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Objectives: To test retrospectively the ability of four freely available rules-based expert systems to
predict short- and medium-term virological outcome following an antiretroviral treatment switch in pre-
treated HIV-1 patients.

Methods: The HIV-1 genotype interpretation systems (GISs) HIVdb, ANRS, Rega and AntiRetroScan
were tested for their accuracy in predicting response to highly active antiretroviral therapy using
8 week (n5765) and 24 week (n5634) follow-up standardized treatment change episodes extracted
from the Italian Antiretroviral Resistance Cohort Analysis (ARCA) database. A genotypic sensitivity
score (GSS) was derived for each genotype–treatment pair for the different GISs and tested as a pre-
dictor of virological treatment outcome by univariable and multivariable logistic regression as well as
by receiver operating characteristic curve analysis. The two systems implementing drug potency
weights (AntiRetroScan and Rega) were evaluated with and without this correction factor.

Results: All four GSSs were strong predictors of virological treatment outcome at both 8 and 24 weeks
after adjusting for baseline viro-immunological parameters and previous drug exposure (odds ratios
ranging from 2.04 to 2.43 per 1 unit GSS increase; P<0.001 for all the systems). The accuracy of
AntiRetroScan and Rega was significantly increased by drug potency weighting with respect to the
unweighted versions (P�0.001). HIVdb and ANRS also increased their performance with the same
drug potency weighting adopted by AntiRetroScan and Rega, respectively (P<0.001 for both analyses).

Conclusions: Currently available GISs are valuable tools for assisting antiretroviral treatment choices.
Drug potency weighting can increase the accuracy of all systems.
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Introduction

Development of resistance to antiretroviral drugs is both a
common reason for and a consequence of treatment failure in
HIV-1-infected patients. Accordingly, monitoring for the pres-
ence of drug resistance mutations in the virus population is rec-
ommended in clinical practice both at treatment failure and
before initiation of therapy.1 In most cases, this task is accom-
plished by using one or more of the many genotype interpret-
ation systems (GISs) freely available over the internet.2 These
typically comprise coded rules or scores whereby any distinct
mutation or mutation set is labelled as conferring a defined
degree of resistance to one or more individual drugs.
Development and maintenance of a GIS is a challenging task
because the potentially useful sources of an in vitro and in vivo
evidence base have been growing at an increasing pace and
advancements in knowledge of antiretroviral drug resistance
must be promptly incorporated into the system.3 Indeed, the
complexity of the correlation between the large number of
different mutation sets and the efficacy of the many available
treatment regimens are the reason for both the need for such
expert systems and the challenge of their continual
improvement.

Correlation data between HIV-1 genotype and in vitro sus-
ceptibility to individual drugs have been a relevant foundation
for initial development of the GISs. Following increased avail-
ability of in vivo treatment-related data, most of the systems
have aimed at predicting the efficacy of antiretroviral therapy in
HIV-1 patients.4 In vivo findings associating HIV-1 genotype
with virological outcome, although sometimes derived from
small patient populations, have been in fact typically used for
adjusting the GISs in order to increase their clinical utility.5 – 7

To be used with confidence, a GIS must be periodically vali-
dated to ensure its reliability along with algorithm updates and
changes in treatment strategies. In this work, a large data set of
HIV-1 genotypes coupled with short- and medium-term virolo-
gical treatment response data was used to test the performance
of four recently updated GISs available over the internet as lists
of interpretation rules or fully fledged programs.

Patients and methods

Dataset

The Antiretroviral Resistance Cohort Analysis (ARCA; www.
hivarca.net) database, a virtually nationwide observational Italian

collection of HIV-1 genotype-centred data subject to patients’
informed consent, was used according to the established data acces-
sion guidelines to extract treatment change episodes (TCEs).
Each TCE was defined by a treatment switch in a patient coupled
with a baseline HIV-1 genotype and viral load .5000 HIV-1 RNA

copies/mL and a follow-up viral load obtained while on the same
uninterrupted therapy. Only TCEs derived from adult patients with
complete treatment history information and no mention of major
adherence issues were collected. In compliance with the recommen-
dation of the Forum for Collaborative HIV Research,8,9 the baseline

