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Umbilical vessels have a low sensitivity to dilate, and this property is speculated to have physiological implications. We
aimed to investigate the different relaxing responses of human umbilical arteries (HUAs) and veins (HUVs) to agonists
acting through the cAMP and ¢cGMP pathways. Vascular rings were suspended in organ baths for isometric force
measurement. Following precontraction with the thromboxane prostanoid (TP) receptor agonist U44069, concentration-
response curves to the nitric oxide (NO) donor sodium nitroprusside (SNP), the soluble guanylate cyclase (sGC)
stimulator BAY 41-2272, the adenylate cyclase (AC) activator forskolin, the B-adrenergic receptor agonists isoproterenol
(ADRBI1), salmeterol (ADRB2), and BRL37344 (ADRB3), and the phosphodiesterase (PDE) inhibitors milrinone
(PDE,), rolipram (PDE,), and sildenafil (PDE;) were performed. None of the tested drugs induced a relaxation higher than
30% of the U44069-induced tone. Rings from HUAs and HUVs showed a similar relaxation to forskolin, SNP, PDE
inhibitors, and ADRB agonists. BAY 41-2272 was significantly more efficient in relaxing veins than arteries. ADRB
agonists evoked weak relaxations (< 20%), which were impaired in endothelium-removed vessels or in the presence of
the NO synthase inhibitor L-NAME, sGC inhibitor ODQ. PKA and PKG inhibitors impaired ADBR 1-mediated relaxation
but did not affect ADRB2-mediated relaxation. ADRB3-mediated relaxation was impaired by PKG inhibition in HUAs
and by PKA inhibition in HUVs. Although HUA and HUV rings were relaxed by BRL37344, immunohistochemistry and
RT-qPCR analysis showed that, compared to ADRB1 and ADRB2, ADRB3 receptors are weakly or not expressed in
umbilical vessels. In conclusion, our study confirmed the low relaxing capacity of HUAs and HUVs from term infants.

ADRB-induced relaxation is partially mediated by endothelium-derived NO pathway in human umbilical vessels.

Key words: nitric oxide donor, soluble guanylate cyclase, adenylate cyclase, human umbilical artery, human umbilical vein,
vasorelaxation, -adrenoceptor, phosphodiesterase inhibitors

INTRODUCTION

In fetoplacental circulation, regulation of vasomotor tone is
important to maintain an adequate blood supply that makes
feasible maternofetal gas and solute exchange (1-3). As
umbilical blood vessels lack autonomic innervation, control of
vascular tone is mainly regulated by circulating and/or locally
released vasoactive agents as well as by physical factors, such as
flow or oxygen tension (4). Accordingly, constriction and
relaxation of human umbilical arteries (HUAs) and veins
(HUVs) have been demonstrated in response to several agonists
and physical stimuli (5-12). However, when compared to other
human vessels, full-term umbilical vessels have a low sensitivity
to dilate (5-12). In addition, the results from the few studies that
directly compared the reactivity of HUAs and HUVs suggest
differences in the responsiveness of the vessels to vasoactive

stimuli (7, 13-16). Belfort et al. demonstrated that the relaxant
potency of the Ca?" channel blocker nifedipine was higher in
HUVs than in HUAs (13). Similarly, in a previous study, we
observed that the relaxation evoked by H,S was present in HUVs
but not in HUAs (14). In contrast, Krause et al. observed that
arginase inhibition induced a higher relaxation in HUAs than
HUVs (15). Since arginases compete with nitric oxide (NO)
synthase (NOS) by their common substrate L-arginine, they
speculate that a lower NOS/arginase ratio could be responsible
for the higher relaxant activity of arginase inhibition in HUAs
(15). Finally, several studies have shown similar responsiveness
to exogenous NO in umbilical arteries and veins (7, 16).

Cyclic nucleotides, 3'-5'-cyclic adenosine monophosphate
(cAMP) and 3'-5'-cyclic guanosine monophosphate (cGMP) are
ubiquitous second messengers that play an essential role in
vascular tone regulation (17-19). Intracellular levels of these
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second messengers are the result of the balance between the rate
of their synthesis and degradation by cyclic nucleotide
phosphodiesterases (PDEs) (20-22). Activation of soluble
guanylate cyclase (sGC) and generation of cGMP is the main
signal-transducing event of the L-arginine-nitric oxide (NO)
pathway, whereas cAMP is the main intracellular second
messenger of the B-adrenergic receptor (ADRB) and prostanoid-
mediated vascular relaxation (23). However, there is
overwhelming evidence that a variety of vascular effector
mechanisms involve crossover reactivity of cAMP and cGMP
signaling pathways (23-25). In this study, we aimed to
investigate the differences between HUAs and HUVs on
relaxant response to agonists acting through the cAMP and
cGMP pathways. We hypothesized that arteries and veins differ
in their relaxant capacity due to their different roles in the
control of umbilical circulation.

