
The path to a better biomarker: application of a risk management
framework for the implementation of PD-L1 and TILs as immuno-
oncology biomarkers in breast cancer clinical trials and daily practice
Paula I Gonzalez-Ericsson1* , Elisabeth S Stovgaard2, Luz F Sua3, Emily Reisenbichler4, Zuzana Kos5, Jodi M Carter6,
Stefan Michiels7, John Le Quesne8,9, Torsten O Nielsen10, Anne-Vibeke Lænkholm11, Stephen B Fox12,13,
Julien Adam14, John MS Bartlett15,16, David L Rimm4, Cecily Quinn17, Dieter Peeters18,19, Maria V Dieci20,21,
Anne Vincent-Salomon22, Ian Cree23 , Akira I Hida24, Justin M Balko1,25,26, Harry R Haynes27,28 , Isabel Frahm29,
Gabriela Acosta-Haab30, Marcelo Balancin31 , Enrique Bellolio32, Wentao Yang33, Pawan Kirtani34,
Tomoharu Sugie35, Anna Ehinger36 , Carlos A Castaneda37, Marleen Kok38, Heather McArthur39,
Kalliopi Siziopikou40, Sunil Badve41, Susan Fineberg42, Allen Gown43, Giuseppe Viale44,45, Stuart J Schnitt46,47,
Giancarlo Pruneri45,48, Frederique Penault-Llorca49,50, Stephen Hewitt51, E Aubrey Thompson52,
Kimberly H Allison53, William F Symmans54, Andrew M Bellizzi55, Edi Brogi56, David A Moore57, Denis Larsimont58,
Deborah A Dillon46, Alexander Lazar54 , Huangchun Lien59, Matthew P Goetz60, Glenn Broeckx61 ,
Khalid El Bairi62 , Nadia Harbeck63, Ashley Cimino-Mathews64, Christos Sotiriou65, Sylvia Adams66, Shi-wei Liu67,
Sibylle Loibl68, I-Chun Chen69, Sunil R Lakhani70, Jonathan W Juco71, Carsten Denkert72, Elizabeth F Blackley73,
Sandra Demaria74, Roberto Leon-Ferre60, Oleg Gluz75, Dimitrios Zardavas76, Kenneth Emancipator71, Scott Ely77,
Sherene Loi13,78, Roberto Salgado78,79, and Melinda Sanders1,26*, on behalf of the
International Immuno-Oncology Biomarker Working Group

1 Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN, USA
2 Department of Pathology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
3 Department of Pathology and Laboratory Medicine, Fundación Valle del Lili, and Faculty of Health Sciences, Universidad ICESI, Cali, Colombia
4 Department of Pathology, Yale School of Medicine, New Haven, CT, USA
5 Department of Pathology, BC Cancer Agency, Vancouver, Canada
6 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
7 Biostatistics and Epidemiology Service, Centre de Recherche en Epidémiologie et Santé des Populations, Gustave Roussy, Université Paris-Sud,

Villejuif, France
8 Leicester Cancer Research Centre, University of Leicester, Leicester, UK
9 MRC Toxicology Unit, University of Cambridge, Leicester, UK
10 Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
11 Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
12 Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
13 Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
14 Department of Pathology, Gustave Roussy, Grand Paris, France
15 Ontario Institute for Cancer Research, Toronto, Canada
16 Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Edinburgh, UK
17 Department of Pathology, St Vincent’s University Hospital and University College Dublin, Dublin, Ireland
18 HistoGeneX NV, Antwerp, Belgium
19 AZ Sint-Maarten Hospital, Mechelen, Belgium
20 Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
21 Medical Oncology 2, Istituto Oncologico Veneto – IRCCS, Padova, Italy
22 Department of Pathology, Insitut Curie, Paris, France
23 International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
24 Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
25 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
26 Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
27 Department of Cellular Pathology, North Bristol NHS Trust, Bristol, UK
28 Translational Health Sciences, University of Bristol, Bristol, UK
29 Department of Pathology, Sanatorio Mater Dei, Buenos Aires, Argentina
30 Department of Pathology, Hospital de Oncología Maria Curie, Buenos Aires, Argentina
31 Department of Pathology, Faculty of Medicine, University of S~ao Paulo, S~ao Paulo, Brazil
32 Department of Pathology, Universidad de La Frontera, Temuco, Chile
33 Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, PR China
34 Department of Histopathology, Manipal Hospitals Dwarka, New Delhi, India
35 Breast Surgery, Kansai Medical University Hospital, Hirakata, Japan
36 Department of Clinical Genetics and Pathology, Skane University Hospital, Lund University, Lund, Sweden
37 Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
38 Divisions of Medical Oncology, Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
39 Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Journal of Pathology
J Pathol 2020; 250: 667–684
Published online 9 April 2020 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/path.5406

INVITED REVIEW

© 2020 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org

J Pathol 2020; 250: 667–684
www.thejournalofpathology.com

https://orcid.org/0000-0002-6292-6963
https://orcid.org/0000-0001-5007-9456
https://orcid.org/0000-0001-6468-7671
https://orcid.org/0000-0003-3798-8414
https://orcid.org/0000-0001-9225-7396
https://orcid.org/0000-0002-6395-4499
https://orcid.org/0000-0002-7543-8061
https://orcid.org/0000-0002-8414-4145
http://wileyonlinelibrary.com
http://www.pathsoc.org
http://www.thejournalofpathology.com


40 Department of Pathology, Breast Pathology Section, Northwestern University, Chicago, IL, USA
41 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
42 Department of Pathology, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
43 PhenoPath Laboratories, Seattle, WA, USA
44 Department of Pathology, Istituto Europeo di Oncologia IRCCS, Milan, Italy
45 University of Milan, Milan, Italy
46 Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
47 Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
48 Department of Pathology, IRCCS Fondazione Instituto Nazionale Tumori, Milan, Italy
49 Department of Biology and Pathology, Centre Jean Perrin, Clermont Ferrand, France
50 UMR INSERM 1240, Université Clermont Auvergne, Clermont Ferrand, France
51 Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health,

Bethesda, MD, USA
52 Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
53 Department of Pathology, Stanford University, Stanford, CA, USA
54 Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
55 Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
56 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
57 CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, and Department of Cellular Pathology, UCLH, London, UK
58 Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
59 Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
60 Department of Oncology, Mayo Clinic, Rochester, MN, USA
61 Department of Pathology, University Hospital Antwerp, Edegem, Belgium
62 Cancer Biomarkers Working Group, Faculty of Medicine and Pharmacy, Mohamed Ist University, Oujda, Morocco
63 Breast Center, Department of OB&GYN and CCC (LMU), University of Munich, Munich, Germany
64 Department of Pathology and Oncology, The Johns Hopkins Hospital, Baltimore, MD, USA
65 Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
66 Perlmutter Cancer Center, New York University Medical School, New York, NY, USA
67 Sichuan Cancer Hospital, Chengdu, PR China
68 German Breast Group, Neu-Isenburg, Germany
69 Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
70 The University of Queensland, Centre for Clinical Research, and Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Australia
71 Translational Medicine, Merck & Co, Inc, Kenilworth, NJ, USA
72 Institute of Pathology, Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg and Philipps-Universität Marburg, Marburg, Germany
73 Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
74 Department of Radiation Oncology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
75 Johanniter GmbH - Evangelisches Krankenhaus Bethesda Mönchengladbach, West German Study Group, Mönchengladbach, Germany
76 Oncology Clinical Development, Bristol-Myers Squibb, Princeton, NJ, USA
77 Translational Medicine, Bristol-Myers Squibb, Princeton, NJ, USA
78 Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
79 Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium

*Correspondence to: PI Gonzalez-Ericsson, Breast Cancer Research Program, Vanderbilt University, 1301 Medical Center Dr, TVC 4918, Nashville, TN
37232, USA. E-mail: paula.i.gonzalez.ericsson@vumc.org; or M Sanders, Department of Pathology, Microbiology and Immunology, and Breast Cancer
Research Program, Vanderbilt University, 1301 Medical Center Dr, TVC 4918, Nashville, TN 37232, USA. E-mail: melinda.sanders@vumc.org

Abstract
Immune checkpoint inhibitor therapies targeting PD-1/PD-L1 are now the standard of care in oncology across several
hematologic and solid tumor types, including triple negative breast cancer (TNBC). Patients with metastatic or locally
advanced TNBC with PD-L1 expression on immune cells occupying ≥1% of tumor area demonstrated survival benefit
with the addition of atezolizumab to nab-paclitaxel. However, concerns regarding variability between immunohisto-
chemical PD-L1 assay performance and inter-reader reproducibility have been raised. High tumor-infiltrating lym-
phocytes (TILs) have also been associated with response to PD-1/PD-L1 inhibitors in patients with breast cancer
(BC). TILs can be easily assessed on hematoxylin and eosin–stained slides and have shown reliable inter-reader repro-
ducibility. As an established prognostic factor in early stage TNBC, TILs are soon anticipated to be reported in daily
practice in many pathology laboratories worldwide. Because TILs and PD-L1 are parts of an immunological spectrum
in BC, we propose the systematic implementation of combined PD-L1 and TIL analyses as a more comprehensive
immuno-oncological biomarker for patient selection for PD-1/PD-L1 inhibition-based therapy in patients with
BC. Although practical and regulatory considerations differ by jurisdiction, the pathology community has the respon-
sibility to patients to implement assays that lead to optimal patient selection. We propose herewith a risk-
management framework that may help mitigate the risks of suboptimal patient selection for immuno-therapeutic
approaches in clinical trials and daily practice based on combined TILs/PD-L1 assessment in BC.
© 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
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Introduction

Immune checkpoint inhibitor (ICI) therapies targeting
programmed cell death 1 (PD-1) and programmed
death ligand 1 (PD-L1) are now the standard of care
in oncology. Anti-PD-1 pembrolizumab (Keytruda,
Merck & Co. Inc., Kenilworth, NJ, USA) and nivolu-
mab (Opdivo, Bristol-Myers Squibb Company,
New York, NY, USA), and anti-PD-L1 atezolizumab
(Tecentriq, Genentech Inc, South San Francisco, CA,
USA), durvalumab (Imfinzi, AstraZeneca plc, Cam-
bridge, UK), and avelumab (Bavencio, Merck KGA,
Darmstadt, Germany) have been approved to treat mul-
tiple tumor types, in many countries. To date, atezolizu-
mab specifically has been approved for triple-negative
breast cancer (TNBC). At the same time, immunohisto-
chemistry (IHC)–based detection of PD-L1 expression
has been proposed as the predictive biomarker to select
patients that may benefit from these therapies. Five pri-
mary antibody clones have been developed in the form
of assays paired with a specific staining platform. PD-

L1 22C3 (Agilent Technologies Inc., Santa Clara, CA,
USA), 28-8 (Agilent Technologies Inc.), SP142
(Roche Tissue Diagnostics, Tucson, AZ, USA),
SP263 (Roche Tissue Diagnostics), and 73-10
(Agilent Technologies Inc.) have been used in clinical
trials of the above-mentioned drugs, respectively. In
addition, laboratory-developed tests (LDTs) using any
of the above-mentioned primary antibodies or the
E1L3N clone with different staining platforms are in
use in research and clinical scenarios. Parallel to the
multiple assays, multiple scoring systems exist.
Table 1 shows technical details and defines scoring
methods used for each antibody. Furthermore, different
cut-offs are used to define PD-L1 positivity for differ-
ent tumor types, whereas for certain indications PD-
L1 testing is not required for PD-1/PD-L1 inhibition–
based therapy, from now on referred to as ICI.
For several years the oncology and pathology com-

munities have raised concerns about the reliability of
IHC-based detection of PD-L1 to appropriately select
patients for ICI. To date, although PD-L1 is currently
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the only approved biomarker for these agents, it remains
controversial given the complexities of its clinical use
due to variability in assay performance of the PD-L1
IHC antibodies, spatial and temporal heterogeneity,
absence of a unified scoring system, and concerns about
inter-reader reproducibility for scoring PD-L1 on
immune cell (ICs). Due to these inconsistencies, some
patients who could benefit might not receive treatment,
whereas others may be treated based on erroneous test
results, exposing them to potential adverse side effects
with no drug benefit. In addition, because PD-1/PD-
L1 interaction is only one of many factors that may
determine the clinical response to immunotherapeutics,
it is unlikely that a single biomarker will sufficiently
predict clinical outcomes in response to ICI. The use
of composite biomarkers can provide biologically rele-
vant information on multiple factors that determine
response. In a meta-analysis, combined biomarker
approaches such as PD-L1 IHC and tumor mutational
burden (TMB) and multiplex fluorescent IHC-
evaluating protein co-expression and spatial relation-
ships, demonstrated an improved performance over
PD-L1 or TMB alone [1]. As guardians of patient’s
samples, pathologists partnered with clinicians, indus-
try, and regulators must guide evidence-based inclusion
of biomarkers in clinical trials and daily practice to
ensure the best patient outcomes possible. Stromal
tumor-infiltrating lymphocytes (TILs) have also been
studied as a predictive biomarker of response to ICI
for a variety of cancers including breast cancer (BC).
TILs can be assessed on a simple hematoxylin and eosin
(H&E) slide with reliable reproducibility among pathol-
ogists when they adhere to the standardized method
[2,3]. We propose PD-L1 and TILs as a more compre-
hensive composite biomarker.

A good biomarker should be analytically valid,
robust, reproducible, and clinically useful. To be incor-
porated into daily practice, it must also be affordable
and accessible to pathologists in both academic and
community-hospital practices worldwide [4]. In this
review, we propose a systematic implementation of
combined PD-L1 and TIL analysis as a comprehensive
immuno-oncological biomarker for patient selection for
ICI in both clinical trials and daily practice. In support
of this position, we outline the evolution of PD-L1 and
TILs as biomarkers, from the analytical and clinical val-
idation phases through clinical implementation, review
the challenges we have encountered, and propose miti-
gation approaches within a risk-management framework
as previously published [5]. The collective of available
evidence anticipates enhancement of patient selection
and safety by the systematic implementation of com-
bined PD-L1 and TIL analysis.