HIV-1 information had to be collected not earlier than 12 weeks
before the treatment switch, while two follow-up viral loads where
considered for short-term (8 weeks, range 4–12) and medium-term
(24 weeks, range 16–32) response. Data for short- and medium-term
response were collected independently, i.e. there was no requirement

for availability of follow-up information at both timepoints. When
multiple data points were available for the same regimen in a
patient, the baseline data closer to the start of treatment and the
follow-up data closer to the centre of the defined time window were

selected. In addition, baseline CD4 counts, HIV-1 subtype, patient
demographics as well as several indicators of past antiretroviral drug
exposure (number of treatment lines and drugs used grouped by
class) were included in the data set. To minimize testing the GISs
on obsolete therapies, TCEs were removed when treatment included

only nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs)
or fewer than three drugs [counting any ritonavir-boosted protease
inhibitor (PI) as a single drug]. To avoid possible biases in predict-
ing the activity of drugs other than NRTIs, non-nucleoside reverse
transcriptase inhibitors (NNRTIs) and PIs in the absence of genoty-

pic information, treatments including any second or later use of
enfuvirtide, raltegravir or maraviroc were also excluded. Additional
restrictions in the generation of the TCE derived directly from the
need to include only drugs considered in all the interpretation

systems. Namely, treatments were excluded if they contained zalci-
tabine or delavirdine, full-dose ritonavir or indinavir, or unboosted
PIs other than nelfinavir.

Short-term treatment outcome was dichotomized into success
and failure based on achievement and failure to achieve an undetect-

able viral load or at least a 2 log decrease in viral load at 8 (4–12)
weeks. Medium-term success and failure were defined as achieving
and not achieving an undetectable viral load at week 24 (16–32).
Since the data set included viral load measurements obtained by
using laboratory assays with different limits of detection (40, 50, 80

and 500 HIV-1 RNA copies/mL), the 500 copy threshold of sensi-
tivity was used as a cut-off between detectable and undetectable vir-
aemia. Thus, the 5000 HIV-1 RNA copies/mL threshold defined as
an inclusion criterion for baseline viral load ensured that minimal
decreases, e.g. from 1000 to ,500 copies/mL, were not mislead-

ingly labelled as success.

Interpretation systems and genotypic sensitivity scores

The GISs considered included the Stanford HIVdb program (version
5.0.0; http://hivdb.stanford.edu/pages/algs/HIVdb.html), the French

ANRS rules (version 17; http://www.hivfrenchresistance.org/2008/
Algo-2008.pdf), the Rega rules from Leuven University, Belgium
(version 7.1.1; http://www.rega.kuleuven.be/cev/fileadmin/algorithms/
Rega_HIV1_Rules_v7.1.1.pdf) and the Italian AntiRetroScan
(version 2.0; http://www.hivarca.net/includeGenpub/AntiRetroScan.

htm) system running within the ARCA database. ANRS and Rega
define three levels of susceptibility (susceptible, possible or intermedi-
ate resistant, resistant) for a given HIV-1 genotype to each individual
drug based on a set of rules. HIVdb and AntiRetroScan provide five

categories of susceptibility or activity (susceptible or complete
activity, potential low-level resistance or good activity, low-level
resistance or partial activity, intermediate-level resistance or scarce
activity, high-level resistance or no activity, respectively). HIVdb and
ANRS currently do not give any indication for weighting drug

potency. Thus, the predicted efficacy of each drug was scored as 1.00,
0.50 and 0.00 for the three ANRS categories (from susceptible to
resistant) and as 1.00, 0.75, 0.50, 0.25 and 0.00 for the five HIVdb cat-
egories (from susceptible to high-level resistance). In contrast, the
latest versions of Rega and AntiRetroScan introduced drug potency

correction factors. With Rega, scoring for the three categories
remains 1.00, 0.50 and 0.00 for etravirine, the unboosted PIs and the
NRTIs, whereas it is changed to 1.00, 0.25 and 0.00 for enfuvirtide
and the other NNRTIs and to 1.50, 0.75 and 0.00 for the ritonavir-
boosted PIs. With AntiRetroScan, scoring for the five categories is the
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same as in HIVdb but the predicted efficacy score is multiplied by 1.2
for the NNRTIs and by 1.6 for the boosted PIs. To test the added
value of drug potency weighting, both Rega and AntiRetroScan were
additionally evaluated without using weights for drug potency, i.e.

