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ABSTRACT 

Background: The comprehension of the mechanism of action of antimicrobial peptides 

is fundamental for the design of new antibiotics. Studies performed looking at the 

interaction of peptides with bacterial cells offer a faithful picture of what really happens 

in nature. 

Methods: In this work we focused on the interaction of the peptide Temporin L with E. 

coli cells, using a variety of biochemical and biophysical techniques that include: 

functional proteomics, docking, optical microscopy, TEM, DLS, SANS, fluorescence. 

Results: We identified bacterial proteins specifically interacting with the peptides that 

belong to the divisome machinery; our data suggest that the GTPase FtsZ is the specific 

peptide target. Docking experiments supported the FtsZ-TL interaction; binding and 

enzymatic assays using recombinant FtsZ confirmed this hypothesis and revealed a 

competitive inhibition mechanism. Optical microscopy and TEM measurements 

demonstrated that, upon incubation with the peptide, bacterial cells are unable to divide 

forming long necklace-like cell filaments. Dynamic light scattering studies and Small 

Angle Neutron Scattering experiments performed on treated and untreated bacterial 

cells, indicated a change at the nanoscale level of the bacterial membrane 

Conclusions: The peptide temporin L acts by a non-membrane-lytic mechanism of 

action, inhibiting the divisome machinery. 

General significance: Identification of targets of antimicrobial peptides is pivotal to the 

tailored design of new antimicrobials 
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INTRODUCTION 

The growing demand of new antibiotics active against multi-resistant bacteria has 

encouraged the research of antimicrobial agents from natural sources. Peptides are the 

most common weapon that organisms from all domains of life produce to prevent the 

invasion by external pathogens. Antimicrobial peptides (AMPs) are short peptides 

consisting of 10-50 amino acids, often containing multiple hydrophobic and positively 

charged residues .[1] Unlike common antibiotics, AMPs, alone and in combination with 

other antibiotics, are less prone to trigger resistance or transient cross-resistance and 

mainly act against bacterial cells.[2, 3] 

However, the possible exploitation of AMPs as new antibacterial drugs is strictly 

dependent on a clear description of their mechanism of action at the molecular level. 

Several studies focused on the interaction of antimicrobial peptides with Gram negative 

bacterial cells contributed to clarify some details on the mechanism of action of AMP. 

[4] 

These studies indicated the chemical /physical features of bacteria and peptides that are 

fundamental for their interactions and which pathways, essential for the bacterial cell 

life, are affected by AMPs. Fluorescence microscopy studies on E. coli cells revealed 

that the kinetic of bacterial cell death is related to the composition of the 

lipopolysaccharide (LPS).[5] The interaction of peptides with LPS often triggers the 

folding of peptides.[6, 7] Peptides saturate the outer membrane of bacteria, determining 

its neutralization, as revealed by Z potential measurements.[8, 9] Recently, single cell 

time-resolved fluorescence microscopy studies suggested that cationic AMPs initially 

permeabilize the outer membrane (OM) enabling a rapid access of the peptide to the 

periplasm. As the concentration of the peptide in the periplasm grows, the same process 

occurs to the cytoplasmic membrane, which is permeabilized only after the outer 

membrane is resealed, allowing AMPs to travel into the cytoplasm and generating a 

variety of possible damaging events downstream.[10] 

Protein targets of AMPs are currently deeply investigated, and it is now clear that 

different peptides may have different targets.[11-13] Processes that have been found to 

be hampered by AMPs include bacterial cell division and outer membrane biogenesis. 

Inhibition of cell division is suggested when bacterial cells form elongated structures in 

the presence of antimicrobial peptides. Studies on the peptide C18G demonstrated that it 
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impairs cell division in E. coli by interacting with the transmembrane protein PhoQ that 

phosphorylates PhoP triggering the over-expression of the protein QueE that in turn 

blocks the divisome complex.[14] Inhibition of outer membrane biogenesis yields 

defects in the architecture of the membrane. A combination of fluorescence microscopy, 

mass spectrometry and bioinformatics analyses demonstrated that the peptide thanatin 

affects the LPS transport machinery by interacting with both the periplasmic protein 

LptA and the outer membrane protein LptD.[13] 

LptD was also identified as the target of the peptidomimetic L27-11, which is 

specifically active on P. aeruginosa.[15] Furthermore, a 15 amino-acid peptide 

fragment derived from BamA was demonstrated to have potent antibiotic activity being 

able to bind BamD, that is part of the complex devoted to the assembly of beta barrel 

proteins in the outer membrane of E. coli .[11] These results suggest that AMPs may 

interact with either bacterial membrane or specific intracellular protein targets thus 

affecting cellular mechanisms and that a deeper investigation is essential for the 

definition of their effect on vital cellular processes. 

We investigated the mechanism of action of the peptide Temporin L (TL) a natural 

peptide secreted from the skin of the European frog Rana temporaria active against 

Gram positive and Gram-negative bacteria on E. coli cells.[16] This peptide interacts 

with E. coli LPS, in vitro and in vivo [17-19]; however, its mechanism of action has not 

been clarified. Perturbation of the bacterial membrane that occurs at TL low 

concentrations is not the lethal event for bacterial cells; this observation leads to the 

hypothesys that killing of bacterial cells is mediated by the interaction of the peptide 

with an intracellular target. Functional Proteomic experiments indicated a specific 

interaction of TL with proteins belonging to the divisome complex. Sequence homology 

alignment with other AMPs suggested a possible direct interaction with the GTPase 

FtsZ. Docking experiments supported the FtsZ-TL interaction that was clearly 

demonstrated by binding and enzymatic assays using recombinant FtsZ revealing a 

competitive inhibition mechanism. Optical microscopy and TEM measurements 

demonstrated that, upon incubation with the peptide, bacterial cells are unable to divide 

forming long necklace-like cell filaments. Finally, the effect of the peptide on the 

morphology and the structure of bacterial cells at nanoscale level was also investigated 
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by both Ultra Small-Angle Neutron Scattering (USANS) and Small-Angle Neutron 

Scattering (SANS). 
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RESULTS 

 