MATERIAL AND METHODS

This study was approved by the local ethics committee
(Milan Area 2, Italy. Protocol number 29/2014). Parents gave
written informed consent in accordance with the Declaration of
Helsinki and by the Medical Research Involving Human
Subjects Act (WMO).

Tissue collection

Eighty-one umbilical cords of healthy term newborns (37 to
42 weeks of gestation) born by cesarean section were collected.
Infants born from pregnancies complicated by hypertension, pre-
eclampsia/eclampsia, diabetes, kidney disease, infection, or
other significant medical disorder were excluded. Moreover, the
umbilical cords of newborns with congenital disabilities were
excluded. Parts of the umbilical cord, 10 ¢cm in length, were
excised from the proximal segment of cord (closest to the
placental attachment) immediately after cesarean section. Tissue
was immediately placed in cold Krebs-Ringer-Bicarbonate
(KRB) solution.

Vascular reactivity studies

Human umbilical vessels were dissected free from Wharton’s
jelly and cut into 3 mm-rings. Rings were suspended in 5 mL
organ baths filled with KRB solution maintained at 37°C and
aerated with 95% O, — 5% CO, (pH 7.4). Changes in isometric
tension were measured with force transducers (model PRE 206-4,
Cibertec, Madrid, Spain) and recorded with MP100 data
acquisition system (BIOPAC System Inc. Santa Barbara, USA).
AcqKnowledge III for MP100 software was used for chart
recording and data acquisition. Tissues were allowed to equilibrate
for 30 min; then, they were stretched to an optimal resting tension
of 2 g (19.6 mN). Before starting the experiments, rings were
transiently challenged with 62.5 mM KCl to assess the functional
state of each vessel and to establish a reference nonreceptor-
mediated contraction for standardization of contractile responses.
Preparations were washed three times and allowed to recover for
30 minutes.

Relaxing agonists were evaluated during contraction
induced by the thromboxane prostanoid (TP) receptor 9,11-
dideoxy-9a,11a-epoxymethanoprostaglandin F2a (U44069). In
previous pilot experiments, we observed that U44069 elicited a
stable contraction, allowing the study of relaxant agents. A
concentration of 1 pM of U44069 elicited ~80% of the
maximal contractile response to the drug in both HUAs and
HUVs, as determined in pilot concentration-response curves.
When the contraction induced by U44069 (1 uM) reached a

plateau, concentration-response curves to the different relaxant
agents were performed. Concentration increments of each
relaxant agent were made once the response had reached a
plateau, or after 5 — 10 min if no response had occurred or a
clear plateau was not reached. Following relaxant agents were
tested: NO donor sodium nitroprusside (SNP, 1 nM — 0.1 mM),
sGC stimulator BAY 41-2272 (1 nM - 0.1 mM), adenylate
cyclase (AC) activator forskolin (I nM — 0.1 mM), non-
selective ADRB agonist isoproterenol (1 nM — 0.1 mM),
ADRB?2 agonist salmeterol (1 nM — 0.1 mM), ADRB3 agonist
BRL37344 (1 nM — 0.1 mM), and phosphodiesterase (PDE)
inhibitors milrinone (PDE; inhibitor,1 nM — 0.1 mM), rolipram
(PDE, inhibitor, 1 nM — 0.1 mM), and sildenafil (PDE;
inhibitor, 1 nM — 0.1 mM).

Some experiments were conducted with NO synthase (NOS)
inhibitor Ne-nitro-L-arginine methyl ester (L-NAME, 0.1 mM),
sGC inhibitor 1H-[1,2,4] oxadiazole [4,3-a] quinoxalin-1-one
(ODQ, 10 uM), AC inhibitor 2’,3’-dideoxyadenosine (DDA,10
uM) or cyclooxygenase (COX) inhibitor indomethacin (10 uM).
Relaxing responses were also studied in endothelium-denuded
arteries. For this purpose, the endothelium was removed by
gentle rubbing of vessel lumen with a stainless steel wire. In order
to better characterize the mechanism of action of ADRB agonists,
additional experiments were conducted with atenolol (ADRB1
antagonist, 1 pM), ICI 118,551 (ADRB2 antagonist, 1 uM), or
SR 59230A (ADRB3 antagonist, 1 pM), KT5720 (protein kinase
A (PKA) inhibitor, 1 uM), and Rp-8-Br-PET-cGMPS (protein
kinase G (PKG) inhibitor, 10 pM).

