIMP+. Therefore, it is suggested to
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SR1: 38.61/0.9705 SR2: 38.85/0.9713 Res1 = HR – SR1 Res2 = HR – SR2
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Figure 12: The visual comparison of reconstructed ‘abdomen’ in MRI13 at dif-
ferent time step. From left to right in the top row, there are the result at the 1st
time step S R1, the result at the 2nd time step S R2, the contrast enhanced resid-
ual image between the HR image and S R1, and the contrast enhanced residual
image between the HR image and S R2. In the bottom row, we zoom in two
areas in corresponding residual images.

train a network with MR images when the medical images are
sufficient, but to train a network with a mixture of MR images
and natural images when medical images are insufficient.

Table 7: The average PSNR/SSIM of FAWDN’s outputs on MRI13 at different
time step.

Methods the 1st step the 2nd step
PSNR(dB)/SSIM 33.15/0.9090 33.22/0.9098

4.4. Insight into feedback mechanism

To gain insight into the feedback mechanism, we prove that
tying the loss function to all time steps is an indispensable con-
dition in our FAWDN for achieving the feedback mechanism.
As discussed in Section 3.1, the feedback signal containing the
information of the output is a necessary condition to accom-
plish the feedback mechanism. Therefore, we prove it by two
steps as follows:

First, according to the strict definition of the feedback mech-
anism described in Section 3.1, we can derive that the network
will fail the feedback mechanism if the feedback signal routed
to the input does not contain the information of the output im-
age.

Second, it cannot be guaranteed that the feedback signal (i.e.,
the hidden state in our FAWDN) contains the information of the
output image if the loss function only tied to the last time step.
Suppose the Ihr and Iup denote the ground truth and the bilinear
upsampled image of the input image, respectively. The hidden
state ht would contain the information of the output image only
when it can be used to reconstruct the approximate residual im-
age (i.e., Ihr − Iup). In other words, the hidden state has to meet
the equation:

ht = fh([xt, ht−1]) s.t. fo(ht) ≈ Ihr − Iup (1 ≤ t ≤ T ) (10)

where fh(·) and fo(·) represent the function of the hidden unit
and the output unit, respectively. T is the total number of time

step. To make the ht contain the information of the output im-
age, we tie a loss function to each output (i.e, fo(ht)+ Iup) of the
network as follows:

L(ht, Ihr) =
∥∥∥( fo(ht) + Iup) − Ihr

∥∥∥
1 (11)

However, if the loss function only tied to the last time step, it
can only ensure IT

sr ≈ Ihr − Iup but cannot ensure It
sr ≈ Ihr − Iup

when {1 ≤ t ≤ (T − 1)}. Therefore, it is not guaranteed that all
hidden states ht contain the information of the output image in
the network only tied a loss function to the last time step.

As shown in Figure 11, it can be observed that the output
residual images I1

1,res of the output unit at the 1st time step is
quite different from the residual (i.e., Ihr − Iup) between the
ground truth image and the bilinear upsampled image. Besides,
checkerboards effects appears in the most area of I1

1,res. It looks
more like a feature map outputted by convolutional layer rather
than a residual image.

In addition to above proof, to verify our FAWDN can obtain
a clearer HR image step by step, we list the results of the 1st
time step and the 2nd time step. As listed in Table 7, we can
find that the result of the 2nd time step are obviously better than
that of the 1st time step. Besides, we conduct a visual compar-
ison of outputs of different time steps. Because the difference
between the output image of the 1st time step and the 2nd time
step is small, we compare the residual images Rest instead of
the original output image. The residual images Rest is the dif-
ference between the ground truth and the output of the t-th time
step, which can be obtained by:

Rest = Ihr − ( fo(ht) + Iup), (12)

where Rest denotes the residual image. As shown in Figure 12,
we can see that Res1 has more values than Res2. In other words,
compared with the output of the 2nd time step, the output of the
1st time step is further away from the ground truth. Therefore,
the output image of the 2nd time step is clearer to the ground
truth than that of the 1st time step.

4.5. Comparison with state-of-the-art methods

To validate the effectiveness of our FAWDN, we compare
FAWDN with 14 state-of-the-art SR methods. The comparative
methods include one traditional medical image super-resolution
method LRTV [5], ten distortion-oriented CNN based methods
[12, 13, 14, 15, 20, 60, 31, 62], and three GAN-model-based
methods [18, 38, 39]. All results of the comparison methods
are obtained by public codes of corresponding authors. Since
we focus on super-resolving 2D medical images, none of 3D
medical image SR methods is selected for comparison.

