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Abstract 
Noncoding RNAs (ncRNAs), such as miRNAs and long noncoding RNAs, are key regulators of gene expression at the 
post-transcriptional level and represent promising therapeutic targets and biomarkers for several human diseases, including 
Duchenne and Becker muscular dystrophies (DMD/BMD). A role for ncRNAs in the pathogenesis of muscular dystrophies 
has been suggested, even if it is still incompletely understood. Here, we discuss current progress leading towards the clinical 
utility of ncRNAs for DMD/BMD. Long and short noncoding RNAs are differentially expressed in DMD/BMD and have a 
mechanism of action via targeting mRNAs. A subset of muscle-enriched miRNAs, the so-called myomiRs (miR-1, miR-133, 
and miR-206), are increased in the serum of patients with DMD and in dystrophin-defective animal models. Interestingly, 
myomiRs might be used as biomarkers, given that their levels can be corrected after dystrophin restoration in dystrophic 
mice. Remarkably, further evidence demonstrates that ncRNAs also play a role in dystrophin expression; thus, their modu- 
lations might represent a potential therapeutic strategy with the aim of upregulating the dystrophin protein in combination 
with other oligonucleotides/gene therapy approaches. 
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Introduction 
 

Duchenne muscular dystrophy (DMD) is one of the most 
common neuromuscular disorders in childhood, involving 
around 1 in 3500 male births [1] with an incidence from 
10.71 to 27.78 per 100.000 males [2]. It is an X-linked dis- 
ease, usually caused by out-of-frame mutations in the dys- 
trophin gene DMD, which leads to the absence of protein 
expression. On the contrary, mutations retaining the reading 
frame are generally related to partial residual expression of 
dystrophin and a milder phenotype called Becker Muscular 
Dystrophy (BMD) [3]. 
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Dystrophin is a cytoplasmatic protein that plays a major 

structural role in skeletal muscles, linking the cytoskeleton 
to the extracellular matrix via a complex (dystrophin-associ- 
ated protein complex or DAPC) formed with dystroglycans, 
sarcoglycans, sarcospan, dystrobrevins and syntrophin [4]. 
The disruption of this structure, especially the linking with 
actin and beta-dystroglycan, destabilizes the sarcolemma 
during the muscle contraction [5]. Membrane instability 
allows the entrance of calcium ions with subsequent oxida- 
tive stress, activation of Ca2+-dependent calpain and protein 
degradation. Activation of complement and infl 
causes necrosis and generation of pro-fibrotic factors. While 
muscle regeneration initially increases to replace muscle 
damage, over time, muscle regeneration fails and fibro-fatty 
substitution takes place, impairing the muscle function [6]. 
In fact, the prolonged exposure to an adverse environment 
prevents myogenesis, despite satellite cells retaining regen- 
erative capacity [7]. 

Moreover, dystrophin has an important scaffolding role, 
participating in the cell signaling pathways [8] and ena- 
bling the correct localization of nitric oxide synthetase 
(nNOS) [9]. Other components of DAPC are also involved 
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in signaling. For instance, beta-dystroglycan is involved in 
MAPK pathway, dystroglycans are cell surface receptors 
for protein of the extracellular matrix, syntrophin organizes 
several signaling proteins and interacts with ion channels 
and G-protein-related pathways [10]. The absence of this 
important scaffolding role can result in disrupted expression 
of several interrelating molecules. 

DMD generally starts in early childhood with proximal 
muscle weakness leading to loss of ambulation at approx- 
imately 12 years of age. Diagnosis is usually achieved at 
3 years of life due to motor delay, sural hypertrophy, falls 
or increased CK levels. When 6-year-old, the patients 
develop progressive difficulties in running, climbing stairs 
and rising from floor. The muscles most affected by fibro- 
fatty degeneration are psoas, gluteus and quadriceps, fol- 
lowed by proximal muscles of upper limbs [11–13]. Cardiac 
involvement, starting from 10 years of age, leads to dilated 
cardiomyopathy and heart failure [14]. Death occurs within 
the third decade of life due to heart or respiratory failure 
[15]. On the other hand, BMD is a milder disease, although 
more heterogeneous, characterized by muscle weakness and 
atrophy with juvenile onset and sural hypertrophy. Loss of 
ambulation may occur at variable ages, even after 60 years 
of age [16]. Cardiomyopathy is less frequent than DMD but 
represents one of the most frequent causes of death in BMD 
subjects and it is not related to the level of skeletal muscle 
impairment [17]. 

To date, no definitive cure for dystrophinopathies is avail- 
able, but novel therapeutic strategies have been attempted 
[18]. Recently, three novel therapies have been approved by 
the FDA (Eteplirsen and Golodirsen) and EMA (Ataluren). 
Exon skipping, mediated by oligonucleotides, allows for 
the production of a shorter but functional mRNA rescuing 
dystrophin expression and shifting from DMD to BMD-like 
phenotype. Eteplirsen is a phosphorodiamidate morpholino 
oligomer able to restore the dystrophin frame of lecture in 
subjects carrying a deletion amendable of skipping of exon 
51 (approximately 14% of DMD patients) [19, 20]. Simi- 
larly, Golodirsen induces skipping of exon 53 [21]. Instead, 
Ataluren is a small molecule able to bypass dystrophin stop 
codon mutations by a read-through mechanism, allowing the 
expression of the protein [22]. 

Other strategies have been proposed to modify the course 
of the disease. For example, gene therapy delivers smaller 
forms of DYS with adeno-associated viral vector (AAV) 
and has been tested in clinical trials [23]. Genome editing 
through CRISPR–Cas9 technology has been attempted in 
animal models [24]. Epigenetic mechanisms can also be 
considered a therapeutic target. Post-transcriptional regula- 
tion could be implicated in the pathogenesis of the disease, 
as indicated by the extremely variable dystrophin expres- 
sion (8–63%) detected by analyzing BMD patients carry- 
ing the same mutation (Δ45-47) and comparable levels of 

dystrophin mRNA [25]. Moreover, several compounds target 
the pathological changes related to the loss of dystrophin 
and include corticosteroids, other anti-inflammatory drugs, 
antioxidants as Idebenone, vasodilators as Tadalafi and 
myostatin inhibitors [26]. 