Drugs and solutions

KRB buffer contained (in mmol L'): NaCl, 118.5; KCl,
475; MgSO4'7H20, 12; KH2PO4, 12; NaHCO3, 250, CaClz,
2.5; glucose, 11.1. Solutions containing different concentrations
of KCI were prepared by replacing part of the NaCl by an
equimolar amount of KCI.

U44069, SNP, isoproterenol, and DDA were obtained from
Sigma-Aldrich Chemical Co (St. Louis, MO). All other drugs
were obtained from Tocris (Ballwin, MO). Sodium
nitroprusside, acetylcholine, isoproterenol, BRL 37344,
atenolol, ICI 118,551, DDA, L-NAME, and U44069 were
dissolved in distilled deionized water. BAY 41-2272, salmeterol,
milrinone, sildenafil, SR 59230A, ODQ, indomethacin,
KT5720, and Rp-8-Br-PET-cGMPS were dissolved in DMSO.
Forskolin and rolipram were dissolved in ethanol. The final bath
concentration of the vehicles did not exceed 0.1% and did not
affect mechanical activity.

Immunohistochemistry

Formalin-fixed, paraffin-embedded human umbilical cords
were cut into 4 pm sections and placed on electrostatically
polarized slides. Immunohistochemistry was performed using
the automated system BenchMark XT (Ventana Medical
Systems Inc., Tucson, Arizona, USA). Reactions were revealed
using UltraView™ Universal DAB, a biotin-free, multimer
based detection system, according to the manufacturer’s
instructions (standard protocol). Immunostaining procedure was
accomplished on human umbilical cords using specific
antibodies for ADRB1 (SC568), ADRB2 (SC569), and ADRB3
(SC1472) (DBA, Italy). A standard protocol was performed, and
primary antibody solutions were diluted at 1/50 in Ventana
Diluent. Amplification kit was added for all antibodies (Ventana
Medical Systems Inc., Tucson, Arizona, USA). Negative
controls were performed by replacement of primary antibody
with equal concentrations of nonimmune serum. Images were
scanned with Aperio CS2 Scanscope (Leica, Germany).



Human umbilical vein and arterial endothelial cells (HUVEC
and HUAEC) isolation and culture

Endothelial cells were obtained from umbilical veins, as
previously described (26). HUVEC and HUAEC were isolated,
infusing 0.1% collagenase A (Roche, Milan, Italy) for 15 min at
37°C. Then, the effluent was collected in a sterile 50 ml conical
centrifuge tube and sedimented at 463 g for 15 min.

HUVEC and HUAEC pellets were grown in the medium 199
(Sigma, St. Louis, MO) supplemented with 20% fetal bovine
serum (FBS, Sigma, St. Louis, MO), 3% penicillin/streptomycin
(200 w/ml, Sigma, St. Louis, MO), 200 pl heparin (25,000 UL/5
ml IV 1 F, HOSPIRA Italy) and 1% L-glutamine (Sigma, St.
Louis, MO), at 37°C in a 5% CO, atmosphere. The medium was
changed two times weekly. Each culture was used at PO.

RNA extraction and reverse transcription

RNA from HUVEC and HUAEC was extracted using
TRIzol Reagent (Life Technologies, Paisley, UK). Residual
genomic DNA was removed from all samples using the DNA-
free™ DNA removal kit (Ambion, Huntingdon,
Cambridgeshire, UK). RNA samples were reverse-transcribed
for 2 h at 37°C in a 20 pL reaction volume using High-Capacity
cDNA Archive kit (Life Technologies, Paisley, UK). Reverse
transcriptase activity was terminated by heating samples at 85°C
for 5 min. Control samples without reverse transcriptase were
included in all experiments to show that all products were RNA-
derived and not the result of genomic DNA contamination.

Real-time quantitative polymerase chain reaction (RT-qPCR)
analysis

ABI Prism 7900 fast sequence detection system (Applied
Biosystems, Foster City, CA) was used RT-qPCR analysis using
HPRT-1 (Hs02800695 m1l) as endogenous control. RT-qPCR
was performed using specific primers and probes for ADRB1
(Hs02330048_s1), ADRB2 (Hs00240532 s1), ADRB3
(Hs02800695 m1) target genes (Assays-on-Demand Gene
Expression Products). Validation experiments were performed
using the 1:2 diluted templates. Target and reference genes were
amplified in separate wells in duplicate. Reaction conditions
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included 10 pl of 2X TagMan Universal PCR Master Mix, 1 pl
of primers and probes mixture, 50 ng of template cDNA, and
nuclease-free water to a 96-well reaction plate. Total reaction
volume was 20 pl. Cycling conditions were as follows: 2
minutes at 50°C, 10 minutes at 95°C, and 40 cycles of 15 seconds
at 95°C, followed by 1 minute at 60°C. Data were analyzed by
using the comparative Ct method, where Ct is the cycle number
at which fluorescence first exceeds the threshold. Delta cycle
threshold (ACt) values from each sample were obtained by
subtracting the values for the reference gene from sample Ct. For
each experimental sample, the 22 was calculated, and data
were graphically indicated as relative expression.

