
Under consideration for publication in Math. Struct. in Comp. Science

SMT-based Verification of Data-Aware
Processes: a Model-Theoretic Approach

Diego Calvanese1, Silvio Ghilardi2, Alessandro Gianola1, Marco Montali1 and Andrey Rivkin1

1Free University of Bozen-Bolzano

{calvanese, gianola, montali, rivkin}@inf.unibz.it

2Università degli Studi di Milano

silvio.ghilardi@unimi.it

Received November 2019

In recent times, Satisfiability-Modulo-Theories (SMT) techniques gained increasing
attention and obtained remarkable success in model-checking infinite state systems. Still,
we believe that whenever more expressivity is needed in order to specify the systems to
be verified, more and more support is needed from mathematical logic and model-theory.
This is the case of the applications considered in this paper: we study verification over a
general model of relational, data-aware processes, to assess (parameterized) safety
properties irrespectively of the initial database instance. Towards this goal, we take
inspiration from array-based systems, and tackle safety algorithmically via backward
reachability. To enable the adoption of this technique in our rich setting, we make use of
the model-theoretic machinery of model completion, which surprisingly turns out to be
an effective tool for verification of relational systems, and represents the main original
contribution of this paper. In this way, we pursue a twofold purpose. On the one hand,
we isolate three notable classes for which backward reachability terminates, in turn
witnessing decidability. Two of such classes relate our approach to conditions singled out
in the literature, whereas the third one is genuinely novel. On the other hand, we are
able to exploit SMT technology in implementations, building on the well-known MCMT
model checker for array-based systems, and extending it to make all our foundational
results fully operational. All in all, the present contribution is deeply rooted in the
long-standing tradition of the application of model theory in computer science. In
particular, this paper applies these ideas in an original mathematical context and shows
how these techniques can be used for the first time to empower algorithmic techniques
for the verification of infinite-state systems based on arrays, so as to make such
techniques applicable to the timely, challenging settings of data-aware processes.

1. Introduction

The main contribution of this paper comes from a rather surprising confluence of two
well-established research traditions: model-theoretic algebra from mathematical logic and
satisfiability modulo theories (SMT), an emerging technologically oriented area in com-
putational logic. We believe that such seemingly very different scientific paradigms can

Calvanese et al. 2

indeed cooperate in formal verification and we shall supply an evidence for this claim by
developing an innovative application to the hot topic of the management of dynamic data-
aware processes. In this introduction, we shall briefly explain how the above mentioned
ingredients fit into the plan of our paper.

1.1. Model-Theoretic Algebra

Finding solutions to equations is a challenge at the heart of both mathematics and
computer science. Model-theoretic algebra, originating with the ground-breaking work
of (Robinson, 1951; Robinson, 1963), cast the problem of solving equations in a logical
form, and used this setting to solve algebraic problems via model theory. The central
notion is that of an existentially closed model, which we explain now. Call a quantifier-
free formula with parameters in a model M solvable if there is an extension M ′ of M
where the formula is satisfied. A modelM is existentially closed if any solvable quantifier-
free formula already has a solution in M itself. For example, the field of real numbers is
not existentially closed, but the field of complex numbers is.

Although this definition is formally clear, it has a main drawback: it is not a first-order
notion in general. However, in fortunate and important cases, the class of existentially
closed models of T are exactly the models of another first-order theory T ∗. In this case,
the theory T ∗ can be characterized abstractly as the model companion of T . Model
companions becomemodel completions (cf. Definition 2.2) in the case of universal theories
with the amalgamation property; in such model completions, quantifier elimination holds,
unlike in the original theory T . The model companion/model completion of a theory
identifies the class of those models where all satisfiable existential statements can be
satisfied. For example, the theory of algebraically closed fields is the model companion of
the theory of fields, and dense linear orders without endpoints give the model companion
of linear orders.

In declarative approaches to model-checking, the runs of a system are identified with
certain definable paths in the models of a theory T : we shall show that, without loss of
generality, one may restrict to paths within existentially closed models, thus taking profit
from the properties enjoyed by the model completion T ∗ (quantifier elimination being
the key property to be carefully exploited).

Model completeness has other well-known applications in computer science. It has been
applied to discover interesting connections between temporal logic and monadic second
order logic (Ghilardi and van Gool, 2016; Ghilardi and van Gool, 2017). In automated
reasoning, is has been used to design complete algorithms for constraint satisfiability
in combined theories over non disjoint signatures (Ghilardi, 2004; Baader et al., 2006;
Ghilardi et al., 2008b; Nicolini et al., 2010; Nicolini et al., 2009a; Nicolini et al., 2009b)
and in theory extensions (Sofronie-Stokkermans, 2016; Sofronie-Stokkermans, 2018). Ap-
plications to combined interpolation (both for modal logics and for software verification
theories) can be found in (Ghilardi and Gianola, 2017; Ghilardi and Gianola, 2018).

SMT-based Verification of Data-Aware Processes 3

1.2. Satisfiability Modulo Theories

The SMT-LIB project http://smtlib.cs.uiowa.edu/ (started in 2003) aims at bringing to-
gether people interested in developing powerful tools combining sophisticated techniques
in SAT-solving with dedicated decision procedures involving specific theories used in ap-
plications (especially in software verification). SMT-tools are at the heart of declarative
approaches to model checking, both in the bounded and in the unbounded case: they are
employed in many advanced techniques, for instance in interpolation based (McMillan,
2006) and IC3 based (Hoder and Bjørner, 2012) techniques.

Specifically, our approach is grounded in array-based systems. Array-based systems
are a declarative formalism originally introduced in (Ghilardi et al., 2008a; Ghilardi
and Ranise, 2010a) to handle the verification of distributed systems, and afterwards
successfully employed also to attack the static analysis of other types of systems (Alberti
et al., 2017; Alberti et al., 2014a). Distributed systems are parameterized in their essence:
the number N of interacting processes within a distributed system is unbounded, and
the challenge is that of supplying certifications that are valid for all possible values of the
parameter N . The overall state of the system is typically described by means of arrays
indexed by process identifiers, and used to store the content of process variables like
locations and clocks. These arrays are genuine second order variables. In addition, first-
order quantifiers are used to represent sets of system states. Quantified formulae and
second order function variables are at the heart of the model checking methodologies
developed in (Ghilardi et al., 2008a; Ghilardi and Ranise, 2010a) and following papers.

It is worth noting that the term “array-based systems” is an umbrella term generi-
cally referring to transition systems specified with logical formulae having second-order
variables (i.e., arrays). The precise formal notion depends on the application and is de-
fined on the spot (in this paper we shall introduce a specific instance of the notion of an
array-based system tailored to database-driven verification).

Model checkers for array-based systems handle safety problems by backward reachabil-
ity : they iteratively regress bad states by computing their predecessors, the predecessors
of the predecessors, etc., until a fixpoint is reached or the initial state(s) are intersected.
This is done symbolically by manipulating logical formulae that describe sets of states.
Depending on the specific features of the array-based system, to guarantee the regress-
ability of such formulae the procedure may require to eliminate existentially quantified
variables present in the formula.

There is an historical reason for choosing backward reachability: it was known since
the seminal paper (Abdulla et al., 1996) that backward search decides safety problems
for a large class of systems, called well-structured transition systems. What backward
search in array-based systems is meant to achieve is precisely to reproduce the results
of (Abdulla et al., 1996) in a declarative setting: in such a declarative setting, the abstract
wqo underlying well-structured transitions systems is replaced by the standard model-
theoretic notion of an embedding between finitely generated models (in many practical
cases, in fact, such embeddability relation can be proved to be a wqo, using a suitable
version of Dickson or of Higman lemma).

Backward search, once done in a declarative symbolic setting, requires discharging

Calvanese et al. 4

proof obligations that can be reduced to satisfiability tests for quantified formulae, albeit
of a restricted syntactic shape. This raises the question of how to handle such (first-order)
quantifiers. In the original papers (Ghilardi et al., 2008a; Ghilardi and Ranise, 2010a)
first order quantifiers were handled in satisfiability tests by instantiation, whereas in
successive applications (Carioni et al., 2010; Alberti et al., 2014a) quantifier elimination
was also used to handle quantifiers ranging over data structures (typically, real valued
clocks). There quantifier elimination was made possible by the fact that theories axiom-
atizing such data structures were limited to light versions of arithmetics (mostly even
strictly included in what is called ‘difference logic’ in SMT terminology), were quantifier
elimination is indeed available and at least in the examples arising from benchmarks
seems not to be as harmful as in the general arithmetic case. Suitable combinations of
quantifier instantiations and quantifier eliminations are needed at the foundational level
to design complete algorithms for the satisfiability tests that a model checker for array-
based systems has to discharge during search: a specific form of such combination will be
developed in this paper too. By means of such combinations, satisfiability tests involving
quantified formulae of special shape are reduced to satisfiability tests at quantifier-free
level, to be very efficiently discharged by existing SMT solvers (as confirmed by the
extensive experiments, see Section 6 for a brief historical account).

1.3. Data-Aware Processes

To capture data-aware processes, we follow the traditional line of research focused on the
formal representation of artifact systems (Hull, 2008; Vianu, 2009; Deutsch et al., 2009;
Damaggio et al., 2012; Calvanese et al., 2013; Deutsch et al., 2018). Since their initial
versions (e.g., in (Deutsch et al., 2009)), such systems are traditionally formalized using
three components: (i) a read-only database (DB), storing background information that
does not change during the system evolution; (ii) an artifact working memory, storing
data and lifecycle information about artifact(s) that does change during the system
evolution; (iii) actions (also called services) that access the read-only database and the
working memory, and determine how the working memory itself has to be updated.

Different variants of this framework have been considered towards decidability of veri-
fication, by carefully tuning the expressive power of the three components. For instance,
for the working memory, radically different models are obtained depending on whether
only a single artifact instance is evolved, or whether instead the co-evolution of multiple
instances of possibly different artifacts is supported. In particular, early formal models
for artifact systems merely considered a fixed set of so-called artifact variables, altogether
instantiated into a single tuple of data. This, in turn, allows one to capture the evolution
of a single artifact instance (Deutsch et al., 2009). We call artifact systems of this form
Simple Artifact System (SAS). Instead, more sophisticated types of artifact systems have
been studied recently in (Deutsch et al., 2016; Li et al., 2017; Deutsch et al., 2019). Here,
the working memory is not only equipped with artifact variables as in SAS, but also with
so-called artifact relations, which supports storing arbitrarily many tuples, each account-
ing for a different artifact instance that can be separately evolved on its own. We call
artifact systems of this form Relational Artifact System (RAS).

SMT-based Verification of Data-Aware Processes 5

Actions are usually specified using logical formulae relating the content of the read-only
DB as well as the current configuration of the working memory to (possibly different) next
configurations. An applicable action may be executed, nondeterministically transforming
the current configuration of working memory in one of such next configurations.

1.4. Bringing all the Ingredients Together

RASs naturally fit the paradigm of array-based systems: the read-only database is axiom-
atized by a suitable universal first-order theory T and the artifact variables and relations
are modeled by second-order variables. The identifiers of the tuples (i.e., the “entries”)
of the artifact relations play the role of the identifiers of the processes in distributed
systems: formally, in both cases, they are just sorted first order variables whose sort is
the domain sort of a second order function variable.

The resulting framework, however, requires novel and non-trivial extensions of the
array-based technology to make it operational. In fact, as we saw, quantifiers are han-
dled in array-based systems both by quantifier instantiation and by quantifier elimination.
Quantifier instantiation (ultimately referring to variants of the Herbrand Theorem) can
be transposed to the new framework, whereas quantifier elimination becomes problem-
atic. In fact, quantifier elimination should be applied to data variables, which do not
simply range over data types (like integers, reals, or enumerated sets) as in standard
array-based systems, but instead point to the content of a whole, full-fledged (read-only)
relational database and there is no reason for the theory T axiomatizing it to enjoy
quantifier elimination. Here model-theoretic algebra comes into the picture: we show
that, without loss of generality, we can assume that system runs take place in existen-
tially closed structures, so that we can exploit quantifier elimination, provided T has a
model completion.

The question on whether T admits or not a model completion is related to the way we
represent the read-only database. Model completions exist in case the read-only database
is represented in the most simple way, as consisting on free n-ary relations, not subject to
any kind of constraint. However, applications require the introduction of some minimal
integrity constraints, like primary and foreign keys. A naif declarative modeling of such
requirements (for instance via relations which are partially functional) would destroy
amalgamation property, thus compromising the existence of model completions. Instead,
we propose “functional view” of relations, where the read-only database and the artifact
relations forming the working memory are represented with sorted unary function sym-
bols. We introduce formally the above framework in Section 3 (Definitions 3.1 and 3.2):
there we supply a detailed example (Example 3.1 and Figure 1) and we also show how
to recover the traditional relational model (Subsection 3.1).1

1 We underline the fact that free n-ary relations (modeling plain relations without integrity constraints)
can be added to our sorted unary functions framework without compromizing our model-checking tech-
niques to apply. We shall briefly mention such trivial extensions in the paper (see e.g. Definition 3.3).

Calvanese et al. 6

1.5. Main Contributions

By exploiting the above explained machinery and its model-theoretic properties, we then
provide a fourfold contribution.

Our first contribution is to define a general framework for SASs and RASs, in which
artifacts are formalized in the spirit of array-based systems, one of the most sophisticated
setting within the SMT tradition. In this setting, SASs are a particular class of RASs,
where only artifact variables are allowed. RASs employ arrays to capture a very rich
working memory that simultaneously accounts for artifact variables storing single data
elements, and full-fledged artifact relations storing unboundedly many tuples. Each arti-
fact relation is captured using a collection of arrays, so that a tuple in the relation can be
retrieved by inspecting the content of the arrays with a given index. The elements stored
therein may be fresh values injected into the RAS, or data elements extracted from the
read-only DB, whose relations are subject to key and foreign key constraints.

To attack this modeling complexity within array-based systems, RASs encode the read-
only DB using a functional, algebraic view, where relations and constraints are captured
using multiple sorts and unary functions. To the best of our knowledge, this encoding
has never been explored in the past, but is essential in our context. In fact, more direct
attempts to encode the read-only DB into standard array-based systems would fail; for
example, not using unary functions for relations with key dependencies would destroy
amalgamability, which is a model-theoretic notion that is crucial towards decidability of
verification (Bojańczyk et al., 2013).

Our resulting RAS model captures the essential features of (Li et al., 2017), which in
turn is tightly related (though incomparable) to one of the most sophisticated formal
models for artifact-centric systems of (Deutsch et al., 2016; Deutsch et al., 2019).

Our second contribution is the development of a new version of the backward reach-
ability algorithm employed in traditional array-based systems (Ghilardi et al., 2008a;
Ghilardi and Ranise, 2010a), making it able to assess safety of RASs (and consequently
SASs) in a sound and complete way. The main technical difficulty, which makes the
original algorithm not applicable anymore, is that transition formulae in RASs contain
special existentially quantified “data” variables pointing to the read-only DB, which con-
tains data elements possibly constrained by primary keys and foreign keys. Such data
variables are central in our approach as they are needed:
— from the modeling point of view, to equip array-based systems with the ability of

querying the read-only DB;
— again for modeling reasons, to express nondeterministic inputs from the external

environment, such as users (a feature that is customary in business processes);
— to encode typical forms of updates employed in the artifact-centric literature (Deutsch

et al., 2016; Li et al., 2017).
The presence of these quantified data variables constitutes a big leap from traditional
array-based systems. In previous works on array-based systems, existentially quantified
variables to be eliminated were just arithmetic variables, and the corresponding quanti-
fier elimination procedures were consequently the standard ones studied in the context
of arithmetics (such as Fourier-Motzkin and Presburger). Due to the peculiar nature of

SMT-based Verification of Data-Aware Processes 7

data variables pointing to the read-only DB, and in particular of the constraints they
must satisfy, such standard techniques do not carry over. Hence, genuinely novel research
is needed in order to eliminate new existentially quantified data variables that are intro-
duced during the computation of predecessors in the backward reachability procedure.

From a theoretical point of view, we solve this problem by introducing a dedicated
machinery based on model completions. While in the case of arithmetic variables the
corresponding theories admit themselves quantifier elimination, this is not the case any-
more for our data variables. However, we show that quantifier elimination for data vari-
ables that is available in the model completion of their theory can actually be safely
employed in the context of backward reachability, retaining soundness and completeness
when checking safety of RASs. This requires to significantly modify the original procedure
and the original proofs.

In the general case, backward reachability is not guaranteed to terminate when check-
ing safety of SASs and RASs. As a third contribution, we consequently isolate three
notable classes of RASs for which backward reachability is guaranteed to terminate, in
turn witnessing decidability of safety. The first class restricts the working memory to
variables only, i.e., focuses on SAS. The second class focuses on RAS operating under
the restrictions imposed in (Li et al., 2017): it requires acyclicity of foreign keys and
requires a sort of locality principle in the action guards, ensuring that different artifact
tuples are not compared. Consequently, it reconstructs in our setting the essence of the
decidability result exploited in (Li et al., 2017) if one restricts the verification logic used
there to safety properties only. In addition, our second class supports full-fledged bulk
updates, which greatly increase the expressive power of dynamic systems (Schmitz and
Schnoebelen, 2013) and, in our setting, witness the incomparability of our results and
those in (Li et al., 2017). The third class is genuinely novel, and while it further restricts
foreign keys to form a tree-shaped structure, it does not impose any restriction on the
shape of updates, consequently supporting not only bulk updates, but also comparisons
between artifact tuples. To prove termination of backward reachability for this class, we
resort to techniques based on well-quasi orders (in particular, a non-trivial application
of Kruskal’s Tree Theorem (Kruskal, 1960)).

Our fourth and last contribution is to implement the new version of backward reacha-
bility required to handle the verification of RASs. We do so by extending the well-known
mcmt model checker for array-based systems (Ghilardi and Ranise, 2010b). The result-
ing version of mcmt (version 2.8) provides a fully operational counterpart to all the
foundational results presented in the paper. Even though implementation and experi-
mental evaluation are not the central goal of this paper, we also note that our model
checker correctly handles the examples produced to test verifas (Li et al., 2017), as
well as additional examples that go beyond the verification capabilities of verifas, and
report some interesting case here. The performance of mcmt to conduct verification of
these examples is very encouraging, and indeed provides the first stepping stone towards
effective, SMT-based verification techniques for artifact-centric systems.