In this context, non-coding RNAs (ncRNAs) have 
emerged as relevant molecules in the pathogenesis of sev- 
eral human disorders. Non-coding RNAs are not translated 
into proteins and originate from parts of codifying genes or 
are transcribed as independent genes. They can be classified 
according to their function as RNAs involved in translation 
(transfer RNA—tRNA, ribosomal RNA—rRNA), splic- 
ing (small nuclear RNA—snRNA), modifi of small 
RNAs (small nucleolar RNA—snoRNA), regulation of gene 
expression (piwi-associated RNA—piRNA, endogenous 
short-interfering RNA, microRNA—miRNA). Moreover, 
ultraconserved regions (T-UCR), large intergenic noncod- 
ing RNA (lincRNA), long noncoding RNA (lncRNAsmall 
interfering RNAs (siRNAs) and circular RNA have been 
described [27–29]. ncRNAs are involved in many different 
cellular pathways, including development and differentia- 
tion, tissue homeostasis, signal transduction and cell pro- 
liferation. They may also be identified in several biological 
fluids, like blood or urine, inside exosomes or linked to lipo- 
proteins or freely circulating, thus representing extracellular 
biomarkers [27]. 

The most studied ncRNAs are represented by microR- 
NAs, small RNA sequences (approximately 22 nucleotides) 
acting as post-transcriptional modifi MiRNAs repress 
target gene expression by binding the 3′ untranscribed region 
(3′UTR) of the corresponding mRNA with subsequent deg- 
radation or translation inhibition [31]. In certain conditions, 
they also improve gene expression, stabilizing the mRNA 
and facilitating its translation [32]. 

Long noncoding RNAs (lncRNAs) are molecules longer 
than 200 nucleotides, localized both in the nucleus and cyto- 
plasm, encoded proximally to promoters of coding genes and 
poorly conserved across species [33]. They are implicated 
in diff ent cellular pathways, such as chromatin remod- 
eling through histone methylation or acetylation or acting 
as a scaff    for other enzymes, transcriptional activation 
or interference, cell traffi king, protein relocalization and 
phosphorylation or ubiquitination, mRNA processing and 
stability, splicing regulation and post-transcriptional and 
post-translational processes [34, 35]. LncRNAs can also be 
miRNAs precursors. Moreover, several types of noncoding 
RNAs, including lncRNAs and circular RNAs, are able to 
bind miRNAs, acting as ‘sponges’ and sequestering them 
from their targets [35–37]. 

Non-coding RNAs have been recently studied in dystro- 
phinopathies to evaluate their role in the pathogenesis of the 
disease, as dystrophin expression modulators, as biomarkers 
and as possible therapeutic targets. This review will focus 



 
 

 

 

on the impact of miRNAs and lncRNAs on these aspects 
(Table 1). 

 
 

Modulators of dystrophin expression 
 

Dystrophin expression in skeletal muscle can be 
directly modulated by specific miRNAs 

 
Fiorillo et al. analyzed muscle specimens of 10 BMD 
patients carrying a DMD deletion 45–47. Subjects were 
divided into two groups, low-BMD and high-BMD, accord- 
ing to dystrophin levels by Western blot analysis (cut-off 
20%). Since protein expression was not directly related to 
dystrophin mRNA levels, muscle expression of specifi 
miRNAs binding dystrophin 3′UTR was studied. Selected 
miRNA levels were significantly overexpressed in low-BMD 
(miR-146b-5p, miR-382, miR-410, miR-758, miR-214, miR- 
494, miR-223, miR-146a, miR-195, miR-374a, miR-103, 
miR-320a, let-7d, let-7a) and high-BMD subjects (miR-410, 
miR-758, miR-214, miR-223, miR-494). An inverse corre- 
lation between miRNA levels and protein expression was 
detected. Additionally, miR-31 was upregulated in DMD 
patients [25]. 

Likewise, animal models of dystrophinopathies showed 
an upregulation of miR-146b, miR-146a, miR-223 and 
miR-382 as detected in the vastus lateralis (50-fold, 3-fold, 
8-fold) and sartorius (25-fold, 1.3-fold, 2.5-fold, 4-fold, 
respectively) of the Golden Retriever muscle dystrophy 
(GRMD) model. Similar upregulations were detected in the 
gastrocnemius muscle of the mdx mouse. Moreover, a direct 
correlation between age and miRNA levels was found in 
GRMD (miR-146b, miR-146a, miR-223) and mdx (miR-223, 
miR-31) models in comparison to wild-type controls [25]. 

Among the 14 miRNAs upregulated in the low-BMD 
group, Fiorillo identified 7 miRNAs inhibiting (miR-146b, 
miR-31, miR-374 and, to a lesser extent, miR-146a, miR- 
223, miR-320a, miR-382) and 2 miRNAs enhancing dys- 
trophin expression (miR-195, miR-758) [25]. Only limited 
knowledge of the actual muscular function of these miRNAs 
is available. 

Furthermore, 14 lncRNAs originate from the DMD 
locus, most of them from intron regions close to dystro- 
phin promoters or isoform-specifi fi t exons, since they 
are involved in the modulation of protein expression through 
targeting of their promoters. These transcripts localize to 
the nucleus and are expressed in at least one among skel- 
etal muscle, heart, or brain. Transcription of these lncRNAs 
seems to be related to dystrophin and primed by myogenic 
diff entiation induced by MyoD. Their overexpression in 
human muscles and neuronal cells causes downregulation of 
brain and muscle dystrophin full-length isoforms (Dp427b 
and Dp427m) targeting the promoter; instead, Dp427p and 

Dp71 transcription are barely affected. A negative correla- 
tion between lncRNAs and full-length DMD isoform levels 
has been found in dystrophinopathy female carriers [38]. 

 
 

Pathogenesis of dystrophinopathies 
 

In addition to modulating dystrophin expression, miRNAs 
are involved in signaling pathways, development and cellu- 
lar phenotype and regulation of myogenic proliferation and 
fibrosis. 

Greco et al. suggested a classification of miRNAs 
involved in muscular pathways into miRNAs associated with 
1) inflammation (miR-222, miR-223), expressed in response 
to muscle fiber damage; 2) degeneration (miR-1, miR-29c, 
miR-135a), reduced in the mdx model or DMD patients or 
after ischemia and linked to myofi loss and fi osis; 3) 
regeneration (miR-31, miR-34c, miR-206, miR-335, miR- 
449, miR-494), increased in the mdx model, DMD patients 
and in response to induced ischemia [39]. 