maintaining the same standard 3-level and 5-level 1.00–0.00 scoring
scale for all drugs. In addition, the Rega and AntiRetroScan drug
potency weighting were also tested for ANRS and HIVdb, respect-
ively. Based on the expectation of full activity at first use, any antire-
troviral compound belonging to classes other than NRTIs, NNRTIs

and PIs was scored as 1.00 for all the GISs. Each combination
regimen was then given a genotypic sensitivity score (GSS) based on
the sum of the (weighted) scores coded for the individual drugs
included in the regimen.

Statistical analysis

HIV-1 RNA values were log-transformed before analysis. Changes
in viral load at 8 and 24 weeks of therapy with respect to baseline
were analysed by Wilcoxon signed-rank test.

The associations of the GSS and the other baseline variables
with treatment outcome were analysed by univariable and multivari-
able logistic regression. Variables tested included baseline HIV-1

RNA load, HIV-1 subtype, patient age and gender, HIV-1 trans-
mission risk category, CD4 counts, class-specific and cumulative
indicators of previous exposure to treatment, type of TCE (PI based
versus NNRTI based) and time elapsed from genotype to the

follow-up viral load. Receiver operating characteristic (ROC) curves
were computed to evaluate the performance of the success classifi-
cation scheme based on the GSSs. The Cohen’s kappa statistic was
computed to measure the inter-rater agreement for all the GIS pairs,
based on classification of treatment success or failure at the most

accurate GSS threshold calculated for each GIS. Analyses were per-
formed by SPSS version 13.0 (SPSS Inc., Chicago, IL, USA).

Results

Data set characteristics

Based on the inclusion criteria, 765 TCEs from 658 patients and
634 TCEs from 573 patients were generated with virological
follow-up data at 8 and 24 weeks, respectively. The median
calendar year of treatment start was 2004 [interquartile range
(IQR) 2002–2005] for both data sets. Table 1 shows the

Table 1. Baseline characteristics and treatment switch type for the 8 week and 24 week TCEs included in the

data set

Feature

8 week TCE data set

(n¼65)

24 week TCE data set

(n¼634)

Median (IQR) patient age, years 41 (37–46) 40 (36–46)

Male gender (%) 507 (66.3) 438 (69.1)

Transmission risk category

intravenous drug users (%) 251 (32.8) 199 (31.4)

homosexual males (%) 151 (19.7) 120 (18.9)

heterosexual subjects (%) 285 (37.3) 244 (38.5)

other/unknown (%) 78 (10.2) 71 (11.2)

Median (IQR) log plasma HIV-1 RNA, copies/mL 4.59 (4.16–5.10) 4.59 (4.16–5.09)

Median (IQR) CD4 cell count (cells/mm3) 228 (95–400) 226 (107–383)

Median (IQR) number of previously used drug classes 3 (2–3) 3 (2–3)

Median (IQR) number of past treatment lines 6 (3–10) 6 (3–9)

Median (IQR) number of previously used NRTIs 4 (3–6) 4 (3–5)

Median (IQR) number of previously used NNRTIs 1 (0–1) 1 (0–1)

Median (IQR) number of previously used PIs 2 (1–4) 2 (1–3)

Median (IQR) number of NRTI mutations10 3 (1–4) 3 (1–4)

Median (IQR) number of NNRTI mutations10 1 (0–2) 1 (0–2)

Median (IQR) number of major PI mutations10 0 (0–2) 0 (0–2)

Number (%) of cases including unboosted PI (nelfinavir) 95 (12.4) 87 (13.7)

Number (%) of cases including boosted PI 515 (67.3) 424 (66.9)

Number (%) of cases including NNRTI 226 (29.5) 182 (28.7)

Number (%) of cases including enfuvirtide 69 (9.0) 50 (7.9)

Number (%) of cases including raltegravir 3 (0.4) 0 (0.0)
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baseline characteristics for the two data sets while Figure 1
details the distribution of the individual drugs in the treatment
regimens. Virological response was significant in both the
8 week and 24 week follow-up data sets (median viral load
changed from 4.59 to 2.72 and from 4.59 to 2.85 log,

respectively; both P,0.0001). The proportion of successful
treatments according to the study definition was 56% at week 8
and 60% at week 24.