All in all, the present contribution is deeply rooted in the long-standing tradition of the
application of model theory in computer science, as witnessed by notable approaches like
the one in (Ghilardi, 2004; Baader et al., 2006; Ghilardi et al., 2008b; Ghilardi and van

Calvanese et al. 8

Gool, 2017; Nicolini et al., 2010; Nicolini et al., 2009a; Nicolini et al., 2009b; Sofronie-
Stokkermans, 2008; Sofronie-Stokkermans, 2016; Sofronie-Stokkermans, 2018; Ghilardi
and Gianola, 2017; Ghilardi and Gianola, 2018). In particular, this paper applies these
ideas in a genuinely novel mathematical context and shows how these techniques can be
used for the first time to empower algorithmic techniques for the verification of infinite-
state systems based on arrays in the style of (Ghilardi et al., 2008a; Ghilardi and Ranise,
2010a; Alberti et al., 2014a; Alberti et al., 2014b; Alberti et al., 2017; Ghilardi and Ranise,
2010b; Conchon et al., 2012; Conchon et al., 2015; Conchon et al., 2018a; Delzanno, 2018;
Conchon et al., 2018b; Cimatti et al., 2018), so as to make such techniques applicable
to the timely, challenging settings of data-aware processes (Calvanese et al., 2019d). For
an explicit linking between the use of model completeness in computer science and our
application to verification, see in particular the survey (Calvanese et al., 2019b).

1.6. Plan of the paper and prerequisites

There are no specific prerequisites in model checking or in database theory to read this
paper; we only assume some familiarity with some basic model-theory (like that supplied
in a one-semester course); some elementary notions will be revised mainly to fix nota-
tions. All definitions we introduce concerning read-only databases and relational artifact
systems are explained with the help of a running example; however, we did not give
the straightforward (and rather boring) details showing how basic operations on artifact
relations (like insertion/deletions, resetting, etc.) can be modeled in our systems: there
is a preliminary but more elementary exposition of the content of this paper available
from the network (Calvanese et al., 2018b) which covers these low level details and some
more model-theoretic prerequisites.

The paper is organized as follows. After fixing preliminary notions in Section 2, in
Section 3 we introduce our functional view of databases and discuss the related model-
theoretic properties. In Section 4 we introduce a comprehensive framework for Artifact-
Centric Systems: Simple Artifact Systems are studied in Subsection 4.1, whereas the
most general framework of Relational Artifact Systems is investigated in Subsection 4.2.
Termination and decidability results are supplied in Section 5. Finally, first experiments
are discussed in Section 6 and Section 7 concludes.

2. Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom, (ground) for-
mula, and so on; our signatures are multi-sorted and include equality for every sort. This
implies that variables are sorted as well. For simplicity, most basic definitions in this
Section will be supplied for single-sorted languages only (the adaptation to multi-sorted
languages is straightforward). We compactly represent a tuple 〈x1, . . . , xn〉 of variables
as x. The notation t(x), φ(x) means that the term t, the formula φ has free variables
included in the tuple x.

We assume that a function arity can be deduced from the context. Whenever we build
terms and formulae, we always assume that they are well-typed, in the sense that the

SMT-based Verification of Data-Aware Processes 9

sorts of variables, constants, and function sources/targets match.A formula is said to be
universal (resp., existential) if it has the form ∀x(φ(x)) (resp., ∃x(φ(x))), where φ is a
quantifier-free formula. Formulae with no free variables are called sentences.

From the semantic side, we use the standard notion of a Σ-structureM and of truth
of a formula in a Σ-structure under a free variables assignment.

A Σ-theory T is a set of Σ-sentences; a model of T is a Σ-structure M where all
sentences in T are true. We use the standard notation T |= φ (‘ϕ is a logical consequence
of T ’) to say that φ is true in all models of T for every assignment to the variables
occurring free in φ. We say that φ is T -satisfiable iff there is a model M of T and an
assignment to the variables occurring free in φ making φ true inM. Thus, according to
this definition, φ is T -satisfiable iff its existential closure is true in a model of T (notice
that this convention might not be uniform in the literature). A Σ-theory T is complete
iff for every Σ-sentence ϕ, either ϕ or ¬ϕ is a logical consequence of T .

A Σ-formula φ is a Σ-constraint (or just a constraint) iff it is a conjunction of literals.
The constraint satisfiability problem for T is the following: we are given an existential
formula ∃y φ(x, y) (with φ a constraint, but, for the purposes of this definition, we may
equivalently take φ to be quantifier-free) and we are asking whether there exist a model
M of T and an assignment α to the free variables x such thatM, α |= ∃y φ(x, y).

A theory T has quantifier elimination iff for every formula φ(x) in the signature of T
there is a quantifier-free formula φ′(x) such that T |= φ(x)↔ φ′(x). It is well-known (and
easily seen) that quantifier elimination holds in case we can eliminate quantifiers from
primitive formulae, i.e. from formulae of the kind ∃y φ(x, y), where φ is a conjunction of
literals (i.e. of atomic formulae and their negations). Since we are interested in effective
computability, we assume that whenever we talk about quantifier elimination, an effective
procedure for eliminating quantifiers is given.

Let Σ be a first-order signature. The signature obtained from Σ by adding to it a set a
of new constants (i.e., 0-ary function symbols) is denoted by Σa. Analogously, given a Σ-
structure A, the signature Σ can be expanded to a new signature Σ|A| := Σ∪{ā | a ∈ |A|}
by adding a set of new constants ā (the name for a), one for each element a ∈ |A|, with the
convention that two distinct elements are denoted by different name constants (we use |A|
to denote the support of the structure A). A can be expanded to a Σ|A|-structure A′ :=

(A, a)a∈|A| just interpreting the additional constants over the corresponding elements.
From now on, when the meaning is clear from the context, we will freely use the notation
A and A′ interchangeably: in particular, given a Σ-structure A, a Σ-formula φ(x) and
elements a from |A|, we will write, by abuse of notation, A |= φ(a) instead of A′ |= φ(ā).

A Σ-homomorphism (or, simply, a homomorphism) between two Σ-structures A and
B is any mapping µ : |A| −→ |B| among the support sets |A| of A and |B| of B satisfying
the condition

A |= ϕ ⇒ B |= ϕ (1)

for all Σ|A|-atoms ϕ (here - as above - A is regarded as a Σ|A|-structure, by interpreting
each additional constant a ∈ |A| into itself and B is regarded as a Σ|A|-structure by
interpreting each additional constant a ∈ |A| into µ(a)). In case condition (1) holds for
all Σ|A|-literals, the homomorphism µ is said to be an embedding (denoted by µ : A ↪→ B)

Calvanese et al. 10

and if it holds for all first order formulae, the embedding µ is said to be elementary. If
µ : A −→ B is an embedding which is just the identity inclusion |A| ⊆ |B|, we say that
A is a substructure of B or that B is an extension of A. A Σ-structure A is said to be
generated by a set X included in its support |A| iff there are no proper substructures of
A including X.

Robinson Diagrams and Amalgamation

Let A be a Σ-structure. The diagram of A, denoted by ∆Σ(A), is defined as the set of
ground Σ|A|-literals (i.e. atomic formulae and negations of atomic formulae) that are true
in A. For the sake of simplicity, once again by abuse of notation, we will freely say that
∆Σ(A) is the set of Σ|A|-literals which are true in A.

An easy but nevertheless important basic result, called Robinson Diagram Lemma (Chang
and Keisler, 1990), says that, given any Σ-structure B, the embeddings µ : A −→ B are
in bijective correspondence with expansions of B to Σ|A|-structures which are models
of ∆Σ(A). The expansions and the embeddings are related in the obvious way: ā is
interpreted as µ(a).

Amalgamation is a classical algebraic concept. We give the formal definition of this
notion.

Definition 2.1 (Amalgamation). A theory T has the amalgamation property if for
every couple of embeddings µ1 :M0 −→M1, µ2 :M0 −→M2 among models of T , there
exists a modelM of T endowed with embeddings ν1 :M1 −→M and ν2 :M2 −→M
such that ν1 ◦ µ1 = ν2 ◦ µ2

M

M1 M2

M0

ν2ν1

µ1 µ2

The triple (M, µ1, µ2) (or, by abuse, M itself) is said to be a T -amalgam of M1,M2

overM0

Model Completions

We recall a standard notion in Model Theory, namely the notion of a model completion
of a first order theory (Chang and Keisler, 1990) (we limit the definition to universal
theories, because we shall use only this case):

Definition 2.2. Let T be a universal Σ-theory and let T ? ⊇ T be a further Σ-theory;
we say that T ? is a model completion of T iff: (i) every model of T can be embedded
into a model of T ?; (ii) for every modelM of T , we have that T ?∪∆Σ(M) is a complete
theory in the signature Σ|M|.

SMT-based Verification of Data-Aware Processes 11

Since T is universal, condition (ii) is equivalent to the fact that T ? has quantifier elim-
ination; on the other hand, a standard argument (based on diagrams and compactness)
shows that condition (i) is the same as asking that T and T ? have the same universal
consequences. Thus we have an equivalent definition (Ghilardi, 2004) (to be used in the
following):

Proposition 2.1. Let T be a universal Σ-theory and let T ? ⊇ T be a further Σ-theory;
T ? is a model completion of T iff: (i) every Σ-constraint satisfiable in a model of T is
also satisfiable in a model of T ∗; (ii) T ∗ has quantifier elimination.

As stated before, we assume that a model completion has an effective procedure for
eliminating quantifiers. We recall also that the model completion T ? of a theory T is
unique, if it exists (see (Chang and Keisler, 1990) for these results and for examples).
It is well-known that a universal theory T which admits a model completion is also
amalgamable (Chang and Keisler, 1990).

Example 2.1. The theory of undirected graphs admits a model completion (and, hence,
is amalgamable); this is the theory T whose signature Σ contains only a binary relational
symbol R, and whose axioms are specified as follows

T := {∀x¬R(x, x),∀x∀y (R(x, y)→ R(y, x))} .

Indeed, it is folklore that the model completion of T is the theory of the Rado graph (Rado,
1964): a Rado (also called random) graph is a countably infinite graph in which, given
any non-empty sets X = {x0, ..., xm} and Y = {y0, ..., yn} of nodes with X ∩ Y = ∅,
there is a node z (with z 6∈ X ∪Y) such that there is an edge between z and all elements
of X and there is no edge between z and any element of Y . This theory is first-order
definable (Fagin, 1976).

Definable Extensions and λ-Notations

In the following, we specify transitions of artifact-centric systems using first-order for-
mulae. To obtain a more compact representation, we make use of definable extensions
as a means to introduce case-defined functions, abbreviating more complicated (still
first-order) expressions. Let us fix a signature Σ and a Σ-theory T ; a T -partition is a
finite set κ1(x), . . . , κn(x) of quantifier-free formulae such that T |= ∀x

∨n
i=1 κi(x) and

T |=
∧
i 6=j ∀x¬(κi(x) ∧ κj(x)). Given such a T -partition κ1(x), . . . , κn(x) together with

Σ-terms t1(x), . . . , tn(x) (all of the same target sort), a case-definable extension is the
Σ′-theory T ′, where Σ′ = Σ ∪ {F}, with F a “fresh” function symbol (i.e., F 6∈ Σ) , and
T ′ = T ∪

⋃n
i=1{∀x (κi(x) → F (x) = ti(x))}. Arity, source sorts, and target sort for F

can be deduced from the context (considering that everything is well-typed).
Intuitively, F represents a case-defined function, which can be reformulated using

nested if-then-else expressions and can be written as

F (x) := case of {κ1(x) : t1; · · · ;κn(x) : tn}.

By abuse of notation, we shall identify T with any of its case-definable extensions T ′. In

Calvanese et al. 12

fact, it is easy to produce from a Σ′-formula φ′ a Σ-formula φ that is equivalent to φ′

in all models of T ′: just remove (in the appropriate order) every occurrence F (v) of the
new symbol F in an atomic formula A, by replacing A with

∨n
i=1(κi(v) ∧A(ti(v))).

We also exploit λ-abstractions (see, e.g., formula (13) below) for more “compact” repre-
sentation of some complex expressions, and always use them in atoms like b = λy.F (y, z)

as abbreviations of ∀y. b(y) = F (y, z) (where, typically, F is a symbol introduced in a
case-defined extension as above). Thus, also our formulae containing lambda abstractions,
can be converted into plain first-order formulae.

3. Read-only Database Schemas

We now provide a formal definition of (read-only) DB-schemas by relying on an algebraic,
functional characterization, and derive some key model-theoretic properties instrumental
to the technical treatment.

Definition 3.1. A DB schema is a pair 〈Σ, T 〉, where: (i) Σ is a DB signature, that
is, a finite multi-sorted signature whose only symbols are equality, unary functions, and
constants; (ii) T is a DB theory, that is, a set of universal Σ-sentences.

Next, we refer to a DB schema simply through its (DB) signature Σ and (DB) theory
T . Given a DB signature Σ, we denote by Σsrt the set of sorts and by Σfun the set of
functions in Σ. Since Σ contains only unary function symbols and equality, all atomic
Σ-formulae are of the form t1(v1) = t2(v2), where t1, t2 are possibly complex terms, and
v1, v2 are either variables or constants.

We associate to a DB signature Σ a characteristic (directed) graph G(Σ) capturing the
dependencies induced by functions over sorts. Specifically, G(Σ) is an edge-labeled graph
whose set of nodes is Σsrt , and with a labeled edge S f−→ S′ for each f : S −→ S′ in Σfun .
We say that Σ is acyclic if G(Σ) is so. The leaves of Σ are the nodes of G(Σ) without
outgoing edges. These terminal sorts are divided in two subsets, respectively representing
unary relations and value sorts. Non-value sorts (i.e., unary relations and non-leaf sorts)
are called id sorts, and are conceptually used to represent (identifiers of) different kinds of
objects. Value sorts, instead, represent datatypes such as strings, numbers, clock values,
etc. We denote the set of id sorts in Σ by Σids , and that of value sorts by Σval , hence
Σsrt = Σids] Σval .

We now consider extensional data.

Definition 3.2. A DB instance of DB schema 〈Σ, T 〉 is a Σ-structureM that is a model
of T and such that every id sort of Σ is interpreted inM on a finite set.

Contrast this to arbitrarymodels of T , where no finiteness assumption is made. What may
appear as not customary in Definition 3.2 is the fact that value sorts can be interpreted on
infinite sets. This allows us, at once, to reconstruct the classical notion of DB instance as a
finite model (since only finitely many values can be pointed from id sorts using functions),
at the same time supplying a potentially infinite set of fresh values to be dynamically
introduced in the working memory during the evolution of the artifact system. More
details on this will be given in Section 3.1.

SMT-based Verification of Data-Aware Processes 13

UserId userName

EmpId empName

CompInId who
what

JobCatId jobCatDescr

String

id : UserId userName : StringUser

id : EmpId empName : StringEmployee

id : CompInId who : EmpId what : JobCatIdCompetentIn

id : JobCatId jobCatDescr : StringJobCategory

Figure 1. On the left: characteristic graph of the human resources DB signature from
Example 3.1. On the right: relational view of the DB signature; each cell denotes an attribute
with its type, underlined attributes denote primary keys, and directed edges capture foreign
keys.

We respectively denote by SM, fM, and cM the interpretation inM of the sort S (this
is a set), of the function symbol f (this is a set-theoretic function), and of the constant c
(this is an element of the interpretation of the corresponding sort). Obviously, fM and
cM must match the sorts in Σ. E.g., if f has source S and target U , then fM has domain
SM and range UM.

Example 3.1. The human resource (HR) branch of a company stores the following infor-
mation inside a relational database: (i) users registered to the company website, who are
potentially interested in job positions offered by the company; (ii) the different, available
job categories; (iii) employees belonging to HR, together with the job categories they are
competent in (in turn indicating which job applicants they could interview). To formal-
ize these different aspects, we make use of a DB signature Σhr consisting of: (i) four id
sorts, used to respectively identify users, employees, job categories, and the competence
relationship connecting employees to job categories; (ii) one value sort containing strings
used to name users and employees, and describe job categories. In addition, Σhr con-
tains five function symbols mapping: (i) user identifiers to their corresponding names;
(ii) employee identifiers to their corresponding names; (iii) job category identifiers to
their corresponding descriptions; (iv) competence identifiers to their corresponding em-
ployees and job categories. The characteristic graph of Σhr is shown in Figure 1 (left
part). /

We close the formalization of DB schemas by discussing DB theories. The role of a DB
theory is to encode background axioms to express constraints on the different elements of
the corresponding signature. We illustrate a typical background axiom, required to handle
the possible presence of undefined identifiers/values in the different sorts. This, in turn,
is essential to capture artifact systems whose working memory is initially undefined, in
the style of (Deutsch et al., 2016; Li et al., 2017). To accommodate this, to specify an
undefined value we add to every sort S of Σ a constant undefS (written from now on, by
abuse of notation, just as undef, used also to indicate a tuple). Then, for each function
symbol f of Σ, we add the following axiom to the DB theory:

∀x (x = undef↔ f(x) = undef) (2)

Calvanese et al. 14

This axiom states that the application of f to the undefined value produces an undefined
value, and it is the only situation for which f is undefined.

Remark 3.1. In the artifact-centric model in the style of (Deutsch et al., 2016; Li et al.,
2017) that we intend to capture, the DB theory consists of Axioms (2) only. However, our
technical results do not require this specific choice, and more general sufficient conditions
will be discussed in Section 3.2.

Remark 3.2. If desired, we can freely extend DB schemas by adding arbitrary n-ary
relation symbols to the signature Σ. For this purpose, we give the following definition.

Definition 3.3. A DB extended-schema is a pair 〈Σ, T 〉, where: (i) Σ is a DB extended-
signature, that is, a finite multi-sorted signature whose only symbols are equality, n-ary
relations, unary functions, and constants; (ii) T is a DB extended-theory, that is, a set
of universal Σ-sentences.

For simplicity, even if our implementation takes into account also the case of “free”
relations, i.e. without key dependencies, we restrict our focus on DB schemas, which are
sufficient to capture those constraints (as explained in the following subsection). The
extension is straightforward and left to the reader. In fact, we can give in analogous the
definitions of the characteristic graph G(Σ) and of acyclicity for extended DB schemas.
We notice that, in case Assumption 3.4 discussed below holds for DB extended-theories,
all the results presented in Section 4 still hold even considering DB extended-schemas
instead of DB schemas.