Infl Fiorillo et al. further evaluated the role 
of miRNAs in the infl related to the dystrophic 
process. They treated mdx myotubes with TNF-alpha and 
detected an increase in miR-146a and miR-223 levels. 
Since steroid therapy is one of the gold standards in DMD 
management, prednisolone was administered to reverse 
miRNA changes. Anti-infl ory drugs also decrease 
miR-146b and miR-382 levels. Therefore, they speculated 
that TNF-alpha-related inflammation might activate the 
NFkB pathway in muscle fi inducing miR-146a and 
miR-223 expression and inhibiting dystrophin expression 
[25]. Prednisolone administration decreases muscle levels 
of miRNAs related to infl  (miR-142-5p, miR- 
142-3p, miR-146a, miR-301a, miR-324-3p, miR-455-5p, 
miR-455-3p, miR-497, miR-652) up to normal values in 
the murine mdx model [40] and affects serum expression 
of selected miRNAs (miR-206, miR-181a, miR-4538, miR- 
4539, miR-606, miR-454) altered in young DMD patients 
[41]. Thus, another possible mechanism of action of corti- 
costeroids may be related to serum miR-206 reduction, in 
which early overexpression negatively regulates target genes 
(RHGAP31, KHSRP, CORO1B, PTBP1, C7ORF58, DLG4, 
KLF4) worsening motor function in DMD [41]. Indeed, ster- 
oid treatment seems to further increase miR-1 and miR-133 
levels in DMD, especially on a daily regimen compared to an 
intermittent one [42]. Moreover, miR-146 expression can be 
activated by NFkB and has a role in the immune system [43]. 

Fibrosis Another relevant feature of muscular dystrophies 
is collagen deposition. Studies on murine models identified 
miR-1 and miR-29 as being related to the TGF-β pathway, 
fibrosis and myogenic differentiation. 

Myoblast differentiation and myotube formation are pro- 
moted by miR-29 acting on Akt3, a serine/threonine protein 



 

 

 

 

Table 1  Role in skeletal muscle tissue and alteration of the most relevant miRNAs and lncRNAs in dystrophinopathies in muscle (M) and serum 
(S) samples of DMD or BMD patients or animal models 

 

ncRNA Role in skeletal muscle Dystrophinopathies  References 

miR-1 Promote muscle differentiation Upregulated (S) DMDmdx [39, 128–132] 
 Role in FAP switch (S) Downregulated (M)  [36] 
 Degeneration    
miR-21 Promotes fibrosis Upregulated (M) mdx [46, 47] 
miR-23a Inhibits differentiation Downregulated (U) DMD [73, 142] 
miR-29 Decreases fibrosis Downregulated (M) mdx [43] 

 Promotes myoblast differentiation    
miR-31 Induced in ischemia damaged myofibers 

Expressed in quiescent satellite cells 
Upregulated (S) 
Upregulated (M) 

DMD 
mdx 

[23, 39, 65] 

 Dystrophin expression inhibitor    
 Delay muscle differentiation    
miR-34c Regeneration Upregulated (M) mdx [36] 

 Induced in ischemia damaged myofibers    
miR-133a Promotes myoblasts proliferation Upregulated (S) DMD [39, 128–132] 

 Role in FAP switch (S) Downregulated (M) BMD [130] 
miR-133b Myoblast proliferation Upregulated (S) DMD [39, 128–132] 

 Role in FAP switch (S)  BMD [130] 
miR-146a Promotes C2C12 myoblasts proliferation Upregulated (M) mdx BMD [23] 

 Dystrophin expression inhibitor    
miR-146b Promotes myogenic differentiation Upregulated (M) mdx [23] 

 Dystrophin expression inhibitor  BMD  
miR-195 Dystrophin expression enhancer Upregulated (M) BMD [23] 
miR-199a Promotes fibrosis Upregulated (M) DMD [48] 

 Proliferation and differentiation (WNT pathway)    
miR-206 Regeneration after muscle damage (expressed in proliferating myoblasts) Upregulated (S) DMD [39, 128–132] 

 Activation of satellite cells 
Promotes muscle differentiation 

Upregulated (M) BMD 
mdx 

[130] 
[36] 

 Role in FAP switch (S)    
miR-208b Myostatin related Upregulated (S) DMD [131] 
miR-221 Progression from myoblasts to myocytes (expressed in terminally differen- Upregulated (M) DMD [77] 

 tiated myoblasts)  BMD  
miR-222 Inflammation Upregulated (M) GRMD [55] 
miR-223 Inflammation Upregulated (M) mdx [23] 

 Dystrophin expression inhibitor  BMD  
miR-320a Dystrophin expression inhibitor Upregulated (M) BMD [23] 
miR-374a Dystrophin expression inhibitor Upregulated (M) BMD [23] 
miR-382 Dystrophin expression inhibitor Upregulated (M) mdx [23] 

   BMD  
miR-486 Muscle growth and apoptosis Downregulated (M) GRMD [55] 

 Promotes differentiation    
miR-494 Regeneration Upregulated (M) mdx [23] 
miR-499 Mithocondrial function Upregulated (S) DMD [131] 
miR-758 Dystrophin expression enhancer Upregulated (M) BMD [23] 
SRA Muscle differentiation Downregulated (M) mdx [81, 98] 
RAM Activation of myogenesis ? ? [90] 
Dum Myoblasts differentiation ? ? [86] 
YY1 Myogenic differentiation ? ? [89] 

 Promotes muscle regeneration    
Lnc-31 Counteracts differentiation Upregulated (M) mdx DMD [96] 
Lnc-MD1 Muscle differentiation and regeneration Upregulated (M) mdx [95, 98] 

  Downregulated (M) DMD  
Lnc-mg Increase IGF2 ? ? [93] 



 
 

 

 

kinase responsive to growth factor cell signaling [44], and 
NFkB/Yin Yang 1 (YY1) [45] pathways. Moreover, miR-29 
targets transcripts of fibrotic genes (for example, COL3A1, 
FBN1, YY1, COL1A1) and is downregulated in the muscle of 
mdx mice, to some extent due to TGF-β-mediated negative 
regulation. The loss of miR-29 in myoblasts promotes their 
differentiation in myofibroblasts and increases fibrosis [46]. 

MiR-1, expressed in adult skeletal and cardiac muscle 
tissue, promotes muscle diff   entiation targeting HDAC4, 
which in turn inhibits skeletal muscle gene expression [47]. 
HDAC2, increased in DMD, represses both miR-1 and miR- 
29 expression in mdx mice; indeed, enhancing nuclear sphin- 
golipid sphingosine-1-phosphate (S1P) inhibits HDAC in 
the mdx mice muscles, increasing miR-1 and miR-29 and 

reducing fibrosis [48]. 
Another miRNA implicated in skeletal muscle fibrosis 

is miR-21, which has been found to be increased in a dys- 
trophic mouse model and DMD fibroblasts. MiR-21 targets 
PTEN and SPRY-1 genes. Its levels positively correlate with 
COL1A1 and COL6A1 transcript levels, and it is regulated 
by the extracellular proteolytic inhibitor PAI-1 and enhanced 
by TGF-β. Muscle fibroblasts of the dystrophic mouse model 
present an imbalance between PAI-1 and urokinase-type 
plasminogen activator (uPA), favoring the activation of 
TGF-β and miR-21 expression. In mdx mice, muscle fibrosis 
is anticipated by the loss of PAI-1 or the overexpression of 
miR-21, while it is reduced by miR-21 inhibition [49, 50]. 
Furthermore, the fibrotic response is promoted by exosomes 
containing miR-199a-5p produced by DMD muscle fi o- 
blasts [51]. 