Technical validation phase: analytical validity of
PD-L1 IHC

Biomarker development starts with an initial discovery
in pre-clinical studies, which we do not cover in this

review, followed by a validation phase in which the bio-
marker is adapted to clinically applicable assay plat-
forms and subjected to analytical and clinical
validation [6]. For PD-L1 IHC, analytical validity refers
to the accuracy and consistency of the technique to
detect the presence of PD-L1 protein. To be able to ana-
lyze the accuracy and consistency of the test we must
first define the presence of PD-L1 protein. PD-L1 can
be expressed on solid and hematologic tumor cells
(TCs) and on ICs, including macrophages, dendritic
cells, lymphocytes, and granulocytes [7,8]. PD-L1 is
expressed in the cytoplasm and/or on the cell membrane.
A PD-L1-positive (PD-L1+) TC has been defined as
showing partial or complete membranous staining of
any intensity [8–13]. Accompanying cytoplasmic stain-
ing is often observed but ignored in TC. On the other
hand, a PD-L1+ IC is one that shows membranous or
cytoplasmic staining of any intensity. Cytoplasmic stain-
ing may show a punctate or granular pattern, most com-
monly observed with SP142 [11,12,14]. IC can be
observed in aggregates or as single cells dispersed in
the intratumoral or peritumoral stroma as well as
admixed with TC [8,14].
Chromogenic IHC-based detection of PD-L1 has

been largely concordant with other methods to detect
PD-L1 expression, such as immunofluorescence, mass
spectrometry, and RNA in situ hybridization
[9,15–18]. Each PD-L1 diagnostic kit has shown preci-
sion, reproducibility, and robustness when standard
operating procedures and optimization of conditions
are followed [8,14,19–21]. Studies comparing PD-L1
assays performance on archival, routine clinical prac-
tice, and clinical trial TNBC samples have shown dis-
crepancies among SP142, SP263, and 22C3 assays.
PD-L1 positivity defined as the proportion of tumor
area occupied by PD-L1- positive immune cells
(ICA) ≥1% with SP142 showed between 20 and
38, 10 and 35, and 7 and 19% fewer PD-L1+ cases
compared to SP263 ICA ≥1% and 22C3 combined pos-
itive score (CPS) ≥1 and ICA ≥1%, respectively
[22–26]. Prevalence with each assay is shown in
Table 2. Similar findings were observed in previous
multi-institutional studies on archival clinical non–
small cell lung cancer (NSCLC) and urothelial carci-
noma specimens, in which results between 22C3,
28-8, SP263, 73-3, and E1L3N assays were broadly
comparable, whereas SP142 has shown lower PD-L1
expression on both TC and IC [9,10,12,13,16,38–43].
To investigate this discordance, a study mapped the

antibody-binding sites for each antibody [44]. SP142,
SP263, and E1L3N bind amino acid residues in the
cytoplasmic tail of PD-L1 [14,44,45], whereas 22C3
and 28-8 target the extracellular domain [44,46].
22C3 and 28-8 binding sites contain N-linked glyco-
sylation sites, which may lead to variability in antigen
retrieval. N-glycosylation may also affect binding effi-
cacy of antibodies with cytoplasmic binding; differ-
ences between mass spectrometry and E1L3N IHC
were reported on melanoma samples with high glycan
modifications, suggesting that posttranslational
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modifications could interfere with recognition of bind-
ing sites [17]. SP142 and SP263 bind to the same epi-
tope [44]; hence the above-described discordance
between these assays may be due to differences in
assay protocol leading to insufficient antibody satura-
tion. The visualization and amplification methods have
been shown to affect the extent and pattern of expres-
sion of PD-L1 on IC and TC [47], at least partly
explaining the discordance among assays.
Inter-observer reproducibility represents a major chal-

lenge to the reliable assessment of any IHC assay; this is
especially true for PD-L1. Although inter-pathologist
reproducibility for the assessment of PD-L1 on TC is
high, concordance has been lower for IC evaluation

across multiple tumor types [10,13,39], irrespective of
the assay. Scoring IC is more difficult from a methodo-
logical standpoint. Identification of IC may be straight-
forward in some cases, but complex in others,
especially when attempting to differentiate between TC
and intra-tumoral monocytic (macrophages/dendritic)
cells, which cannot be easily distinguished on H&E. In
addition, the four kits reportedly show different IC stain-
ing patterns: 22C3, 28-8, and SP263 assays mainly stain
macrophages and dendritic cells, whereas the SP142
assay, while staining a lower number of ICs, also iden-
tifies some lymphocyte-like cells [47]. Using SP142, the
majority of non-neoplastic cells were CD68+, whereas
5% were CD8+ [48]. Two multi-institutional studies,

Table 2. Prevalence of PD-L1 according to assay in breast cancer
Study Samples number and site SP142 SP263 22C3 Others

Scott et al [22] 196 TNBC ICA ≥ 1%:32%
CPS ≥ 1: 35%
TC% ≥ 1%: 11%

ICA ≥ 1%:54%
CPS ≥ 1: 64%
TC% ≥ 1%:
53%

ICA ≥ 1%:51%
CPS ≥ 1: 60%
TC% ≥ 1%:
50%

28-8
ICA ≥ 1%:46%
CPS ≥ 1: 52%
TC% ≥ 1%: 35%

Noske et al [23] 30 primary TNBC samples ICA ≥ 1%: 50% ICA ≥ 1%: 87% ICA ≥ 1%: 57%
CPS ≥ 1: 60%

28-8
ICA ≥ 1%: 63%

Noske et al [23] 104 primary TNBC samples ICA ≥ 1%: 44% ICA ≥ 1%: 82%
Reisenbichler
et al [25]

68–76 primary TNBC samples ICA ≥ 1%: 58%
(n = 68)

ICA ≥ 1%: 78%
(n = 76)

IMpassion130
NCT02425891 [24]

614 primary and metastatic
TNBC samples

ICA ≥ 1%: 46% IC ≥ 1%:75% CPS ≥ 1: 81%

IMpassion130
NCT02425891
[24,27,28]

902 primary and metastatic
TNBC samples

All: ICA ≥1%:41%
primary: ICA ≥1%:44%
metastatic: ICA ≥1%:36%
All: TC% ≥1%: 9% (900)

FDA SSED [14] 2744 primary and 50 metastatic
TNBC samples

All: ICA ≥1%:50%
primary: ICA ≥1%:50%
metastatic: ICA ≥1%:78%

Carter et al [29] 500 chemotherapy naïve TNBC ICA ≥1%: 46%
TC% ≥1%: 9%

Downes et al [26] 30 BC ICA ≥1%:47–50% CPS ≥1:
53–63%

E1L3N:
ICA ≥1%:53–63%
CPS ≥1: 53–67%

NCT01633970 [30] 24 TNBC ICA ≥1%: 50%
TC ≥1%:17% (of which 92%

were ICA ≥1%)
NCT01375842 [7] 112 TNBC ICA ≥1%: 78%*
KEYNOTE-119
NCT02555657 [31]

622 TNBC CPS ≥1: 65%
CPS ≥10: 31%
CPS ≥20: 18%

KEYNOTE-012
NCT01848834 [32]

111 TNBC CPS ≥1: 59%

KEYNOTE-086
NCT02447003 [33]

170 primary and metastatic
samples TNBC

CPS ≥1: 62%

KEYNOTE-150
NCT02513472 [34]