Effect of Temporin L on E. coli cell growth 

The antimicrobial activity of TL was verified by monitoring E. coli cell growth in the 

presence of different concentrations of TL. The MIC was calculated to be 32 µM, in 

agreement with literature data.[16] (Supplementary Figure 1)   

 

Pull-Down experiment 

A detailed investigation of the mechanism of action of TL at the molecular level was 

pursued by functional proteomics approaches. Biotinylated TL was immobilized onto 

streptavidin-conjugated agarose beads and incubated with a membrane protein extract 

from E. coli cells. The proteins specifically interacting with the peptide bait were eluted 

and fractionated by SDS-PAGE. A membrane protein extract was also incubated with 

streptavidin-conjugated agarose beads lacking the peptide and the eluted proteins were 

used as control. Protein bands from sample and control lanes were excised from the gel 

and subjected to in situ hydrolysis with trypsin. The resulting peptide mixtures were 

directly analyzed by LC-MS/MS and the mass spectral data used to search a protein 

database using an in-house version of the Mascot software leading to protein 

identification.Proteins that were identified both in the control and in the sample lanes 

were discarded, whereas those solely occurring in the sample and absent in the control 

were considered as putative TL interactors. 

Figure 1A and B shows the distribution of TL putative protein partners according to 

their cellular localization and the biological processes they are involved into. A 

bioinformatic analysis was performed using the String software and the KEGG pathway 

showing that a large number of proteins gathered within a network involved in cell 

division and the biosynthesis of peptidoglycan for the production of the division septum 

(Figure 1C).  

In particular, several proteins belonging to the divisome complex were identified 

including FtsZ, FtsA, MurG, MukB and MreB.  

Among these proteins, FtsZ protein, is a bacterial tubulin homolog and is responsible of 

the Z ring formation, the first step in the formation of the divisome complex, which is 

responsible of the cell division. Recently, FtsZ was reported to be the target of two 
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peptides, CRAMP (16-33) and MciZ .[12] Sequence alignment showed that TL shares a 

high sequence homology to the C-terminal portion of both CRAMP (16-33) and MciZ 

(Figure 2A). This observation urged us to investigate the interaction of TL with FtsZ in 

vitro and in vivo and to develop a molecular model of the peptide-protein interaction by 

docking calculations. 

 

 

 
 

Figure 1. (A) Distribution of TL putative protein partners identified in the pull-down 

experiment according to their cellular localization. and biological functions. (B) 

Distribution of TL putative protein partners according to their biological functions. (C) 

STRING analysis of the putative TL interactors belonging to the divisome complex 

showing the occurrence of a network including 8 proteins: FtsZ, FtsA, MurG, MukB, 

Rho, DacA, pea and MreB. 

 

Docking experiments 

The putative structural basis of the binding of TL to FtsZ were investigated by a 

docking study (Figure 2B). Calculations reveal that TL may bind the cavity that allows 
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the accommodation of GDP in the structures of FtsZ from B. subtilis and P. aeruginosa 

(Figure 2C), thus suggesting a possible competitive inhibition of the peptide for the 

GTPase activity of the protein. A detailed analysis of the interactions at the 

protein/peptide interface suggests the involvement of hydrophobic and coulombic 

interactions, with Phe and Trp residues of the peptide that pack against residues Gly20, 

Gly21, Gly71, Ala72, Gly105, Gly106, Gly107 and Phe182 of the protein and with the 

side chain of the Arg of the peptide that could make a salt bridge with the side chain of 

Glu138 of Ftsz (Figure 2D). 

 

 

 

 

 

 
Figure 2. (A) Sequence alignment of peptides Temporin L, CRAMP 16-33 and MciZ. 
(B)	
  The predicted structure of the complex between FtsZ (yellow) and TL (cyan). (C) 
Putative binding site well superimposes to that of GDP in the structures of B. subtilis 
and P. aeruginosa FtsZ. (D)	
   Predicted binding site of TL (cyan) on FtsZ structure 
(yellow).  
 

Binding experiments 
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As docking calculations suggested a possible interaction between TL and FtsZ, we were 

stimulated to confirm the binding of the peptide TL to the protein FtsZ on experimental 

basis. A recombinant form of FtsZ was produced in E. coli, purified and used in binding 

and enzymatic assays. Fluorescence experiments were carried out using the peptide 

labeled at the N-terminus with fluoresceine incubated with increasing concentrations of 

the protein (Figure 3A). Data from Fig. 3A allowed us to calculate a Kd value of 17.4± 

0.8 nM.  

 

Enzymatic assays 

To further validate the docking predictions and to study the effect of TL on FtsZ, the 

GTPase activity of the recombinant protein was assayed in the absence and in the 

presence of TL. The purified recombinant protein was incubated with GTP in the 

presence of the peptide (35 µM) and the GTPase activity of FtsZ was monitored in 

comparison with the untreated protein at different GTP concentrations. In the presence 

of TL a decrease in the enzymatic activity of FtsZ was clearly observed confirming a 

specific interaction of the peptide with FtsZ (Fig. 3B). Kinetic parameters were 

calculated showing an increase of the apparent KM by about 50% (112.0 µM as 

compared to 56.6µM in the absence of the peptide) whereas Vmax remained unchanged, 

demonstrating the competitive inhibitory mechanism exerted by TL on FtsZ. The half-

maximal inhibitory concentration (IC50) of TL on the GTPase activity of FtsZ was also 

calculated resulting as 62 ±2 µM (Fig. 3C), slightly lower than the IC50 determined for 

CRAMP (16-33) (16).  
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Figure 3.  
(A) Binding of TL to FtsZ as determined by fluorescence experiments using N-terminal 
fluoresceine-labelled TL and recombinant FtsZ. (B) Enzymatic activity of recombinant 
FtsZ in the absence and in the presence of 35 µM TL using GTP as substrate. (C) 
Determination of TL IC50, i.e. the minimal peptide concentration displaying 50% 
inhibition of FtsZ GTPase activity. 
 