Recent studies have highlighted the role of fibro-adipo- 
genic progenitors (FAPs) in the pathogenesis of DMD, sup- 
porting regeneration during the early stage of the disease and 
fibro-fatty replacement in the late phase. Experiments on the 
murine mdx model demonstrated that histone deacetylase 
inhibitors (HDACi) promote muscle cell regeneration and 
prevent connective substitution only if administered in ear- 
lier stages, facilitating the myogenic phenotype. Instead, in 
the late stage of the disease, the fibro-adipogenic phenotype 
of FAPs prevails. Selected myomiRs (miR-1, miR-133, miR- 
206), induced by HDACi, seem to be implicated, through 
BAF60a and BAF60b, in the switch between fi o-adipo- 
genic and myogenic phenotype of FAPs [52, 53]. 

Nitric oxide pathway The absence of dystrophin also 
brings about delocalization and reduction of nitric oxide 
synthase (nNOS) levels, leading to increased muscle fati- 
gability. NO is responsible for the S-nitrosylation and chro- 
matin association of HDAC2, which results in increased 
activity in mdx mice. As previously stated, altered HDAC2 
modifies the expression of fibrosis-related miRNAs (miR-1 
and miR-29), while miR-206 is not aff since it is 
expressed in activated satellite cells [54]. Analysis of 617 
BMD (Δ45-55) muscular biopsies revealed overexpression 

of miR-31, miR-708 and miR-34c interacting negatively 
with nNOS; in DMD myoblasts, inhibition of miR-708 and 
miR-34c increased nNOS expression, confirming their role 
in nNOS modulation [55]. Moreover, nitric oxide upregu- 
lates miR-27b, and decreasing peroxisome proliferator- 
activated receptor gamma expression, inhibits the diff - 
entiation of FAPs into adipocytes [56]. 

Disruption of the DAPC Dystrophinopathies may also 
have a secondary defi of the other components of 
the dystrophin–glycoprotein complex. De Arcangelis et al. 
suggested the role of the overexpression of miR-222 in this 
phenomenon, since it binds β1-syntrophin 3′UTR in the 
mdx mouse skeletal muscle with consequent downregula- 
tion of this protein [57]. To support this hypothesis, Robri- 
quet et al. demonstrated that miR-222 and miR-486 are 
upregulated in newly regenerated muscle fi of GRMD 
dogs [58]. 

Myogenesis Muscle fi originate from mesodermic 
myogenic committed progenitors, expressing Pax3 and Pax7 
and turn into myoblasts that proliferate, diff entiate and 
fuse into mononucleated myocytes and then multinucleated 
myotubes. A subpopulation forms the skeletal muscle satel- 
lite cells (SCs), mononucleated cells localized between the 
sarcolemma and basal lamina of muscle fibers, that remain 
quiescent in the adult muscle, but are able to activate and 
proliferate in response to muscle injury [59]. Pax7 is fun- 
damental for the maintenance and proliferation of SCs and 
is repressed with the progression of myogenesis [60]. Both 
embryonal and adult myogenesis depends on the expression 
of myogenic regulatory factors (MRFs—MyoD, Myf5, myo- 
genin and MRF4) and the interaction between each other. 
The myogenic determination factor 1 (MyoD) and myogenic 
factor 5 (Myf5) are expressed in early stages and involved 
in commitment and proliferation of the myogenic directed 
cells, while myogenin and herculin (MRF4) induce the ter- 
minal differentiation of committed cells with the subsequent 
fusion of myocytes and formation of myotubes. However, 
even MyoD can be involved in the regulation of terminal dif- 
ferentiation, and MRF4 also has a role in the early commit- 
ment stage. Moreover, myocyte enhancer factor 2 (MEF2) 
proteins are able to positively regulate different MRFs. Other 
factors involved in the regulation of myogenesis are HGF, 
FGFs, IGF-1 splice variants, myostatin, BMP4, Wnt pro- 
teins, Six1, Six4 and TGF-β. [61–64]. The complex process 
of myogenesis and the role of MRFs and ncRNAs in this 
process is represented in greater detail in Fig. 1. 

MiRNAs are involved in the regulation of myogenesis, 
reciprocally interacting with myogenic transcription factors 
such as Pax3/7, Myf5, MyoD, myogenin, MRF4, MEF2 
and SRF [65, 66]. Muscle-specifi lncRNAs are mainly 
expressed during myoblast differentiation and regulate tran- 
scription factors implicated in myogenesis, including MyoD 
and Myf5, as well [67]. 



 

 

 

 

 
 

Fig. 1 Pax3 and Pax7 maintain satellite cells in a quiescence state by 
negatively regulating MyoD; miR-31 is involved in the maintenance 
of quiescence. Activation of muscle stem cells downregulates Pax3/7 
so that Myf5 and MyoD are upregulated and involves several miR- 
NAs. This leads to myoblast proliferation. After cell cycle exit, myo- 

genesis implies differentiation of myoblasts, fusion to form myotubes 
and maturation into myofibers. Other ncRNAs participate in response 
to muscle injury. In the scheme have been shown the main ncRNAs 
facilitating (green) or inhibiting (red) the various phases of myogen- 
esis 

 
In satellite cells and regenerating myoblasts, miR-31 is 

highly expressed and seems to suppress the translation of 
transcripts for early myogenic factors targeting Myf5 and 
maintaining SCs in a quiescent state. DMD biopsies showed 
more elevated levels of miR-31 than healthy controls [68]. 
On the contrary, miR-1 and miR-206 facilitate the differen- 
tiation of SCs targeting Pax7 mRNA and thus blocking their 
proliferation [47]. Pax7 expression in SCs is also enhanced 
by a pathway involving tumor necrosis factor (TNF) receptor 
associated factor 6 (TRAF6) and c-JUN/activator protein 1 
transcription factor. Lack of TRAF6 leads to overexpres- 
sion of miR-1, miR-133 and miR-206 in cultured myogenic 
cells and subsequent too early diff entiation of SCs [69]. 
Also, miR-27b promotes SCs differentiation targeting Pax3 
mRNA, and is induced at the beginning of the myogenic 
differentiation program [70]. 