107 TNBC CPS ≥1: 46%

JAVELIN
NCT01772004 [35]

136 BC, 48 TNBC 73-3
All: IC ≥10%: 9%
TNBC: IC ≥10%:

19%
TONIC NCT02499367
[36]

70 metastatic TNBC samples IC ≥1%: 86%
IC ≥5%: 67%

GeparNuevo
NCT02685059 [37]

158 TNBC ICIC% and/or
TC% ≥1%:
87%

CPS, combined positive score; FDA SSED, U.S. Food and Drug Administration summary of safety and effectiveness data; IC, immune cells; met, metastatic or non-primary
sample; n, number of patients included in the analysis; prim, primary sample; TC, tumour cells.
*The first 25 patients were selected only if PD-L1+, then enrolment was extended to all patients, explaining the higher PD-L1 prevalence.
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including up to 19 pathologists, show moderate agree-
ment (interclass correlation coefficient [ICC]
0.560–0.805) between pathologists for SP142 assay on
TNBC samples [23,25]. Pathologists were trained on
the evaluation of PD-L1 IHC and were required to pass
a proficiency test in one of these studies [23]. Agree-
ment for other assays was slightly lower. Table 3 shows
details of studies evaluating inter-observer reproduc-
ibility on BC samples. Of interest, SP142 has been
shown to have the highest concordance among readers
for PD-L1 IC ≥1% in studies including other tumor
types [10–12], although the differences are not statisti-
cally significant. This may be because SP142 stains TC
with lower prevalence, allowing the IC staining to be
more easily identified.

Overall percent agreement (OPA) is the proportion of
samples that are classified the same by all observers. The
U.S. Food and Drug Administration (FDA) summary of
safety and effectiveness data for SP142 showed an OPA
of 91.1%; however, this study included only three
pathologists [14]. In contrast, the study including
19 pathologists found an OPA of 41% with SP142.
Recently, Reisenbichler et al [25] showed a new method
for analysis of OPA as a function of the number of
observers. The resulting graphs reaches a plateau at the
number of observers required to provide realistic concor-
dance estimate. If there is high concordance, then the plot

will plateau at a high OPA with a small number of
observers. In contrast, OPA for PD-L1 ICA ≥1%
decreased as the number of observers increased, reaching
a plateau of 40% at nine observers. Results of real-world
training conducted by Roche demonstrated an OPA of
98% between 903 pathologists from 75 countries asses-
sing 28 TNBC cases in a proficiency test; however, the
methodology for calculating OPA was not disclosed on
the abstract [49]. On re-analysis of the National Com-
prehensive Cancer Network (NCCN) study with lung
cancer samples, OPA between 13 pathologists
increased from 0% with a three-category score to 18%
using a two-category scale (IC ≥1 and <1%), or even
67% if an outlier pathologist is excluded [38], showing
that two categories are more reproducible. Moreover,
low values, such as 1%, show lower inter-reader repro-
ducibility [51].

Clinical validation phase: Clinical validity and
utility of PD-L1 IHC and TILs as predictive
biomarkers of response to PD-1/PD-L1 inhibitors

Clinical validation refers to how reliably the biomarker
correlates with response to ICI and divides the patient
population into groups with divergent expected

Table 3. Studies evaluating inter-reader reproducibility on breast cancer samples
Study Assay and scoring Participating

pathologists
Samples
evaluated

Training Concordance

Reisenbichler et al
[25]

SP142 CDA ICA ≥1% 19 68 primary TNBC No specific training for the
study.

ICC 0.560, OPA 41%
SP263 CDA ICA ≥1% ICC 0.513

Noske et al [23] SP142 CDA ICA ≥1% 7 30 primary TNBC Trained on digital platform for
the evaluation of PD-L1 IC
with SP142 and had to pass
a proficiency exam.

ICC 0.805
SP263 CDA ICA ≥1% ICC 0.616
22C3 CDA ICA ≥1% ICC 0.605
28-8 CDA ICA ≥1% ICC 0.460

FDA SSED [14] SP142 CDA ICA ≥1% 3 60 TNBC Not specified. OPA 91.1%

Dennis et al [49] SP142 CDA ICA ≥1% 903 28 TNBC Regional trainer lead sessions
and digital platform training
conducted by Roche
International Pathologist
Training program. A
proficiency test was
evaluated.

OPA 98%

Downes et al [26] SP142 CDA ICA ≥1% 3 30 BC Not specified. ICC 0.956, OPA 98%
22C3 CDA CPS ≥1 ICC 0.862, OPA 93%
E1L3N LDT IC ≥1% ICC 0.862, OPA 93%
E1L3N LDT CPS ≥1 ICC 0.815, OPA 91%

Solinas et al [50] E1L3N LDT IC ≥1% 2 441 BC Not specified. ICC 0.10–0.58 for primary treatment
naïve tumours,

ICC 0.94[0.84–0.97] for NAC treated,
ICC 0.00 [−0.54–0.35] for relapses

Overall percentage agreement (OPA) is calculated as the total number of times in which the readers agree, divide by the total number of readings. The OPA is expected to
vary by classification difficulty and by the number of observers but does not take chance into account. Kappa does and should therefore be calculated as an associated
measurement. Agreement measurements focus on the reliability of evaluations between different readers and do not require a standard reference, thus should not be
confused with studies of accuracy. When using these measures of agreement, the FDA recommends to clearly state the calculations being performed. These calculations
were not available for all the studies in Table 3 precluding fair comparison among studies.
CDA, commercial diagnostic assay; FDA SSED, U.S. Food and Drug Administration summary of safety and effectiveness data; ICC, interclass correlation coefficient; LDT,
laboratory developed test; OPA, overall percent agreement.
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outcomes. Clinical utility is a measure of whether clini-
cal use of a test improves clinical outcome and assists
clinical decision-making [52]. The gold standard for
evaluating biomarker clinical utility is the outcome of
prospective randomized trials, which include biomarker
evaluation in the study design, such that it is powered to
specifically evaluate the benefit derived from the new
drug according to biomarker status [52–54]. However,
most randomized trials adopt a primary end point of drug
efficacy and do not employ a biomarker design. Table 4
shows the characteristics and results of clinical trials uti-
lizing PD-L1 IHC and TILs as predictive biomarkers of
response to ICI in BC.
Patients with newly diagnosed metastatic or locally

advanced PD-L1 ICA ≥1% TNBC demonstrated sur-
vival benefit with the addition of the PD-L1 inhibitor ate-
zolizumab to nab-paclitaxel in the randomized phase III
IMpassion130 trial in which all patients were prospec-
tively tested for PD-L1 with SP142 [28]. Evaluation of
progression-free survival (PFS) and overall survival
(OS) in the PD-L1+ subgroup was one of the primary
efficacy end points. Although the primary endpoint of
OS for the intention-to-treat (ITT) population was not
reached, and although a pre-specified statistical testing
hierarchy prevented further formal analysis, OS was
improved within the PD-L1+ subgroup with the addition
of atezolizumab [28,63].
No improved outcome was observed for pre-treated