Prediction of virological outcome by the different GSSs

In the univariable logistic regression analysis, all four GSSs
were highly predictive of both 8 week and 24 week virological
treatment outcome (Table 2). Higher CD4 counts were associ-
ated with increased response at both timepoints while baseline
HIV-1 RNA load was associated significantly with 24 week but
only marginally with 8 week response. All the indicators of pre-
vious drug exposure (number of previous treatment lines,
NRTIs, NNRTIs and PIs) were also significantly predictive of
worse treatment outcome at both week 8 and 24.

In the multivariable models, each of the GSSs remained highly
predictive of treatment outcome at both timepoints (Table 2). A
negative association with both 8 week and 24 week treatment
outcome in all the analyses was detected for the number of pre-
vious PIs used [odds ratio (OR) values 0.57–0.64; P,0.001 in all
cases]. A higher baseline viral load was predictive of failure in all
analyses at week 24 (OR values 0.63–0.70; P¼0.008 to
P¼0.033) but in none at week 8. Older patient age was predictive
of treatment success in all week 8 analyses (OR values 1.27–1.34
per 10 year increase; P¼0.008 to P¼0.028) but only with HIVdb
and Rega analyses at week 24 (OR 1.26 for both; P¼0.045 and
P¼0.048, respectively). Undergoing a PI-based treatment switch
was associated with success at 24 weeks in the ANRS and HIVdb
analyses (OR values 2.65 and 2.50; P¼0.011 and P¼0.017,
respectively) [see Table S1, available as Supplementary data at
JAC Online (http://jac.oxfordjournals.org/)]. The accuracies of the
GSS-based univariable logistic regression models were 67.3%–
69.5% for the 8 week outcome and 63.2%–67.0% for the 24 week
outcome. In the multivariable models, the accuracy increased to
71.7%–73.7% for the 8 week outcome and to 73.5%–75.1% for
the 24 week outcome.

The ROC curves in Figure 2 show the tradeoff between
sensitivity and specificity for each GSS as a predictor of the
treatment success. Based on the area under the ROC curve
(AUROC) value, there were some differences in performance.
AntiRetroScan was the most accurate of the systems with both
the 8 week (P¼0.001 versus ANRS; P¼0.016 versus Rega;

0
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Figure 1. Distribution of NRTIs, NNRTIs, PIs, enfuvirtide and raltegravir in

the 8 week and 24 week treatment response data sets.

Table 2. Crude and adjusted ORs for virological success depending on the different GSSs

GSS

8 week data seta 24 week data seta

crude OR (95% CI) adjusted ORb (95% CI) crude OR (95% CI) adjusted ORc (95% CI)

HIVdb 2.39 (2.01–2.85) 2.21 (1.80–2.71) 2.21 (1.83–2.67) 2.14 (1.70–2.70)

AntiRetroScan 2.49 (2.10–2.95) 2.26 (1.87–2.74) 2.52 (2.09–3.06) 2.43 (1.94–3.05)

ANRS 2.31 (1.93–2.75) 2.18 (1.78–2.67) 2.25 (1.85–2.73) 2.21 (1.76–2.78)

Rega 2.29 (1.93–2.71) 2.04 (1.69–2.46) 2.28 (1.88–2.76) 2.15 (1.72–2.69)