Myoblast proliferation can be induced by miR-146a [71], 
miR-1, that targets HDAC4, and miR-133, which represses 
serum response factor (SRF) [47]. 

Other ncRNAs are involved in later stages of myogen- 
esis. For instance, miR-146b [72] and miR-206 [73] promote 
myogenic differentiation targeting Smad Family Member 4 
(Smad4) and Notch1 and p180 subunit of DNA polymerase 
alpha, respectively. Downregulation of miR-29, as reported 

in mdx muscle, increases Ying Yang-1 (YY1) in C2C12 
myoblasts, diminishing the differentiation of myoblasts into 
myotubes [74]. Furthermore, miR-181 increases terminal 
differentiation targeting the repressor Hox-A11 [75]. 

On the contrary, miR-23a inhibits myoblasts differentia- 
tion, acting on Myh1, Myh2 and Myh4 [76]. Mir-186 tar- 
gets myogenin in differentiation myoblasts and is repressed 
during myogenic differentiation [77]. Diminished myoblast 
differentiation can also be induced by transforming growth 
factor (TGF) β1 that represses miR-24, miR-29 and miR- 
206 [78]. Even miR-221 participates in the progression from 
myoblasts to myocytes and its expression causes a delay in 
withdrawal from the cell cycle and the inhibition of sarcom- 
eric protein accumulation in differentiating myoblasts [79]. 
MiR-221 is upregulated in DMD and BMD [80], suggesting 
a delay in the diff entiation process. Likewise, miR-31 is 
implicated in terminal differentiation, interacting with both 
Myf5 and dystrophin. While miR-31 levels tend to decrease 
at later stages of differentiation in wild-type mouse satellite 
cells, they are persistently upregulated in muscle tissue cul- 
tures of mdx model [81] and DMD myoblasts [68], causing 
a delay in muscle differentiation. MiR-199a-3p targets IGF1/ 
AKT/mTOR pathway partially blocking myoblasts differen- 
tiation in C2C12 myoblasts [82]. 



 
 

 

 

Also, lncRNAs act during myoblasts diff entiation, as 
previously stated [67]. eRNAs CE and DRR regulate MyoD 
and myogenin, modifying the access to chromatin and the 
recruitment of RNAP II [83]. SRA lncRNA and its protein 
isoform SRAP facilitate MyoD activity in opposite ways, 
with an increase in the SRA/SRAP ratio during myogenesis 
and consequent activation of MyoD [84]. MyoD, in turn, 
controls H19, a lncRNA highly expressed during embryonic 
development that represses MyoD-inhibiting protein IGF2. 
H19 has a pro-myogenic role and promotes skeletal muscle 
differentiation and regeneration encoding miR-675-3p and 
miR-675-5p, which, respectively, repress a pathway medi- 
ated by bone morphogenetic protein (BMP) and the DNA 
replication initiation factor Cdc6 [85–87]. MyoD also targets 
lnc-AK143003 [88] and lcnRNA Dum [89]. Yam-1 (YY1- 
associated muscle 1) and Yam-4 inhibit muscle differentia- 
tion, while Yam-2 and Yam-3 promote differentiation. Nota- 
bly, Yam-1 reduces myomiRs expression during proliferation 
and represses myogenesis by activating miR-715 [90]. Dele- 
tion of Malat1 in mdx mice improves muscle regeneration 
since it delays the switch between proliferative and differen- 
tiative phases of myogenesis; upon differentiation, miR-181a 
targets Malat1 for degradation, allowing MyoD activation 
[91]. Linc-YY1 promotes both myogenic differentiation and 
muscle regeneration [92]. Linc-RAM (linc-RNA activator of 
myogenesis) is upregulated during myogenesis and enhances 
transcription myogenic genes, including miR-206, by 
directly binding MyoD [93]. MUNC (MyoD upstream non- 
coding) favors myoblast differentiation by increasing MyoD, 
myogenin and Myh3 mRNA expression [94]. In contrast, 
Sirt1 AS lncRNA inhibits differentiation but promotes myo- 
blast proliferation interacting with miR-34a [95]. Lnc-mg 
acts as a miR-125b sponge, increasing insulin-like growth 
factor 2 (IGF2), and its levels rise during myogenic differ- 
entiation. Lack of lnc-mg (myogenesis-associated lncRNA) 
results in muscle atrophy and loss of endurance in knockout 
mice, while its overexpression leads to muscle hypertrophy 
[96]. Muscle anabolic regulator 1 (MAR1) acts as a sponge 
for miR-487b regulating the myogenic regulator Wnt5 and 
its overexpression can increase muscle mass [97]. 

The expression of certain lncRNAs is altered in muscu- 
lar dystrophies. In DMD myoblasts, Cesana et al. detected 
diminished levels of linc-MD1 that correlate with retarda- 
tion of the muscle diff entiation program. In fact, linc- 
MD1 binds miR-133 and miR-135, acting as a competing 
endogenous RNA for their mRNA targets, including the 
transcription factors MAML1 and MEF2C, which encode 
crucial myogenic factors. linc-MD1 administration appears 
to partially rescue the abnormal kinetics of differentia- 
tion in vitro [98]. Ballarino et al. identifi lnc-31 as a 
lncRNA counteracting differentiation in proliferating 
myoblasts. Indeed, its expression is higher in those cells 
and is downregulated during diff   entiation. Lnc-31 is also 

more abundant in mdx muscles and DMD myoblasts due 
to a more intense regenerative activity; delay in the dif- 
ferentiation program in DMD myoblasts relates with less 
pronounced downregulation of lnc-31. Notably, lnc-31 
originates from the precursor of miR-31 in an independ- 
ent way [99]. 

Regeneration and response to myofi damage involve 
several miRNAs. For instance, miR-1, miR-133 and miR- 
206 accelerate muscle regeneration, if injected in mouse 
models of muscle injury, inducing MyoD, myogenin and 
Pax7 [100]. Butchart et al. demonstrated a dysregulation of 
certain ncRNAs in mdx mice compared to C57 mice. Dur- 
ing the pre-necrotic phase, at 2 weeks, Meg3 and lncRNA 
SRA levels were lower, while miR-206 muscle levels were 
higher in mdx mice. On the other hand, during the necro- 
sis and regeneration stage, spanning from 4 to 6 weeks, 
linc-MD1 levels markedly increased instead of decreasing, 
while miR-1, miR-133a and Neat1_v2 levels were lower 
than C57 mice [101]. 

Other miRNAs involved in myogenesis include miR- 
26a, regulating SMAD transcription factors, miR-221, 
miR-222, miR-322, miR-424 and miR-503, controlling 
cell-cycle regulators [65]. 