metastatic TNBC patients with PD-1 inhibitor pembroli-
zumab as monotherapy or compared to chemotherapy
(treatment per physician choice: vinorelbine, capecita-
bine, or gemcitabine) in the ITT population or PD-L1+
populations (PD-L1 CPS ≥1 or CSP ≥10 with 22C3) on
the randomized phase III KEYNOTE-119 study [31].
Large randomized trials with survival end points, like
the aforementioned, are generally required to establish
the medical utility of a predictive biomarker. Neverthe-
less, retrospective analysis of specimens collected from
prospective trials may also establish biomarker clinical
utility if appropriately designed and if archival tissue is
available from enough patients to have adequate statisti-
cal power [64]. An exploratory analysis with a cut-off of
CPS ≥20 did show a longer benefit in OS with the addi-
tion of pembrolizumab to chemotherapy [31]. To further
reliably establish clinical utility, these results should be
validated in similar, but separate cohorts [64]. Likewise,
response to pembrolizumabmonotherapy or in combina-
tion with chemotherapy was independent of PD-L1 sta-
tus (CPS ≥1) on a single-arm phase II KEYNOTE-086
and KEYNOTE-150 trials, respectively [33,34]. Of
note, patients participating in these studies were pre-trea-
ted. TNBC patients with PD-L1 IC ≥1% and IC ≥5%
showed improved survival outcomes with nivolumab
after induction treatment on the phase II TONIC
trial [36].
For patients with metastatic trastuzumab-resistant

HER2-positive (HER2+) BC, PD-L1 CPS ≥1 was
predictive of response to the pembrolizumab plus trastu-
zumab combination in the single-arm phase II

PANACEA trial [58]. Conversely, on the phase II ran-
domized KATE-2 trial, although the response was
numerically higher in patients with PD-L1 ICA ≥1%
tumors, no significant benefit was observed with the
addition of atezolizumab to T-DM1 [59]. Notably, in
an exploratory biomarker-analysis, the hazard ratio
(HR) for OS was similar for PD-L1 as for TILs in this
trial, suggesting that both predict benefit from the addi-
tion of atezolizumab to T-DM1.

In the neoadjuvant setting, an increase in pathological
complete response (pCR) rate observed with the addition
of pembrolizumab to chemotherapy was independent of
PD-L1 status (CPS ≥1) on the randomized phase III
KEYNOTE-552 trial [60]. Similarly, PD-L1 ICIC

% ≥1% not only failed to predict pCR after the addition
of durvalumab to chemotherapy, but in fact was predic-
tive of response in the chemotherapy-only arm on the
phase II randomized GeparNuevo trial [37].

Exploratory analysis of the randomized phase III
KEYNOTE-119 trial showed that patients with TILs
higher than the median (5%) had better OS in the pem-
brolizumab monotherapy arm but not in the chemother-
apy arm [55]. TILs greater than the median were also
shown to be predictive of response to single-agent pem-
brolizumab regardless of PD-L1 status on retrospective
biomarker analysis of the previously treated PD-L1
unselected cohort A of KEYNOTE-086 (median TILs
5%), but even more so within PD-L1+ treatment-naïve
cases on cohort B (median TILs 17.5%) [57]. Further-
more, patients with TNBC and HER2+ BC who
responded to treatment with pembrolizumab alone and
in combination with trastuzumab showed higher median
TILs on the single arm phase II KEYNOTE-086 and
PANACEA trials [57,58] and on the TONIC phase II
trial evaluating nivolumab after induction treat-
ment [36].

In the neoadjuvant setting, baseline TILs evaluated as
a continuous variable and stratified (<10, 11–59, ≥60%)
were predictive of pCR in both the durvalumab plus che-
motherapy and chemotherapy plus placebo arms of
GeparNuevo [37]. In addition, overall T-cell density
was associated with pCR in response to pembrolizumab
in the randomized phase II I-SPY 2 trial [65].

It is important to keep in mind that TILs have also
proven predictive of response to neoadjuvant chemo-
therapy (NAC) in patients with TNBC and HER2+ BC
[66,67] and strongly prognostic of outcome in patients
with early TNBC treated with standard anthracycline-
based adjuvant chemotherapy [68–70] on phase III and
pooled trials. In addition, in early stage treatment-naïve
TNBC patients, high TIL-counts predict >98% 5-year
survival, suggesting that the benefit of chemotherapy is
probably very limited in this group [71,72]. PD-L1 base-
line expression has also been positively associated with
response to anthracycline-based NAC in hormone
receptor–positive BC [73] and TNBC [74]. However,
both PD-L1 and TILs are predictive of response to
monotherapy ICI, proving predictive capacity beyond
chemotherapy treatment.
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Clinical implementation: Inclusion of PD-L1 and
TILs in clinical trials

Given the existing evidence, we propose systematic
implementation of combined PD-L1 and TIL analyses
as a comprehensive immuno-oncological integral bio-
marker for patient selection for ICI in BC clinical trials.
Because both have proven to be influential determinants
of response to ICI, the use of both markers as stratifica-
tion factors on randomized clinical trial designs could
improve the balance of baseline characteristics among
arms. Trial design should include PD-L1 and TIL ana-
lyses in real time, pre-specifying the inclusion of both
biomarkers in the protocol and ensuring well-powered
biomarker clinical utility data that can be used for regu-
latory submissions of both TILs and PDL1 as markers of
efficacy for immunotherapy. In addition, new protocols
can be written to conduct prospective–retrospective bio-
marker analysis on archival tissues from completed tri-
als. All studies must be conducted and analyzed in a
standardized manner per Reporting Recommendations
for Tumor Marker Prognostic Studies (REMARK) cri-
teria [75,76]. TILs should be scored as recommended
by the International Immuno-oncology Biomarker
Working Group (TIL-WG) [2,3] as a continuous vari-
able with clinically relevant cut-offs in mind. A recent
publication demonstrated the feasibility of the applica-
tion of a web-based TIL scoring platform to enable the
use of TILs as a stratification factor in an immunother-
apy clinical trial for TNBC within a risk-management
framework [77]. This pilot study proposes a standardize
workflow that can be used in future clinical trials.

In BC, both PD-L1 and TILs have shown higher
expression in primary tumors samples than in metastases
[2,24,57]. Nonetheless, PD-L1 expression on either pri-
mary breast (HR PFS: 0.61[0.47–0.81]) or metastatic
lesion samples (HROS: 0.55[0.32–0.93]) was predictive
of response to atezolizumab and nab-paclitaxel combi-
nation [24]. Although the most recent sample may be
more representative of the current immunologic status,
evaluating all available samples on clinical trials would
provide useful data to define the most appropriate time
point for testing. Pre- and on-treatment TILs have been
associated with response to ICI [61,62]. On-treatment
biopsies could be included in protocols, since they may
provide real-time information to help guide future treat-
ment choices.