3.1. Relational View of DB Schemas

We now clarify how the algebraic, functional characterization of DB schema and in-
stance can be actually reinterpreted in the classical, relational model. Definition 3.1
naturally corresponds to the definition of relational database schemas equipped with
single-attribute primary keys and foreign keys (plus a reformulation of constraint (2)).
To technically explain the correspondence, we adopt the named perspective, where each
relation schema is defined by a signature containing a relation name and a set of typed
attribute names. Let 〈Σ, T 〉 be a DB schema. Each id sort S ∈ Σids corresponds to a
dedicated relation RS with the following attributes: (i) one identifier attribute idS with
type S; (ii) one dedicated attribute af with type S′ for every function symbol f ∈ Σfun

of the form f : S −→ S′.
The fact that RS is built starting from functions in Σ naturally induces different

database dependencies in RS . In particular, for each non-id attribute af of RS , we get a
functional dependency from idS to af ; altogether, such dependencies in turn witness that
idS is the (primary) key of RS . In addition, for each non-id attribute af of RS whose
corresponding function symbol f has id sort S′ as image, we get an inclusion dependency
from af to the id attribute idS′ of RS′ ; this captures that af is a foreign key referencing
RS′ .

SMT-based Verification of Data-Aware Processes 15

Example 3.2. The diagram on the right in Figure 1 graphically depicts the relational
view corresponding to the DB signature of Example 3.1. /

Given a DB instanceM of 〈Σ, T 〉, its corresponding relational instance I is the minimal
set satisfying the following property: for every id sort S ∈ Σids , let f1, . . . , fn be all
functions in Σ with domain S; then, for every identifier o ∈ SM, I contains a labeled fact
of the form RS(idS : oM, af1 : fM1 (oM), . . . , afn : fMn (oM)). With this interpretation, the
active domain of I is the set⋃

S∈Σids
(SM \ {undefM})

∪

{
v ∈

⋃
V ∈Σval

VM

∣∣∣∣∣ v 6= undefM and there exist f ∈ Σfun

and o ∈ dom(fM) s.t. fM(o) = v

}
consisting of all (proper) identifiers assigned by M to id sorts, as well as all values
obtained in M via the application of some function. Since such values are necessarily
finitely many, one may wonder why in Definition 3.2 we allow for interpreting value
sorts over infinite sets. The reason is that, in our framework, an evolving artifact system
may use such infinite provision to inject and manipulate new values into the working
memory. From the definition of active domain above, exploiting Axioms (2) we get that
the membership of a tuple (x0, . . . , xn) to a generic n + 1-ary relation RS with key
dependencies (corresponding to an id sort S) can be expressed in our setting by using
just unary function symbols and equality:

RS(x0, . . . , xn) iff x0 6= undef ∧ x1 = f1(x0) ∧ · · · ∧ xn = fn(x0) (3)

Hence, the representation of negated atoms is the one that directly follows from negat-
ing (3):

¬RS(x0, . . . , xn) iff x0 = undef ∨ x1 6= f1(x0) ∨ · · · ∨ xn 6= fn(x0) (4)

This relational interpretation of DB schemas exactly reconstructs the requirements
posed by (Deutsch et al., 2016; Li et al., 2017) on the schema of the read-only database:
(i) each relation schema has a single-attribute primary key; (ii) attributes are typed;
(iii) attributes may be foreign keys referencing other relation schemas; (iv) the primary
keys of different relation schemas are pairwise disjoint.

We stress that all such requirements are natively captured in our functional definition
of a DB signature, and do not need to be formulated as axioms in the DB theory. The DB
theory is used to express additional constraints, like that in Axiom (2). In the following
subsection, we thoroughly discuss which properties must be respected by signatures and
theories to guarantee that our verification machinery is well-behaved.

One may wonder why we have not directly adopted a relational view for DB schemas.
This will become clear during the technical development. We anticipate the main, in-
tuitive reasons. First, our functional view allows us to guarantee that our framework
remains well-behaved even in the presence of key dependencies, since our DB theories do
enjoy the crucial condition of Assumption 3.4 introduced below (i.e., that the DB theories
admit a model completion), whereas relational structures with key constraints do not.

Calvanese et al. 16

Second, our functional view makes the dependencies among different types explicit. In
fact, our notion of characteristic graph, which is readily computed from a DB signature,
exactly reconstructs the central notion of foreign key graph used in (Deutsch et al., 2016)
towards the main decidability results.

3.2. Formal Properties of DB Schemas

The theory T from Definition 3.1 must satisfy few crucial requirements for our approach
to work. In this section, we define such requirements and show that they are matched,
e.g., when we are concerned with an acyclic signature Σ and with key dependencies (i.e.,
the setting presented in (Li et al., 2017)). Actually, acyclicity is a stronger requirement
than needed, which, however, simplifies our exposition.

3.2.1. Finite Model Property We say that T has the finite model property (for constraint
satisfiability) iff every constraint φ that is satisfiable in a model of T is satisfiable in a
DB instance of T . It can be easily seen that this implies that φ is satisfiable also in a DB
instance interpreting also value sorts into finite sets.

Observe that if Σ is acyclic, there are only finitely many terms involving a single
variable x: in fact, there are as many terms as paths in G(Σ) starting from the sort of x.
If kΣ is the maximum number of terms involving a single variable, then (since all function
symbols are unary) there are at most kΣ · n terms involving n variables.

Proposition 3.1. Let (Σ, T) be a DB schema (cf. Definition 3.1); T has the finite model
property in case Σ is acyclic.

Proof. If T := ∅, then congruence closure ensures that the finite model property holds
and decides constraint satisfiability in polynomial time (Bradley and Manna, 2007).

Otherwise, we reduce the argument to the Herbrand Theorem (recall that T is universal
according to Definition 3.1). Indeed, suppose to have a finite set Φ of universal formulae
and let φ(x) be the constraint we want to test for satisfiability. Replace the variables x
with free constants a. Herbrand Theorem states that Φ ∪ {φ(a)} has a model iff the set
of ground Σa-instances of Φ ∪ {φ(a)} has a model. These ground instances are finitely
many by acyclicity, so we can apply congruence closure (as done in the case of the empty
theory) to these ground instances.

Remark 3.3. If T is finite, Proposition 3.1 ensures decidability of constraint satisfiabil-
ity. In order to obtain a decision procedure, it is sufficient to instantiate the axioms of
T and the axioms of equality (reflexivity, transitivity, symmetry, congruence) and to use
a SAT-solver to decide constraint satisfiability. Alternatively, one can decide constraint
satisfiability via congruence closure (Bradley and Manna, 2007) and avoid instantiating
the equality axioms.

Remark 3.4. Acyclity is a strong condition, often too strong. However, some condition
must be imposed (otherwise we have undecidability, and then failure of finite model
property, by reduction to word problem for finite presentations of monoids). In fact, the

SMT-based Verification of Data-Aware Processes 17

empty theory and the theory axiomatized by Axioms (2) both have the finite model
property even without acyciclity assumptions.

The finite model property implies decidability of the constraint satisfiability problem
in case T is recursively axiomatized. Indeed, in this case it is possible to enumerate
unsatisfiable constraints via a logical calculus and this enumeration can be interleaved
with the enumeration of finite models, thus supplying a full decision procedure.

3.2.2. Model Completion of DB theories. A DB theory T does not necessarily have quan-
tifier elimination; it is however often possible to strengthen T in a conservative way (with
respect to constraint satisfiability) and get quantifier elimination. In order to do that, we
study the model completion of T , when it exists, and we will show that model completion
turns out to be quite effective to attack the verification of dynamic systems operating
over relational databases.

The following Lemma gives a useful folklore technique for finding model completions:

Lemma 3.1. Suppose that for every primitive Σ-formula ∃xφ(x, y) it is possible to find
a quantifier-free formula ψ(y) such that

(i) T |= ∀x ∀y (φ(x, y)→ ψ(y));
(ii) for every model M of T , for every tuple of elements a from the support of M such

thatM |= ψ(a) it is possible to find another model N of T such thatM embeds into
N and N |= ∃xφ(x, a).

Then T has a model completion T ∗ axiomatized by the infinitely many sentences

∀y (ψ(y)→ ∃xφ(x, y)) . (5)

Proof. From (i) and (5) we clearly get that T ? admits quantifier elimination: in fact,
in order to prove that a theory enjoys quantifier elimination, it is sufficient to eliminate
quantifiers from primitive formulae (then the quantifier elimination for all formulae can
be easily shown by an induction over their complexity). This is exactly what is guaranteed
by (i) and (5).

Let M be a model of T . We show (by using a chain argument) that there exists a
model M′ of T ? such that M embeds into M′. For every primitive formula ∃xφ(x, y),
consider the pair (a,∃xφ(x, a)) such that M |= ψ(a) (where ψ is related to φ as in
(i)). By Zermelo’s Theorem, the set of all pairs {(a,∃xφ(x, a))} can be well-ordered: let
{(ai,∃xφi(x, ai))}i∈I be such a well-ordered set (where I is an ordinal). By transfinite
induction on this well-order, we defineM0 :=M and, for each i ∈ I,Mi as an extension
of
⋃
j<iMj such that Mi |= ∃xφi(x, ai), which exists for (ii) since

⋃
j<iMj |= ψ(ai)

(remember that validity of ground formulae is preserved passing through substructures
and superstructures, andM0 |= ψ(ai)).

Now we take the chain unionM1 :=
⋃
i∈IMi: since T is universal,M1 is again a model

of T , and it is possible to construct an analogous chainM2 as done above, starting from
M1 instead of M. Clearly, we get M0 := M ⊆ M1 ⊆ M2 by construction. At this
point, we iterate the same argument countably many times, so as to define a new chain

Calvanese et al. 18

of models of T :

M0 :=M⊆M1 ⊆ ... ⊆Mn ⊆ ...
DefiningM′ :=

⋃
nMn, we trivially get thatM′ is a model of T such thatM⊆M′

and satisfies all the sentences of type (5). The last fact can be shown using the following
finiteness argument.

Fix φ, ψ as in (5). For every tuple a′ ∈M′ such thatM′ |= ψ(a′), by definition ofM′
there exists a natural number k such that a′ ∈Mk: since ψ(a′) is a ground formula, we get
that alsoMk |= ψ(a′). Therefore, we consider the step k of the countable chain: there, we
have that the pair (a′,∃xφ(x, a′)))) appears in the enumeration given by the well-ordered
set of pairs {(ai,∃xφi(x, ai))}i∈I such that Mk |= ψi(ai). Hence, by construction, we
have thatMk

i |= ∃xφ(x, a′) for some i. In conclusion, since the existential formulae are
preserved passing to extensions, we obtainM′ |= ∃xφ(x, a′), as wanted.

Proposition 3.2. T has a model completion in case it is axiomatized by universal one-
variable formulae and Σ is acyclic.

Proof. We freely take inspiration from an analogous result in (Wheeler, 1976). We
preliminarily show that T is amalgamable. Then, for a suitable choice of ψ suggested by
the acyclicity assumption, the amalgamation property will be used to prove the validy
of the condition (ii) of Lemma 3.1: this fact (together with condition (i)) yields that T
has a model completion which is axiomatized by the infinitely many sentences (5).

LetM1 andM2 two models of T with a submodelM0 of T in common (we suppose
for simplicity that |M1| ∩ |M2| = |M0|). We define a T -amalgam M of M1,M2 over
M0 as follows (we use in an essential way the fact that Σ contains only unary function
symbols). Let the support of M be the set-theoretic union of the supports of M1 and
M2, i.e. |M| := |M1|∪ |M2|.M has a natural Σ-structure inherited by the Σ-structures
M1 andM2: for every function symbol f in Σ, we define, for each mi ∈ |Mi|(i = 1, 2),
fM(mi) := fMi(mi), i.e. the interpretation of f inM is the interpretation of f inMi for
every element mi ∈ |Mi|. This is well-defined since, for every a ∈ |M1| ∩ |M2| = |M0|,
we have that fM(a) := fM1(a) = fM0(a) = fM2(a). It is clear that M1 and M2 are
substructures ofM, and their inclusions agree onM0.

We show that the Σ-structure M, as defined above, is a model of T . By hypothesis,
T is axiomatized by universal one-variable formulae: so, we can consider T as a theory
formed by axioms φ which are universal closures of clauses with just one variable, i.e.
φ := ∀x(A1(x) ∧ ... ∧ An(x) → B1(x) ∨ ... ∨ Bm(x)), where Aj and Bk (j = 1, ..., n and
k = 1, ...,m) are atoms.

We show that M satisfies all such formulae φ. In order to do that, suppose that, for
every a ∈ |M|, M |= Aj(a) for all j = 1, ..., n. If a ∈ |Mi|, then M |= Aj(a) implies
Mi |= Aj(a), since Aj(a) is a ground formula. SinceMi is model of T and soMi |= φ,
we get that Mi |= Bk(a) for some k = 1, ...,m, which means that M |= Bk(a), since
Bk(a) is a ground formula. Thus,M |= φ for every axiom φ of T , i.e.M |= T and, hence,
M is a T -amalgam ofM1,M2 overM0, as wanted

Now, given a primitive formula ∃xφ(x, y), we find a suitable ψ such that the hypothesis
of Lemma 3.1 holds. We define ψ(y) as the conjunction of the set of all quantifier-free

SMT-based Verification of Data-Aware Processes 19

χ(y)-formulae such that φ(x, y) → χ(y) is a logical consequences of T (they are finitely
many - up to T -equivalence - because Σ is acyclic). By definition, clearly we have that
(i) of Lemma 3.1 holds.

We show that also condition (ii) is satisfied. Let M be a model of T such that
M |= ψ(a) for some tuple of elements a from the support of M. Then, consider the
Σ-substructureM[a] ofM generated by the elements a: this substructure is finite (since
Σ is acyclic), it is a model of T and we trivially have that M[a] |= ψ(a), since ψ(a)

is a ground formula. In order to prove that there exists an extension N ′ of M[a] such
that N |= ∃xφ(x, a), it is sufficient to prove (by the Robinson Diagram Lemma) that
the Σ|M[a]|∪{e}-theory ∆(M[a]) ∪ {φ(e, a)} is T -consistent. For reduction to absurdity,
suppose that the last theory is T -inconsistent. Then, there are finitely many literals
l1(a), ..., lm(a) from ∆(M[a]) (remember that ∆(M[a]) is a finite set of literals since
M[a] is a finite structure) such that φ(e, a) |=T ¬(l1(a)∧ ...∧ lm(a)). Therefore, defining
A(a) := l1(a) ∧ ... ∧ lm(a), we get that φ(e, a) |=T ¬A(a), which implies that ¬A(a)

is one of the χ(y)-formulae appearing in ψ(a). Since M[a] |= ψ(a), we also have that
M[a] |= ¬A(a), which is a contraddiction: in fact, by definition of diagram,M[a] |= A(a)

must hold. Hence, there exists an extension N ′ ofM[a] such that N ′ |= ∃xφ(x, a). Now,
by amalgamation property, there exists a T -amalgam N ofM and N ′ overM[a]: clearly,
N is an extension of M and, since N ′ ↪→ N and N ′ |= ∃xφ(x, a), also N |= ∃xφ(x, a)

holds, as required.

Remark 3.5. The proof of Proposition 3.2 gives an algorithm for quantifier elimination
in the model completion. The algorithm works as follows (see the formula (5)): to elim-
inate the quantifier ∃x from ∃xφ(x, y) take the conjunction of the clauses χ(y) implied
by φ(x, y). This algorithm is far from optimal from two points of view. First, contrary to
what happens in linear arithmetics, the quantifier elimination needed to prove Proposi-
tion 3.2 has a much better behaviour (from the complexity point of view) if obtained via
a suitable version of the Knuth-Bendix procedure (Baader and Nipkow, 1998) or of the
Superposition Calculus (Nieuwenhuis and Rubio, 2001). Since these aspects concerning
quantifier elimination are rather delicate, we started studying them in a dedicated pa-
per (Calvanese et al., 2019c) and in its extended version (Calvanese et al., 2018a) (our
mcmt implementation, however, already partially takes into account such development),
where, by using a constrained version of Superposition we show that in the case of free
unary functions and free relations the complexity has a quadratic bound even without
assuming acyclicity.

Secondly, it is worth noting that the algorithm presented in Proposition 3.2 uses the
acyclicity assumption, whereas such assumption, as just noticed, is in general not needed
for Proposition 3.2 to hold: for instance, when T := ∅ or when T contains only Axiom (2),
a model completion can be proved to exist, even if Σ is not acyclic, by using the con-
strained version of Superposition studied in (Calvanese et al., 2019c; Calvanese et al.,
2018a).

Remark 3.6. Proposition 3.2 holds also for DB extended-schemas, in case the universal
one-variable formulae do not involve the relation symbols (so, the relations are “free”): as
explained in (Calvanese et al., 2018a), our implementation of the quantifier elimination

Calvanese et al. 20

algorithm takes into account also this case. More generally, the model completion exists
whenever we consider an acyclic DB extended-schema with a DB extended-theory T that
enjoys the amalgamation property.

Hereafter, we make the following assumption:

Assumption 3.4. The DB theories we consider have decidable constraint satisfiability
problem, finite model property, and admit a model completion.

This assumption is matched, for instance, in the following three cases: (i) when T

is empty; (ii) when T is axiomatized by Axioms (2); (iii) when Σ is acyclic and T is
axiomatized by universal one-variable formulae (such as Axioms (2)).

Hence, the artifact-centric model in the style of (Deutsch et al., 2016; Li et al., 2017)
that we intend to capture matches Assumption 3.4.

Remark 3.7. Notice that the DB extended-schemas obtained by adding “free” relations
to the DB schemas of (i), (ii), (iii) above match Assumption 3.4.

4. Artifact-Centric Systems

We are now in the position to define our formal models of SASs and RASs, and to study
parameterized safety problems over SASs and RASs. Since RASs are formalized in the
spirit of array-based systems, we start by recalling the intuition behind them.