Cell signaling Even more signaling pathways implicate 
miRNA control. Ngheim et al. suggested that the upregu- 
lation of myostatin-related miRNAs (miR-539 and miR- 
208b) might play a role in hypertrophy and functional 
sparing of the cranial sartorius in GRMD [102]. 

MiR-486 is another muscular miRNA that facilitates 
myogenic differentiation, notably reduced in mdx mice and 
DMD patient muscles, whose overexpression improved 
performance and integrity of the sarcolemma, increased 
fi size and reduced nuclear centralization in mdx mice. 
One of the miR-486 targets in skeletal muscle is DOCK3, 
which is induced in dystrophic muscles and modulates 
the PTEN/AKT (phosphatase and tensin homolog deleted 
on chromosome 10/ankyrin1) signaling pathway, conse- 
quently regulating muscle growth and apoptosis [103, 
104]. 

Myogenic regulatory factors of the WNT signaling path- 
way, involving cell proliferation and differentiation (FZD4, 
JAG1, WNT2), are targeted by miR-199a-5p. It is regulated 
in a serum response factor (SRF)-dependent manner and is 
overexpressed in animal models and human dystrophic mus- 
cle, causing myofi disruption and sarcolemmal detach- 
ment [105]. 

Another signaling pathway coupling mitochondrial func- 
tion and muscle fi type is mediated by miR-499. This 
miRNA inhibits Fnip1 reactivating a pathway mediated by 
AMP-activated protein kinase (AMPK) and PGC-1a; resto- 
ration of miR-499 in the mdx mouse model lessens DMD 
severity [106]. 



 

 

 

 

Other miRNAs involved in various muscle regeneration and 
secondary response pathways have been found to be dysregu- 
lated in DMD muscle samples by Eisenberg et al. [80]. 

Other pathways Another subset of lncRNAs (Bvht and Fen- 
drr) is also implicated in cardiomyocyte differentiation [107]. 
Cardiac muscle in dystrophinopathies presented a diff ent pat- 
tern of miRNA expression. For example, miR-448-3p down- 
regulation is related to cellular oxidative stress [108] and miR- 
340-5p expression to eccentric cardiac hypertrophy [109]. The 
miR-143/β-dystrobrevin/synapsin I pathway is likely involved 
in neuronal diff entiation and, therefore, in brain involvement 
in dystrophinopathies [110]. Furthermore, lncRNA KUCG1, 
originating from chromosome X, could be related to mental 
retardation seen in some DMD patients [111]. 

Micropeptides Novel micropeptides, molecules smaller 
than 100 aminoacids, involved in muscle functions, have 
been recently discovered originating from muscle-specific 
lncRNAs [112, 113], posing the basis for further investi- 
gations of their role in dystrophinopathies. Here, a quick 
overview among micropeptides so far known as involved in 
muscle functions. Myoregulin (MLN), one of the most abun- 
dant transmembrane microproteins in adult skeletal muscle, 
controls the activity of SERCA, a membrane pump con- 
trolling calcium-mediated muscle relaxation [114]. Dwarf 
Open Reading Frame (DWORF) is highly expressed in the 
murine heart and enhances SERCA pump activity interact- 
ing with the inhibitory peptides phospholamban, sarcolipin, 
and MLN [115]. Furthermore, it has been demonstrated that 
micropeptide in mitochondria (MPM) is downregulated in 
DMD patients. This micropeptide is localized in mitochon- 
dria and upregulated during C2C12 myoblasts differentiation 
and regeneration after cardiotoxin damage [116]. Mitoreg- 
ulin (Mtln) is another molecule, encoded by LINC00116, 
localized in the mitochondrial membrane, that binds car- 
diolipin, participates in protein assembly processes and 
enhances respiratory efficiency [117]. Instead, LINC00961 
encodes for a small regulatory polypeptide of aminoacid 
response (SPAR), a lysosomal protein involved in mTORC1 
signaling pathway and, therefore, protein synthesis and cell 
growth [118]. Myomaker and Myomixer are other two mol- 
ecules that regulate myoblasts or myocytes fusion [119]. 
At last, lncRNA-Six1 interact with muscle-related genes 
(MYOG, MYHC, MYOD, IGF1R, INSR) and is involved in 
muscle growth, since its overexpression induces Six1 gene 
expression, through repression of miR-1611, enhancing cell 
proliferation and division [120, 121]. 

 
 

Serum biomarkers 
 

An abnormal serum expression of diff ent miRNAs has 
been associated with various oncological, neurodegen- 
erative, cardiovascular, metabolic and hereditary diseases, 

suggesting a potential role as a minimally invasive biomarker 
[122]. MiRNAs selectively involved in muscular pathways 
and related to muscular dystrophies have been named dys- 
tromirs or myomiRs. They include miR-1, miR-133a, miR- 
133b, miR-31 and miR-206 [123]. 

MiR-1 and miR-133a are expressed from the same tran- 
script within the skeletal and cardiac muscle, but they have 
diff ent functions [80]. MiR-1 promotes myogenesis and 
terminal differentiation, acting on HDAC4 and connexin-43, 
while miR-133 enhances myoblast proliferation [47]. Mi-206 
and miR-133b are also codified by the same ncRNA. MiR- 
206 is specifi  to skeletal muscle, particularly oxidative 
fi and is expressed in proliferating myoblasts under 
negative regulation of TGF-β and myostatin and positive 
of MyoD and myogenin. MiR-206 promotes regeneration 
after muscle damage through differentiation and fusion 
of myotube progenitors, partially through HDAC4 inhibi- 
tion; in fact, newly formed muscle fibers from satellite cells 
during regeneration in CTX-injured and dystrophic mdx 
muscles presented high expression of miR-206; the lack of 
this in CXMDJ muscles might be related to the potential 
of muscle regeneration. Moreover, miR-206 has a role in 
muscle hypertrophy and atrophy and suppresses utrophin, 
while its overexpression causes upregulation of utrophin 
levels in dystrophic conditions and decreases proinflamma- 
tory cytokines and macrophagic infi ation in mdx mouse 
muscle [124–128]. 

At fi t, it was assumed that myomiRs were passively 
released from damaged muscle fibers into the bloodstream 
after necrosis or sarcolemmal dysfunction. However, muscle 
levels of miRNAs do not always correspond to a propor- 
tional change of miRNA muscle levels in serum. Therefore, 
more complex mechanisms have been postulated, such as 
abnormal secretion due to dystrophin deficiency or selective 
release during muscle differentiation and regeneration [129]. 
Moreover, extracellular myomiRs seem to be predominantly 
non-vescicular [130]. 