 

Optical microscopy and TEM analyses 

The morphologic effect of FtsZ inhibition by TL on cell division was investigated in 

vivo by both optical microscopy measurements and TEM analyses. on E. coli cell 

cultures grown in the presence and in the absence of the peptide. Optical microscopy 

images clearly show that in the presence of TL (Fig. 4B) E. coli cells form long 

necklace-like structures containing a large number of E. coli cells originated by 

impairment in cell division that were absent in the control (Fig. 4A). When the same 

experiment was carried out in the presence of 1mM GTP, an almost completely rescue 
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of the phenotype was observed as indicated by the large decrease in both the number 

and the length of the necklace-like strucures (Fig. 4C). Accordingly, we evaluated the 

minimal inhibitory concentration (MIC) of TL on E.coli cells in the presence of 1mM 

GTP. MIC greasily increased to 256 µM confirming that the presence of GTP might 

revert the TL effect. 

 

 

 

 
 

 
 
 
 
Figure 4. Optical microscopy images of E. coli cells grown in the absence (panel A) 
and in the presence (panel B) of 20 µM TL. Long necklace-like structures formed by E. 
coli cells were clearly detected in the presence of the peptide confirming the impairment 
of bacterial cell division. The phenotype was rescued in the presence of 1mM GTP that 
restored cell division (panel C). 
 

The TL effect on E. coli cells growth was also investigated by TEM analyses. TEM 

images shown in Fig 5B confirmed that, following treatment with TL, bacterial cells 

division was impaired as indicated by several cells bound together and unable to divide 

when compared to the control (Fig. 5A). No damage of membranes was detected and 

the cells appeared turgid.  
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Figure 5. TEM analysis of E. coli cells grown in the absence (panel A) and in the 
presence (panel B) of 20 µM TL. TEM images further confirmed the occurrence of 
bacterial cells unable to divide in the presence of TL (panel B) as compared to the 
control (panel A). 
 

Spectroscopic investigations 

The large structures formed by E. coli cells upon treatment with TL were further 

investigated by static light scattering experiments. As shown in Fig. 6, at small values of 

the scattering vector q, in the range probed by the LS, the scattering intensity profile 

decays with a q-1 power low for the sample of E. coli cells in the presence of TL, 

whereas it remains essentially constant for the pure bacteria, i.e for the cells in the 

absence of the peptide. This suggests that, in the presence of TL, large elongated 

structures are formed with a length larger than 6000 nm, the limit of LS instrument. 

SANS analysis revealed that a significant difference between untreated and treated E. 

coli cells occurs in the range between 20 nm (q= 0.001 A-1) and 60 nm (q = 0.003 A-1). 

In such range, the profile of the scattering intensity of E. coli cells changes drastically 

upon TL addition. In the presence of the peptide, the scattering intensity is higher than 

that collected for the system containing only the bacterial cells. Furthermore, in this 
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later a shoulder in the I(q) vs q is present, whereas in the system containing TL the 

shoulder disappears and the scattering intensity decreases with a greater slope. 

 

 
 

Figure 6. Dynamic Light Scattering (LS), USANS, and SANS analyses of E. coli cells 
in the absence (black points) and in the presence (red points) of 20 µM TL. LS 
measurements showed a decrease of the intensity with a q-1 power law for the treated 
sample, whereas this value remained essentially constant for the untreated sample. 
 

 

DISCUSSION 

 

Elucidation of the mechanism of action of antimicrobial peptides requires the 

identification of the peptide targets in bacterial cells. We investigated the mechanism of 

action of Temporin L by a functional proteomic approach based on pull-down 

experiments using a biotinylated version of the peptide as a bait to identify its specific 

protein targets in E. coli. It is well known that in the cell many processes are governed 

by the rapid and transient association of proteins in multicomponent functional 

complexes.[20-22] In bacterial membranes, several proteins are embedded in complexes 

with cytoplasmic proteins. For example, the protein machine devoted to the transport of 

LPS spans from the periplasm to the outer membrane. Accordingly, the proteomic 

experiment led to the identification of several proteins belonging to a multicomponent 



14 
 

complex extending from the cytoplasm to all three layers of the cell envelope known as 

the divisome complex involved in the cell division process. 

Among the identified proteins, FtsZ, FtsA, MurG, MukB and MreB are known to 

assemble into a tightly regulated cellular machinery operating to safely separate the cell 

into two daughter cells by a two steps mechanism. FtsZ is a bacterial tubulin homolog, 

expressed in either Gram positive and Gram negative cells responsible of the first step 

in the division of bacterial cells. FtsZ polymerizes in filaments using GTP molecules to 

generate a ring-like structure, the Z ring, at the site of division, then recruits other 

proteins to assemble the divisome complex driving the constriction of the cell 

envelope.[12, 23] In E. coli, FtsZ is tethered to the membrane through FtsA. MurG is a 

glycosyltranferase located in the lateral cell wall and at the division site that catalyzes 

the synthesis of peptidoglycan. Den Blaauween et al suggested the involvement of 

MurG in a complex containing several proteins, including FtsA, implicated in cell 

division.[24] Immunoprecipitation experiments demonstrated that MurG is also 

associated with MreB. MreB is essential for the maintenance of cell shape and plays a 

key role in cell division, being recruited to the septum upon direct interaction with FtsZ, 

an interaction functional to Z ring contraction.[25] 

.Recently, two peptides, namely CRAMP 16-33, an antimicrobial peptide found in 

multicellular organisms, and MciZ, a peptide expressed during sporulation of Bacillus 

subtilis reported to be the physiological inhibitor of FtsZ, were demonstrated to interact 

with FtsZ, inhibit bacterial cell division, causing cell death. Docking experiments show 

that CRAMP 16-33 binds to the cavity of the T7 loop of FtsZ, whereas MciZ is 

supposed to compete with GTP for the same binding site on FtsZ.[12] [26] Sequence 

alignment showed that TL displays high sequence similarity with CRAMP and also 

with the N-terminal residues of MciZ. . Based on these data, we investigated the 

possible interaction of TL with FtsZ. Docking simulation revealed that TL may bind 

FtsZ in the GTP binding site, thus suggesting a possible competitive inhibition 

mechanism of the peptide for the GTPase activity of the protein, as observed for MciZ. 