The quantitative results of different methods on test datasets
are listed in Table 8. Our FAWDN+ achieves better results
than the comparative methods on all task of ADNI100. Be-
sides, our FAWDN and FAWDN+ outperform other methods
except EDSR in other test datasets. Although EDSR achieves
better results than our FAWDN+ on some datasets, its param-
eters and runtime are 613% and 282% (see Section 4.6) of our
FAWDN+, respectively. In addition, the LR size used to train
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Table 8: The test results of different methods. FAWDN+ means the proposed network trained with MRIMP+. FAWDN++ represents the network trained only with
MRIMP. The best result shown in red, and the second best result shown in blue. ‘-/-’ in compared methods represents that the corresponding models are not tested
because the models are unavailable.

Datasets MRI13 ADNI100 OASIS100
Upscale x2 x3 x4 x2 x3 x4 x2 x3 x4
Bicubic 37.95/0.9677 32.70/0.9126 29.90/0.8591 30.74/0.8943 27.95/0.8063 26.37/0.7298 33.54/0.9585 28.97/0.8919 26.38/0.8159
LRTV 40.64/0.9796 34.39/0.9329 31.19/0.8821 31.75/0.9176 28.69/0.8379 27.06/0.7663 35.34/0.9714 30.35/0.9174 27.53/0.8497
SRCNN 40.76/0.9820 35.03/0.9393 31.75/0.8914 32.49/0.9258 29.29/0.8527 27.49/0.7838 35.52/0.9717 31.27/0.9225 28.47/0.8621
FSRCNN 40.90/0.9809 35.35/0.9406 32.17/0.8934 32.72/0.9276 29.48/0.8562 27.66/0.7876 34.47/0.7778 30.91/0.7568 28.49/0.6900
VDSR 41.78/0.9835 35.43/0.9449 32.44/0.9027 33.09/0.9328 29.83/0.8661 28.00/0.8028 36.70/0.9759 31.60/0.9308 28.96/0.8748
DRCN 42.15/0.9838 35.83/0.9449 32.64/0.9034 33.22/0.9336 29.92/0.8672 28.04/0.8029 37.19/0.9779 32.18/0.9371 29.29/0.8830
LapSRN 41.99/0.9840 -/- 32.68/0.9072 32.96/0.9317 -/- 27.99/0.8027 36.98/0.9772 -/- 29.26/0.8837
SRDenseNet 42.97/0.9846 36.25/0.9469 32.97/0.9075 33.33/0.9348 30.06/0.8704 28.18/0.8079 37.69/0.9788 32.64/0.9477 29.65/0.8900
DDSR 41.92/0.9833 35.49/0.9433 32.45/0.9029 33.00/0.9318 29.68/0.8638 27.91/0.8011 36.97/0.9766 31.72/0.9330 29.15/0.8798
EDSR 43.61/0.9853 36.71/0.9484 33.31/0.9107 33.50/0.9359 30.27/0.8735 28.42/0.8136 38.18/0.9797 33.26/0.9444 30.48/0.9003
SRMD 42.26/0.9841 35.91/0.9456 32.83/0.9060 33.15/0.9335 29.91/0.8676 28.05/0.8044 37.27/0.9780 32.29/0.9385 29.66/0.8884
SRMDNF 42.76/0.9848 36.09/0.9465 32.69/0.9062 33.30/0.9348 30.02/0.8698 28.13/0.8080 37.69/0.9794 32.52/0.9405 29.74/0.8908
SRGAN -/- -/- 29.94/0.8406 -/- -/- 24.63/0.7127 -/- -/- 27.42/0.8296
ESRGAN -/- -/- 29.10/0.8263 -/- -/- 24.10/0.7020 -/- -/- 27.06/0.8336
RankSRGAN-PI -/- -/- 29.45/0.8254 -/- -/- 24.42/0.7059 -/- -/- 26.92/0.8140
FAWDN 43.35/0.9850 36.60/0.9481 33.22/0.9098 33.41/0.9352 30.16/0.8719 28.30/0.8117 37.91/0.9791 33.00/0.9429 30.05/0.8957
FAWDN+ 43.59/0.9851 36.73/0.9479 33.21/0.9086 33.87/0.9400 30.75/0.8839 28.81/0.8259 38.10/0.9798 33.19/0.9450 30.38/0.8895
FAWDN++ -/- -/- 33.13/0.9079 -/- -/- 28.87/0.8228 -/- -/- 31.57/0.9075