OR values are per unit increase of each GSS.
aAll P values ,0.0001.
bAdditional significant predictors of success include older age (all GISs). Additional significant predictors of failure include a larger number of previously
used PIs (all GISs). See Table S1 for details.
cAdditional significant predictors of success include older age (HIVdb, Rega) and undergoing a PI-based treatment switch (ANRS, HIVdb). Additional signifi-
cant predictors of failure include a higher baseline viral load (all GISs) and a larger number of previously used PIs (all GISs). See Table S1 for details.
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P¼0.045 versus HIVdb) and 24 week (P,0.001 versus
ANRS; P¼0.003 versus HIVdb; P¼0.004 versus Rega) data
set. The only other significant difference was HIVdb outper-
forming ANRS (P¼0.048) in the 8 week data set. The interval
where AntiRetroScan outperformed the other GISs was at
55%–95% sensitivity corresponding to 30%–75% specificity
with the 8 week outcome and at 25%–90% sensitivity corre-
sponding to 50%–90% specificity with the 24 week outcome.
Table 3 shows the sensitivity and specificity of the prediction
of 8 week and 24 week success by each GIS at the GSS
threshold of 3.0, which is typically recommended when build-
ing a highly effective antiretroviral regimen. Sensitivity and
specificity are comparatively indicated at the GSS threshold
corresponding to the highest accuracy of each GIS.
Interestingly, the most accurate GSS threshold for all the GISs
and at both timepoints was ,3.0.

To test whether the response to NNRTI- and PI-based treat-
ments was predicted with different accuracy by the GISs under
study, ROC curves were then computed after stratifying for treat-
ment type. The few cases (8.8%) with treatment comprising
both a PI and an NNRTI were included in both strata. As shown
in Table 4, the apparent overall superiority of AntiRetroScan
could be attributed to a significantly better performance with
PI-based treatments (P¼0.003 and P¼0.003 versus ANRS,
P¼0.105 and P¼0.003 versus HIVdb, P¼0.042 and P¼0.005
versus Rega with the 8 week and 24 week data set, respectively).
In contrast, there were no differences in accuracy between any
GIS pair with NNRTI-based treatments.

Agreement between the GISs in the classification of treatment

failure and success

The TCEs were classified as success or failure by each GIS
using its own most accurate GSS value as a cut-off (Table 4).
The kappa values for the agreement between the GISs in the
classification of treatment failure and success in the 8 week data
set were 0.608 for ANRS and AntiRetroScan, 0.611 for ANRS
and HIVdb, 0.521 for ANRS and Rega, 0.749 for AntiRetroScan
and HIVdb, 0.684 for AntiRetroScan and Rega, and 0.728 for
HIVdb and Rega. Thus, ANRS was apparently the more diver-
gent system with this short-term response data set. However, the
difference was no longer detected with the 24 week data set
(kappa values 0.681 for ANRS and AntiRetroScan, 0.737 for
ANRS and HIVdb, 0.655 for ANRS and Rega, 0.725 for
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Figure 2. ROC curves for the four GSSs as predictors of treatment success

at 8 (a) and 24 (b) weeks. The inserts show the values of the area under the

curve with standard errors in parentheses. ARS, AntiRetroScan.

Table 3. Sensitivity and specificity of the prediction of treatment success at week 8 and 24 by each GIS at the GSS threshold of 3.0 and at

the GSS threshold corresponding to maximum accuracy

GIS

8 week response 24 week response

GSS threshold¼3.0 most accurate GSS threshold GSS threshold¼3.0 most accurate GSS threshold

sensitivity specificity GSS sensitivity specificity sensitivity specificity GSS sensitivity specificity

HIVdb 36.83 85.42 1.50 70.4 63.39 33.88 81.35 1.25 84.36 51.99

AntiRetroScan 47.55 78.57 2.20 72.49 63.49 47.56 76.45 1.95 86.97 53.82

ANRS 52.45 75.30 1.50 85.08 48.21 51.47 72.48 1.50 85.67 45.87

Rega 58.04 71.73 2.25 73.66 58.93 55.70 68.20 1.75 90.88 44.34

Zazzi et al.

620

 at U
niversity degli Studi M

ilano on A
ugust 2, 2012

http://jac.oxfordjournals.org/
D

ow
nloaded from

 

http://jac.oxfordjournals.org/


AntiRetroScan and HIVdb, 0.698 for AntiRetroScan and Rega,
and 0.706 for HIVdb and Rega).