This hypothesis was confirmed by fluorescent binding experiments carried out using 

recombinant FtsZ in the presence of TL. A high binding affinity was detected for TL 

toward FtsZ with a Kd value of 17.4± 0.8 nM, supporting the hypothesis that FtsZ is the 



15 
 

specifc target of the peptide. This value is lower as compared to that reported for MciZ 

(0.3±0.1 µM), the physiological inhibitor of FtsZ.[26] 

Functional investigation of the TL effect on FtsZ were then performed both in vitro and 

in vivo. Enzymatic assays aimed at measuring the GTPase activity of the FtsZ in the 

presence of TL confirmed that TL is a competitive inhibitor of the protein, as indicated 

by the docking simulation. Morphologic investigations of E. coli cells in the presence of 

TL by either optical microscopy measurements or TEM analyses revealed the formation 

of largely elongated “necklace-like” structures originated by a moltitude of bacterial 

cells, demonstrating that the presence of the peptide hinders E. coli cells division. TEM 

images showed several cells bound together and unable to divide. Consistent with this 

observation, the results of static light scattering experiments showed the occurrence of 

elongated structures larger than 6000 nm in the presence of TL. 

Analysis of the bacterial cells was also performed by SANS that allows investigation of 

the morphology and the structure at the nanoscale level. In particular, the atom density 

distribution of an object is obtained from the analysis of its neutron scattering intensity 

as function of the scattering vector, q, when illuminated with a neutron beam. Thus, the 

scattering profile provides structural information over a size scale, d, depending on the q 

range, according to d ~ 2π/q. In the present paper, SANS was exploited to investigate 

the effect of TL on E. coli cells, focusing on the structure formed in the range of 2 to 

300 nm. According to the literature there are only a few papers presenting such 

investigation on living cells.[27] 

Neutron scattering measurements discloses a change in the spatial arrangement of the 

protein involved in the interaction suggesting that a protein underwent a structural 

change following incubation with the peptide in agreement with the docking 

calculation. Notably, in the intermediate q range, i.e. the range where structural changes 

on the membrane would be detectable, SANS analyses clearly showed no differences in 

the lamellar structure of E. coli cells, indicating the absence of a destabilization of the 

bacteria membrane.  

Overall our data depicted the following mechanism of action for Temporin L on E. coli 

cells: the peptide crosses the outer membrane of bacteria and specifically binds FtsZ 

inhibiting its GTPase activity by a competitive inhibition mechanism. This event 

impairs bacterial cell division resulting in the formation of long cell filaments, and 
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finally bacterial cell death. Due to its haemolytic activity, Temporin L cannot be 

considered as an effective alternative to common antibiotics, although optimization of 

the peptide properties by subtle modification of its chemical structure can reduce its 

haemolytic activity.[18, 28] However, elucidation of the mechanism of action at the 

molecular level pointed out to FtsZ as a possible good target for the rational design of 

new antibiotics since this protein is responsible for a crucial biological event of bacterial 

life and is absent in humans. 
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MATERIALS AND METHODS 

The Fmoc amino acids used for the peptide synthesis and 2-(1H-7-Azabenzotriazol-1-

yl)-1,1,3,3-tetramethyluronoium hexafluorphosphate (HATU) were purchased from 

IRIS Biotech GMBH. The Rink amide MBHA resin and the activators N-

hydroxybenzotriazole (HOBT) and O-benzotriazole-N,N,N′,N′- tetramethyl-uronium-

hexafluoro-phosphate (HBTU) were purchased from Novabiochem (Gibbstown, NJ, 

USA). Acetonitrile (ACN) was from Romil, dry N,N-dimethylformamide (DMF), 6-

[Fluorescein-5(6)-carboxamido]hexanoic acid, N-(+)-Biotinyl-6-aminohexanoic acid 

and all other reagents were from Sigma Aldrich (MERCK).  

Purification was carried out on a Phenomenex Jupiter 10µ Proteo 90 Å (250 × 10 mm) 

column. Purification was carried out by RP-HPLC with a Shimadzu LC-8A, equipped 

with a SPD-M10 AV diode array detector using a Kinetex® 5µm C18 100 Å, AXIA 

Packed LC Column 50 x 21.2 mm, Ea column with a flow rate of 20 mLmin-1. Peptides 

were obtained with a purity >95%; yields were calculated based on the amount of 

peptide obtained after purification. 

 

Peptide Synthesis  

Peptides were synthesized on solid phase by Fmoc chemistry on the MBHA (0.54 

mmol/g) resin by consecutive deprotection, coupling and capping cycle.[29]  

Biotin-conjugated TL was obtained by removing the amino terminal Fmoc group and 

coupling the peptide with N-(+)-Biotinyl-6-aminohexanoic acid in DMF employing the 

following conditions: 10 equivalents of N-(+)-Biotinyl-6-aminohexanoic acid + 9.8 

equivalents of HATU (0.45 M in DMF)+ 14 equivalents of DIPEA; the solution was 

reacted with the peptide for 3 h at r.t. and double coupling was performed.  

Fluorescein conjugated TL was obtained by coupling to the N-terminus amino-acid 6-

fluorescein-5(6)-carboxamido]hexanoic acid dissolved in DMF; 5 equivalents of 6-

fluorescein-5(6)-carboxamido]hexanoic acid +4.98 equivalents of HOBT/ HBTU (0.45 

M in DMF)+ 7 equivalents of NMM were incubated with the peptide 3 h at r.t. in the 

dark. A double coupling was performed. All peptides were cleaved off the resin and 

deprotected by treatment with TFA/TIS/H2O 95/2.5/2.5 v/v/v, 90 min. TFA was 

concentrated and peptides were precipitated in cold ethylic ether. 
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Purification of the peptides was performed by semi-preparative RP-HPLC using a 

gradient of acetonitrile (0.1% TFA) in water (0.1% TFA) from 30 to 85% in 30 min. 

Products were lyophilized three times and the peptides were characterized by MALDI 

tandem mass spectrometry (MALDI-MS/MS). 

 

 

Bacterial cell growth and viability 

The minimum inhibitory concentration (MIC) of TL was measured by broth 

microdilution. The cell strain of E. coli BL21 was incubated overnight in Luria-­‐Bertani 

(LB) at 37°C. The culture was diluted to obtain a concentration of 0.08 OD600 / mL in 

fresh medium and grown at 37°C for 90 minutes.  At an OD/mL value of 0.5, 50 µl of 

bacterial suspension were added to ten wells and incubated with serial dilutions of the 

TL peptide from an initial concentration of 512 µM. The sterility control well contained 

100 µL of LB, while the growth control well contained 100 µL of microbial suspension.  