Furthermore, the existence of multiple scoring sys-
tems for PD-L1 assays precludes the harmonization of
assays and complicates reproducibility of scoring among
pathologists. A single scoring system would allow a
more accurate and direct comparison among assays and
simplify scoring, likely facilitating adoption into clinical
practice. For BC patients, clinical benefit has been corre-
lated with PD-L1 expression on IC [7,27,35,36]. More-
over, PD-L1 expression on macrophages was
associated with outcome in response to neoadjuvant dur-
valumab [78]. Although PD-L1 expression on TCs with
SP263 was predictive of response to durvalumab in the

neoadjuvant setting [37], in the advanced setting,
expression on TCs evaluated by SP142 [7,24,27],
22C3 [36], and 73-10 [35] was not predictive. We there-
fore encourage reporting PD-L1 expression as IC, TC%/
tumor positive score (TPS), and CPS separately for all
assays in clinical trials to assess which scoring system
is most clinically relevant for each setting. Note that IC
scored as proportion of tumor area occupied by PD-L1
expressing IC is not equivalent to IC as a percent of
TC, given that most BCs contain distinct stromal areas
in-between tumor areas; a score normalized by cross-
sectional area produces lower scores than a score nor-
malized by number of TCs.
We believe that the application of systematic criteria

for combined PD-L1 and TIL analyses to future clinical
trial designs will produce reliable data to better under-
stand which patients will benefit the most from ICI.
The resultant data could ultimately allow the conduction
of a meta-analysis to provide clinically impactful data.
Nevertheless, PD-L1 expression and IC presence are
subject to dynamic regulation processes that are incom-
pletely understood biologically. In addition, several
other factors also influence responses to ICI, including
tumor neoantigen load, IC composition, and expression
of other costimulatory and inhibitory molecules. Addi-
tional biomarkers may help further refine patient selec-
tion. These potential biomarkers will likely be
predictive in a tumor type–specific dependent manner.
For instance, TMB has been showed to be a predictive
biomarker of response to ICI across multiple cancers in
retrospective studies [79]. However, mutational load is
relatively low in BC. In addition, in TMB, estimates
are variable across laboratories [80], with slower turn-
around and higher cost compared to IHC. Class II major
histocompatibility complex (MHC-II) tumor expression
has been associated with response to ICI in breast [81]
and other tumor types. Further investigation of these
and other biomarkers in correlative studies in clinical tri-
als is warranted, such as those evaluated by multiplex
fluorescence IHC or gene-expression profiling.

Clinical implementation: Inclusion of PD-L1 and
TILs in daily practice

An analytically and clinically validated biomarker assay
can be implemented into clinical care, but level 1 evi-
dence is needed to change clinical practice. Results from
randomized phase III IMpassion130 [28] led to the
accelerated approval of atezolizumab and nab-paclitaxel
as the standard treatment regimen for PD-L1+
(ICA ≥1%) metastatic TNBC in many countries. Clinical
implementation of a biomarker requires three key ele-
ments: Regulatory approval, reimbursement by health
systems, and incorporation into clinical practice guide-
lines [6]. Regulatory approval is different in every coun-
try. Only the SP142 assay has been approved by
regulatory agencies as the companion diagnostic test
for the administration of atezolizumab and nab-
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Table 5. Risks associated with the integration of PD-L1 as immuno-oncological biomarkers for clinical trials and the daily practice

Risk Description of risk Mitigation approach/Recommendation

Risks to patient safety
Provision of inappropriate
treatment because of false-
positive or false-negative test
results

Inter-pathologist variability and use of different assays
with different sensibilities may mislead categorization
of PD-L1 status. Incorrect results lead to inappropriate
treatment allocation and put patient safety at risk.

See below.

Physical harm or inconvenience
associated with tissue biopsy

Heterogeneity of PD-L1 expression between primary and
metastatic lesions in TNBC [14] can lead to misleading
categorization depending on the sample tested.

Define optimal sample for PD-L1 testing from data of
future clinical trials. When both primary and
metastatic samples available, test both if possible.

Operational risks
Failure of sample collection,
processing and quality

Poor quality samples can result in unreliable test results. Ensure correct sample fixation for 6 to 72 h and
processing. Determine sample adequacy on H&E:
presence of TC and tumor-associated IC. Cut 4um
sections for PD-L1 IHC testing along with sections for
other IHC to preserve tissue in biopsy samples. Use
within 2 months of cutting [14].

Within laboratory assay
variability

Drifts in assay results over time can result in unreliable
test results.

Follow staining protocol with optimized conditions.
Include control tissue (tonsil) to test acceptance
criteria [14]. Internal and external quality assurance.
Audit positivity rates [87].

Risks to biomarker development
Difference in PD-L1 expression
prevalence among assays

SP142 has shown PD-L1 expression on a lower number of
TC and IC compared to the other assays
[9,10,12,13,16,22–24,38–42].

It is more important that an assay identifies the patients
who will most likely respond, than identifying a greater
proportion of PD-L1 positive patients. Even though
assays are not analytically equivalent, clinical utility
interchangeability must be further studied.

Use of multiple scoring systems The existence of multiple scoring systems for the PD-L1
assays preclude the homologation of assays and
complicate reproducibility.

For BC, PD-L1 expressed in IC and not in TC has been
shown to be predictive of response [7,27,35,36]. Future
clinical trials should evaluate the most effective PD-L1
scoring system. Cut-points must be reproducible.

Inter pathologist variability to
read assay

Quantification of PD-L1 on IC has been shown not be
reproducible to expected standards
[10–13,18,23,38,39].

Ensure training on expected staining profile and cut-off
for pathologist participating in clinical trials. Use of a
single scoring system. Automated quantification by
computer-based image analysis. Evaluate
interobserver variability with a sufficiently large and
statistically powered number of pathologists to ensure
reproducibility.

Temporal and Spatial
heterogeneity

Both PD-L1 and TILs have demonstrated higher
expression in primary tumors than in metastases
[2,24,57].

Evaluating all available samples on clinical trials would
provide useful data, since the most appropriate time
point for testing has not yet been clearly established.

Unique biomarker as companion
diagnostic test

Due to the complexity of immune response it is unlikely a
single biomarker will sufficiently predict response to
ICI.

Since both PD-L1 and TILs have shown to be predictive of
response to ICI [28,57] the use of both as stratification
factors and for composite biomarker analysis in future
clinical trials may help further optimize patient
selection. Enough samples should be secured to further
investigate other biomarkers on exploratory analysis.

Risks to biomarker implementation into daily practice
Regulatory approval differs per
country

Implementation into daily practice is dependent on
regulatory approval.

Thorough and timely scientific interaction between the
pathology community, industry and regulatory and
national reimbursement agencies is needed.

Biomarker accessibility and
affordability

PD-L1 testing is not yet covered by health insurance in
many countries.

Thorough and timely scientific interaction between the
pathology community, industry and regulatory and
national reimbursement agencies is needed.

Use of multiple PD-L1 assays for
a single analyte

With multiple PD-L1 assays available, pathology labs
cannot be expected to have all tests available, causing
variability in test results between laboratories.

Choice of assay will depend on regional regulations,
availability of antibody, automated staining platform
and optimized assay in currently in use. Consider LDTs.
Outsource to reference laboratories.

Difference in PD-L1 expression
prevalence among assays

SP142 has shown PD-L1 expression on a lower number of
TC and IC compared to the other assays
[9,10,12,13,16,22–24,38–42].

It is more important that an assay identifies the patients
who will most likely respond, than identifying a greater
proportion of PD-L1+ patients. For BC SP142, SP263
and 22C3 have shown to identify patients that derive
better outcome in response to atezolizumab and nab-
paclitaxel [24].

Inter pathologist variability to
read assay

Quantification of PD-L1 on IC has been shown not be
reproducible to expected standards
[10–13,18,23,38,39].