Taking into account the real treatment outcome, the four
GISs correctly and unanimously predicted 70.6% of the success-
ful treatments and 32.4% of the unsuccessful treatments at
8 weeks, and 62.5% of the successful treatments and 26.4% of
the unsuccessful treatments at 24 weeks. Incorrect prediction by
all the systems was far more common with treatment failure
(33.0% at 8 weeks, 45.2% at 24 weeks) than with treatment
success (7.5% at 8 weeks, 4.7% at 24 weeks) [see Table S2,
available as Supplementary data at JAC Online (http://jac.
oxfordjournals.org/)].

Impact of drug potency weighting

Since both AntiRetroScan and Rega implement drug potency
weighting factors, the two systems were each then compared
with its own version devoid of the correction factors in order
to test whether this strategy actually improves the predictive
power. Comparison of ROC curves revealed that both GISs
improve significantly with the adoption of these drug potency
weights (Figure 3). With the 8 week data set, the AUROC
values increased from 0.717 to 0.735 for AntiRetroScan and
from 0.687 to 0.712 for Rega (P¼0.001 for AntiRetroScan;
P,0.001 for Rega). With the 24 week data set, the AUROC
values increased from 0.703 to 0.730 for AntiRetroScan and
from 0.663 to 0.696 for Rega (both P,0.001). The larger
AUROC with the unweighted version of AntiRetroScan with
respect to the unweighted version of Rega was again due to
improved performance with the PI-based treatments (data not
shown).

Finally, although the current versions of HIVdb and ANRS
do not use any drug class correction factor to compute the GSS,
the potential benefit from adopting a drug potency weighting
approach was also investigated for these systems. Due to the
different number of drug susceptibility levels used (three for
ANRS and Rega, five for HIVdb and AntiRetroScan), ANRS
was tested with the Rega weights and HIVdb was tested with the
AntiRetroScan weights. The AUROC of the ANRS algorithm
increased significantly when the GSS was adjusted according to
the Rega drug weighting (from 0.699 to 0.730 at 8 weeks,
P,0.001; from 0.688 to 0.721 at 24 weeks, P,0.001). The
AUROC of the HIVdb algorithm increased significantly when
the GSS was adjusted according to the AntiRetroScan drug
weighting (from 0.719 to 0.739 at 8 weeks, P,0.001; from
0.701 to 0.726 at 24 weeks, P,0.001).

Table 4. AUROC for the different GSSs with respect to 8 week and 24 week response to NNRTI- and PI-based treatment

GSS

8 week AUROC (standard error) 24 week AUROC (standard error)

NNRTI based PI based NNRTI based PI based

ANRS 0.730 (0.033) 0.692 (0.021) 0.722 (0.038) 0.684 (0.023)

AntiRetroScan 0.732 (0.033) 0.728 (0.020) 0.744 (0.037) 0.724 (0.022)

HIVdb 0.737 (0.033) 0.713 (0.021) 0.753 (0.037) 0.695 (0.023)

Rega 0.727 (0.033) 0.705 (0.021) 0.730 (0.038) 0.687 (0.023)

0

0

10

20

30

40

50
Se

ns
iti

vi
ty

60

70

80

90

100(a)

10 20 30 40 50

100 – specificity

60

U-ARS
W-ARS
U-Rega
W-Rega

0.717 (0.018)
0.735 (0.018)
0.687 (0.019)
0.712 (0.018)

70 80 90 100

0

0

10

20

30

40

50

Se
ns

iti
vi

ty

60

70

80

90

100(b)

10 20 30 40 50

100 – specificity

60 70 80 90 100

U-ARS
W-ARS
U-Rega
W-Rega

0.703 (0.021)
0.730 (0.020)
0.663 (0.021)
0.696 (0.021)

Figure 3. ROC curves for the drug potency unweighted (U) and weighted

(W) Rega and AntiRetroScan (ARS) GSSs as predictors of treatment success

at 8 (a) and 24 (b) weeks. The inserts show the values of the area under the

curve with standard errors in parentheses.
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Discussion