The MIC value of TL on E.coli cells was also calculated in the presence of 1mM GTP. 

E. coli cells were grown as previously described and the MIC was determined by the 

lowest concentration showing no visible growth after 24 h of incubation at 37°C by 

measuring the Abs at 600 nm. The assay was performed in triplicate.  

 

 

Membrane proteins extraction. 

E. coli cells were inoculated in 10 mL of liquid LB and placed at 37°C for 16 h under 

stirring. At the end of the incubation, bacterial cells were grown in 1L at 37°C under 

stirring for 3h. The pellet was recovered by centrifugation at 4°C for 15 minutes at 5000 

rpm and stored at -80°C.  

The cell pellet was resuspended in 5 mL of Cell Lysis Buffer (20 mM Tris-HCl pH 8.0  

500 mM NaCl, 4 mM DTT, 1 mM PMSF) and subjected to mechanical lysis by French 

Press. The sample was then centrifuged at 4°C for 30 minutes at 10000 rpm in order to 

remove the cell debris and the supernatant recovered was ultracentrifuged for 2 hours at 

4°C at 54,000 rpm. The obtained pellet was resuspended in solubilization buffer (50 

mM Tris-HCl pH 8.0, 500 mM NaCl, 10% Glicerol, 4 mM DTT, 1 mM PMSF, 6 mM 

3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)) under 
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stirring at 4°C for 16 h. The sample was again ultracentrifuged for 2 hours at 4°C at 

54,000 rpm. The supernatant containing cytosolic proteins was removed, while the 

membrane proteins were dissolved in solubilization buffer. 

 

Pull Down experiments 

The pull-down experiment was performed using 200 µL of dry avidin-conjugated 

agarose beads. The resin was divided in two portions, one portion was left unmodified 

and the second was incubated with a solution of 2 mg/mL of biotinylated TL for 30 

minutes at 4°C under stirring. The supernatant was then removed by centrifugation at 

4°C for 10 minutes at 3000 rpm and the resin equilibrated with 5 volumes of binding 

buffer at 4°C.  

About 2.5 mg of membrane proteins were incubated on free agarose beads at 4°C for 2h 

under stirring to remove possible non-specific binding, according to the pre-cleaning 

procedure. The supernatant containing the unbound membrane proteins was recovered 

by centrifugation at 4°C for 10 minutes at 3000 rpm and then incubated on agarose 

beads with the immobilized peptide for 3h at 4°C under stirring. Beads were washed 

with 5 volumes of binding buffer and the peptide-interacting proteins were released by 

competitive elution with 500 µL of elution buffer containing an excess of biotin for 1h 

at 4°C under stirring. 

TL putative protein interactors were fractionated by SDS-PAGE. Protein bands from 

sample and control lanes were excised from the gel and subjected to in situ hydrolysis 

with trypsin. The resulting peptide mixtures were analyzed by Liquid 

Chromatography/Tandem Mass Spectrometry (LC-MS/MS) using a LTQ Orbitrap 

XLOrbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) and the 

data obtained were used to search for a non-redundant protein database using an in 

house version of the Mascot software leading to identification of the putative AMP 

protein interactors. The putative peptide interactors were gathered within functional 

pathways by bioinformatic tools (DAVID, KEGG, STRING). 

 

Docking calculations 

The putative binding site of TL on FtsZ was determined using docking calculations. The 

structure of Ftsz has been modelled using SwissProt Model Server and the chain A of 
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the structure of the protein from P. aeruginosa (2VAW, 60% sequence identity) as 

starting model.[30, 31] The NMR structure of TL was kindly provided by Prof. 

Bhattacharjya.[19] The peptide adopts an α-helix structure, in good agreement with 

CD spectra collected in solution.[32] Interestingly, PEP-FOLD3 also predicts a helical 

structure for this peptide.[33] 

The model of the FtsZ-TL complex was obtained using FTDOCKs.[34] The structure of 

the complex was then energy minimized and refined using Flexpeptdock .[35] We have 

verified that the peptide binding site was predicted also by other docking programs and 

indeed the peptide binding site was predicted also by PEPDOCK and 

SWARMDOCK.[36, 37] Analysis of the structure was performed using Coot, figures 

were generated with PyMol (www.pymol.org).[38] 

 

Expression of Escherichia coli FtsZ and enzymatic assay 

Untagged E. coli FtsZ was expressed from pET28a in BL21 cells. Cells were grown at 

37  °C in 200 mL of LB culture media with 50µg/mL kanamycin and 0.4 mM isopropyl-

beta-D-thiogalactopyranoside (IPTG) was added at an optical density of ∼0.5 at 600 

nm. The culture was grown for 90 min at 37°C for FtsZ production. Cells were 

harvested by centrifugation (5000 rpm , 15 min at 4  °C), and pellets were resuspended 

in Tris glycerol buffer (Tris glycerol buffer, 50 mM Tris-HCl, 50 mM KCl, 1 mM 

EDTA, 10% glycerol, pH 8.0) and were lysed on ice using a sonicator. The soluble 

fraction, containing the FtsZ protein, was separated from the cell debris by 

centrifugation (100,000 × g for 2 h at 4  °C). 