HR:PSNRFAWDN+:27.86FAWDN:26.90RankeGAN:24.50ESRGAN:24.04SRGAN:24.34SRMDNF:26.50SRMD:26.31EDSR:27.05

Bicubic:24.74 LRTV:25.35 SRCNN:25.65 FSRCNN:25.94 VDSR:26.24 DRCN:26.31 LapSRN:26.27SRDesnseNet:26.69DDSR:26.09

Bicubic:26.30 LRTV:27.24 SRCNN:29.09 FSRCNN:28.70 VDSR:29.90 DRCN:30.19 LapSRN:30.09SRDesnseNet:30.56DDSR:30.09

HR:PSNRFAWDN+:31.19FAWDN:30.52RankeGAN:27.63ESRGAN:27.26SRGAN:28.24SRMDNF:30.79SRMD:30.54EDSR:30.68

HR:PSNRFAWDN+:37.30FAWDN:36.06RankeGAN:31.16ESRGAN:31.43SRGAN:32.05SRMDNF:35.95SRMD:36.28EDSR:36.87

Bicubic:31.43 LRTV:33.05 SRCNN:34.32 FSRCNN:35.15 VDSR:35.49 DRCN:35.90 LapSRN:35.85SRDesnseNet:36.12DDSR:35.26
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Figure 13: The visual results of different methods on test datasets of x4 upscale task.
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Table 9: Average running time of different methods on MRI13 on three test
datasets for all upsampling task. The method with * means that it is imple-
mented with Matlab. The one without * means that it is implemented with
Python. The best result shown in red, and the second best result shown in
blue. ‘-/-’ in compared methods represents that the corresponding models are
not tested because the models are unavailable.

Methods Para. Time(×4) Time(×3) Time(×2)
LRTV* - 25.4162 21.58 13.97
SRCNN* 7K 6.8366 6.2943 6.3318
FSRCNN* 2K 2.2574 3.3475 6.8299
VDSR* 0.66M 0.1139 0.1022 0.1489
DRCN* 1.77M 1.5899 1.5436 1.5466
LapSRN* 0.81M 0.1206 - 0.1343
SRDenseNet 7.16M 0.0169 0.0556 0.0551
DDSR 2.02M 0.0125 0.0483 0.0495
EDSR 43.7M 0.2035 0.2457 0.3723
SRMD* 1.50M 0.0165 0.0186 0.0383
SRMDNF* 1.50M 0.0119 0.0187 0.0384
SRGAN 1.52M 0.0156 - -
ESRGAN 16.7M 0.0431 - -
RankSRGAN-PI 1.55M 0.0123 - -
FAWDN+ 7.17M 0.0722 0.1497 0.2819

our FAWDN+ is 30×30, which is much smaller than its LR size
of 48 × 48. Compared with EDSR, the proposed network can
obtain competitive performance in reconstructed image qual-
ity, while having superiority over its computational complex-
ity and parameters. As for GAN model based methods, it can
be observed that all the GAN model-based achieve low PSNR
and SSIM. Overall, benefiting from the feedback mechanism
and the adaptively weighted dense link (see Section 4.1), our
FAWDN and FAWDN+ are capable of obtaining a more trusted
HR medical image with fewer parameters compared with other
methods.

Moreover, we conduct a visual comparison as shown in Fig-
ure 13. In the red box, we can discover the textures and details
in the result images of GAN model based methods look unnatu-
ral and are inconsistent with that in the ground truth. Although
DDSR, SRDenseNet, EDSR and SRMDNF get natural results,
their edges are not clear as ours, as shown in the red box of the
’040’ from ADNI100 in Figure 13 . Contrarily, benefiting from
the feedback mechanism, our FAWDN can recover the textures
and details by correcting the error produced in the previous time
step (see Section 4.4). Furthermore, the recovered details and
textures are close to those of the ground truth. In other words,
our methods can obtain a more trusted HR medical image than
the comparison methods.