Data analysis

Results are shown as mean + standard errors of means (SEM)
in n cords. The relaxant responses are expressed as the percentage
of reduction of the contraction induced by U44069.
Sensitivity/potency (expressed as pECs, = —log ECsy) and maximal
relaxation (E,,) to agonists were determined by fitting individual
concentration-response data to a non-linear sigmoidal regression
curve. Differences between mean values were assessed by
Student’s #-test or one-way ANOVA followed by Bonferroni’s post
hoc t-test. Differences were considered significant ata P <0.05. All
analyses were performed using GraphPad Prism (version 7.04 for
Windows, GraphPad Software, San Diego CA, USA).

RESULTS

Relaxant responses of U44069-contracted human umbilical
vessels

Contraction elicited by U44069 (1 uM) was similar in HUA
(192.95 + 13.85% of KCl-induced contraction, n = 110) and HUV
rings (207.65 + 5.88% of KCl-induced contraction, n = 110). AC
activator forskolin (Fig. 14), NO donor SNP (Fig. 1B), and sGC
stimulator BAY 41-2272 (Fig. 1C) relaxed U44069-contracted
vessels in a concentration-dependent manner. Relaxations
induced by forskolin and SNP were similar in HUA and HUV
rings (Fig. 1, Table I). In contrast, BAY 41-2272 showed a
significantly higher efficacy (i.e., higher E,,,) in HUVs than in

Table 1. Relaxant responses of human umbilical vessels to, sodium nitroprusside (SNP), forskolin and BAY 41-2272.

Artery Vein
Emax PECso n Emax PECso n
SNP 29.62 +3.24 -6.27 £0.06 10 27.03 +£1.54 —-6.23 +0.13 10
Forskolin 24.77 £ 2.90 -6.31+0.08 10 22.44 +0.78 —6.45 +0.04 11
BAY 41-2272 23.27+0.94 —6.55 £ 0.05 10 | 32.42+1.90*%** | —6.50+0.07 10

Values are means = SEM; n= number of vessels; E,,,, = maximal relaxant effect (% of U44069-induced contraction); pECsy = —log ECsy;

***P < 0.001 artery versus vein.

Table 2. Relaxant reponses of human umbilical vessels to PDE inhibitors.

Artery Vein
Emax PECso n Emax pPECso n
Milrinone 27.22 +1.73% —6.33 £0.05 10 | 30.54+1.92%% | —6.33+0.04 10
Rolipram 24.57 £ 1.91%% ~5.95+0.12 10 | 2529+1.23% | —6.21+0.05 10
Sildenafil 16.42 +0.10 —6.17+£0.05" 10 15.92 +0.72 -5.93+0.09 10

Values are means + SEM; n = number of vessels; E,., = maximal relaxant effect (% of U44069-induced contraction); pECs, = —log

ECsp; *P < 0.05 artery versus vein; P < 0.001 versus sildenafil in the same vessel type.
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Fig. 1. Cumulative dose-response curves to forskolin (A), sodium
nitroprusside (B) 10) and BAY 41-2272 (C) in human umbilical
vein and artery rings, contracted with U44069 (1 pM). Each point
or bar represents the mean + SEM of 10-11 experiments. ***P <
0.001 artery versus vein.

HUAs (Table 1). In order to assess the possible role of
endothelium-derived NO in higher relaxant efficacy of BAY 41-
2272 in HUVs, we performed additional experiments with NOS
inhibitor L-NAME or in endothelium-denuded vessels. Neither
removal of the endothelium nor the presence of L-NAME
significantly affected BAY 41-2272-induced relaxation of HUVs
(Emax endothelium-denuded: 32.35 + 2.72%, n = 10; E, in
L-NAME presence: 28.04 + 3.12%, n = 10) or HUAs (E.
endothelium-denuded: 22.25 £ 2.21%, n = 10; E,,. in L-NAME
presence: 18.40 £ 2.37%, n = 10). Endothelium denudation or L-

Fig. 2. Cumulative dose-response curves to milrinone (A),
rolipram (B) and sildenafil (C) in human umbilical vein and
artery rings, contracted with U44069 (1 puM). Each point
represents the mean = SEM of 10 experiments.

NAME did not affect the relaxations elicited by forskolin or SNP
(data not shown).