The protein from the soluble fraction was precipitated with 30% ammonium sulfate for 

16h. The sample was centrifuged (10000 rpm for 35 min at 4  °C), and the pellet was 

resuspended in 5 ml Tris glycerol buffer, pH 8.0 and dialyzed to remove the ammonium 

sulfate. The sample was purified by anion exchange chromatography using a Mono-Q 

HR 5/5 column equilibrated with Tris glycerol buffer, pH 8.0. FtsZ was retained on the 

column and was eluted with a 0–100% gradient of 1 M NaCl in the same buffer.[39] 

Protein concentration was estimated with Bradford reagent (Bio-Rad protein assay), 

protein purity was assessed by SDS- polyacrylamide gel electrophoresis (SDS-PAGE) 

and characterized by mass mapping using MALDI-MS/MS. 
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The activity of FtsZ on GTP substrate was determined with an enzymatic assay using 

BIOMOL® Green phosphate reagent (Biomol). Initially, FtsZ (6 µM) was incubated in 

25 mM PIPES/NaOH, pH 6.8 for 30 minutes at 30°C. The enzyme was then treated 

with different concentrations of GTP, ranging from 0 µM to 250 µM, either in the 

absence or in the presence of 35 µM TL. The reaction was performed for 10 min and 

then stopped by addition of 100 µl BIOMOL® Green reagent and the increase in 

absorbance at 620 nm was measured following 25 min incubation. The experiment was 

performed in duplicate. Kinetic parameters were fitted by non-linear regression with 

GraphPad Prism 4Project. The half-maximal inhibitory concentration (IC50) of TL on 

the GTPase activity of FtsZ was calculated by plotting the percentage of enzymatic 

activity versus the logarithm of TL concentration. 

 

Binding experiment 

Fluorescence experiments were performed at 25 °C in a 250µL quartz cuvettes (Hellma, 

Germany) on a VARIAN Cary Eclipse Fluorimeter. Titrations were carried out in 50 

mM Tris-HCl buffer pH 7.2, 1M NaCl. Fluo-TL was excited at 440 nm (slit 5 nm) and 

the emission was monitored at 520 nm (slit 5 nm) without and in the presence of 

increasing concentrations of FtsZ protein (from 0.003 to 0.121µM) in a High Voltage 

mode. The peptide and the protein were dissolved at a 1.5 µM concentration. All 

experiments were repeated in duplicate. The change in the fluorescence intensity of the 

reaction set was fit into “one site-specific binding” equation of GraphPad Prism 5 

(GraphPad Software).  

 

Optical Microscopy and TEM analyses 

E. coli cells were inoculated in 10 mL of liquid LB and placed at 37°C for 16 h under 

stirring. At the end of the incubation, bacterial cells grown to 0.5 OD/mL were 

incubated with 20 µM TL and allowed to grow for a further 5 h. A similar bacterial 

growth was prepared and used as control in the absence of the peptide. Samples of 100 

µL were observed by optical microscope using a ZEISS optical microscope for phase 

contrast and 50X magnifications. 

For TEM analysis, E. coli cells were treated with sub-MIC concentration of TL for 1h at 

37°C. After incubation, bacterial cells were centrifugated at 3000 rpm for 15min, 
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washed with PBS and resuspended in PBS containing 2.5% glutaraldehyde to fix the 

cells. Samples (10µl) were applied to a glow discharged formvar/carbon film copper 

mesh grid and led to adsorb for 2 minutes. The excess liquid was eliminated with water 

and the sample was stained with 1% uranyl acetate allowing the grids to dry before 

TEM analyses. TEM analyses were carried out on a JEOL JEM-1400 TEM with an 

accelerating voltage of 120kV. Digital images were collected with an EMSIS Xarosa 

digital camera with Radius software.  

 

Scattering Measurements 

E. coli cells were grown to 0.5 OD/mL in the presence and in the absence of 20 µM TL 

up to 1 OD at 600 nm. Cells were then centrifuged at 5000 rpm for 15 min, treated with 

0.4% paraformaldehyde for 10 min, washed with deuterated PBS1X for three times and 

the samples were finally resuspended in deuterated PBS1X. 

Dynamic Light Scattering (DLS) measurements were performed by using a home-made 

instrument composed by a Photocor compact goniometer, a SMD 6000 Laser Quantum 

50 mW light source operating at 532.5 nm, a photomultiplier (PMT-120-OP/B) and a 

correlator (Flex02-01D) from Correlator.com.[40, 41] All measurements were 

performed at 25 °C with the temperature controlled through the use of a thermostat bath. 

All the measurements were performed in triplicate at fixed scattering angle of 90°. 

 

Small Angle Neutron Scattering (SANS) measurements were performed at 25 °C with 

the KWS-2 diffractometer operated by Julich Centre for Neutron Science at the FRMII 

source located at the Heinz Maier Leibnitz Centre, Garching (Germany). For all the 

samples, neutrons with a wavelength of 7 Å and Δλ/λ ≤ 0.1 were used. A two-

dimensional array detector at three different wavelength (W)/collimation (C)/sample-to-

detector (D) distance combinations (W 7 Å/C 8 m/D 2 m, W 7 Å/C 8 m/D 8 m, and W 7 

Å/C 20 m/ D 20 m) measured neutrons scattered from the samples. These 

configurations allowed collecting data in a range of the scattering vector modulus q 

between 0.002 Å−1 and 0.4 Å−1.  

The USANS measurements were performed on KWS-3 at 25 °C. The sample-to-

detector distances was 9.5 m with a wavelengths of 5Å (Δλ/λ = 10%) and 12.8 Å (Δλ/λ 
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= 20%), respectively. Both in the case of KWS2 and KWS3 measurements a 1 mm 

Helma quartz cells were used.  

  



24 
 

Acknowledgments 

This work is based upon experiments performed at the KWS2 instrument operated by 
JCNS at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany.  LP is grateful 
to MLZ for providing beam time. AD thanks prof. Prof. Miguel Vicente Centro 
Nacional de Biotecnologı́a, Consejo Superior de Investigaciones Cientı́ficas, Madrid, 
Spain for providing E. coli cells for FtsZ production. This work was supported in part 
by MIUR grants ARS01_00597 Project “NAOCON” and PRIN 2017 “Identification 
and characterization of novel antitumoral/antimicrobial insect-derived peptides: a 
multidisciplinary, integrated approach from in silico to in vivo”. 
 

Conflict of interest 

The authors declare that they have no conflicts of interest with the contents of this 

article. 