In general terms, an array-based system is described using a multi-sorted theory that
contains two types of sorts, one accounting for the indexes of arrays, and the other for
the elements stored therein. The system variables changing over time are both invidual
first-order variables for data and second-order variables for arrays. The latter are referred
to using second-order function variables, whose interpretation in a state is that of a total
function mapping indexes to elements (so that applying the function to an index denotes
the classical read operation for arrays). The definition of an array-based system with array
and data variables a always requires: a formula ι(a) describing the initial configuration of
the variables a, and a formula τ(a, a′) describing a transition that transforms the content
of the variables from a to a′. In such a setting, verifying whether the system can reach
unsafe configurations described by a formula υ(a) amounts to check whether the formula
ι(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ υ(an) is satisfiable for some n.

Next, we make these ideas formally precise by grounding array-based systems in the
artifact-centric setting. We start considering the case where we only have individual
variables for data and then we pass to the complete framework where we also have
second order variables formalizing artifact relations (that is, relations which are mutable
during system evolution).

4.1. Simple Artifact Systems

The SAS Formal Model. In this subsection we consider systems manipulating only in-
dividual variables and reading data from a given database instance. In order to introduce

SMT-based Verification of Data-Aware Processes 21

verification problems in a symbolic setting, one first has to specify which formulae are
used to represent sets of states, the system initializations, and system evolution. Given
a DB schema 〈Σ, T 〉 and a tuple x = x1, . . . , xn of variables, we introduce the following
classes of Σ-formulae:
– a state formula is a quantifier-free Σ-formula φ(x);
– an initial formula is a conjunction of equalities of the form

∧n
i=1 xi = ci, where each

ci is a constant (typically, ci is an undef constant mentioned in Section 3 above);
– a transition formula τ̂ is an existential formula

∃y
(
G(x, y) ∧

∧n
i=1 x

′
i = Fi(x, y)

)
(6)

where x′ are renamed copies of x, G is quantifier-free and F1, . . . , Fn are case-defined
functions. We call G the guard and Fi the updates of Formula (6).

Definition 4.1. A Simple Artifact System (SAS) has the form

S = 〈Σ, T, x, ι(x), τ(x, x′)〉

where: (i) 〈Σ, T 〉 is a DB schema, (ii) x = x1, . . . , xn are variables (called artifact vari-
ables), (iii) ι is an initial formula, and (iv) τ is a disjunction of transition formulae of
the type (6).

We notice that a formula τ̂ of the kind (6) is a single transition formula, where τ from
Definition 4.1 is a disjunction of formulae of the kind (6); hence, such τ symbolically
represents the union of all the possible transitions of the system.

Example 4.1. We consider a SAS working over the DB schema of Example 3.1. It
captures a global, single-instance artifact tracking the main, overall phases of a hiring
process. The job hiring artifact employs a dedicated pState variable to store the current
process state. Initially, hiring is disabled, which is captured by setting the pState variable
to undef. A transition of the process from disabled to enabled may occur provided that
the read-only HR DB contains at least one registered user (who, in turn, may decide to
apply for a job). Technically, we introduce a dedicated artifact variable uId initialized
to undef, and used to load the identifier of such a registered user, if (s)he exists. The
enabling action is then captured by the following transition formula:

∃y : UserId

(
pState = undef ∧ y 6= undef
∧ pState ′ = enabled ∧ uId ′ = y

)
The existential quantified variable y : UserId is a data variable pointing to the read-

only DB and is used to represent an external user input. Notice in particular how the
existence of a user is checked using the typed variable y, checking that it is not undef and
correspondingly assigning it to uId . /

Parameterized Safety via Backward Reachability for SAS. A safety formula for
a SAS S is a state formula υ(x) describing undesired states of S. We say that S is safe
with respect to υ if intuitively the system has no finite run leading from ι to υ. Formally,
there is no DB-instanceM of 〈Σ, T 〉, no k ≥ 0, and no assignment inM to the variables

Calvanese et al. 22

Algorithm 1: Backward reachability algorithm

Function BReach(υ)

1 φ←− υ; B ←− ⊥;
2 while φ ∧ ¬B is T -satisfiable do
3 if ι ∧ φ is T -satisfiable then

return unsafe

4 B ←− φ ∨B;
5 φ←− Pre(τ, φ);
6 φ←− QE(T ∗, φ);

return safe;

x0, . . . , xk such that the formula

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) (7)

is true inM (here xi’s are renamed copies of x). The safety problem for S is the following:
given a safety formula υ decide whether S is safe with respect to υ.

Example 4.2. We provide an example of a safety formula for Example 4.1. Consider
the unsafe configuration where the process is enabled but the identifier of the registered
user loaded into uId is undef. Formally, this can be represented by the following state
formula:

pState = enabled ∧ uId = undef

Notice that the following formula

∃y (pState = enabled ∧ y 6= undef ∧ uId = y)

is not a safety formula, because of the existential quantified data variable y, but it is
equivalent to

pState = enabled ∧ uId 6= undef
which is a safety formula. We will see in Lemma 4.2 that this equivalence (in some sense)
holds in the general case of RASs (which SASs are a specific case of).

Algorithm 1 describes the modified version of the backward reachability algorithm (sim-
ply called backward reachability or backward search in the following) for handling the
safety problem for S (the original version of the backward reachability algorithm can be
found in (Ghilardi et al., 2008a; Ghilardi and Ranise, 2010a)). An integral part of Algo-
rithm 1 is to compute preimages. For that purpose, we define for any φ1(z, z′) and φ2(z)

(where z′ are renamed copies of z), Pre(φ1, φ2) as the formula ∃z′(φ1(z, z′) ∧ φ2(z′)).
The preimage of the set of states described by a state formula φ(x) is the set of states
described by Pre(τ, φ). Notice that, when τ =

∨
τ̂ , then Pre(τ, φ) =

∨
Pre(τ̂ , φ). The

modified algorithm presents a new subprocedure QE(T ∗, φ) in Line 6 for computing quan-
tifier elimination in the model completion T ∗. The subprocedure QE(T ∗, φ) applies the
quantifier elimination algorithm of T ∗ to the existential formula φ. Algorithm 1 com-
putes iterated preimages of υ and applies to them quantifier elimination, until a fixpoint

SMT-based Verification of Data-Aware Processes 23

is reached or until a set intersecting the initial states (i.e., satisfying ι) is found. Inclu-
sion (Line 2) and disjointness (Line 3) tests can be discharged via proof obligations to be
handled by SMT solvers. The fixpoint is reached when the test in Line 2 returns unsat,
which means that the preimage of the set of the current states is included in the set of
states reached by the backward search so far.

In the following, partial correctness means that, when the algorithm terminates, it gives
a correct answer, whereas effectiveness means that all subprocedures in the algorithm
can be effectively executed. We state now the main result of this subsection:

Theorem 4.2. Let 〈Σ, T 〉 be a DB schema. Then, for every SAS S = 〈Σ, T, x, ι, τ〉 the
following hold: (1) backward search is effective and partially correct for solving safety
problems for S; (2) if Σ is acyclic, backward search terminates and decides safety problems
for S in Pspace in the combined size of x, ι, and τ .

Proof. Part (1). Recall formula (7)

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) .

By definition, S is unsafe iff for some n, the formula (7) is satisfiable in a DB-instance
of 〈Σ, T 〉. Thanks to Assumption 3.4, T has the finite model property and consequently,
as (7) is an existential Σ-formula, S is unsafe iff for some n, formula (7) is satisfiable in a
model of T ; furthermore, again by Assumption 3.4, S is unsafe iff for some n, formula (7)
is satisfiable in a model of T ∗. Thus, we shall concentrate on satisfiability in models of
T ∗ in order to prove the Theorem.

Let us call Bn (resp. φn), with n ≥ 0, the status of the variable B (resp. φ) after n
executions in Line 4 (resp. Line 6) of Algorithm 1 (n = 0 corresponds to the status of
the variables in Line 1). Notice that we have

T ∗ |= φj+1 ↔ Pre(τ, φj) (8)

for all j and that

T |= Bn ↔
∨

0≤j<n

φj (9)

is an invariant of the algorithm.
Since we are considering satisfiability in models of T ∗, we can apply quantifier elimi-

nation and so the satisfiability of (7) is equivalent to the satisfiability of ι ∧ φn: this is
a quantifier-free formula (because of line 6 of Algorithm 1), whose satisfiability (w.r.t. T
or equivalently w.r.t. T ∗)2 is decidable by Assumption 1, so if Algorithm 1 terminates
with an unsafe outcome, then S is really unsafe.

Now consider the satisfiability test in Line 2. This is again a satisfiability test for
a quantifier-free formula, thus it is decidable. In case of a safe outcome, we have that
T |= φn → Bn; we claim that, if we continued executing the loop of Algorithm 1, we

2 T -satisfiability and T ∗-satisfiability are equivalent, by the definition of T ∗, as far as existential (in
particular, quantifier-free) formulae are concerned.

Calvanese et al. 24

would nevertheless get that:

T ∗ |= Bm ↔ Bn (10)

for all m ≥ n. We justify Claim (10) below.
From T |= φn → Bn, taking into consideration that T ∗ ⊇ T and that Formula (8)

holds, we get T ∗ |= φn+1 → Pre(τ,Bn). Since Pre commutes with disjunctions (i.e.,
Pre(τ,

∨
j φj) is logically equivalent to

∨
j Pre(τ, φj)), we also have T ∗ |= Pre(τ,Bn)↔∨

1≤j≤n φj by the Invariant (9) and by Formula (8) again. By using the entailment
T |= φn → Bn once more, we get T ∗ |= φn+1 → Bn and also that T ∗ |= Bn+1 ↔ Bn,
thus we finally obtain that T ∗ |= φn+1 → Bn+1. Since φn+1 → Bn+1 is quantifier-free,
T ∗ |= φn+1 → Bn+1 implies T |= φn+1 → Bn+1. This argument can be repeated for all
m ≥ n, obtaining that T ∗ |= Bm ↔ Bn for all m ≥ n, i.e. Claim (10).

This would entail that ι∧φm is always unsatisfiable (because of (9) and because ι∧φj
was unsatisfiable for all j < n), which is the same (as remarked above) as saying that all
formulae (7) are unsatisfiable. Thus S is safe.
Part (2). In case Σ is acyclic, there are only finitely many quantifier-free formulae

(in which the finite set of variables x occur), so it is evident that the algorithm must
terminate: because of (9), the unsatisfiability test of Line 2 must eventually succeed, if
the unsatisfiability test of Line 3 never does so.

Concerning complexity, we need to modify Algorithm 1 (we make it nondeterministic
and use Savitch’s Theorem saying that PSPACE = NPSPACE).

Since Σ is acyclic, there are only finitely many terms involving a single variable, let
this number be kΣ (we consider T,Σ and hence kΣ constant for our problems). Then,
since all function symbols are unary, it is clear that we have at most 2O(n2) conjunctions
of sets of literals involving at most n variables and that if the system is unsafe, unsafety
can be detected with a run whose length is at most 2O(n2). Thus we introduce a counter
to be incremented during the main loop (lines 2-6) of Algorithm 1. The fixpoint test in
line 2 is removed and loop is executed only until the maximum length of an unsafe run
is not exceeded (notice that an exponential counter requires polynomial space).

Inside the loop, line 4 is removed (we do not need anymore the variable B) and line 6
is modified as follows. We replace line 6 of the algorithm by

6′. φ←− α(x);

where α is a non-deterministically chosen conjunction of literals implying QE(T ∗, φ).
Notice that to check the latter, there is no need to compute QE(T ∗, φ): recalling the
proof of Proposition 3.2 and Remark 3.5 it is sufficient to check that T |= α → C holds
for every clause C(x) such that T |= φ→ C.

The algorithm is now in PSPACE, because all the satisfiability tests we need are,
as a consequence of the proof of Proposition 3.1, in NP: all such tests are reducible
to T -satisfiability tests for quantifier-free Σ-formulae involving the variables x and the
additional (skolemized) quantified variables occurring in the transitions 3. In fact, all

3 For the test in line 3, we just need replace in φ the x by their values given by ι, conjoin the result with

SMT-based Verification of Data-Aware Processes 25

these satisfiability tests are applied to formulae whose length is polynomial in the size of
x, of ι and of τ .

The proof of Theorem 4.2 shows that, whenever Σ is not acyclic, backward search is still
a semi-decision procedure: if the system is unsafe, backward search always terminates
and discovers it; if the system is safe, the procedure can diverge (but it is still correct).

Remark 4.1. We remark that Theorem 4.2 holds also for DB extended-schemas (so,
even adding “free relations” to the DB signatures). Moreover, notice that it can be shown
that every existential formula φ(x, x′) can be turned into the form of Formula (6). Fur-
thermore, we highlight that the proof of the decidability result of Theorem 4.2 requires
that the considered background theory T : (i) admits a model completion; (ii) is locally
finite, i.e., up to T -equivalence, there are only finitely many atoms involving a fixed finite
number of variables (this condition is implied by acyclicity); (iii) is universal; and (iv) en-
joys decidability of constraint satisfiability. Conditions (iii) and (iv) imply that one can
decide whether a finite structure is a model of T . If (ii) and (iii) hold, it is well-known
that (i) is equivalent to amalgamation (Wheeler, 1976),(Lipparini, 1982). Moreover, (ii)
alone always holds for relational signatures and (iii) is equivalent to T being closed un-
der substructures (this is a standard preservation theorem in model theory (Chang and
Keisler, 1990)). It follows that arbitrary relational signatures (or locally finite theories
in general, even allowing n-ary relation and n-ary function symbols) require only amal-
gamability and closure under substructures. Thanks to these observations, Theorem 4.2
is reminiscent of an analogous result in (Bojańczyk et al., 2013), i.e., Theorem 5, the
crucial hypotheses of which are exactly amalgamability and closure under substructures,
although the setting in that paper is different (there, key dependencies are not discussed,
whereas we are interested only in DB (extended-)theories).

In our first-order setting, we can perform verification in a purely symbolic way, by using
(semi-)decision procedures provided by SMT-solvers, even when local finiteness fails. As
mentioned before, local finiteness is guaranteed in the relational context, but it does
not hold anymore when arithmetic operations are introduced. Note that the theory of
a single uninterpreted binary relation (i.e., the theory of directed graphs) has a model
completion, whereas it can be easily seen that the theory of one binary relation which is a
partial function does not (since it is not amalgamable). If primary key dependencies are
formalized using partial functions, model completability is compromized. So, the second
distinctive feature of our setting naturally follows from this observation: thanks to our
many-sorted functional representation of DB schemas (with keys), the amalgamation
property, required by Theorem 4.2, holds, witnessing that our framework remains well-
behaved even in the presence of key dependencies.

all the ground instances of the axioms of T and finally decide satisfiability with congruence closure
algorithm of a polynomial size ground conjunction of literals.

Calvanese et al. 26

4.2. Relational Artifact Systems

The RAS Formal Model. Following the tradition of artifact-centric systems (Deutsch
et al., 2009; Deutsch et al., 2016), a RAS consists of a read-only DB, a read-write working
memory for artifacts, and a finite set of actions (also called services) that inspect the
relational database and the working memory, and determine the new configuration of
the working memory. In a RAS, the working memory consists of individual and higher
order variables. These higher order variables (usually called arrays) are supposed to
model evolving relations, so-called artifact relations in (Deutsch et al., 2016; Li et al.,
2017). The idea is to treat artifact relations in a uniform way as we did for the read-
only DB: we need extra sort symbols (recall that each sort symbol corresponds to a
database relation symbol) and extra unary function symbols, the latter being treated as
second-order variables.

Given a DB schema Σ, an artifact extension of Σ is a signature Σext obtained from
Σ by adding to it some extra sort symbols4. These new sorts (usually indicated with
E,E1, E2 . . .) are called artifact sorts (or artifact relations by some abuse of terminol-
ogy), whereas the old sorts from Σ are called basic sorts. In RAS, artifacts and basic sorts
correspond, respectively, to the index and the elements sorts mentioned in the literature
on array-based systems. Below, given 〈Σ, T 〉 and an artifact extension Σext of Σ, when
we speak of a Σext -model of T , a DB instance of 〈Σext , T 〉, or a Σext -model of T ∗, we
mean a Σext -structureM whose reduct to Σ respectively is a model of T , a DB instance
of 〈Σ, T 〉, or a model of T ∗.

An artifact setting over Σext is a pair (x, a) given by a finite set x of individual variables
and a finite set a of unary function variables: the latter are required to have an artifact
sort as source sort and a basic sort as target sort. Variables in x are called (as before)
artifact variables, and variables in a artifact components. Given a DB instance M of
Σext , an assignment to an artifact setting (x, a) over Σext is a map α assigning to every
artifact variable xi ∈ x of sort Si an element xα ∈ SMi and to every artifact component
aj : Ej −→ Uj (with aj ∈ a) a set-theoretic function aαj : EMj −→ UMj .

We can view an assignment to an artifact setting (x, a) as a DB instance extending
the DB instanceM as follows. Let all the artifact components in (x, a) having source E
be ai1 : E −→ S1, · · · , ain : E −→ Sn. Viewed as a relation in the artifact assignment
(M, α), the artifact relation E “consists” of the set of tuples

{〈e, aαi1(e), . . . , aαin(e)〉 | e ∈ EM}

Thus each element of E is formed by an “entry” e ∈ EM (uniquely identifying the tuple)
and by “data” aαi (e) taken from the read-only databaseM. When the system evolves, the
set EM of entries remains fixed, whereas the components aαi (e) may change: typically,
we initially have aαi (e) = undef, but these values are changed when some defined values
are inserted into the relation modeled by E; the values are then repeatedly modified (and
possibly also reset to undef, if the tuple is removed and e is re-set to point to undefined

4 By ‘signature’ we always mean ’signature with equality’, so as, soon as new sorts are added, the
corresponding equality predicates are added too.

SMT-based Verification of Data-Aware Processes 27

values). In accordance with mcmt conventions, we denote the application of an artifact
component a to a term (i.e., constant or variable) v also as a[v] (standard notation for
arrays), instead of a(v).

To introduce Relational Artifact Systems, we discuss the kind of formulae we use.
In such formulae, we use notations like φ(z, b) to mean that φ is a formula whose free
individual variables are among the z and whose free unary function variables are among
the b.