The PDE inhibitors milrinone (Fig. 24), rolipram (Fig. 2B),
and sildenafil (Fig. 2C) relaxed U44069-contracted vessels in a
concentration-dependent manner. Milrinone and rolipram
showed a similar potency and efficacy in HUAs and HUVs
(Table 2). In contrast, sildenafil was slightly but significantly
more potent in relaxing HUAs than HUVs (7able 2). As shown
in Table 2, milrinone and rolipram were more efficient than
sildenafil in relaxing HUAs and HUVs.
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Fig. 3. Cumulative dose-response curves to isoproterenol (A), salmeterol (C) and BRL 37344 (E) in human umbilical vein, and artery rings.
Right panels: mechanisms involved in the relaxation induced by isoproterenol (B), salmeterol (D) and BRL 372344 (F) in human umbilical
vein and artery rings. Vessels were contracted with U44069 (1 uM). Each point or bar represents the mean + SEM of experiments. *P <

0.05, **P <0.01, ***P < 0.001 versus control.

Table 3. Relaxant responses of human umbilical vessels to B-adrenergic receptor agonists.

Artery Vein
Enmax pECso n Emax pECso n
Isoproterenol 16.24 +2.09 -6.67 +£0.33 10 18.37 £2.85 —6.66 +0.17 10
Salmeterol 8.77 +1.89 —6.06 +0.29 10 4.45+0.90 —6.51 +0.31 10
BRL 37344 12.38 +2.73 —6.32£0.18 10 12.76 £2.39 —6.85+£0.29 10

Values are means = SEM; n = number of vessels; E,,,, = maximal relaxant effect (% of U44069-induced contraction); ); pECs, =—log ECs,
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Fig. 5. Immunostaining for f;-
adrenergic receptor (ADRB1)
in human umbilical artery (A)
and vein (B). Scale bars: left
panels, 200 pm; right panels,

60 um.

Non-selective ADRB agonist isoproterenol (Fig. 34),
ADRB2 agonist salmeterol (Fig. 3C), and ADRB3 agonist BRL
37344 (Fig. 3E) relaxed U44069-contracted vessels in a
concentration-dependent manner. However, as shown in Fig. 3
and Table 3, the relaxation elicited by ADRB agonists did not
exceed 20% of contraction induced by U44069 and, even with
salmeterol relaxation, was below 10%. Efficacy and potency of
ADRB agonists were similar in HUAs and HUVs (7able 3).
Endothelium denudation or pretreatment with L-NAME or ODQ
markedly inhibited the relaxant response to isoproterenol (Fig.
3B), salmeterol (Fig. 3D) and BRL 37344 (Fig. 3F). Conversely,
DDA, or indomethacin did not affect ADRB-induced relaxation.
PKA and PKG inhibitors impaired ADBR1-mediated relaxation
(Fig. 3B) but did not affect ADRB2-mediated relaxation (Fig.
3D). ADRB3-mediated relaxation was impaired by PKG
inhibition in HUAs and by PKA inhibition in HUVs (Fig. 3F).
Relaxant response to BRL37344 was impaired in the presence of
ADRB3 antagonist SR 59230, but it was unaffected by ADRB1
antagonist atenolol, and ADRB2 antagonist ICI 118,551 (Fig. 4).

Immunohistochemical detection of ADRBI1, ADRB2, ADRB3
in human umbilical vessels and ADRB3 in HUVEC

We analyzed the protein expression of ADRB1, ADRB2, and
ADRB3 through immunohistochemistry to verify the presence
and localization of receptors. Immunohistochemistry showed
that ADRBI1 (Fig. 5), and ADRB2 (Fig. 6) were abundantly
expressed in endothelial and smooth muscle cells of both HUAs
and HUVs, while ADRB3 expression was not detectable (Fig.
74 and 7B). However, a weak expression of ADRB3 was shown
by Western blot analysis in primary HUVEC cultures (Fig. 7C).

ADRBI, ADRB2, ADRB3 mRNA expression in HUVEC and
HUAEC

ADRBI, ADRB2, ADRB3 mRNA expression was
investigated in HUVEC (n = 7) and HUAEC (n = 7) cultures by
RT-gqPCR analysis. In HUVEC, there was no significant
difference between ADRBI and ADRB2 mRNA levels, while
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Fig. 6. Immunostaining for f3,-
adrenergic receptor (ADRB2)
in human umbilical artery (A)
and vein (B). Scale bars: left
panels, 200 pm; right panels,
60 um.