A substantial increase in miR-1, miR-133a, miR-133b, 
and miR-206 has been demonstrated in the serum of patients 
with Duchenne muscular dystrophy [42, 131–135]. Discord- 
ant results involve serum levels of miR-31 in DMD since it 
has been found to be slightly increased by Zaharieva et al. 
[42] and decreased by Vigner [131]. 

A straightforward relationship with clinical features and 
disease progression has not yet been found. A few studies 
indicated an inverse correlation between serum levels of 
miR-1, miR-133 and miR-206 in ambulant DMD patients 
and disease severity evaluated through the Medical Research 
Council (MRC) scale, temporized tests [132] or North Star 
Ambulatory Assessment (NSAA) scale [133]. Instead, 
Zaharieva et al. found lower dystromir levels in the serum 
of patients having lost ambulation compared to ambulant 
subjects and subjects requiring scoliosis surgery or having 



 
 

 

 

low forced vital capacity (FVC) values; no significant cor- 
relation with the NSAA score was reported [42]. These dis- 
crepancies may be partially explained by the different study 
populations analyzed regarding clinical severity and age. In 
fact, Cacchiarelli et al. evaluated patients from 3 to 6 years 
of age [133], Vignier et al. over 3 year-old [131], Zahari- 
eva et al. ambulant DMD subjects between 4 and 13 years 
old [42]. Even the relationship with age differs in the vari- 
ous studies, either as being absent [132] or directly [133, 
134] or inversely proportional [42] to serum levels. In one 
report, a considerable decrease in the amount of miR-133a, 
miR-133b, miR-31 and miR-1 was detected after the age of 
11 years [42]. 

Furthermore, Zaharieva et al. found higher levels of miR- 
1, miR-31 and miR-133b in patients on a daily steroid regi- 
men compared to intermittent regimen or absence of steroid 
treatment, suggesting a correlation between the anabolic 
effect of corticosteroids, increased muscle mass in subjects 
treated with higher steroids doses and circulating miRNAs 
levels [42]. 

Likewise, patients affected by BMD still present a mild 
increase in serum levels of miR-206, miR-1 and miR-133 
in comparison to healthy controls, even if they are lower 
than in DMD [133]. Similar fi  ngs have been described 
by Matsuzaka et al. [135] and Li et al. [134], but without 
statistical significance, in a group of patients between 5 and 
31 years and 1 and 14 years, respectively. Patients studied 
by Li et al. were not on steroids. However, Zaharieva did not 
observe any difference in dystromir serum levels compared 
to controls, except for a slight increase in miR-206 [42]. 

Serum miR-206 is raised even in female carriers of dys- 
trophinopathies [136]. Mouse mdx [131, 137] and canine 
X-linked muscular dystrophy (CXMDJ) models [138] 
showed overexpression of serum miR-1, miR-133a and 
miR-206. 

Muscle levels of myomiRs can actually be unchanged or 
mildly increased or even decreased. For instance, Zahari- 
eva showed that miR-1 is downregulated, while miR-206, 
miR-133a and miR-133b do not show signifi changes, 
confirming that serum levels are the result of more complex 
molecular mechanisms than passive release [42]. Moreover, 
miR-1 and miR-133 are abundant in mature muscle fibers 
but reduced in human and murine dystrophic myoblasts [54], 
while miR-206 is upregulated in skeletal muscles of 8 weeks 
old mdx mouse [137]. Deng et al. obtained muscle samples 
from a 1-month-old mdx mice highlighting overexpression 
of miR-1, miR-133a and miR-206 [139]. 

Thus, some authors suggested using miR-206 as a marker 
of muscle regeneration, considering that it is expressed in 
satellite cells and proliferating myoblasts and it decreases 
with age in muscle controls, and miR-1 and miR-133 are 
markers of residual muscle mass and decrease with age 
[42, 133, 134]. Extracellular myomiR levels can also be 

influenced by other factors, such as total muscle mass, exer- 
cise, muscle regeneration, immobilization and age [129, 
140]. An increase in serum levels of miR-1, miR-133a and 
miR-206 was detected after muscle damage induced by 
CTX in mice [135]. Moreover, Gomes et al. demonstrated 
an increase in dystromir serum levels as a result of exercise 
in healthy subjects [141]. 

Other serum miRNAs altered in dystrophinopathies 
include miR-499, miR-208a, miR-208b [134], miR-30c, 
miR-181a [142], miR-378 [131], miR-95, miR-539 [143], 
miR-22 and miR-193b [144]. 

MiRNAs have been quantified even in different biologi- 
cal fl ids. The urine of 54 Duchenne muscular dystrophy 
patients displayed downregulation of miR-29c-3p (ambulant 
subjects), miR-23b-3p and miR-21-5p (nonambulant sub- 
jects) compared to healthy controls [145]. 

Structural cardiac alteration indicative of myocardial 
fibrosis correlates with serum increases of miR-222, miR- 
26a and miR-378a-5p [146]. Other miRNAs related to 
cardiomyopathy are miR-208a, miR-208b and miR-499, 
expressed mainly in cardiac muscle and slow skeletal mus- 
cle [134, 143]. 

 
 

Tool for therapy efficacy evaluation 
 

Currently, several molecular approaches have been devel- 
oped to treat dystrophinopathies. Most of the current clini- 
cal trials employ functional tests, such as the Six Minute 
Walking Distance or Motor Function Measure Scale, as an 
outcome measure. Unfortunately, a signifi change in 
functional clinical outcomes requires long treatment times. 

Several potential biomarkers have been suggested, con- 
cerning myonecrosis, regeneration, inflammation, fibrosis, 
oxidative stress, both using histological analysis (i.e. albu- 
min levels related to sarcolemmal leakiness, embryonic or 
neonatal myosins, central myonuclei, infl ory infi - 
trates) and serum or urine levels of different metabolites (i.e. 
CK, aldolase, fi C, myosin light chain, serum TNF) 
[147]. Changes in miRNA levels in muscle specimens or 
serum could be a promising and non-invasive tool to evalu- 
ate the efficacy of novel treatments on dystrophin expression, 

muscle damage and inflammation. 
So far, the majority of these analyses was performed 

investigating exon skipping effects. Studies on the mdx 
murine model demonstrated an almost complete normaliza- 
tion of increased miR-1 and miR-206 serum levels (previ- 
ously 20–40-fold compared to wild type), proportional to 
dystrophin restoration, after 1 month from the administra- 
tion of exon 23 skipping treatment through adeno-associated 
virus (AAV) vectors [133]. Similar, but not statistically sig- 
nificant, myomir modifications were detected in the serum of 
DMD patients treated for 12 weeks with a novel morpholino 



 

 

 