  



25 
 

 
 
[1] C.F. Le, C.M. Fang, S.D. Sekaran, Intracellular Targeting Mechanisms by 
Antimicrobial Peptides, Antimicrob Agents Chemother, 61 (2017). 
[2] A.K. Marr, W.J. Gooderham, R.E. Hancock, Antibacterial peptides for therapeutic 
use: obstacles and realistic outlook, Curr Opin Pharmacol, 6 (2006) 468-472. 
[3] A. Lewies, L.H. Du Plessis, J.F. Wentzel, Antimicrobial Peptides: the Achilles' Heel 
of Antibiotic Resistance?, Probiotics Antimicrob Proteins, 11 (2019) 370-381. 
[4] J.M. Freire, D. Gaspar, A.S. Veiga, M.A. Castanho, Shifting gear in antimicrobial 
and anticancer peptides biophysical studies: from vesicles to cells, J Pept Sci, 21 (2015) 
178-185. 
[5] A. Agrawal, J.C. Weisshaar, Effects of alterations of the E. coli lipopolysaccharide 
layer on membrane permeabilization events induced by Cecropin A, Biochim Biophys 
Acta Biomembr, 1860 (2018) 1470-1479. 
[6] C. Avitabile, L.D. D'Andrea, A. Romanelli, Circular Dichroism studies on the 
interactions of antimicrobial peptides with bacterial cells, Sci Rep, 4 (2014) 4293. 
[7] G. Malgieri, C. Avitabile, M. Palmieri, L.D. D'Andrea, C. Isernia, A. Romanelli, R. 
Fattorusso, Structural basis of a temporin 1b analogue antimicrobial activity against 
Gram negative bacteria determined by CD and NMR techniques in cellular 
environment, ACS Chem Biol, 10 (2015) 965-969. 
[8] J.M. Freire, D. Gaspar, B.G. de la Torre, A.S. Veiga, D. Andreu, M.A. Castanho, 
Monitoring antibacterial permeabilization in real time using time-resolved flow 
cytometry, Biochim Biophys Acta, 1848 (2015) 554-560. 
[9] C. Avitabile, L.D. D'Andrea, M. Saviano, M. Olivieri, A. Cimmino, A. Romanelli, 
Binding studies of antimicrobial peptides to Escherichia coli cells, Biochem Bioph Res 
Co, 478 (2016) 149-153. 
[10] Z. Yang, J.C. Weisshaar, HaloTag Assay Suggests Common Mechanism of E. coli 
Membrane Permeabilization Induced by Cationic Peptides, ACS Chem Biol, 13 (2018) 
2161-2169. 
[11] C.L. Hagan, J.S. Wzorek, D. Kahne, Inhibition of the beta-barrel assembly 
machine by a peptide that binds BamD, Proc Natl Acad Sci U S A, 112 (2015) 2011-
2016. 
[12] S. Ray, H.P. Dhaked, D. Panda, Antimicrobial peptide CRAMP (16-33) stalls 
bacterial cytokinesis by inhibiting FtsZ assembly, Biochemistry, 53 (2014) 6426-6429. 
[13] S.U. Vetterli, K. Zerbe, M. Muller, M. Urfer, M. Mondal, S.Y. Wang, K. Moehle, 
O. Zerbe, A. Vitale, G. Pessi, L. Eberl, B. Wollscheid, J.A. Robinson, Thanatin targets 
the intermembrane protein complex required for lipopolysaccharide transport in 
Escherichia coli, Sci Adv, 4 (2018) eaau2634. 
[14] S.S. Yadavalli, J.N. Carey, R.S. Leibman, A.I. Chen, A.M. Stern, M. Roggiani, 
A.M. Lippa, M. Goulian, Antimicrobial peptides trigger a division block in Escherichia 
coli through stimulation of a signalling system, Nat Commun, 7 (2016) 12340. 
[15] G. Andolina, L.C. Bencze, K. Zerbe, M. Muller, J. Steinmann, H. Kocherla, M. 
Mondal, J. Sobek, K. Moehle, G. Malojcic, B. Wollscheid, J.A. Robinson, A 
Peptidomimetic Antibiotic Interacts with the Periplasmic Domain of LptD from 
Pseudomonas aeruginosa, ACS Chem Biol, 13 (2018) 666-675. 
[16] A.C. Rinaldi, M.L. Mangoni, A. Rufo, C. Luzi, D. Barra, H. Zhao, P.K. Kinnunen, 
A. Bozzi, A. Di Giulio, M. Simmaco, Temporin L: antimicrobial, haemolytic and 