Training on expected staining profile and cut-off.
Interpretation guideline. Use of a single scoring system.
Automated quantification by computer-based image
analysis.

(Continues)

678 PI Gonzalez-Ericsson et al

© 2020 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org

J Pathol 2020; 250: 667–684
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


paclitaxel in countries such as the United States, Japan,
Sweden, Peru, and Argentina. Whereas in certain
counties in the European Union (EU), China, and Brazil,
any PD-L1 assay can be used as long as it has been val-
idated. In the EU, drugs are generally not regulatorily
linked to a companion diagnostic test. The NCCN and
other guidelines [82] include PD-L1 diagnostic testing
as part of the workup for recurrent or metastatic TNBC
as well as other tumor types. However, to date, in most
countries, PD-L1 testing is not performed routinely on
metastatic TNBC, but mainly upon oncologist request.

Following regulatory approval and incorporation into
clinical practice guidelines, a biomarker must also be
affordable and accessible to pathologists in both aca-
demic and community-hospital practices worldwide to
be successfully incorporated into daily practice. In
Japan, where the SP142 assay is the approved compan-
ion diagnostic test for TNBC, only this assay is covered
by the health system. In the United States, the SP142
assay and LDTs are covered by health insurance. In
Peru, PD-L1 testing is covered by prepaid health insur-
ance but it is not yet covered by the public health system.
In Argentina, Australia, Brazil, Chile, India, Morocco,
and some countries in the EU, the test is not yet covered
by the health system. In the UK, the National Institute for
Health and Care Excellence (NICE), the UK regulatory
agency that evaluates drug efficacy, reported: ‘Atezoli-
zumab with nab-paclitaxel […] does not meet NICE’s
criteria for inclusion in the Cancer Drugs Fund. This is
because it does not have the potential to be cost effective
at the current price, and there is no clear evidence that
further trial data would resolve the uncertainties’ [83].

Subsequently, each pathology laboratory faces chal-
lenges including sample selection, sample processing,
choice of assay, quality assurance, and interpretation to
ensure correct implementation and consequent accurate
patient selection. Table 5 summarizes these and previ-
ously stated risks along with proposed mitigation
approaches to ease the implementation of PD-L1 testing
into clinical practice. It has been suggested that labs
should test as many time points as are available such as
to maximize patient eligibility for treatment. However,
such an approach will be costly without proven benefit
to the patient. It is also unclear whether insurance com-
panies will pay for testing of multiple samples.

From a clinical perspective, it is imperative that an
assay identifies patients likely to respond to ICI, rather
than identifying a greater proportion of PD-L1+ patients.

The lower prevalence of PD-L1+ cases detected by the
SP142 assay could potentially lead to fewer patients
selected for therapy (false-negative tests), whereas use
of SP263 or 22C3 could lead to greater patient eligibility
at the expense of false-positive tests, unnecessarily sub-
jecting a subset of these patients to toxicity and financial
costs without clinical benefit. In an exploratory post hoc
analysis of IMpassion130, the PD-L1+ population iden-
tified by each assay independently showed clinical ben-
efit with similar hazard ratio (HR) (HR [95% CI]:
SP142 ICA ≥1%: PFS: 0.60 [0.47–0.78], OS: 0.74
[0.54–1.101]), 22C3 CPS ≥1: PFS: 0.68 [0.56–0.82],
OS: 0.78 [0.62–0.99], SP263 IC ≥1%: PFS: 0.64
[0.53–0.79], OS: 0.75 [0.59–0.96]) [24]. 22C3 and
SP263 identified a larger PD-L1+ population, of which
the SP142 positive cases are a subgroup. Of note, the
biomarker evaluable population (BEP) included only
68% of the original ITT population, and although it
may be adequately sized to reliably identify a larger
treatment effect in the two-category test-positive
patients, it could be underpowered to analyze a tripartite
population of dual-assay analysis. OPA for analytical
concordance with SP142 (ICA ≥1%) was 64% (22C3
CPS ≥ 1) and 69% (SP263 IC ≥ 1%), demonstrating that
the assays are not equivalent [24]. Nevertheless, even if
mostly driven by the SP142-positive subpopulation,
SP263 and 22C3 identified patients that showed
improved PFS and OS, making them clinically inter-
changeable, since they identify populations with near-
similar clinical outcomes [9]. Further studies such as
this, done in partnership between academia, industry,
and regulatory entities, need to be encouraged, prefera-
bly before formal regulatory approval of an assay as a
companion diagnostic linked to a specific drug. In a
meta-analysis including samples from various tumor
types, each diagnostic kit was found to better match
with properly validated corresponding LDTs than with
other diagnostic kit assays [43]. Although further studies
are warranted, the use of LDTs is a reality in daily
practice.
From a practical point of view, a single pathology lab-

oratory cannot have all assays available. Labs perform-
ing PD-L1 IHC testing for NSCLC already use other
assays, most commonly 22C3 and SP263 assays or an
LDT [38,40]. Developing and validating the SP142
assay could be an unwarranted burden for some labora-
tories. SP142 and 22C3 commercial diagnostic assays
are performed on different platforms, each a large capital

Table 5. Continued

Risk Description of risk Mitigation approach/Recommendation

Unique biomarker as companion
diagnostic test

Due to the complexity of immune response it is unlikely a
single biomarker will sufficiently predict response to
ICI. The use of PD-L1+ IC score as a unique biomarker
test maybe suboptimal in real world conditions.

Since TILs and PD-L1 are part of an immunological
spectrum and PD-1/PD-L1 interaction is only one of
many factors that may determine the clinical outcome
of immunotherapeutic therapies, assessing both as a
composite biomarker could be a better way to identify
patients most likely to respond to ICI.

H&E, hematoxylin and eosin; IC, immune cells; IHC, immunohistochemistry; LDTs, laboratory developed test; PD-L1+ IC, proportion of tumor area covered by IC with
discernible PD-L1 staining of any intensity expressed as a percentage; ICI, PD-1/PD-L1 inhibition based therapy; TC, tumor cell; TILs, tumor infiltrating lymphocytes; TNBC,
triple negative breast cancer.
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expenditure. In countries where regulatory agencies per-
mit, PD-L1 could be performed as an LDT, if analyti-
cally validated. For the SP142 antibody, similar PD-L1
expression was observed with different platforms [15],
although using a different detection method has proven
to impact assay performance [47]. In countries where
the regulatory agencies mandate the use of the SP142
assay, smaller hospitals will likely need to outsource
testing to a reference laboratory. To date, in most coun-
tries, only a handful of large academic hospitals and ref-
erence labs are performing PD-L1 testing for TNBC.
The choice of assay should be an agreement between
pathologist, oncologist, and patients, and be directed
by good laboratory practices and common sense. Patient
advocates need to be aware of how the choice of an assay
can influence treatment decisions.
For quality assurance purposes, tonsil-control tissue