 

antisense oligomer inducing exon 51 skipping (Eteplirsen) 
[42]. Moreover, correct nNOS localization after exon 45 
skipping in DMD myoblasts normalizes miR-1 and miR- 
29c expression [148]. In the mdx mouse, an increase in dys- 
trophin levels after exon 23 skipping through endovenous 
morpholino administration corresponds to reduced levels of 
selected miRNAs in the anterior tibial muscle (miR-146a, 
miR-374a, miR-223, miR-320a, miR-382) but not in dia- 
phragm or gastrocnemius muscles [26]. Also, Cacchiarelli 
et al. demonstrated how exon 23 skipping using AAV vec- 
tors in mdx mice resulted in normalization of downregulated 
miRNA (miR-1, miR-133, miR-29c, miR-30c), increase in 
miR-206 and reduction in miR-223 in muscle samples [54]. 
Roberts et al. showed normalization of serum miR-1, miR- 
133a and miR-206 after morpholino-mediated dystrophin 
restoration in mdx mice, proportional to the degree of protein 
rescue [137, 144]. Further studies found restoration towards 
wild-type levels of miR-21, miR-29c and miR-146b in mdx 
mouse muscles treated with exon skipping, but not of the 
upregulated miR-31, miR-34c and miR-206 [149]. 

A reduction in miR-31 levels, linked to dystrophin resto- 
ration, was observed after CRISPR/Cas9 treatment of myo- 
tubes derived from induced pluripotent stem cells (iPSCs) 
of DMD subjects [150]. 

 
 

Potential therapeutic targets 
 

As shown by the following preliminary experiments, modu- 
lation of miRNA levels may be used as support for other 
innovative treatments. 

One of the most consistently reported miRNAs involved 
in dystrophin expression is miR-31, which represses DMD 
expression targeting the 3′UTR region. MiR-31 showed a 
50-fold enrichment compared with the control in mdx mouse 
muscle. Cacchiarelli et al. attempted exon 51 skipping in 
human DMD myoblasts using antisense sequences adminis- 
tered through lentivirus: concomitant inhibition of miR-31, 
though a specifi sponge construct, improved dystrophin 
restoration leading to dystrophin levels greater than those 
achieved by exon skipping alone [68]. Analogous studies 
were performed by Hildyard et al. injecting both exon skip- 
ping and miR31-modulating oligonucleotides in the tibialis 
anterior muscle of the mdx mouse. While their results were 
promising in cell culture models, several problems arose 
in vivo, since the two oligonucleotides competed with each 
other for myofi entry and intravenous delivery of skip- 
ping morpholino resulted in fatalities [151]. 

Supplementation of miR-29c, which is involved in muscle 
fibrosis, through the AAV vector in the gastrocnemius of the 
mdx mouse, leads to muscular connective tissue decrease 
and weakness improvement. Almost complete normalization 
of muscle strength has been obtained with the combined 

administration of miR-29c and microdystrophin [152]. Wang 
et al. detected an increase in the number of regenerating fib- 
ers after injection of oligonucleotides mimicking miR-29c 
in the tibialis anterior muscles of mdx mice [46]. 

Local injection of a mixture of miRNAs (miR-1, miR- 
133, miR-206) in a rat skeletal muscle injury model 
enhances muscle regeneration [100]. In contrast, Bulaklak 
et al. showed improved motor function in mdx mice after 
AAV-mediated administration of a miR-206 decoy target 
[153]. 

Utrophin is a protein analogue to dystrophin, able to 
partially compensate in its absence. This compensatory 
mechanism differs in mice and humans, due to differential 
regulation of Utrn isoforms, and provide a major protective 
effect in mdx mouse model, responsible for the milder phe- 
notype compared to DMD patients [154]. Utrophin expres- 
sion can be downregulated by miR-206, miR-150, miR-196b, 
miR-296-5p, miR-133b and let-7c; blocking those miRNAs 
resulted in increased levels of utrophin in C2C12 cells [155]. 
Blocking the interaction between let-7c and utrophin 3′UTR 
through oligonucleotides brings about utrophin upregulation 
and improvement of the dystrophic phenotype in the mdx 
mouse model [156]. 

Other noncoding RNAs may be employed for therapeutic 
purposes: U1 snRNA-derived antisense molecules induce 
exon 45 skipping in Δ44 human DMD myoblasts, relocal- 
izing nNOS and recovering the normal expression of myo- 
genic markers and selected miRNAs [148]. 

Last, Aminzadeh et al. developed an approach based on 
cardiosphere-derived cells (CDCs) injected into the hearts 
of mdx mice to improve survival and ambulatory capacity 
due to the secretion of exosomes able to increase dystrophin 
expression through miR-148a [157]. 

 
 
 

Perspectives and conclusions 
 

Serum creatine kinase (CK) levels, an enzyme released by 
damaged muscle fi are elevated in the early stages of 
these muscular dystrophies and gradually decrease later on. 
Due to their fl they do not represent a precise 
blood biomarker for evaluating disease progression and clin- 
ical worsening or improvement. MiRNAs seem to be more 
stable than CKs and are correlated to clinical severity in 
some cases, suggesting a potential role as serum biomarker 
even in clinical trials, especially miR-1, miR-133 and miR- 
206. Further studies are needed to refi and standardize 
miRNA quantification on serum [158], and we should keep 
in mind that serum levels of myomiRs may increase both 
for muscle mass reduction and function improvement, as 
well as decrease both for physical activity and muscle mass 
increase [129]. 



 
 

 

 

Moreover, the analysis of miRNA expression may 
improve our knowledge of the pathogenesis of dystro- 
phinopathies and the pathways upon which the drugs act. 
Different miRNA expression could also explain the differ- 
ent phenotype and dystrophin levels highlighted in BMD 
patients carrying the same deletion, since some of them are 
capable of dystrophin expression inhibition, as miR-31 in 
DMD patients. 

MiRNAs can also be useful for monitoring the effi 
through serum or muscle changes, as reported mainly in 
studies involving exon skipping approaches. Furthermore, 
their administration may enhance the effects of known thera- 
pies, as shown with the administration of miR-31 modu- 
lating agents in addition to exon skipping, and improve 
pathological aspects of the disease, such as inflammation or 
fibrosis, as reported by Heller et al. with the supplementation 
of miR-29 and microdystrophin in mdx mice [152]. 

In conclusion, miRNAs have been demonstrated to be 
an interesting research field in dystrophinopathies, regard- 
ing pathogenesis, progression of the disease and treatment. 
While little is yet known, the increasing discoveries related 
to roles of lncRNAs in muscle functions and their interac- 
tion with miRNAs, are likely to provide further insights for 
dystrophinopathies. 
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