26 
 

cytotoxic activities, and effects on membrane permeabilization in lipid vesicles, 
Biochem J, 368 (2002) 91-100. 
[17] M.L. Mangoni, N. Papo, D. Barra, M. Simmaco, A. Bozzi, A. Di Giulio, A.C. 
Rinaldi, Effects of the antimicrobial peptide temporin L on cell morphology, membrane 
permeability and viability of Escherichia coli, Biochem J, 380 (2004) 859-865. 
[18] A. Giacometti, O. Cirioni, R. Ghiselli, F. Mocchegiani, F. Orlando, C. Silvestri, A. 
Bozzi, A. Di Giulio, C. Luzi, M.L. Mangoni, D. Barra, V. Saba, G. Scalise, A.C. 
Rinaldi, Interaction of antimicrobial peptide temporin L with lipopolysaccharide in vitro 
and in experimental rat models of septic shock caused by gram-negative bacteria, 
Antimicrob Agents Chemother, 50 (2006) 2478-2486. 
[19] A. Bhunia, R. Saravanan, H. Mohanram, M.L. Mangoni, S. Bhattacharjya, NMR 
structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide 
micelles: mechanistic insights into outer membrane permeabilization and synergistic 
activity, J Biol Chem, 286 (2011) 24394-24406. 
[20] M. Monti, M. Cozzolino, F. Cozzolino, G. Vitiello, R. Tedesco, A. Flagiello, P. 
Pucci, Puzzle of protein complexes in vivo: a present and future challenge for functional 
proteomics, Expert Rev Proteomics, 6 (2009) 159-169. 
[21] G. Chesi, R.N. Hegde, S. Iacobacci, M. Concilli, S. Parashuraman, B.P. Festa, E.V. 
Polishchuk, G. Di Tullio, A. Carissimo, S. Montefusco, D. Canetti, M. Monti, A. 
Amoresano, P. Pucci, B. van de Sluis, S. Lutsenko, A. Luini, R.S. Polishchuk, 
Identification of p38 MAPK and JNK as New Targets for Correction of Wilson 
Disease-Causing ATP7B Mutants, Hepatology, 63 (2016) 1842-1859. 
[22] A. Varone, S. Mariggio, M. Patheja, V. Maione, A. Varriale, M. Vessichelli, D. 
Spano, F. Formiggini, M. Lo Monte, N. Brancati, M. Frucci, P. Del Vecchio, S. 
D'Auria, A. Flagiello, C. Iannuzzi, A. Luini, P. Pucci, L. Banci, C. Valente, D. Corda, A 
signalling cascade involving receptor-activated phospholipase A(2), 
glycerophosphoinositol 4-phosphate, Shp1 and Src in the activation of cell motility, Cell 
Commun Signal, 17 (2019). 
[23] C.L. Kirkpatrick, P.H. Viollier, New(s) to the (Z-)ring, Curr Opin Microbiol, 14 
(2011) 691-697. 
[24] T. Mohammadi, A. Karczmarek, M. Crouvoisier, A. Bouhss, D. Mengin-Lecreulx, 
T. den Blaauwen, The essential peptidoglycan glycosyltransferase MurG forms a 
complex with proteins involved in lateral envelope growth as well as with proteins 
involved in cell division in Escherichia coli, Mol Microbiol, 65 (2007) 1106-1121. 
[25] A.K. Fenton, K. Gerdes, Direct interaction of FtsZ and MreB is required for 
septum synthesis and cell division in Escherichia coli, Embo J, 32 (2013) 1953-1965. 
[26] S. Ray, A. Kumar, D. Panda, GTP regulates the interaction between MciZ and 
FtsZ: a possible role of MciZ in bacterial cell division, Biochemistry, 52 (2013) 392-
401. 
[27] E.F. Semeraro, J.M. Devos, L. Porcar, V.T. Forsyth, T. Narayanan, In vivo analysis 
of the Escherichia coli ultrastructure by small-angle scattering, IUCrJ, 4 (2017) 751-
757. 
[28] S.C. Setty, S. Horam, M. Pasupuleti, W. Haq, Modulating the Antimicrobial 
Activity of Temporin L Through Introduction of Fluorinated Phenylalanine, Int J Pept 
Res Ther, 23 (2017) 213-225. 
[29] L. Piras, C. Avitabile, L.D. D'Andrea, M. Saviano, A. Romanelli, Detection of 
oligonucleotides by PNA-peptide conjugates recognizing the biarsenical fluorescein 
complex FlAsH-EDT2, Biochem Bioph Res Co, 493 (2017) 126-131. 



27 
 

[30] A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F.T. 
Heer, T.A.P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISS-
MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res, 
46 (2018) W296-W303. 
[31] M.A. Oliva, D. Trambaiolo, J. Lowe, Structural insights into the conformational 
variability of FtsZ, J Mol Biol, 373 (2007) 1229-1242. 
[32] C. Avitabile, L.D. D'Andrea, M. Saviano, A. Romanelli, Determination of the 
secondary structure of peptides in the presence of Gram positive bacterium S. 
epidermidis cells, Rsc Adv, 6 (2016) 51407-51410. 
[33] Y.M. Shen, J. Maupetit, P. Derreumaux, P. Tuffery, Improved PEP-FOLD 
Approach for Peptide and Miniprotein Structure Prediction, J Chem Theory Comput, 10 
(2014) 4745-4758. 
[34] H.A. Gabb, R.M. Jackson, M.J. Sternberg, Modelling protein docking using shape 
complementarity, electrostatics and biochemical information, J Mol Biol, 272 (1997) 
106-120. 
[35] B. Raveh, N. London, O. Schueler-Furman, Sub-angstrom modeling of complexes 
between flexible peptides and globular proteins, Proteins, 78 (2010) 2029-2040. 
[36] H. Lee, L. Heo, M.S. Lee, C. Seok, GalaxyPepDock: a protein-peptide docking 
tool based on interaction similarity and energy optimization, Nucleic Acids Res, 43 
(2015) W431-435. 
[37] M. Torchala, I.H. Moal, R.A. Chaleil, J. Fernandez-Recio, P.A. Bates, 
SwarmDock: a server for flexible protein-protein docking, Bioinformatics, 29 (2013) 
807-809. 
[38] P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan, Features and development of 
Coot, Acta Crystallogr D Biol Crystallogr, 66 (2010) 486-501. 
[39] G. Rivas, A. Lopez, J. Mingorance, M.J. Ferrandiz, S. Zorrilla, A.P. Minton, M. 
Vicente, J.M. Andreu, Magnesium-induced linear self-association of the FtsZ bacterial 
cell division protein monomer. The primary steps for FtsZ assembly, J Biol Chem, 275 
(2000) 11740-11749. 
[40] N.F. Della Vecchia, A. Luchini, A. Napolitano, G. D'Errico, G. Vitiello, N. 
Szekely, M. d'Ischia, L. Paduano, Tris Buffer Modulates Polydopamine Growth, 
Aggregation, and Paramagnetic Properties, Langmuir, 30 (2014) 9811-9818. 
[41] A. Luchini, C. Irace, R. Santamaria, D. Montesarchio, R.K. Heenan, N. Szekely, A. 
Flori, L. Menichetti, L. Paduano, Phosphocholine-decorated superparamagnetic iron 
oxide nanoparticles: defining the structure and probing in vivo applications, Nanoscale, 
8 (2016) 10078-10086. 
  



28 
 

 
SUPPLEMENTARY MATERIAL 
 
The antimicrobial peptide Temporin L impairs E. coli cell division by 

interacting with FtsZ and the divisome complex 
Angela Di Somma, Concetta Avitabile, Arianna Cirillo, Antonio Moretta, Antonello 

Merlino, Luigi Paduano, Angela Duilio and Alessandra Romanelli 

 

 
Supplementary Figure 1.  

Determination of TL minimum inhibitory concentration (MIC). E. coli cells were grown 

in the presence of serial dilution of TL from 512 µM to 0.5 µM and MIC was 

determined by the lowest concentration showing no visible growth after 24h of 

incubation at 37°C. The error bars on the graphs stand for the standard deviation from 

the mean of 3 experiments. One way ANOVA statistical test using Graph pad prism 

software was performed, p < 0.0001. 
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