Fig. 7. Lack of immunostaining
for f;-adrenergic receptor
(ADRB3) in human umbilical
artery (A) and vein (B). Scale
bars: left panels, 200 um; right
panels, 60 pm. (C): ADRB3 in

c primary HUVEC cultures.
,jH,UVECS — LIVER Protein lysates were prepared

1 2 3 ] from primary HUVEC cultures

and analyzed by Western

ADRB3 blotting using the ADRB3
antibody. Representative

———— —— | "'\ DIOLS for ADRBS and
GAPDH

GAPDH (internal control gene)
are shown.

ADRB3 mRNA was significantly reduced (Fig. §). In contrast, DISCUSSION
the expression of ADRB2 was significantly higher than ADRBI Our findings confirm low responsiveness of umbilical
and ADRB3 (P < 0.05) in HUAEC (Fig. 8). vessels to relaxant agonists acting through cAMP and cGMP
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82 08 mm HUAEC
E § 0.6 T 1 HUVEC | Fig 8 ADRBI, ADRB2, and ADRB3
< 2. 0.4 gene expression in HUVEC and
&5 021 T HUAEC, evaluated by RT:gPCR.
a < - e . ADRBI1, ADRB2, ADRB3 mRNA
a Z. 0.004 derived from 7 HUVEC and HUAEC
< =4 cultures were quantified by RT-qPCR
- B analysis using the HPRT-1 as an
E 2 0.0021 endogenous control. Data were
Y = analyzed using the comparative Ct
a % method and are expressed as mean =+
< £ 0.000- : : : SEM of ADRBI, ADRB2, ADRB3
N 9 > N 2 > relative expression, which corresponds
VQQ’Q. ‘?QQ’G \?QQ’G \?QQ’@ VQQ’Q‘ VS)Q)Q. to the Z’AC.‘. *P < 0.05; §P < 0.05

ADBR3 vein versus artery.

pathways. Maximal relaxation that was achieved did not exceed
30% of the precontractile stimulus. HUVs and HUAs showed a
similar relaxation to forskolin, SNP, PDE inhibitors, and ADRB
agonists. In contrast, sGC stimulator BAY 41-2272 was
significantly more efficient in relaxing HUVs than HUAs.

The study of relaxant agonists in isolated blood vessels
requires the presence of an active tone induced by a contractile
agonist (27). A consequence of this fact is that the efficacy of the
relaxant agonist will depend on the mechanisms by which the
contractile agonists induce its response, and the role of a given
mechanism may vary with species, vascular bed, and age (28-32).
Thromboxane A2 mimetics (TP receptor agonists), such as U46619
or U44069, and serotonin (5-HT) are frequently used to contract
umbilical vessels in vascular reactivity studies because they induce
a stable tone (7, 13-16, 33). In addition, both thromboxane A2 and
5-HT have been proposed to play a physiological role in the
physiological regulation of umbilical vascular tone (33-35). In the
present study, umbilical vessels were contracted with the TP
receptor agonist U44069. The signaling pathway for TP receptor-
induced vasoconstriction involves a variety of protein kinases such
as protein kinase C (PKC) and Rho kinase (29, 30). TP receptor
agonists inhibited (via PKC() voltage-gated K* channels (Ky
channels), leading to membrane depolarization, activation of L-
type Ca?* channels, increase in intracellular Ca?* concentration and
contraction (29, 30). In addition, the RhoA/Rho kinase pathway of
Ca*" sensitization also contributes to TP receptor agonist-induced
contractions in pulmonary and systemic vessels (29, 30).
Interestingly, Cogolludo ef al. showed that the relative contribution
of PKC(-Ky-Ca*" pathway and the RhoA/Rho kinase pathway
could vary during development in porcine pulmonary arteries (30).
Thus, in newborns, which showed larger Ky currents, the PKCC-
Ky-Ca?" pathway seems to play a major role, whereas in older
animals, showing smaller Ky currents and increased expression of
RhoA, the RhoA/Rho kinase pathway appears to be the main
contributing mechanism (30). The exact contribution of these
mechanisms to TP receptor-mediated contraction of human
umbilical vessels has not been fully characterized and is beyond the
scope of the present study. However, it is possible that some of the
differences that we observed between HUAs and HUVs are related
to tissue-specific differences in the transduction mechanisms of the
contractile and/or relaxant agonists. In addition, it should be noted
that the use in our experimental setting of a different contractile
agonist, such as 5-HT, could have produced somewhat different
results than those reported here. TP receptor agonists and 5-HT
share some common transduction mechanisms (29, 30, 36), and
even endogenous production of thromboxane A2 is involved in 5-
HT-induced contraction in HUAs (34). Nevertheless, transduction

mechanisms such as activation of tyrosine kinase, and a caveolae
pathway appear to be particularly relevant in 5-HT-mediated
contraction (36, 37).