Genotypic antiretroviral resistance is widely recognized as a
major factor impacting response to antiretroviral therapy.
Accordingly, a number of tools have been developed to interpret
HIV-1 mutational patterns and assist the choice of antiretroviral
regimens.2 Comparisons of a large number of GISs have been
previously reported.4,8,9 In this work, the updated versions of the
three most popular systems plus the ARCA built-in algorithm11

were assessed for their ability to predict virological outcome of
a large set of TCEs derived from clinical practice in Italy. Two
follow-up observations were considered, in compliance with the
Forum for Collaborative HIV Research recommendation for
short-term and medium-term response.8 Definition of virological
treatment success can vary in different studies. The definition
adopted in this study was based on the reasonable expectation
that an effective treatment allows control of viral replication to
undetectable levels. Due to inclusion of viral load measurements
obtained with first-generation assays, the detection threshold
used was 500 HIV-1 RNA copies/mL. However, among the
cases with undetectable follow-up viral load, only 18.6% at
week 8 and 12.2% at week 24 were obtained with the 500 copy
threshold. Indeed, comparable results were obtained when the
analysis was repeated with the current definition of success at
,50 HIV-1 RNA copies/mL or at any undetectable viral load
(data not shown). Two design adjustments were used to mini-
mize mislabelling of successful cases. First, TCEs with baseline
viral load ,5000 copies/mL were excluded, avoiding scoring as
success a limited decrease in viral load. Secondly, a decrease of
at least 2 log in viral load at week 8 (4–12) was scored as a
success, allowing the capture of an effective therapy not achiev-
ing complete control of viral replication in the short term
because of high-level baseline viral load. Finally, virological
outcomes of first-line therapy on drug-naı̈ve patients were
excluded in order to build a more challenging data set. Analysis
of a 30% enlarged data set also comprising first-line therapy
TCEs indeed resulted in a 5–7% increase in the AUROC for
prediction of 24 week outcome (data not shown).

All of the GSSs were significantly associated with virological
treatment outcome at both timepoints, according to logistic
regression analysis and ROC curve analysis. Multivariable logis-
tic regression indicated that each of the GSSs remained a highly
significant predictor after adjusting for patient demographics,
baseline CD4 count, viral load, HIV-1 subtype and several indi-
cators of previous treatment exposure. This confirms that HIV-1
genotype, as interpreted by currently available rules-based
systems, independently impacts virological outcome, despite the
simplistic summation of the individual drug scores into a
summary GSS. Although different TCE definition and treatment
selection criteria do not allow direct comparisons, current
ANRS, HIVdb and Rega GSSs appear to perform better than
their own earlier versions used in a previous similar study.4

However, confirmation of an increased accuracy of the GISs
over time clearly requires running older and newer algorithm
versions on the same data set. In addition, it will be advisable to
test the GISs for their ability to predict treatment response at
longer follow-up times, such as 48 or 96 weeks. Currently, his-
torical data sets include a large proportion of therapies with a
shorter duration but, since modern antiretroviral regimens are
more convenient and generally better tolerated than the older
ones, it will be probably possible to evaluate the performance of

the different GISs with more clinically relevant long-term
response.

ROC curve analysis allowed a direct comparison of the
systems and revealed that AntiRetroScan was more accurate than
the other systems in predicting PI-based treatment outcome.
Rega and AntiRetroScan have recently introduced drug or drug
class weighting factors in an attempt to correct the GSS for the
relative potency of available antiretrovirals. Although the cur-
rently used correction factors have been arbitrarily set based on
expert view rather than derived from statistical learning, it is
interesting to note that both the GISs improved significantly
with respect to the corresponding unweighted version. In
addition, when the Rega and AntiRetroScan drug potency
weights were applied to the ANRS and HIVdb systems, respect-
ively, both of these also improved significantly. This provides
the basis for further work along these lines. Post-hoc analysis
with the 24 week data set (not shown) indicated that the
AUROC for AntiRetroScan continued to increase when using up
to 2.2 as a potency weighting factor for boosted PIs. Conversely,
no improvement was obtained by increasing the NNRTI potency
weighting factor. This is in line with recent data and systematic
reviews showing an advantage with boosted PI- versus
NNRTI-based therapy, particularly in the setting of drug resist-
ance.12,13 Further confirming the major role of boosted PIs in
this setting, the extent of previous exposure to PIs remained a
strong independent predictor of both 8 week and 24 week treat-
ment failure together with the GSS in all the multivariable logis-
tic regression analyses. In addition, undergoing a PI-based
treatment change was predictive of virological success at week
24 in the analyses of two GISs.