Let (x, a) be an artifact setting over Σext , where x = x1, . . . , xn are the artifact vari-
ables and a = a1, . . . , am are the artifact components (their source and target sorts are
left implicitly specified). We list the kind of formulae we shall use:
• An initial formula is a formula ι(x, a) of the form

(
∧n
i=1 xi = ci) ∧ (

∧m
j=1 aj = λy.dj) (11)

where ci, dj are constants from Σ (typically, ci and dj are undef). Recall that aj = λy.dj
abbreviates ∀y aj(y) = dj .
• A state formula has the form

∃e φ(e, x, a) (12)

where φ is quantifier-free and the e are individual variables of artifact sorts.
• A transition formula τ̂ has the form

∃e
(
γ(e, x, a) ∧

∧
i x
′
i = Fi(e, x, a)

∧
∧
j a
′
j = λy.Gj(y, e, x, a)

)
(13)

where the e are individual variables (of both basic and artifact sorts), γ (the ‘guard’)
is quantifier-free, x′, a′ are renamed copies of x, a, and the Fi, Gj (the ‘updates’) are
case-defined functions.
Note that transition formulae as above can express, e.g., (i) insertion (with/without

duplicates) of a tuple in an artifact relation, (ii) removal of a tuple from an artifact
relation, (iii) transfer of a tuple from an artifact relation to artifact variables (and vice-
versa), and (iv) removal/modification of all the tuples satisfying a certain condition from
an artifact relation. All the above operations can also be constrained; the formalization
of the above operations in the formalism of our transition is straightforward (the reader
can see all the details in the Appendix F from (Calvanese et al., 2018b)).

Definition 4.3. A Relational Artifact System (RAS) has the form

S = 〈Σ, T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉

where: (i) 〈Σ, T 〉 is a (read-only) DB schema, (ii) Σext is an artifact extension of Σ,
(iii) (x, a) is an artifact setting over Σext , (iv) ι is an initial formula, and (v) τ is a
disjunction of transition formulae of the type (13).

Notice that SASs are a particular class of RASs where the working memory consists
only of artifact variables (without artifact relations).

Example 4.3. We transform the SAS of Example 4.1 into a RAS Shr containing a multi-
instance artifact accounting for the evolution of job applications. Each job category may

Calvanese et al. 28

receive multiple applications from registered users. Such applications are then evaluated,
finally deciding which are accepted and which are rejected. The example is inspired
by the job hiring process presented in (Silver, 2011) to show the intrinsic difficulties
of capturing real-life processes with many-to-many interacting business entities using
conventional process modeling notations (such as BPMN). An extended version of this
example, capturing the co-evolution of multiple instances of two different artifacts, is
presented in Appendix A.1 of (Calvanese et al., 2018b).

As for the read-only DB, Shr works over the DB schema of Example 3.1, extended with
a further value sort Score used to score job applications. Score contains 102 values in the
range [-1, 100], where -1 denotes the non-eligibility of the application, and a score from 0
to 100 indicates the actual one assigned after evaluating the application. For the sake of
readability, we use usual predicates <, >, and = to compare variables of type Score. This
is syntactic sugar and does not require to introduce rigid predicates (i.e., first-order logic
relational symbols that have a pre-determined interpretation in a assigned quantified
domain) in our framework: in the following, we do not need to introduce a new relational
symbol > that has to be interpreted in the model of natural numbers as the standard
numerical relation >. Indeed, since in our case > is applied to a fixed finite number
of elements (i.e. the natural numbers in [-1, 100]), a literal of the form s > 80 can be
substituted by a disjunction of a finite number of equalities (i.e. s > 80 iff (s = 81 or
s = 82 or...or s = 100)).

As for the working memory, Shr consists of two artifacts: the single-instance job hiring
artifact tracking the three main phases of the overall process (and described in Exam-
ple 4.1), and a multi-instance artifact accounting for the evolution of user applications.
To model applications, we take the DB signature Σhr of the read-only database of human
resources, and enrich it with an artifact extension containing an artifact sort appIndex

used to index (i.e., “internally” identify) job applications. The management of job appli-
cations is then modeled by an artifact setting with: (i) artifact components with domain
appIndex capturing the artifact relation that stores the different job applications; (ii) ad-
ditional individual variables as a temporary memory to manipulate the artifact relation.
Specifically, each application consists of a job category, the identifier of the applicant
user and that of an HR employee responsible for the application, the application score,
and the final result (indicating whether the application is among the winners or the
losers for the job offer). These information slots are encapsulated into dedicated artifact
components, i.e., function variables with domain appIndex that collectively realize the
application artifact relation:

appJobCat : appIndex −→ JobCatId

applicant : appIndex −→ UserId

appResp : appIndex −→ EmpId

appScore : appIndex −→ Score

appResult : appIndex −→ String

We now discuss the relevant transitions for inserting and evaluating job applications.
When writing transition formulae, we make the following assumption: if an artifact
variable/component is not mentioned at all, it is meant that it is updated identically;

SMT-based Verification of Data-Aware Processes 29

otherwise, the relevant update function will specify how it is updated. Notice that, as
mentioned also in the introduction, non-deterministic updates can be formalized using
existentially quantified variables in the transition. The insertion of an application into
the system can be executed when the hiring process is enabled (cf. Example 4.1), and
consists of two consecutive steps. To indicate when a step can be applied, also ensuring
that the insertion of an application is not interrupted by the insertion of another one, we
manipulate a string artifact variable aState. The first step is executable when aState is
undef, and aims at loading the application data into dedicated artifact variables through
the following simultaneous effects: (i) the identifier of the user who wants to submit the
application, and that of the targeted job category, are selected and respectively stored
into variables uId and jId ; (ii) the identifier of an HR employee who becomes responsible
for the application is selected and stored into variable eId , with the requirement that
such an employee must be competent in the job category targeted by the application;
(iii) aState evolves into state received. Formally:

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId
pState = enabled ∧ aState = undef

∧ u 6= undef ∧ j 6= undef ∧ e 6= undef ∧ c 6= undef
∧ who(c) = e ∧ what(c) = j

∧ pState ′ = enabled ∧ aState ′ = received

∧ uId ′ = u ∧ jId ′ = j ∧ eId ′ = e ∧ cId ′ = c

The second step transfers the application data into the application artifact relation, using
its corresponding function variables, at the same time resetting all application-related
artifact variables to undef (including aState, so that new applications can be inserted).
For the insertion, a “free” index (i.e., an index pointing to an undefined applicant) is
picked. The newly inserted application gets a default score of -1 (thus initializing it to
“not eligible”), while the final result is undef:

∃i:appIndex

pState = enabled ∧ aState = received

∧ applicant [i] = undef

∧ pState ′ = enabled ∧ aState ′ = undef ∧ cId ′ = undef

∧ appJobCat ′ = λj. (if j = i then jId else appJobCat [j])

∧ applicant ′ = λj. (if j = i then uId else applicant [j])

∧ appResp′ = λj. (if j = i then eId else appResp[j])

∧ appScore ′ = λj. (if j = i then -1 else appScore[j])

∧ appResult ′ = λj. (if j = i then undef else appResult [j])

∧ jId ′ = undef ∧ uId ′ = undef ∧ eId ′ = undef

Notice that such a transition does not prevent the possibility of inserting exactly the
same application twice, at different indexes. If this is not wanted, the transition can be
suitably changed so as to guarantee that no two identical applications can coexist in the
same artifact relation (see the Appendix A.1 of (Calvanese et al., 2018b) for an example).

Each application currently considered as not eligible can be made eligible by assigning

Calvanese et al. 30

a proper score to it:

∃i:appIndex, s:Score(
pState = enabled ∧ appScore[i] = -1 ∧ s ≥ 0
∧ pState ′ = enabled ∧ appScore ′[i] = s

)
Finally, application results are computed when the process moves to state notified. This
is handled by the bulk transition:

pState = enabled ∧ pState ′ = notified

∧ appResult ′ = λj.

(
if appScore[j] > 80 then winner

else loser

)
which declares applications with a score above 80 as winning, and the others as losing. /

Parameterized Safety via Backward Reachability for RAS. As for SAS, a safety
formula for a RAS S is a state formula υ(x). We say that S is safe with respect to υ

if there is no DB-instance M of 〈Σext , T 〉, no k ≥ 0, and no assignment in M to the
variables x0, a0 . . . , xk, ak such that the formula

ι(x0, a0) ∧ τ(x0, a0, x1, a1)

∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)
(14)

is true in M (here xi, ai are renamed copies of x, a). The safety problem is defined as
for SAS.

Example 4.4. We consider a safety property for the RAS from Example 4.3 that checks
whether, after having received the evaluation notification, there are no applicants left
without winner or loser status being assigned:

∃i:appIndex(
pState = notified ∧ applicant [i] 6= undef
∧ appResult [i] 6= winner ∧ appResult [i] 6= loser

)
The job hiring RAS Shr turns out to be safe with respect to this property (cf. Section 6).
/

Interestingly, we can still run backward search for handling safety problems in RASs.
In fact, Algorithm 1 presents the same structure. Notice that in this case the definition of
Pre(τ, φ) gives us ∃x′∃a′(τ(x, a, x′, a′)∧φ(x′, a′)). The subprocedure QE(T ∗, φ) mentioned
on Line 6 is extended so as to convert the preimage Pre(τ, φ) of a state formula φ into
a state formula (equivalent to it modulo the axioms of T ∗), witnessing its regressability :
this is possible since T ∗ eliminates from primitive formulae the existentially quantified
variables over the basic sorts, whereas elimination of quantified variables over artifact
sorts is not possible, because these variables occur as arguments of artifact components
(see Lemma 4.1 and Lemma 4.2 below for details). In addition, the satisfiability tests
from Lines 2–3 can still be discharged (in fact, we prove in Lemma 4.3 below that the
entailment between state formulae can be decided via instantiation techniques). In the
following, when we refer to Algorithm 1, we mean Algorithm 1 adapted to RASs as
explained above.

SMT-based Verification of Data-Aware Processes 31

In analogy to Statement (1) of Theorem 4.2, we obtain:

Theorem 4.4. Backward search (cf. Algorithm 1) is effective and partially correct for
solving safety problems for RASs.

The proof of the above result occupies next paragraph.

Proof of Theorem 4.4.
When introducing our transition formulae in (6), (13) we made use of definable exten-

sions and also of some function definitions via λ-abstraction. We already observed that
such uses are due to notational convenience and do not really go beyond first-order logic.
We are clarifying one more point now, before going into formal proofs. The lambda-
abstraction definitions in (13) will make the proof of Lemma 4.1 below smooth. Recall
that an expression like

b = λy.F (y, z)

can be seen as a mere abbreviation of ∀y b(y) = F (y, z). However, the use of such
abbreviation makes clear that e.g. a formula like

∃b (b = λy.F (y, z) ∧ φ(z, b))

is equivalent to

φ(z, λy.F (y, z)/b) . (15)

Since our φ(z, b) is in fact a first-order formula, our b can occur in it only in terms like
b(t), so that in (15) all occurrences of λ can be eliminated by the so-called β-conversion:
replace λyF (y, z)(t) by F (t, z). Thus, in the end, either we use definable extensions or
definitions via lambda abstractions, the formulae we manipulate can always be converted
into plain first-order Σ- or Σext -formulae.

Let us call extended state formulae the formulae of the kind ∃e φ(e, x, a), where φ is
quantifier-free and the e are individual variables of both artifact and basic sorts.

Lemma 4.1. The preimage of an extended state formula is logically equivalent to an
extended state formula.

Proof. We manipulate the formula

∃x′ ∃a′ (τ(x, a, x′, a′) ∧ ∃e φ(e, x′, a′)) (16)

up to logical equivalence, where τ is given by5

∃e0 (γ(e0, x, a) ∧ x′ = F (e0, x, a) ∧ a′ = λy.G(y, e0, x, a)) (17)

(here we used plain equality for conjunctions of equalities, e.g. x′ = F (e0, x, a) stands for∧
i x
′
i = Fi(e, x, a)). Repeated substitutions show that (16) is equivalent to

∃e∃e0 (γ(e0, x, a) ∧ φ(e, F (e0, x, a)/x′, λy.G(y, e0, x, a)/a′)) (18)

which is an extended state formula.

5 Actually, τ is a disjunction of such formulae, but it easily seen that disjunction can be accommodated
by moving existential quantifiers back-and-forth through them.

Calvanese et al. 32

Lemma 4.2. For every extended state formula there is a state formula equivalent to it
in all Σext -models of T ∗.

Proof. Let ∃e ∃y φ(e, y, x, a), be an extended state formula, where φ is quantifier-free,
the e are variables whose sort is an artifact sort and the y are variables whose sort is a
basic sort.

Now observe that, according to our definitions, the artifact components have an artifact
sort as source sort and a basic sort as target sort; since equality is the only predicate,
the literals in φ can be divided into equalities/inequalities between variables from e and
literals where the e can only occur as arguments of an artifact component. Let a[e] be
the tuple of the terms among the terms of the kind aj [es] which are well-typed; using
disjunctive normal forms, our extended state formula can be written as a disjunction of
formulae of the kind

∃e∃y (φ1(e) ∧ φ2(y, x, a[e]/z)) (19)

where φ1 is a conjunction of equalities/inequalities, φ2(y, x, z) is a quantifier-free Σ-
formula and φ2(y, x, a[e]/z) is obtained from φ2 by replacing the variables z by the terms
a[e]. Moving inside the existential quantifiers y, we can rewrite (19) to

∃e (φ1(e) ∧ ∃y φ2(y, x, a[e]/z)) (20)

Since T ∗ has quantifier elimination, we have that there is ψ(x, z) which is equivalent
to ∃y φ2(y, x, z)) in all models of T ∗; thus in all Σext -models of T ∗, the formula (20) is
equivalent to

∃e (φ1(e) ∧ ψ(x, a[e]/z))

which is a state formula.

We underline that Lemmas 4.1 and 4.2 both give an explicit effective procedure for com-
puting equivalent (extended) state formulae. Used one after the other, such procedures
extends the procedure QE(T ∗, φ) in Line 6 of Algorithm 1 to (non simple) artifact sys-
tems. Thanks to such procedure, the only formulae we need to test for satisfiability in
lines 2 and 3 of the backward reachability algorithm are the ∃∀-formulae introduced
below.

Let us call ∃∀-formulae the formulae of the kind

∃e ∀i φ(e, i, x, a) (21)

where the variables e, i are variables whose sort is an artifact sort and φ is quantifier-
free. The crucial point for the following lemma to hold is that the universally quantified
variables in ∃∀-formulae are all of artifact sorts:

Lemma 4.3. The satisfiability of a ∃∀-formula in a Σext -model of T is decidable. More-
over, given a ∃∀-formula χ, the following three statements are equivalent:
— χ is satisfiable in a Σext -model of T
— χ is satisfiable in a DB-instance of 〈Σext , T 〉
— χ is satisfiable in a Σext -model of T ∗.

SMT-based Verification of Data-Aware Processes 33

Proof. First of all, notice that a ∃∀-formula (21) is equivalent to a disjunction of
formulae of the kind

∃e (AllDiff(e) ∧ ∀i φ(e, i, x, a)) (22)

where AllDiff(e) says that any two variables of the same sort from the e are distinct (to
this aim, it is sufficient to guess a partition and to keep, via a substitution, only one
element for each equivalence class).6 So we can freely assume that ∃∀-formulae are all of
the kind (22).

Let us consider now the set of all (sort-matching) substitutions σ mapping the i to the
e. The formula (22) is satisfiable (respectively: in a Σext -model of T , in a DB-instance of
〈Σext , T 〉, in a Σext -model of T ∗) iff so it is the formula

∃e (AllDiff(e) ∧
∧
σ

φ(e, iσ, x, a)) (23)

(here iσ means the componentwise application of σ to the i): this is because, if (23) is
satisfiable in M, then we can take as M′ the same Σext -structure as M, but with the
interpretation of the artifact sorts restricted only to the elements named by the e and
get in this way a Σext -structureM′ satisfying (22) (notice thatM′ is still a DB-instance
of 〈Σext , T 〉 or a Σext -model of T ∗, if so wasM). Thus, we can freely concentrate on the
satisfiability problem of formulae of the kind (23) only.

Now, by the way Σext is built, the only atoms occurring in the subformula φ(e, iσ, x, a))

of (23) whose argument terms are terms of artifact sorts are of the kind es = ej , so all
such atoms can be replaced either by > or by ⊥ (depending on whether we have s = j

or not). So we can assume that there are no such atoms in φ(e, iσ, x, a)) and as a result,
the variables e can only occur there as arguments of the a.

Let now a[e] be the tuple of the terms among the terms of the kind aj [es] which are
well-typed. Since in (23) the e can only occur as arguments of the artifact components,
as observed above, the formula (23) is in fact of the kind

∃e (AllDiff(e) ∧ ψ(x, a[e]/z)) (24)

where ψ(x, z) is a quantifier-free Σ-formula and ψ(x, a[e]/z) is obtained from ψ by re-
placing the variables z by the terms a[e] (notice that the z are of basic sorts because the
target sorts of the artifact components are basic sorts).

It is now evident that (24) is satisfiable (respectively: in a Σext -model of T , in a DB-
instance of 〈Σext , T 〉, in a Σext -model of T ∗) iff the formula

ψ(x, z) (25)

is satisfiable (respectively: in a Σ-model of T , in a DB-instance of 〈Σ, T 〉, in a Σ-model of
T ∗). In fact, if we are given a Σ-structureM and an assignment satisfying (25), we can
easily expandM to a Σext -structure by taking the e’s themselves as the elements of the
interpretation of the artifact sorts; in the so-expanded Σext -structure, we can interpret

6 In the MCMT implementation, state formulae are always maintained so that all existential variables
occurring in them are differentiated and there is no need of this expensive computation step.

Calvanese et al. 34

the artifact components a by taking the a[e] to be the elements assigned to the z in the
satisfying assignment for (25).

Thanks to Assumption 3.4, the satisfiability of (25) in a Σ-model of T , in a DB-instance
of 〈Σ, T 〉, or in a Σ-model of T ∗ are all equivalent and decidable.

The instantiation algorithm of Lemma 4.3 can be used to discharge the satisfiability tests
in lines 2 and 3 of Algorithm 1 because the conjunction of a state formula and of the
negation of a state formula is a ∃∀-formula (notice that ι is itself the negation of a state
formula, according to (11)).

Theorem 4.4 The backward search algorithm (cf. Algorithm 1) is effective and partially
correct for solving the safety problem for RASs.