4.6. Analysis of model efficiency and performance

To investigate efficiency of these methods, we analyzed the
model size and inference time of different methods for image
SR. Since the number of parameters and the computing com-
plexity of FAWDN, FAWDN+ and FAWDN++ are the same,
we only test the running time of FAWDN+. As shown in Table
9, although the parameters of SRCNN, FSRCNN, VDSR, and
LapSRN are small, their average performance (see Table 10)
on the three datasets is much worse than networks with much

Table 10: The weighted average performance on the three test sets. The best
result shown in red, and the second best result shown in blue. ‘-/-’ in compared
methods represents that the corresponding models are not tested because the
models are unavailable.

Method ×2 ×3 ×4
Bicubic 32.49/0.9589 28.72/0.8964 26.59/0.8309
LRTV 33.98/0.9720 29.82/0.9198 27.53/0.8598
SRCNN 34.42/0.9737 30.57/0.9261 28.21/0.8711
FSRCNN 34.04/0.8823 30.51/0.8492 28.32/0.7914
VDSR 35.32/0.9768 31.00/0.9335 28.72/0.8835
DRCN 35.63/0.9780 31.34/0.9365 28.91/0.8877
LapSRN 35.40/0.9776 -/- 28.87/0.8898
SRDenseNet 35.97/0.9788 31.65/0.9426 29.16/0.8932
DDSR 35.41/0.9770 30.99/0.9336 28.77/0.8858
EDSR 36.31/0.9797 32.07/0.9420 29.69/0.8999
SRMD 35.64/0.9781 31.39/0.9375 29.10/0.8915
SRMDNF 35.94/0.9792 31.56/0.9390 29.16/0.8930
SRGAN -/- -/- 26.26/0.8276
ESRGAN -/- -/- 25.79/0.8221
RankSRGAN-PI -/- -/- 25.90/0.8128
FAWDN 36.13/0.9792 31.89/0.9410 29.42/0.8972
FAWDN+ 36.45/0.9799 32.26/0.9426 29.82/0.8946
FAWDN++ -/- -/- 30.40/0.9025

more parameters. Compared with SRDenseNet, our FAWDN
and FAWDN+ obtain much better results while keeping similar
parameters with SRDenseNet. Although EDSR achieves better
results than our FAWDN+ on MRI13 and OASIS100. How-
ever, its parameters and running time for ×4 task are 613% and
282% of our network. Besides, as shown in Table 8, the results
obtained by EDSR on MRI13 and OASIS are only a little higher
than FAWDN+, while the results obtained by FAWDN+ are
much higher than EDSR. The number of images in MRI13 is
also much fewer than the other test sets. To compare EDSR and
FAWDN in a global manner, we calculate the weighted aver-
age result of all test sets on all upsampling tasks. The weighted
average results are obtained by

PS NRw =
Nm ∗ PS NRm + Na ∗ PS NRa + No ∗ PS NRo

Nm + Na + Ns
,

S S IMw =
Nm ∗ S S IMm + Na ∗ S S IMa + No ∗ S S IMo

Nm + Na + Ns
,

(13)

where Nm,Na, and No are the numbers of images in MRI13,
ADNI100, and OASIS100, respectively. PS NRm/S S IMm,
PS NRa/S S IMa, and PS NRo/S S IMo are the values of
PSNR/SSIM on MRI13, ADNI100, and OASIS100, respec-
tively. The weighted average results of all methods are listed
in Table 10. From Table 10, we can observe that the pro-
posed method outperforms other methods on all tests. There-
fore, overall, the proposed method obtains better result than the
compared methods.

5. Conclusion

In this paper, we proposed a trusted medical image SR
method denoted as FAWDN. To achieve the strict feedback
mechanism, the hidden state is transmitted to the input state.
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Different from the feedback mechanism in a top-down man-
ner, we force the hidden state to contain the information of the
output image by a loss function and fed low-level features into
the hidden unit of FAWDN every time step. So, the proposed
FAWDN met the condition of the strict feedback mechanism.
In addition, we presented AWDB to adaptively select informa-
tive features outputted from previous convolutional layers. The
study of the feedback mechanism demonstrated that the net-
work with the strict feedback mechanism outperformed the one
without the strict feedback mechanism in both performance and
convergence speed. Experimental results on adaptive weight-
ing groups also indicated that our AWDB could obtain better
performance than original dense block. Overall, proved by
comparative experiments, the proposed FAWDN could obtain
more clear and trusted HR medical images than the state-of-the-
art methods. In further research, we will extend the proposed
method to 3 dimension cases. Besides, SR networks for vari-
ous degradation models will be also studied, such as K-space
truncation, additive noise, and blur.
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