BAY 41-2272 is a drug that directly stimulates sGC and
sensitizes it to low levels of bioavailable NO (38-42). Soluble GC
consists of an a- and B-subunits, the latter of which contains a
binding site for a prosthetic heme moiety (38, 43). Organic
nitrates and other nitrovasodilators such as SNP release NO or
NO-related compounds that bind to the heme of sGC and thus
activate the enzyme (38). In contrast, BAY 41-2272 binds to a
regulatory site on a-subunit of sGC and stimulates the enzyme
synergistically with NO (38-42). Therefore, endogenous basal
production of NO contributes to the relaxation induced by BAY
41-2272. Interestingly, previous studies have shown similar
responsiveness to exogenous NO in umbilical arteries and veins
but higher endothelial NOS (eNOS) expression and/or activity in
HUVs when compared with HUAs (7, 44-47). However, a higher
release of endothelium-derived NO was not the underlying
mechanism for the higher relaxant efficacy of BAY 41-2272 in
our HUVs, since the relaxation was not affected by endothelium
denudation. An alternative explanation may rely on the
endogenous production of NO by the neuronal NOS (nNOS),
which is expressed in HUVs but not in HUAs (48). Nevertheless,
BAY 41-2272-induced relaxation was not affected by the
presence of the non-specific NOS inhibitor L-NAME. Altogether,
our results suggest that a higher endogenous NO production,
either by eNOS or nNOS, was not responsible for the higher
relaxant efficacy of BAY 41-2272 in HUVs when compared with
HUAs. In addition, several studies showed a cGMP-independent
component of the vascular effects of BAY 41-2272 (40, 49-51).
These cGMP-independent mechanisms include cAMP activation
(51), stimulation of the Na*-K*-ATPase (51), or blockade of Ca?"
influx (40) and remain to be investigated in umbilical vessels.

Cyclic nucleotides cAMP and ¢cGMP are degraded by a
family of enzymes known as phosphodiesterases (PDEs) (52,
53). Eleven different PDE families are currently known to be
expressed in mammalian tissues. PDEs families differ in their
regulation and substrate specificity (CAMP or cGMP) (52-54).
Depending on the species, the main PDEs present in VSMCs are
PDEI, PDE3, PDE4, and PDES5 (20, 21, 31). PDEI is a Ca*-
calmodulin-activated PDE which hydrolyzes cAMP and cGMP
(52, 54). PDE3 is a ¢cGMP-inhibited PDE which hydrolyzes
cAMP with a rate 10-fold greater than cGMP hydrolysis. PDE4
selectively hydrolyzes cAMP, whereas PDES selectively
hydrolyzes ¢cGMP with high affinity (52-54). Expression and
activity of PDE1, PDE3, PDE4, and PDES in human umbilical
vessels were previously demonstrated (35, 55, 56).



Moreover, PDES5-inhibitor sildenafil is one of the most
promising approaches to treat fetal growth restriction and
preeclampsia (54, 57). Our study is the first comparing the relaxant
effects of PDE inhibitors in HUAs and HUVs. We did not observe
any differences between arteries and veins on the relaxant efficacy
of PDE3-inhibitor milrinone, PDE4 inhibitor rolipram, or PDES-
inhibitor sildenafil. We did not observe any differences between
arteries and veins on the relaxant efficacy of the PDE3 inhibitor
milrinone, the PDE4 inhibitor rolipram, or the PDES inhibitor
sildenafil. Of note, milrinone and rolipram were more efficacious
than sildenafil in relaxing umbilical vessels. This suggests a higher
activity of cAMP- than of cGMP-degrading PDEs in the umbilical
circulation and warrants further investigation.

Classically, the final response of blood vessels to
catecholamines was thought to depend on the relative expression
levels of vasoconstrictive al-adrenergic receptors (ADRA1) and
vasorelaxant ADRB2 in the VSMCs and effectiveness of their
signaling pathways (58, 59). However, it is now accepted that
three ADRB subtypes, B, B,, and s, are expressed in vascular
endothelium and VSMCs, managing vascular relaxation (58,
59). In human umbilical and placental vessels, previous studies
have demonstrated that ADRB-induced relaxation is mediated
by a mixed population of ADRB2 and ADRB3 (10, 59-62). In
the present study, we observed that the relaxant efficacy of
ADRB2 and ADRB3 agonists is similar in HUAs and HUVs.
However, it should be taken into account that ADRB agonists
elicited weak relaxations in HUAs and HUVs.