The case files used for this study were derived from clinical
practice, and one or more of the GISs considered may have been
preferentially used to build treatment regimens. Thus, records
might be an over-represented collection of expected successes
according to a specific GIS(s). In particular, almost 30% of
TCEs were derived from clinics receiving the AntiRetroScan
report from a single reference laboratory as a response to the
genotypic test requested. However, ROC curve analysis of the
TCE subset excluding these records confirmed the results
obtained on the whole data set (data not shown). Although
AntiRetroScan is associated with the ARCA initiative as a
built-in service for the units uploading data to the web server,
no use of these data and thus of any derived TCE-like infor-
mation has been done for training of AntiRetroScan. The system
in fact uses a purely rules-based approach which relies on
periodical analysis of HIV-1 drug resistance-related literature
and is not derived from any statistical learning procedure.
Therefore, the TCE data sets used in this study were equally
unknown for all the GISs examined and cannot have contributed
to the increased accuracy of AntiRetroScan.

The data sets have several limitations. First, obsolete thera-
pies were largely excluded but novel drugs such as darunavir
and etravirine were under- or not represented. Secondly, drugs
belonging to classes other than NRTIs, NNRTIs and PIs were
considered active by definition in the absence of genotypic
information since they were being used for the first time. While
this appears a reasonable expectation in principle, it cannot be
excluded that these drugs did not work properly in occasional
patients. Thirdly, information on patient adherence from the
ARCA centres was not consistently available. The database does
not store the method for definition of adherence. The patient
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records marked with adherence issues were excluded, but evalu-
ation of adherence may have been different in different centres
and probably not all adherence issues were originally indicated.
Inclusion of TCEs derived from non-adherent patients may thus
have generated treatment failures unrelated to drug resistance
and decreased the specificity of prediction of success. Indeed,
incorrect predictions by all four systems were far more common
with treatment failure than with treatment success.

Although all the GISs were confirmed to be useful tools for
guiding treatment choices, it must be noted that in absolute
terms their accuracy remains limited, at least in pre-treated
patients and with the success definitions used here. For example,
predicting treatment success with 80% sensitivity occurs at only
55%–60% specificity. It is presently uncertain whether signifi-
cant improvements in rules-based systems can be obtained and
allow more reliable prediction of treatment outcome based on
HIV-1 genotype only. Indeed, the accuracy of the virological
outcome prediction increased significantly in the multivariable
with respect to the GSS-based univariable models. Accordingly,
ongoing studies with large databases suggest that including
additional patient and virus features as input variables can
increase accuracy through several modelling techniques.14 – 17

While such prototype systems are expected to mature into clini-
cal tools, commonly used and regularly updated rules-based
GISs remain a cornerstone in assisting antiretroviral treatment
choices and appear to be amenable to further improvement with
the inclusion of drug potency weighting factors.
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Retrovirus), Raffaele Pristerà (Bolzano - Malattie Infettive),
Paola Turconi (Brescia - Fleming Labs), Antonella Mandas
(Cagliari - Centro S.I.D.A., Policlinico Universitario), Sauro Tini
(Citta’ di Castello - Medicina Generale), Giuseppe Carnevale
(Cremona - Malattie Infettive), Elisabetta Paolini (Cremona -
Servizio Immunoematologia e Medcina Trasfusionale), Giorgio
Amadio (Fermo - Malattie Infettive), Laura Sighinolfi (Ferrara -
Malattie Infettive AOU S. Anna), Giuliano Zuccati (Firenze -
Centro MTS), Massimo Morfini (Firenze - Ematologia Careggi),
Roberto Manetti (Firenze - Immunoallergologia Careggi),
Paola Corsi (Firenze - Malattie Infettive Careggi), Luisa Galli
(Firenze - Malattie Infettive Pediatria Meyer), Massimo Di
Pietro (Firenze - Malattie Infettive SM Annunziata), Filippo
Bartalesi (Firenze - Malattie Infettive Università), Grazia Colao
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