Proof. Recall that S is unsafe iff there is no DB-instanceM of 〈Σext , T 〉, no k ≥ 0 and
no assignment inM to the variables x0, a0 . . . , xk, ak such that the formula (14)

ι(x0, a0) ∧ τ(x0, a0, x1, a1) ∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)

is true in M. It is sufficient to show that this is equivalent to saying that there is no
Σext -modelM of T ∗, no k ≥ 0 and no assignment inM to the variables x0, a0 . . . , xk, ak

such that (14) is true in M (once this is shown, the proof goes in the same way as the
proof of Theorem 4.2).

Now, the formula (14) is satisfiable in a Σext -structureM under a suitable assignment
iff the formula

ι(x0, a0) ∧ ∃a1∃x1(τ(x0, a0, x1, a1) ∧ · · ·
· · · ∧ ∃ak∃xk(τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)) · · ·)

is satisfiable in M under a suitable assignment; by Lemma 4.1, the latter is equivalent
to a formula of the kind

ι(x, a) ∧ ∃e∃y φ(e, y, x, a) (26)

where ∃e ∃y φ(e, y, x, a) is an extended state formula (thus φ is quantifier-free, the e are
variables of artifact sorts and the y are variables of basic sorts - we renamed x0, a0 as
x, a). However the satisfiability of (26) is the same as the satisfiability of ∃e (ι(x, a) ∧
φ(e, y, x, a)); the latter, in view of (11), is a ∃∀-formula and so Lemma 4.3 applies and
shows that its satisfiability in a DB-instance of 〈Σext , T 〉 is the same as its satisfiability
in a Σext -model of T ∗.

To sum up, in this subsection we remarked that for Algorithm 1, to be effective, we
need decision procedures for discharging the satisfiability tests in Lines 2-3. Thanks to
the subprocedure QE(T ∗, φ), the only formulae we need to test in these lines have a
specific form (i.e. they are ∃∀-formulae). In fact, by our hypotheses in Assumption 3.4,
we can freely assume that all the runs we are interested in take place inside models of T ∗

(where we can eliminate quantifiers binding variables of basic sorts). Then, in two first
technical lemmas (Lemmas 4.1 and 4.2) we show that the preimage of a state formula is
an extended state formula and that such an extended state formula can be converted back
(modulo T ∗) into a state formula; finally, in a third technical lemma (Lemma 4.3), we

SMT-based Verification of Data-Aware Processes 35

show that entailments between state formulae (more generally, satisfiability of formulae
of the kind ∃∀) can be decided via finite instantiation techniques. These observations
make both safety and fixpoint tests effective and constitute the skeleton of the proof of
Theorem 4.4.

Remark 4.2. Notice that the role of quantifier elimination (Line 6 of Algorithm 1) is
twofold: (i) It allows to discharge the fixpoint test of Line 2 (see Lemma 4.3). (ii) It
ensures termination in significant cases, namely those where (strongly) local formulae,
introduced in the next section, are involved.

5. Termination Results for RASs

Theorem 4.4 gives a semi-decision procedure for unsafety: if the system is unsafe, the
procedure discovers it, but if the system is safe, the procedure (still correct) may not
terminate. Termination is much more difficult to achieve for RASs, since acyclicity of Σ

seems not to be sufficient to guarantee it. We present two termination results for RASs,
both obtained via the use of well quasi-orders. The strategy for proving termination con-
sists of isolating sufficient conditions that imply that the embeddability relation between
DB instances is a well-quasi-ordering. Since there is no guarantee that this fact holds in
general, RASs are not well-structured transition systems.

5.1. Termination with Local Updates

Consider an acyclic signature Σ, a theory T (satisfying our Assumption 3.4), and an
artifact setting (x, a) over an artifact extension Σext of Σ. We call a state formula local
if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧
∧k
i=1 φi(ei, x, a)), (27)

and strongly local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧ ψ(x) ∧
∧k
i=1 φi(ei, a)). (28)

In (27) and (28), δ is a conjunction of variable equalities and disequalities, φi, ψ are
quantifier-free, and e1, . . . , ek are individual variables varying over artifact sorts. The
key expressivity limitation of local state formulae is that they cannot compare entries
belonging to different tuples of artifact relations: in fact, each φi in (27) and (28) can
contain only the existentially quantified variable ei.

A transition formula τ̂ is local (resp., strongly local) if whenever a formula φ is local
(resp., strongly local), so is Pre(τ̂ , φ) (modulo the axioms of T ∗).

Below in Theorem 5.4 we show that (for acyclic Σ) Algorithm 1 terminates when
applied to a local safety formula in a RAS whose τ is a disjunction of local transition for-
mulae. Note that Theorem 5.4 can be used to reconstruct (restricted to safety problems)
the essence of the decidability results of (Li et al., 2017). Specifically, it can be shown
by a direct computation that transitions in (Li et al., 2017) are strongly local which, in
turn, can be shown using quantifier elimination (see Appendix F in (Calvanese et al.,

Calvanese et al. 36

2018b) for all the details, where we also show how to represent transitions from (Li et al.,
2017) by the means of existentially quantified data variables). Interestingly, Theorem 5.4
can be applied to more cases not covered in (Li et al., 2017). For example, one can pro-
vide transitions enforcing updates over unboundedly many tuples (bulk updates) that are
strongly local (cf. Appendix F in (Calvanese et al., 2018b)).

Example 5.1. By inspecting the transitions of our running example, one can see that
all of them are strongly local. Consequently, it is decidable to check safety of local state
formulae. For example, we show that the first transition of Example 4.3 is strongly local
(the computations for all the other transitions are analogous, and all the details about the
format of transitions that are (strongly) local can be found in Appendix F of (Calvanese
et al., 2018b)).

The first transition of Example 4.3 represents the first step of the insertion of an
application into the system. This step is executable when the artifact variable aState

is undef, aims at loading the application data (user ID, job ID and employee ID) into
dedicated artifact variables (uId , jId , eId , respectively) and evolves aState into state
received. Formally, we have:

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId
pState = enabled ∧ aState = undef

∧ u 6= undef ∧ j 6= undef ∧ e 6= undef ∧ c 6= undef
∧ who(c) = e ∧ what(c) = j

∧ pState ′ = enabled ∧ aState ′ = received

∧ uId ′ = u ∧ jId ′ = j ∧ eId ′ = e ∧ cId ′ = c

(29)

For simplicity, we can rewrite Formula 29 into the following equivalent but more suc-
cinct formula:

∃d

(
π(x1, x2) ∧ ψ(d) ∧ d1 = enabled ∧ d2 = received

∧ (x′1 := x1 ∧ x′2 := d ∧ a′ := a)

)
(30)

where d := 〈d1, d2, u, j, e, c〉, x1 are the artifact variables of the system that are not
updated, x2 are the artifact variables of the system that are updated , π(x1, x2) and
ψ(d) are quantifier-free Σ-formulae and a are the artifact components of the systems.

We show that the preimage along (30) of a strongly local formula is strongly local.
Given a strongly local state formula φ, we can easily suppose that φ has the following

format:

φ := ψ′(x) ∧ ∃i (AllDiff(i) ∧Θ(a))

where x are all the artifact variables of the system, i are variables of artifact sorts and
Θ is a formula involving all the artifact components a.

We compute the preimage Pre(30, φ):

∃d

π(x1, x2) ∧ ψ(d) ∧ d1 = enabled ∧ d2 = received

∧ (x′1 := x1 ∧ x′2 := d ∧ a′ := a)

∧ ψ′(x′) ∧ ∃i (AllDiff(i) ∧Θ(a′))

 (31)

SMT-based Verification of Data-Aware Processes 37

which can be rewritten as follows:

∃d

(
π(x1, x2) ∧ ψ(d) ∧ d1 = enabled ∧ d2 = received

∧ ψ′(x1, d) ∧ ∃i (AllDiff(i) ∧Θ(a))

)
(32)

Now, we can move the existential quantifier ∃d in front of χ(d, x1) := (ψ(d) ∧ d1 =

enabled∧d2 = received∧ψ′(x1, d)). We eliminate the quantifiers (applying the quantifier
elimination procedure for T ∗) from the subformula ∃d(χ(d, x1)) obtaining a formula of
the kind θ(x1).

The final result is

π(x1, x2) ∧ θ(x1) ∧ ∃i (AllDiff(i) ∧Θ(a)) (33)

which is a strongly local formula.
The interested reader can find additional details about applications of (strongly) local

RASs to data-aware business processes in (Calvanese et al., 2019a). Specifically, this paper
contains a running example (verified against several properties) that can be represented
using a RAS that is strongly-local.

In addition, Theorem 5.4 covers also problems coming from a different source, like
coverability problems for broadcast protocols (Esparza et al., 1999; Delzanno et al., 1999):
these problems can be encoded using local formulae over the trivial one-sorted signature
containing just one basic sort, finitely many constants and one artifact sort with one
artifact component. We remark that coverability for broadcast protocols can be decided
with a non-primitive recursive lower bound (Schmitz and Schnoebelen, 2013); this proves
that our framework is quite expressive (the problems in (Li et al., 2017) have for instance
an ExpSpace upper bound). Recalling that (Li et al., 2017) handles verification of LTL-
FO, thus going beyond safety problems, this shows that the two settings are incomparable.
Finally, notice that Theorem 5.4 implies also the decidability of the safety problem for
SASs, in case of Σ acyclic.

Before stating and proving Theorem 5.4, we need to recall some basic facts about well-
quasi-orders. Recall that a well-quasi-order (wqo) is a set W endowed with a reflexive-
transitive relation ≤ having the following property: for every infinite succession

w0, w1, . . . , wi, . . .

of elements from W there are i, j such that i < j and wi ≤ wj The fundamental re-
sult about wqo’s is the following theorem, which is a recursive version of Higman’s
lemma (Higman, 1952) and is a special case of the well-known Kruskal’s Tree Theo-
rem (Kruskal, 1960):

Theorem 5.1. If (W,≤) is a wqo, then so is the partial order of the finite lists over W ,
ordered by componentwise subword comparison (i.e. w ≤ w′ iff there is a subword w0 of
w′ of the same length as w, such that the i-th entry of w is less or equal to—in the sense
of (W,≤)—the i-th entry of w0, for all i = 0, . . . |w|).

Various wqo’s can be recognized by applying the above theorem; in particular, the
theorem implies that the cartesian product of wqo’s is a wqo. As an application, notice
that N is a wqo, hence the following corollary (known as Dickson’s Lemma) follows:

Calvanese et al. 38

Corollary 5.2. The cartesian product of k-copies of N (and also of N ∪ {∞}), with
componentwise ordering, is a wqo.

Let Σ̃ be Σext ∪ {a, x}, that is, Σext expanded with function symbols a and constants
x (thus, a Σ̃-structure is a Σext -structure endowed with an assignment to x and a, which
were variables and now are treated as symbols of Σ̃). For the following, we need the
following definition:

Definition 5.3. A Σ̃-structureM is called cyclic7 if it is generated by a single element
e ∈ EM (called generator of M), where E is an artifact sort (i.e. e belongs to the
interpretation of an artifact sort E).

The previous definition intuitively means that all the elements of the cyclic structures
are obtained from the generator by applying the function symbols of Σ̃ to the generator.

Since Σ is acyclic, so is Σ̃, and then one can show that there are only finitely many
cyclic Σ̃-structures C1, . . . , CN up to isomorphism. With a Σ̃-structure M we associate
the tuple of numbers k1(M), . . . , kN (M) ∈ N ∪ {∞} counting the numbers of elements
generating (as singletons) cyclic substructures isomorphic to C1, . . . , CN , respectively.

Now, we show that, if the tuple associated withM is component-wise bigger than the
one associated with N , thenM satisfies all the local formulae satisfied by N .

Lemma 5.1. LetM,N be Σ̃-structures. If the inequalities

k1(M) ≤ k1(N), . . . , kN (M) ≤ kN (N)

hold, then all local formulae true inM are also true in N .

Proof. Notice that local formulae (viewed in Σ̃) are sentences, because they do not
have free variable occurrences - the a, x are now constant function symbols and individ-
ual constants, respectively. The proof of the lemma is fairly obvious: notice that, once
we assigned some α(ei) in M to the variable ei, the truth of a formula like φ(ei, x, a)

under such an assignment depends only on the Σ̃-substructure generated by α(ei), be-
cause φ is quantifier-free and ei is the only Σ̃-variable occurring in it. In fact, if a local
state formula ∃e1 · · · ∃ek

(
δ(e1, . . . , ek) ∧

∧k
i=1 φi(ei, x, a)

)
is true inM, then there exist

elements ē1, · · · , ēk (in the interpretation of some artifact sorts), each of which makes φi
true. Hence, φi is also true in the corresponding cyclic structure generated by ēi. Since
k1(M) ≤ k1(N), . . . , kN (M) ≤ kN (N) hold, then also in N there are at least as many
elements in the interpretation of artifact sorts as there are inM that validate all the φi
. Thus, we get that the formula ∃e1 · · · ∃ek

(
δ(e1, . . . , ek) ∧

∧k
i=1 φi(ei, x, a)

)
is true also

in N , as wanted.

Now we are ready to prove our first termination and decidability result.

Theorem 5.4. If Σ is acyclic, backward search (cf. Algorithm 1) terminates when ap-
plied to solve the safety problem, with respect to a (strongly) local safety formula υ(x, a),

7 This is unrelated to cyclicity of Σ defined in Section 3, and comes from universal algebra terminology.

SMT-based Verification of Data-Aware Processes 39

for a RAS 〈Σ, T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉, where τ is a disjunction of (strongly) lo-
cal transition formulae.

Proof. Suppose the algorithm does not terminate. Then the fixpoint test of Line 2 fails
infinitely often. Recalling that the T -equivalence of Bn and of

∨
0≤k<n φk is an invariant

of the algorithm (here φn, Bn are the status of the variables φ,B after n execution of the
main loop), this means that there are models

M0,M1, . . . ,Mj , . . .

such that for all j, we have that Mj |= φj and Mj 6|= φi (all i < j). But the φj
are all local formulae, so considering the tuple of cardinals k1(Mj), . . . , kN (Mj) and
Lemma 5.1, we get a contradiction, in view of Dickson’s Lemma. This is because, by
Dickson’s Lemma, (N∪{∞})N is a wqo, so there exist i, j such that i < j and k1(Mi) ≤
k1(Mj), . . . , kN (Mi) ≤ kN (Mj). Using Lemma 5.1, we get that φi, which is local and
true inMi, is also true inMj , which is a contradiction.

5.2. Termination with Tree-like Signatures

Σ is tree-like if it is acyclic and all non-leaf nodes have outdegree 1. An artifact setting
over Σ is tree-like if Σ̃ := Σext ∪ {a, x} is tree-like. In tree-like artifact settings, artifact
relations have a single “data” component, and basic relations are unary or binary.

Proving termination for RAS with a tree-like artifact setting is more complex, but
follows a similar schema as in the case of local transition formulae.

If (W,≤) is a partial order, we consider the set M(W) of finite multisets of W as
a partial order in the following way:8 say that M ≤ N holds iff there is an injection
p : M −→ N such that m ≤ p(m) holds for all m ∈M (in other words, p associates with
every occurrence of an element m of M an occurrence p(m) of an element of N such that
p(m) ≥ m - this is moreover done injectively, i.e. in such a way that different occurrences
are associated to different occurrences).

Corollary 5.5. If (W,≤) is a wqo, then so is (M(W),≤) as defined above.

Proof. This is due to the fact that one can convert a multisetM to a list L(M) so that
if L(M) ≤ L(N) holds, then also M ≤ N holds (such a conversion L can be obtained by
ordering the occurrences of elements in M in any arbitrarily chosen way).

We assume that the graph G(Σ̃) associated to Σ̃ is a tree (the generalization to the
case where such a graph is a forest is trivial). This means in particular that each sort is
the domain of at most one function symbol and that there just one sort which is not the
domain of any function symbol (let us call it the root sort of Σ̃ and let us denote it with
Sr).

By induction on the height of a sort S (defined as the length of the longest path from

8 This is not the canonical ordering used for multisets, as introduced, e.g., in (Baader and Nipkow,
1998).

Calvanese et al. 40

S to a leaf) in the above graph, we define a wqo w(S) (in the definition we use the fact
the cartesian product of wqo’s is a wqo and Corollary 5.5). Let S1, . . . , Sn be the sons of
S in the tree; put

w(S) := M(w(S1))× · · · ×M(w(Sn)) (34)

(thus, if S is a leaf, w(S) is the trivial one-element wqo - its only element is the empty
tuple).

Let now M be a finite Σ̃-structure; we indicate with SM the interpretation in M of
the sort S (it is a finite set). For a ∈ SM, we define MM(a) ∈ w(S), again by induction
on the height of S. Suppose that S1, . . . , Sn are the sons of S and that the arc from Si
to S is labeled by the function symbol fi; then we put

MM(a) := 〈{MM(b1) | b1 ∈ SM1 and fM1 (b1) = a}, . . .
. . . , {MM(bn) | bn ∈ SMn and fMn (bn) = a}〉

where fMi (i = 1, . . . , n) is the interpretation of the symbol fi inM.
Moreover, for every sort S, we let

MM(S) := {MM(a) | a ∈ SM} . (35)

Finally, we define

M(M) := MM(Sr) . (36)

For termination, the relevant lemma is the following:

Lemma 5.2. Suppose that Σ̃ is tree-like and does not contain constant symbols; given
two finite Σ̃-structuresM and N , we have that if M(M) ≤M(N), thenM embeds into
N . As a consequence, the finite Σ̃-structures are a wqo with respect to the embeddability
quasi-order.

Proof. Again, we make an induction on the height of S, proving the claim for the
subsignature of Σ̃ having S as a root (let us call this the S-subsignature).

Let M be a model over the S-subsignature. For every a ∈ SM, and for every fi :

Si −→ S, if we restrict M to the elements in the fi-fibers of a, we get a model Mfi,a

for the Si-subsignature (an element c ∈ S̃M is in the fi-fiber of a if, taking the term t

corresponding to the composition of the functions symbols going from S̃ to Si, we have
that fMi (tM(c)) = a). In addition, if MM(a) = (M1, . . . ,Mn), then Mi = M(Mfi,a) by
definition. Finally, observe that the restriction ofM to the Si-subsignature is the disjoint
union of the fi-fibers modelsMfi,a, varying a ∈ SM.