As mentioned in the introduction, the adenylate
cyclase/cAMP pathway is considered the main mechanism for
ADBR-mediated relaxation (23, 63-65). Nevertheless, our study
confirmed previous findings on the role of the NO/cGMP pathway
in the vascular relaxation mediated by ADRB agonists (10, 59, 61,
66). Removal of endothelium or the presence of inhibitors of NOS
(L-NAME) or sGC (ODQ) markedly impaired the relaxation
induced by ADRB agonists in HUAs and HUVs, suggesting that
at least part of the relaxation is mediated by endothelium-derived
NO. In contrast to ADRB-mediated relaxation, the relaxation
mediated by the adenylate cyclase activator forskolin was not
affected by endothelium denudation or the presence of L-NAME.
Interestingly, previous studies showed that both ADRB agonists
and forskolin enhanced NOS activity and cGMP accumulation in
HUVECs (10, 67). Nevertheless, our results suggest that this
endothelial effect of forskolin did not affect its relaxant activity in
umbilical vessels. In contrast, there is evidence from other
vascular tissues, such as rat aorta, that forskolin elicits an
endothelium-dependent relaxation (68, 69). This endothelium-
dependent component of forskolin/cAMP-induced relaxation
appears to be partially mediated by an increase in endothelial NO
release due to an enhanced eNOS activity through PKA activation
in endothelial cells (69).

The main mechanism involved in cyclic nucleotide-
mediated relaxation is the activation of cAMP- and ¢cGMP-
dependent protein kinases (PKA and PKG, respectively).
Interestingly, Santos Silva et al. showed that the relaxation
induced by cAMP and cGMP in HUAs was not totally mediated
by the activation of their respective kinases, and they suggest the
participation of PKA- and PKG-independent mechanisms as
described in other vascular tissues (70, 71). Notably, Kim ef al.
demonstrated that NO production and NO/sGC/cGMP/PKG
pathway is stimulated by activation of the phosphatidylinositol-
3-kinase (PI3K)/Akt pathway both in HUVECs and rat thoracic
aorta rings, relaxed by aqueous extract of Mantidis oothecal
(72). Moreover, PI3K/Akt pathway has been involved in ADRB-
mediated vascular relaxation and NO formation (67, 73). We
tested the effect of the inhibition of PKG and PKA on ADRB-
mediated relaxation. PKA and PKG inhibitors impaired ADBR1-
mediated relaxation but did not affect ADRB2-mediated
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relaxation. ADRB3-mediated relaxation was impaired by PKG
inhibition in HUAs and by PKA inhibition in HUVs. These
results are difficult to interpret because, in our experimental
setting, ADRB2 and ARB3 agonists induced very weak
relaxations, and there was a high inter-experiment variability.
Therefore, additional experiments are required to further
elucidate the different mechanisms involved in ADRB-mediated
relaxation in human umbilical vessels.

Our immunohistochemistry study confirmed that ADBR1
and ADBR2 proteins are expressed in the endothelium and
VSMCs of HUA and HUVs. In contrast, immunohistochemistry
could not demonstrate any expression of ADBR3 protein.
Nonetheless, we observed that umbilical vessels expressed
ADRB3 mRNA, and, in some samples, a low level of ADRB3
protein was detected in Western blot analysis. However, this
mRNA expression was markedly lower than the mRNA
expression of ADRBI and ADRB2 in HUVEC and the mRNA
expression of ADRBI in HUAEC. Previous studies have not
found a reduced expression of ADRB3 mRNA in human
umbilical or placental vessels (62, 74). We have not an
explanation for the low ADRB3 expression and the lack of
correlation with the functional experiments since we observed
that HUAs and HUVs relaxed to the ADRB3 agonist BRL 37344
and this relaxation was markedly impaired by the presence of the
ADRB3 antagonist SR 59230A. Moreover, BRL 37344-induced
relaxation was not affected by the simultaneous presence of
atenolol and ICI 118,551, suggesting the lack of involvement of
ADRBI1 or ADBR2. Altogether our data suggest that ADRBs are
present and/or functional in HUAs and HUVs, but their possible
role in the control of umbilical circulation seems to be limited by
the low relaxant efficacy.

In conclusion, our study confirmed the low relaxing capacity
of HUAs and HUVs from term infants. It has been speculated
that this low relaxing capacity of umbilical vessels has
physiological implications (5-7). An inappropriate or excessive
relaxant response to physiological agents may increase umbilical
blood flow to placenta and therefore shunt the blood away from
the fetal body (8, 75). In addition, maintenance of a high
vasomotor tone is also considered as an essential factor for
support of placental circulation on the fetal side during uterine
contractions (8). Previous studies show that the contractile
phenotype of umbilical vessels undergoes marked
developmental changes during the last trimester of gestation and
suggest that the sensitivity of umbilical vessels to relaxant agents
decrease with the progress of gestation (76, 77). Therefore,
whether the umbilical vessels of preterm infants show a different
pattern of cGMP- or cAMP-mediated relaxation warrants further
investigation.
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