must be included as positive and negative controls
alongside the clinical case to accept or reject the assay
run. Tonsil tissue is recommended because it demon-
strates granular punctate staining on lymphocytes
arranged in aggregates and dispersed single-cell pat-
terns, diffuse staining in the reticulated crypt epithelium,
and absence of staining on superficial squamous epithe-
lium [8]. A control sample staining close to the cut-off
point is also recommended [87]. Unlike HER2, PD-L1
has no reflex alternative testing method that can be
employed to ascertain accuracy. In addition, because
the different PD-L1 assays are not equivalent, they can-
not be tested against each other for accuracy. Pathology
laboratories must audit their PD-L1 positivity rates as
part of internal quality assurance. Prevalence of PD-L1
+ (ICA >1%) TNBC with SP142 was 41% (44% on pri-
mary and 36% on metastatic samples) on IMpassion130
[24,28]. Other studies have shown a similar range of
prevalence 32–58% on TNBC samples using SP142
ICA ≥1% [14,22–25,28–30]; one study had an outlier
prevalence of 78%, in which the first 25 patients were
selected only if PD-L1+; then enrollment was extended
to all patients [7]. However, PD-L1+ prevalence reaches
54–87 and 46–86% when using SP263 ICA ≥1% and
22C3 CPS ≥1, respectively [22–25,31–34]. Prevalence
of PD-L1+ on each of the cited studies is shown on
Table 2. As part of an external quality assessment and
validation, samples with known PD-L1 expression
should be tested and compared on proficiency tests. A
validated standardized PD-L1 Index Tissue Microarray
[16] containing cell-line samples with known varying
PD-L1 expression levels could be used for this purpose.
For LDTs, laboratories must show results comparable to
those obtained in clinical trials, with a diagnostic assay
validated to predict potential response to a particular
drug in a particular disease as a gold standard [84]. The
Canadian Association of Pathologists has published a
guide to ensure the quality of PD-L1 testing [85].
As discussed previously, inter-observer reproducibil-

ity is one of the main pitfalls regarding PD-L1 validity
as a viable prognostic or predictive marker. These errors
in patient selection not only put patients at risk, but also
generate extra costs for health systems, generating issues

at the national regulatory level regarding reimbursement-
criteria. Pathologists must be trained to interpret and
score PD-L1 assays. Training material developed by
assay manufacturers, including a digital training platform
with a proficiency test, can be accessed freely [86,88].
The value of training should be established in statistically
rigorous studies that include post-training evaluationwith
proper decay time. In addition, pathologists must partici-
pate in external quality assurance programs. A guideline
for the interpretation of PD-L1 IHC developed by pathol-
ogists for pathologists, like those for TILs [2,3,89], ER
[90], and HER2 [91], is needed. Such a guideline devel-
oped by the International Association for the Study of
Lung Cancer is available [92]. Even though reproducibil-
ity among pathologists has been shown to be higher with
two-category scoring [38], we believe the percentage of
PD-L1+ ICA should be incorporated into the pathology
report in addition to a positive or negative PD-L1
deliberation.

Another tool available for pathologists that can
improve reproducibility is digital image analysis of
whole-slide images. Evaluation of TILs in solid tumors
is a highly suitable application for computational assess-
ment; automated quantification by computer-based
image analysis provides accurate and reproducible
results that can aid pathologists, especially for borderline
cases surrounding the clinically relevant 1% cut-off that
are challenging to distinguish by eye. In the basic retro-
spective research realm, image analysis algorithms have
shown better or comparable concordance between the
automated algorithm score and the mean pathologist
score than between pathologists [9,93]. Like any bio-
marker, computer-based image analysis algorithms
would need to be analytically and clinically validated
with demonstrated clinical utility such that results are
consistent with trial materials used to established cut-
points for clinical decision-making and approved by cor-
responding regulatory agencies before they can be
applied in the daily practice. A recent publication out-
lines possible workflows and challenges for analytical
and clinical validation of computational TIL assessment
[94], paving the path for its incorporation into clinical
trials and daily practice.

In view of the considerable level Ib evidence for the
prognostic value of TILs, the expert panels at St Gallen
2019 [95] and authors of the 2019 edition of the World
Health Organization Classification of Tumors of the
Breast recommended quantification of TILs in TNBC.
Internationally, some institutions have already begun
incorporating TILs into pathology reports, paving the
way for TIL counts to inform BC therapies. Going for-
ward, a standardized format for reporting TIL counts,
similar to those used to report hormone receptors, will
need to be adopted. Given the inherent variability in
TIL distribution and heterogeneity of sampling, we pro-
pose that TIL counts should be scored in treatment-naïve
and advanced-setting BC specimens, while in the clini-
cal post-treatment setting TILs should be scored only
on clinical trial samples according to established guide-
lines [96]. TILs should be scored as recommend by the
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TIL-WG [2,3] as a continuous variable, with clinically
relevant cut-offs in mind.

Even though TILs will require validation in accor-
dance with regulatory standards prior to being clinically
recommended as a predictive biomarker for response to
ICI, TILs ≥5% have been shown to be predictive of
response to pembrolizumab on the exploratory analysis
of the randomized phase III KEYNOTE-119 clinical
trial [57]. In addition, TILs have been analytically vali-
dated, with three ring studies showing reliable inter-
reader reproducibility [97–99], and have the advantage
of being easily assessed on a simple H&E slide with an
existing standardized method that is available to the
pathology community though numerous publications
and at the TIL-WG website [2,89]. In a recent publica-
tion, an analysis of the most discordant cases on the ring
studies identified possible pitfalls for scoring TILs,
including technical factors, sample heterogeneity, vari-
ability in defining tumor boundaries, differentiating lym-
phocytes from mimics, and limited stroma for
evaluation. Approaches to avoid these pitfalls have been
covered in the publication, and associated educational
resources are available at the TIL-WG website [89,97].
Once pathologists score TILs in their daily practice
for prognostic purposes, this information will already
be present in the report. As shown by Liu et al using
SP142 LDT, a significant proportion of PD-L1+ ICs
are macrophages [48], whereas TILs are composed of
lymphocytes and plasma cells. In addition to providing
this biologically relevant predictive information, TILs
can also serve as a starting point. It is improbable that
a tumor with no TILs will be PD-L1+. Similarly, PD-
L1 borderline cases are likely to have low TILs. At
the same time, cases with high TILs are highly likely
to be PD-L1+, as evidenced on the BEP of IMpas-
sion130 exploratory analysis, in which virtually all
cases with TILs >20% were PD-L1+ [24]. Therefore,
used in combination with TILs it may conceptually
not matter which PD-L1 assay is used, as long as it is
validated according to international standards. TILs
are highly likely to be the backbone of predictive and
prognostic information.

In conclusion, pathologists have a responsibility to
patients to implement assays that lead to the most opti-
mal selection of patients for immunotherapies. Solving
the current issues in implementation of PD-L1 assays in
clinical trials and daily practice requires a partnership
between industry, academia, and regulating agencies,
involving patient advocates. Because TILs and PD-L1
are part of an immunological spectrum in BC, and
PD1-PD-L1 interaction is only one of many factors that
may determine the clinical outcome of immunothera-
peutic therapies, assessing both as a composite bio-
marker may be the best way to identify patients most
likely to respond to ICI. However, reality and regula-
tory implementations dictate that practices will vary
across different jurisdictions. We propose herewith a
risk-management framework that may help mitigate
the risks of suboptimal patient selection for immuno-
therapeutic approaches in BC.
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