Suppose now that M,N are models over the S-subsignature such that M(M) ≤
M(N); this means that we can find an injective map µ mapping SM into SN so that
MM(a) ≤ MN (µ(a)). If MM(a) = (M1, . . . ,Mn) and MN (µ(a)) = (N1, . . . , Nn), we
then have that Mi ≤ Ni for every i = 1, . . . , n. Considering that, as noticed above,
Mi = Mfi,a and Ni = Nfi,µ(a), by induction hypothesis, we have embeddings νi,a for
the fi-fibers models of a and µ(a) (for every a ∈ SM and i = 1, . . . , n). Glueing these
embeddings to the disjoint union (varying i, a) and adding them µ as S-component, we
get the desired embedding ofM into N .

SMT-based Verification of Data-Aware Processes 41

Theorem 5.6. Backward search (cf. Algorithm 1) terminates when applied to a safety
problem in a RAS with a tree-like artifact setting.

Proof. For simplicity, we start giving the argument for the case where we do not
have constants and artifact variables. Similarly to the proof of Theorem 5.4, suppose
the algorithm does not terminate. Then the fixpoint test of Line 2 fails infinitely often.
Recalling that the T -equivalence of Bn and of

∨
0≤k<n φk is an invariant of the algorithm

(here φn, Bn are the status of the variables φ,B after n execution of the main loop), this
means that there are models

M0,M1, . . . ,Mj , . . .

such that for all j, we have thatMj |= φj andMj 6|= φi (all i < j). The models can be
taken to be all finite, by Lemma 4.3. But the φj are all existential sentences in Σ̃, so this
is incompatible to the fact that, by Lemma 5.2, there are i < j with Mi embeddable
intoMj .

Concerning the general case, it is sufficient to consider the following observation that
shows how to extend the proof to the case where we have constants and artifact variables.
Recall that in Σ̃ the artifact variables are seen as constants, so we need to consider only
the case of constants. Let Σ̃+ be Σ̃ where each constant symbol c of sort S is replaced by
a new sort Sc and a new function symbol fc : Sc −→ S. Now every modelM of Σ̃ can be
transformed into a modelM+ of Σ̃+ by interpreting Sc as a singleton set {∗} and fc as
the map sending ∗ to cM. This transformation has the following property: Σ̃-embeddings
ofM into N are in bijective correspondence with Σ̃+-embeddings ofM+ into N+. Since
Σ̃+ is still tree-like and does not have constant symbols, this shows that Theorem 5.6
holds for Σ̃ too.

While tree-like RAS restrict artifact relations to be unary, their transitions are not
subject to any locality restriction. This allows for expressing rich forms of updates, in-
cluding general bulk updates (which allow us to capture non-primitive recursive verifica-
tion problems9) and transitions comparing at once different tuples in artifact relations.
The flight management process presented in the following example shows these advanced
features, with a tree-like RAS whose safety verification is indeed decidable. Finally, no-
tice that tree-like RASs are incomparable: (i) with the “tree” classes of (Bojańczyk et al.,
2013), since the former use artifact relations, whereas the latter only individual variables;
(ii) with the decidability class of (Li et al., 2017), since tree-like RASs express transitions
able to compare at once values stored in different tuples in artifact relations.

Example 5.2.
We consider a simple RAS that falls in the scope of the tree-like decidability result.

Specifically, this example has a tree-like artifact setting (see Figure 2), thus assuring that,
when solving the safety problem for it, the backward search algorithm is guaranteed
to terminate. Note, however, that the termination result adopted here is the one of
Theorem 5.6 due to the non-locality of certain transitions, as explained in detail below.

9 Notice that the artifact setting described above to capture coverability problems for broadcast proto-
cols is both local and tree-like.

Calvanese et al. 42

CityId

FlightId

PassengerIndex FligthIndex

CityIndex

destination

overbookedregdPassenger

safeCity

Figure 2. A characteristic graph of the flight management process, where blue and yellow
boxes respectively represent basic and artifact sorts.

The flight management process represents a simplified version of a flight management
system adopted by an airline. To prepare a flight, the company picks a corresponding
destination (that meets the aviation safety compliance indications) and consequently
reports on a number of passengers that are going to attend the flight. Then, an airport
dispatcher may pick a manned flight and put it in the airports flight plan. In case the
flight destination becomes unsafe (e.g., it was struck by a hurricane or the hosting airport
had been seized by terrorists), the dispatcher uses the system to inform the airline about
this condition. In turn, the airline notifies all the passengers of the affected destination
about the contingency, and temporary cancels their flights.

To formalize these different aspects, we make use of a DB signature Σfm that consists
of: (i) two id sorts, used to identify flights and cities; (ii) one function symbol destination :

FlightId −→ CityId mapping flight identifiers to their corresponding destinations (i.e., city
identifiers). Note that, in a classical relational model (cf. Section 3.1), our signature would
contain two relations: one binary RFlightId that defines flights and their destinations, and
another unary RCityId identifying cities, that are referenced by RFlightId using destination.

We assume that the read-only flight management database contains data about at
least one flight and one city. To start the process, one needs at least one city to meet
the aviation safety compliances. It is assumed that, initially, all the cities are unsafe. An
airport dispatcher, at once, may change the safety status only of one city.

We model this action by performing two consequent actions. First, we select the city
identifier and store it in the designated artifact variable safeCitytId :

∃c:CityId
(
c 6= undef ∧ safeCitytId = undef ∧ safeCitytId ′ = c

)
Then, we place the extracted city identifier into a unary artifact relation safeCity :

CityIndex −→ CityId, that is used to represent safe cities and where CityIndex is its artifact
sort.

∃i:CityIndex
safeCity [i] = undef ∧ safeCitytId 6= undef ∧ safeCitytId ′ = undef

∧ safeCity ′ = λj.

if j = i then safeCitytId

else if safeCity [j] = safeCitytId then undef

else safeCity [j]

SMT-based Verification of Data-Aware Processes 43

Note that the two previous transitions can be rewritten as a unique one, hence showing
a more compact way of specifying RAS transitions. This, in turn, can augment the
performance of the verifier while working with large-scale cases. The unified transition
actually looks as follows:

∃c:CityId,∃i:CityIndex
c 6= undef ∧ safeCity [i] = undef

∧ safeCity ′ = λj.

if j = i then c

else if safeCity [j] = c then undef

else safeCity [j]

Then, to register passengers with booked tickets on a flight, the airline needs to make
sure that a corresponding flight destination is actually safe. To perform the passenger
registration, the airline selects a flight identifier that is assigned to the route and uses it to
populate entries in an unary artifact relation regdPassenger : PassengerIndex −→ FlightId.
Note that there may be more than one passenger taking the flight, and therefore, more
than one entry in regdPassenger with the same flight identifier.

∃i:CityIndex, f :FlightId, p:PassengerIndexf 6= undef ∧ destination(f) = safeCity [i] ∧ regdPassenger [p] = undef

∧ regdPassenger ′ = λj.

(
if j = p then f

else regdPassenger [j]

)
We also assume that the airline owns aircraft of one type that can contain no more

than k passengers. In case there were more than k passengers registered on the flight, the
airline receives a notification about its overbooking and temporary suspends all passenger
registrations associated to this flight. This is modelled by checking whether there are
at least k + 1 entries in regdPassenger . If so, the flight identifier is added to a unary
artifact relation overbooked : FligthIndex −→ FlightId and all the passenger registrations
in regdPassenger that reference this flight identifier are nullified by updating unboundedly
many entries in the corresponding artifact relation:10

∃p1:PassengerIndex, . . . pk+1:PassengerIndex,m:FligthIndex
∧

i,i′∈{1,...,k+1},i6=i′ (pi 6= pi′ ∧ regdPassenger [pi] 6= undef ∧ regdPassenger [pi] = regdPassenger [pi′])

∧ overbooked [m] = undef

∧ regdPassenger ′ = λj.

(
if regdPassenger [j] = regdPassenger [p1] then undef
else regdPassenger [j]

)
∧ overbooked ′[m] = regdPassenger [p1]

Notice that this transition is not local, since its guard contains literals of the form
regdPassenger [pi] = regdPassenger [pi′] (with pi 6= pi′), which involve more than one
element of one artifact sort.

In case of any contingency, the airport dispatcher may change the city status from safe
to unsafe. To do it, we first select one of the safe cities, make it unsafe (i.e., remove it

10 For simplicity of presentation, we simply remove such data from the artifact relation. In a real setting,
this information would actually be transferred to a dedicated, historical table, so as to reconstruct
the status of past, overbooked flights.

Calvanese et al. 44

from safeCity relation) and store its identifier in the artifact variable unsafeCityId :

∃i:CityIndex
(
unsafeCityId = undef ∧ safeCity [i] 6= undef ∧
∧ unsafeCityId ′ = safeCity [i] ∧ safeCity ′[i] = undef

)
Then, we use the remembered city identifier to cancel all the passenger registrations

for flights that use this city as their destination:unsafeCityId 6= undef ∧ unsafeCityId ′ = undef ∧

∧ regdPassenger ′ = λj.

(
if destination(regdPassenger [j]) = unsafeCityId then undef

else regdPassenger [j]

)
Similarly to the previous case, this transition performs the intended action by updating
unboundedly many entries in the artifact relation.

Also in this case, we can shrink the last two transitions into a single transition:

∃i:CityIndex
safeCity[i] 6= undef ∧

∧ regdPassenger ′ = λj.

(
if destination(regdPassenger [j]) = safeCity[i] then undef
else regdPassenger [j]

)
However, as in the previous case, the transition turns out to be not local. Specifically, it

is due to the literal destination(regdPassenger [j]) = safeCity [i] that involves more than
one element of (different) artifact sorts.

6. First experiments

We implemented a prototype of our backward reachability algorithm for artifact systems
on top of the mcmt model checker, extending it with the features required to formalize
and verify RASs. mcmt manages verification in the infinite-state case by exploiting as its
model-theoretic framework the declarative formalism of array-based systems. Since their
first introduction in (Ghilardi et al., 2008a; Ghilardi and Ranise, 2010a), array-based sys-
tems have been provided with various implementations of the standard backward reach-
ability algorithms (including more sophisticated variants and heuristics). Starting from
its first version (Ghilardi and Ranise, 2010b), mcmt was successfully applied to cache
coherence and mutual exclusions protocols (Ghilardi and Ranise, 2010a), timed (Carioni
et al., 2010) and fault-tolerant (Alberti et al., 2012b; Alberti et al., 2010) distributed
systems, and then to imperative programs (Alberti et al., 2014b; Alberti et al., 2017);
interesting case studies concerned waiting time bounds synthesis in parameterized timed
networks (Bruttomesso et al., 2012) and internet protocols (Bruschi et al., 2017). Fur-
ther related tools include safari (Alberti et al., 2012a) and asasp (Alberti et al., 2011);
finally, (Conchon et al., 2012; Conchon et al., 2015; Conchon et al., 2013; Conchon et al.,
2018a) implement the array-based setting on a parallel architecture with further powerful
extensions.

The work principle of mcmt is rather simple: the tool generates the proof obligations
arising from the safety and fixpoint tests in backward search (Lines 2-3 of Algorithm 1)
and passes them to the background SMT-solver (currently it is Yices (Dutertre and
De Moura, 2006)). In practice, the situation is more complicated because SMT-solvers are
quite efficient in handling satisfiability problems in combined theories at quantifier-free
level, but may encounter difficulties with quantifiers. For this reason, mcmt implements

SMT-based Verification of Data-Aware Processes 45

Example #(AC) #(AV) #(T)

E1 JobHiring 9 18 15
E2 Acquisition-following-RFQ 6 13 28
E3 Book-Writing-and-Publishing 4 14 13
E4 Customer-Quotation-Request 9 11 21
E5 Patient-Treatment-Collaboration 6 17 34
E6 Property-and-Casualty-Insurance-Claim-Processing 2 7 15
E7 Amazon-Fulfillment 2 28 38
E8 Incident-Management-as-Collaboration 3 20 19

Table 1. Summary of the experimental examples

modules for quantifier elimination and quantifier instantiation. A specific module for the
quantifier elimination problems mentioned in Line 6 of Algorithm 1 has been added to
Version 2.8 of mcmt.

We base our experimental evaluation on the already existing benchmark provided in
(Li et al., 2017), that samples 32 real-world BPMN workflows published at the official
BPM website (http://www.bpmn.org/). Specifically, we select seven examples of varying
complexity (see Table 1) and provide their faithful encoding in the array-based spec-
ification using mcmt Version 2.8. Moreover, we enrich our experimental set with an
extended version of the running example of this paper (see Appendix A.1 of (Calvanese
et al., 2018b)). Each example has been checked against at least one safe and one unsafe
conditions. Since mcmt performs safety verification parameterized on the read-only DB,
the result is independent on the size of specific DB instances. Moreover, mcmt can in
principle handle unbounded DB schemas and unboundedly many DB constants: we have
ascertained that the size of the DB schema does not affect the performances as much
as the number of transitions involved in the verified RAS. We leave for future work a
systematic experimental evaluation of those preliminary observations.

Experiments were performed on a machine with Ubuntu 16.04, 2.6GHz Intel Core i7
and 16GB RAM. The benchmark set is available as part of the last distribution 2.8 of
mcmt

http://users.mat.unimi.it/users/ghilardi/mcmt/

(see the subdirectory /examples/dbdriven of the distribution); the user manual, also in-
cluded in the distribution, contains a dedicated section (pages 36–39) giving essential
information on how to use the capabilities of the new version of mcmt (by activating
the “db_driven” mode), how to encode RASs in mcmt specifications and how to pro-
duce user-defined examples in the database driven framework. All the verified examples
include transitions with quantified “data” variables, and rely on and the algebraic frame-
work of DB theories introduced in the paper. Consequently, the experiments were carried
out on the new version of mcmt and could not be verified with the previous versions.

In Table 1, the columns #(AV), #(AC) and #(T) represent, respectively, the num-
ber of artifact variables, artifact components and transitions used in the example spec-
ification; in Table 2, the column Time is the mcmt execution time. The most critical
measures in Table 2 are #(N), depth and #(SMT-calls) that respectively define the
number of nodes and the depth of the tree used for the backward reachability procedure

Calvanese et al. 46

Example Property Result Time #(N) depth #(SMT-calls)

E1 E1P1 SAFE 0.06 3 3 1238
E1P2 UNSAFE 0.36 46 10 2371
E1P3 UNSAFE 0.50 62 11 2867
E1P4 UNSAFE 0.35 42 10 2237

E2 E2P1 SAFE 0.72 50 9 3156
E2P2 UNSAFE 0.88 87 10 4238
E2P3 UNSAFE 1.01 92 9 4811
E2P4 UNSAFE 0.83 80 9 4254

E3 E3P1 SAFE 0.05 1 1 700
E3P2 UNSAFE 0.06 14 3 899

E4 E4P1 SAFE 0.12 14 6 1460
E4P2 UNSAFE 0.13 18 8 1525

E5 E5P1 SAFE 4.11 57 9 5618
E5P2 UNSAFE 0.17 13 3 2806

E6 E6P1 SAFE 0.04 7 4 512
E6P2 UNSAFE 0.08 28 10 902

E7 E7P1 SAFE 1.00 43 7 5281
E7P2 UNSAFE 0.20 7 4 3412

E8 E8P1 SAFE 0.70 77 11 3720
E8P2 UNSAFE 0.15 25 7 1652

Table 2. Experimental results for safety properties

adopted by mcmt, and the number of the SMT-solver calls. Indeed, mcmt computes the
iterated preimages of the formula describing the unsafe states along the various transi-
tions. Such computation produces a tree, whose nodes are labelled by formulae describing
sets of states that can reach an unsafe state and whose arcs are labelled by a transition.

To stress test our encoding, we came up with a few formulae describing unsafe con-
figurations (sets of “bad” states), that is, the configurations that the system should not
incur throughout its execution. Property references encodings of examples endowed
with specific (un)safety properties done in mcmt, whereas Result shows their verifica-
tion outcome that can be of the two following types: SAFE and UNSAFE. The mcmt tool
returns SAFE, if the undesirable property it was asked to verify represents a configuration
that the system cannot reach. At the same time, the result is UNSAFE if there exists a path
of the system execution that reaches “bad” states.

To conclude, we would like to point out that seemingly high number of SMT solver
calls in #(SMT-calls) against relatively small execution time demonstrates that mcmt
could be considered as a promising tool supporting the presented line of research. This
is due to the following two reasons. On the one hand, the SMT technology underlying
solvers like Yices (Dutertre and De Moura, 2006) is quite mature and impressively well-
performing. On the other hand, the backward reachability algorithm generates proof
obligations which are relatively easy to be analyzed as (un)satisfiable by the solver.

A thorough comparison with Verifas (Li et al., 2017) is at the moment rather prob-
lematic, for various reasons, due for instance to the different specification languages and
to the different set of benchmarks covered. In fact, the two systems tackle incomparable
verification problems: on the one hand, we deal with safety problems, whereas Verifas
handles more general LTL-FO properties. On the other hand, we tackle features not avail-

SMT-based Verification of Data-Aware Processes 47

able in Verifas, like bulk updates and comparisons between artifact tuples. We leave
this for future, more experimentally oriented, work: the comparison might be interest-
ing because the two tools apply quite different technologies (Verifas is based on VASS
encoding, whereas mcmt follows a purely declarative paradigm). We just point out that
Table 2 shows the very encouraging results: in fact, mcmt seems to effectively handle the
benchmark with a similar performance to that shown in other, well-established settings,
with verification times below 1s in most cases.

7. Conclusions and Future Work

We have laid the foundations of SMT-based verification for artifact systems, focusing
on safety problems and relying on array-based systems as underlying inspiring model.
We have shown how to overcome the main technical difficulty arising from this ap-
proach, namely reconstructing quantifier elimination techniques in the rich setting of
artifact systems, using the model-theoretic machinery of model completions. On top of
this framework, we have identified three classes of systems for which safety is decidable,
which impose different combinations of restrictions on the form of actions and the shape
of DB constraints. The presented techniques have been implemented on top of the well-
established mcmt model checker, making our approach fully operational. Notably, the
machinery presented in this paper has been already employed to formalize and verify
a data-aware extension of the de-facto process modeling standard BPMN (Calvanese
et al., 2019a), starting a line of research that aims at transferring our technical results
into practical, end user- oriented settings.

It is important to stress that the artifact systems we study here are radically different
from other formal models integrating dynamics with data, such as Data Petri Nets (Lazic
et al., 2008), ν-PNs (Rosa-Velardo and de Frutos-Escrig, 2011) and multiset rewriting
systems with data and constraints (Delzanno, 2002). Let us consider Data Petri Nets as
a representative example of this class of approaches. In Data Petri Nets, one can generate
tokens that carry fresh values not already present in the current marking. The require-
ment that a value is fresh can be encoded in the model (Rosa-Velardo and de Frutos-
Escrig, 2011). Such values can only be mutually related using the comparison predicates
over the underlying domain. In our setting, instead, the working memory of an artifact
system may contain data elements arbitrarily taken from value sorts, or extracted from
the (active domain of a) read-only DB. When loading a data element from a value sort,
this may or not be present in the active domain, and thus it may be possibly fresh (but
notice that freshness cannot be enforced in our model). When loading data elements from
the read-only DB, it is crucial to consider that they are mutually related via constraints
present therein. These constraints are primary keys, foreign keys, and additional axioms
present in the DB theory. The read-only DB it is fixed within a run, but model checking
of safety properties is studied parametrically with respect to all possible read-only DBs
over a given schema. During model checking, we are examining sets of reachable states
described by logical formulae, whose validity depends on properties that might happen
to be true in the read-only DB, depending on the constraints present therein. To handle
data elements coming from the read-only DB and their corresponding constraints, we

Calvanese et al. 48

therefore need a specialized machinery that is different from the one typically used to
tame the infinity brought by freshness. In fact, it is not enough to embed the read-only
DB in a larger model that admits fresh values to obtain quantifier elimination, which is
essential in our model checking algorithm. Quantifier elimination becomes available only
when such a “larger model” possesses suitable model-theoretic properties, which we have
studied in the paper. In particular, we have argued that such properties are captured by
the well-known model-theoretic notion of existentially closed structure and its intimately
related notion of model completion. Notably, resorting to model completion can be seen
as the “most natural” way to obtain quantifier elimination, as it is the “closest” theory to
the original one that at once admits quantifier elimination and preserves satisfiability of
existential formulae. This is precisely what we intensively exploit in our model checking
algorithm.

From the foundational point of view, it is an open, non-trivial research question to see
whether our framework and Data Petri nets (or similar approaches) can be inter-reduced
to each other when we restrict our attention to the three decidable fragments studied in
the paper. We are also interested in using the present contribution as the starting point
for a full line of research dedicated to SMT-based techniques for the effective verification
of data-aware processes, considering richer forms of verification going beyond safety,
and richer classes of artifact systems incorporating concrete data types and arithmetic
operations. We also intend to investigate more integrity constraints used in database
theory: this study should extend decidability and model-completability results beyond
the cases covered in this paper. In addition, it would be interesting to study whether
the decidable classes considered here are tight, or whether interesting variations can be
found for which decidability is preserved, possibly guaranteeing termination of the our
backward reachability procedure.

From the algorithmic point of view, we intend to develop more sophisticated techniques
for the quantifier elimination module required in our backward reachability procedure. A
first stepping stone in this direction, relying on a constrained version of the Superposition
Calculus (SC) (Nieuwenhuis and Rubio, 2001), can be found in (Calvanese et al., 2019c):
indeed, thanks to our constrained version of the SC, suitably combined with congruence
closure, we show that it is possible to obtain a quadratic bound for the complexity of the
quantifier elimination procedure in the case of interest for our applications (Calvanese
et al., 2019c; Calvanese et al., 2018a).

As for experiments, we aim at building on the encouraging results reported here towards
an extensive experimental evaluation of our approach, using the benchmark of (Li et al.,
2017) and the concrete specification language in (Calvanese et al., 2019a) as a starting
point. A natural next step is then to study how the computation of over-approximations,
abstractions and invariants (a capability that mcmt already supports but that should
be adapted to the “db_driven” mode) and well-established techniques for SMT-based
model checking like CEGAR (McMillan, 2006; Alberti et al., 2014a) and IC3 (Bradley,
2011; Hoder and Bjørner, 2012; Bradley, 2012) can be used to speed up the verification
of artifact systems.

Financial Support. This research has been partially supported by the UNIBZ CRC

SMT-based Verification of Data-Aware Processes 49

project REKAP: Reasoning and Enactment for Knowledge-Aware Processes and by the
CHIST-ERA project PACMEL: Process-aware Analytics Support based on Conceptual
Models for Event Logs.

References

Abdulla, P. A., Cerans, K., Jonsson, B., and Tsay, Y.-K. (1996). General decidability theorems
for infinite-state systems. In Proceedings of the 11th Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 313–321.

Alberti, F., Armando, A., and Ranise, S. (2011). ASASP: Automated symbolic analysis of
security policies. In Proceedings of the 23rd International Conference on Automated Deduction
(CADE), volume 6803 of LNCS (LNAI), pages 26–33. Springer.

Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., and Sharygina, N. (2012a). SAFARI:
SMT-based abstraction for arrays with interpolants. In Proceedings of the 24th International
Conference on Computer Aided Verification (CAV), volume 7358 of LNCS, pages 679–685.
Springer.

Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., and Sharygina, N. (2014a). An extension
of lazy abstraction with interpolation for programs with arrays. Formal Methods in System
Design, 45(1):63–109.

Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., and Rossi, G. P. (2010). Brief announcement:
Automated support for the design and validation of fault tolerant parameterized systems - A
case study. In Proceeding of 24th International Symposium on Distributed Computing DISC,
volume 6343 of LNCS, pages 392–394. Springer.

Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., and Rossi, G. P. (2012b). Universal guards,
relativization of quantifiers, and failure models in Model Checking Modulo Theories. Journal
on Satisfiability, Boolean Modeling and Computation, 8(1/2):29–61.

Alberti, F., Ghilardi, S., and Sharygina, N. (2014b). Booster: An acceleration-based verification
framework for array programs. In Proceedings of the 12th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA), volume 8837 of LNCS, pages 18–23.
Springer.

Alberti, F., Ghilardi, S., and Sharygina, N. (2017). A framework for the verification of param-
eterized infinite-state systems. Fundamenta Informaticae, 150(1):1–24.

Baader, F., Ghilardi, S., and Tinelli, C. (2006). A new combination procedure for the word prob-
lem that generalizes fusion decidability results in modal logics. Information and Computation,
pages 1413–1452.

Baader, F. and Nipkow, T. (1998). Term Rewriting and All That. Cambridge University Press.
Bojańczyk, M., Segoufin, L., and Toruńczyk, S. (2013). Verification of database-driven systems

via amalgamation. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS), pages 63–74.

Bradley, A. R. (2011). SAT-based model checking without unrolling. In Proceedings of the
12th International Conference on Verification, Model Checking, and Abstract Interpretation
VMCAI, volume 6538 of LNCS, pages 70–87. Springer.

Bradley, A. R. (2012). IC3 and beyond: Incremental, inductive verification. In Proceedings of
the 24th International Conference on Computer Aided Verification (CAV), volume 7358 of
LNCS, page 4. Springer.

Bradley, A. R. and Manna, Z. (2007). The Calculus of Computation - Decision Procedures with
Applications to Verification. Springer.

Calvanese et al. 50

Bruschi, D., Di Pasquale, A., Ghilardi, S., Lanzi, A., and Pagani, E. (2017). Formal verification
of ARP (address resolution protocol) through SMT-based model checking - A case study.
In Proceedings of the 13th International Conference on Integrated Formal Methods (IFM),
volume 10510 of LNCS, pages 391–406. Springer.

Bruttomesso, R., Carioni, A., Ghilardi, S., and Ranise, S. (2012). Automated analysis of para-
metric timing-based mutual exclusion algorithms. In Proceedings of the 4th International Sym-
posium on NASA Formal Methods (NFM), volume 7226 of LNCS, pages 279–294. Springer.

Calvanese, D., De Giacomo, G., and Montali, M. (2013). Foundations of data-aware process
analysis: A database theory perspective. In Proceedings of the 32nd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), pages 1–12.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., and Rivkin, A. (2018a). Quantifier elimi-
nation for database driven verification. Technical Report arXiv:1806.09686, arXiv.org.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., and Rivkin, A. (2018b). Verifica-
tion of data-aware processes via array-based systems (extended version). Technical Report
arXiv:1806.11459, arXiv.org.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., and Rivkin, A. (2019a). Formal modeling
and SMT-based parameterized verification of data-aware BPMN. In Proceeding of the 17th
International Conference on Business Process Management (BPM), volume 11675 of LNCS,
pages 157–175. Springer.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., and Rivkin, A. (2019b). From model com-
pleteness to verification of data aware processes. In Description Logic, Theory Combination,
and All That, volume 11560 of LNCS, pages 212–239. Springer.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., and Rivkin, A. (2019c). Model complete-
ness, covers and superposition. In Proceedings of 27th International Conference on Automated
Deduction (CADE), volume 11716 of LNCS (LNAI), pages 142–160. Springer.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., and Rivkin, A. (2019d). Verification of
data-aware processes: Challenges and opportunities for automated reasoning. In Proceed-
ings of the 2nd International Workshop on Automated Reasoning: Challenges, Applications,
Directions, Exemplary Achievements (ARCADE). EPTCS.

Carioni, A., Ghilardi, S., and Ranise, S. (2010). MCMT in the land of parametrized timed
automata. In Proceedings of the 6th International Verification Workshop (VERIFY), pages
47–64.

Chang, C.-C. and Keisler, J. H. (1990). Model Theory. North-Holland Publishing Co.
Cimatti, A., Stojic, I., and Tonetta, S. (2018). Formal specification and verification of dynamic

parametrized architectures. In Proceedings of the 22nd International Symposium on Formal
Methods (FM), volume 10951 of LNCS, pages 625–644. Springer.

Conchon, S., A.Goel, Krstic, S., Mebsout, A., and Zaïdi, F. (2013). Invariants for finite instances
and beyond. In Proceedings of the International Conference on Formal Methods in Computer-
Aided Design (FMCAD), pages 61–68.

Conchon, S., Declerck, D., and Zaidi, F. (2018a). Cubicle-W: Parameterized model checking
on weak memory. In Proceedings of the 9th International Joint Conference on Automated
Reasoning (IJCAR), volume 10900 of LNCS (LNAI), pages 152–160. Springer.

Conchon, S., Delzanno, G., and Ferrando, A. (2018b). Declarative parameterized verification of
topology-sensitive distributed protocols. In Proceedings of the 6th International Conference
on Networked Systems (NETYS), volume 11028 of LNCS, pages 209–224. Springer.

Conchon, S., Goel, A., Krstic, S., Mebsout, A., and Zaïdi, F. (2012). Cubicle: A parallel SMT-
based model checker for parameterized systems - Tool paper. In Proceedings of the 24th

SMT-based Verification of Data-Aware Processes 51

International Conference on Computer Aided Verification (CAV), volume 7358 of LNCS,
pages 718–724. Springer.

Conchon, S., Mebsout, A., and Zaïdi, F. (2015). Certificates for parameterized model checking.
In Proceeding of the 20th International Symposium on Formal Methods (FM), volume 9109 of
LNCS, pages 126–142. Springer.

Damaggio, E., Deutsch, A., and Vianu, V. (2012). Artifact systems with data dependencies and
arithmetic. ACM Transactions on Database Systems, 37(3):22:1–22:36.

Delzanno, G. (2002). An overview of MSR(C): A CLP-based framework for the symbolic verifica-
tion of parameterized concurrent systems. Electronic Notes in Theoretical Computer Science,
76:65–82.

Delzanno, G. (2018). Parameterized verification of publish/subcribe protocols via infinite-
state model checking. In Proceedings of the 33rd Italian Conference on Computational Logic
(CILC), pages 97–111.

Delzanno, G., Esparza, J., and Podelski, A. (1999). Constraint-based analysis of broadcast
protocols. In Proceeding of 13th International Workshop on Computer Science Logic (CSL),
volume 1683 of LNCS, pages 50–66. Springer.

Deutsch, A., Hull, R., Li, Y., and Vianu, V. (2018). Automatic verification of database-centric
systems. SIGLOG News, 5(2):37–56.

Deutsch, A., Hull, R., Patrizi, F., and Vianu, V. (2009). Automatic verification of data-centric
business processes. In Proceedings of the 12th International Conference on Database Theory
(ICDT), pages 252–267.

Deutsch, A., Li, Y., and Vianu, V. (2016). Verification of hierarchical artifact systems. In Pro-
ceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS), pages 179–194.

Deutsch, A., Li, Y., and Vianu, V. (2019). Verification of hierarchical artifact systems. ACM
Transactions on Database Systems, 44(3):12:1–12:68.

Dutertre, B. and De Moura, L. (2006). The YICES SMT solver. Technical report, SRI Interna-
tional.

Esparza, J., Finkel, A., and Mayr, R. (1999). On the verification of broadcast protocols. In
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS), pages
352–359.

Fagin, R. (1976). Probabilities on finite models. Journal of Symbolic Logic, 41(1):50–58.
Ghilardi, S. (2004). Model theoretic methods in combined constraint satisfiability. Journal of

Automated Reasoning, 33(3-4):221–249.
Ghilardi, S. and Gianola, A. (2017). Interpolation, amalgamation and combination (the non-

disjoint signatures case). In Proceedings of the 11th International Symposium on Frontiers of
Combining Systems (FroCoS), volume 10483 of LNCS (LNAI), pages 316–332. Springer.

Ghilardi, S. and Gianola, A. (2018). Modularity results for interpolation, amalgamation and
superamalgamation. Annals of Pure and Applied Logic, 169(8):731–754.

Ghilardi, S., Nicolini, E., Ranise, S., and Zucchelli, D. (2008a). Towards SMT model checking of
array-based systems. In Proceedings of the 4th International Joint Conference on Automated
Reasoning (IJCAR), volume 5195 of LNCS (LNAI), pages 67–82. Springer.

Ghilardi, S., Nicolini, E., and Zucchelli, D. (2008b). A comprehensive framework for combined
decision procedures. ACM Transactions on Computational Logic, 9(2):8:1–8:54.

Ghilardi, S. and Ranise, S. (2010a). Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. Logical Methods in Computer Science, 6(4).

Ghilardi, S. and Ranise, S. (2010b). MCMT: A model checker modulo theories. In Proceedings

Calvanese et al. 52

of the 5th International Joint Conference on Automated Reasoning (IJCAR), volume 6173 of
LNCS (LNAI), pages 22–29. Springer.

Ghilardi, S. and van Gool, S. J. (2016). Monadic second order logic as the model companion
of temporal logic. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 417–426.

Ghilardi, S. and van Gool, S. J. (2017). A model-theoretic characterization of monadic second
order logic on infinite words. Journal of Symbolic Logic, 82(1):62–76.

Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 3(2):326–336.

Hoder, K. and Bjørner, N. (2012). Generalized property directed reachability. In Proceedings of
the 15th International Conference on Theory and Applications of Satisfiability Testing (SAT),
volume 7317 of LNCS, pages 157–171. Springer.

Hull, R. (2008). Artifact-centric business process models: Brief survey of research results and
challenges. In Proceedings of the OTM Confederated International Conferences, volume 5332
of LNCS, pages 1152–1163. Springer.

Kruskal, J. B. (1960). Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture. Trans-
actions of the American Mathematical Society, 95:210–225.

Lazic, R., Newcomb, T. C., Ouaknine, J., Roscoe, A. W., and Worrell, J. (2008). Nets with
tokens which carry data. Fundamenta Informaticae, 88(3):251–274.

Li, Y., Deutsch, A., and Vianu, V. (2017). VERIFAS: A practical verifier for artifact systems.
Proceedings of the VLDB Endowment, 11(3):283–296.

Lipparini, P. (1982). Locally finite theories with model companion. In Atti della Accademia
Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8,
volume 72. Accademia Nazionale dei Lincei.

McMillan, K. L. (2006). Lazy Abstraction with Interpolants. In Proceedings of the 18th In-
ternational Conference on Computer Aided Verification (CAV), volume 4144 of LNCS, pages
123–136. Springer.

Nicolini, E., Ringeissen, C., and Rusinowitch, M. (2009a). Data structures with arithmetic
constraints: a non-disjoint combination. In Proceedings of the 7th International Symposium
on Frontiers of Combining Systems (FroCoS), volume 5749 of LNCS (LNAI), pages 319–334.
Springer.

Nicolini, E., Ringeissen, C., and Rusinowitch, M. (2009b). Satisfiability procedures for combina-
tion of theories sharing integer offsets. In Proceedings of the 15th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 5505
of LNCS, pages 428–442. Springer.

Nicolini, E., Ringeissen, C., and Rusinowitch, M. (2010). Combining satisfiability procedures for
unions of theories with a shared counting operator. Fundamenta Informaticae, 105(1-2):163–
187.

Nieuwenhuis, R. and Rubio, A. (2001). Paramodulation-based theorem proving. In Handbook
of Automated Reasoning (in 2 volumes), pages 371–443. MIT Press.

Rado, R. (1964). Universal graphs and universal functions. Acta Arithmetica, 9:331–340.
Robinson, A. (1951). On the Metamathematics of Algebra. North-Holland.
Robinson, A. (1963). Introduction to model theory and to the metamathematics of algebra.

Studies in logic and the foundations of mathematics. North-Holland.
Rosa-Velardo, F. and de Frutos-Escrig, D. (2011). Decidability and complexity of Petri nets

with unordered data. Theoretical Computer Science, 412(34):4439–4451.
Schmitz, S. and Schnoebelen, P. (2013). The power of well-structured systems. In Proceedings

SMT-based Verification of Data-Aware Processes 53

of the 24th International Conference on Concurrency Theory (CONCUR), volume 8052 of
LNCS, pages 5–24. Springer.

Silver, B. (2011). BPMN Method and Style. Cody-Cassidy, 2nd edition.
Sofronie-Stokkermans, V. (2008). Interpolation in local theory extensions. Logical Methods in

Computer Science, 4(4).
Sofronie-Stokkermans, V. (2016). On interpolation and symbol elimination in theory extensions.

In Proceedings of the 8th International Joint Conference on Automated Reasoning (IJCAR),
volume 9706 of LNCS (LNAI), pages 273–289. Springer.

Sofronie-Stokkermans, V. (2018). On interpolation and symbol elimination in theory extensions.
Logical Methods in Computer Science, 14(3).

Vianu, V. (2009). Automatic verification of database-driven systems: a new frontier. In Pro-
ceedings of the 12th International Conference on Database Theory (ICDT), pages 1–13.

Wheeler, W. H. (1976). Model-companions and definability in existentially complete structures.
Israel Journal of Mathematics, 25(3-4):305–330.

