TRIPLE PRODUCT p-ADIC L-FUNCTIONS FOR BALANCED WEIGHTS

MATTHEW GREENBERG AND MARCO ADAMO SEVESO

ABSTRACT. We construct p-adic triple product L-functions that interpolate (square roots of) central critical
L-values in the balanced region. Thus, our construction complements that of M. Harris and J. Tilouine.

There are four central critical regions for the triple product L-functions and two opposite settings,
according to the sign of the functional equation. In the first case, three of these regions are of interpolation,
having positive sign; they are called the unbalanced regions and one gets three p-adic L-functions, one
for each region of interpolation (this is the Harris-Tilouine setting). In the other setting there is only
one region of interpolation, called the balanced region: we produce the corresponding p-adic L-function.
Our triple product p-adic L-function arises as p-adic period integrals interpolating normalizations of the
local archimedean period integrals. The latter encode information about classical representation theoretic
branching laws. The main step in our construction of p-adic period integrals is showing that these branching
laws vary in a p-adic analytic fashion. This relies crucially on the Ash-Stevens theory of highest weight
representations over affinoid algebras.
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1. INTRODUCTION

Consider three finite slope cuspidal p-adic Coleman eigenfamilies £ = (f1,fs,f3) new of tame levels
(N1, Na, N3), nebetypes (e1,e2,e3) and eigenvalues (o, g, og) for the U,-operator of slope (hi, hg, hs3),
parametrized by the product of three connected affinoid subdomains U = U; x Uy x Us C X3, where X
denotes the weight space and we suppose these rigid analytic objects to be defined over a p-adic field F. By
an integer point we mean k € N> N U, say k = (k1, ko, k3), such that k; > h; — 1. We also call k; an integer
point. If k is an integer point, we write fi, = (f1 k,, f2,x,, f3 k,) for the specialization of f, which is a triple of
classical modular forms with f; j, of weight k; + 2. Because oy ,, = +phi/2 if f; i, is p-new, for every k; # 2h;
we know that f; ,, = f; x, is old at p and it is the p-stabilization of some newform

£ = 11, € Skop2 (To (N3) &)V 7Y

We say that k; is a generic integer point in this case and we say that k is a generic integer point if k; is such
a point for ¢ = 1,2,3. We refer the reader to Remark 8.1 below for more details.
The problem we are interested in is about interpolating the function

E = (klv k/27 k-?)) = L (ffkl X f;ékb X ffk?’,c&)

for the central critical value ¢, := W. Here L (ffkl X ffb X fj,&ky s) is the triple product complex
L-function (see for example [24, §1] for its definition). Let us write m; := 7y, for the automorphic
representation attached to f; := Z#k If we want Il := m ® m2 ® 73 to be selfdual, the following condition
(CC)k, kg .k, e€ds to be imposed:

(Cc)kl,kg,kg 116963 =1, s0 that ki + ko + k3 € 2N.

There are four central critical regions, namely
2, = {(kl,kQ,kg) Lk > ko + kg and (CC)y o, holds},
Sy = {(/ﬁ,kg,kg) ko >k + kg and (CO), 4 holds}7
Y3 = {(k1,k2,k3) t ks > ki + ko and (CO)y, 1, 1, hOldS}v
Y103 = {(k‘l,kg, k3) k1 < ko + kg ko < ki + ks, ks < k1 + k2 and (CO),, oo holds} .

The transcendental nature of the Deligne’s period {2 depends on the critical region. We have, up to powers
of ,

Q= (fi, f1)? on X and Q = (f1, f1) (fo, fo) (f3, f3) on Tias.

Here (f,g) = (f, 9), is the Petersson inner product, that we normalized by the volume of the corresponding
modular curve:
1 _dxdy

(1) (fs9)p = mfy/po(m F(2)7()Im (2)" u(2), p= 2

Let S; be the set of places such that m; , admits a Jacquet-Langlands lift va to the group of units of the
division quaternion Q,-algebra. Set S := S;NS3NS3 and, for every v € S, let d, (resp. d2) be the dimension
of the space of trilinear forms on 7 , ® T2, ® 73, (resp. wf,u ® wgv ® wgv). Define, for every v € S,

1 ifd,=1andd? =0
€U(f1><f2><f3):{ —1 ifd, =0and dP = 1.

It is a theorem of Prasad (see [34]) that the above function is indeed well defined, i.e. only one of the above

two possibilities occurs. Write S = St LU S~, where ST := {v: ¢, (fi1 X fo X f3) = 1}, set D = Dy, =

Hles,_{oo} [ and let Bp = B, be the quaternion algebra ramified at the finite primes dividing D. If II is

an irreducible cuspidal automorphic representation of GL;’, we let B be the quaternion algebra obtained by

the above recipe and say that it is the one predicted by [34]. Recalling the dependence of these considerations
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from the weight, so that S~ = S,” (resp. D = Dj), the sign of the function equation at k is given by the
formula -

(1) = Maes o () = Toes o U x o x fi) = (-1
Let gy (fZ) be the product of the finite local signs, so that e (fgﬁ) = €fn (fj) oo (fj) ‘We remark that

the nature of the local sign at infinity depends on the critical region: we have £ (f,i‘aﬁ ) =1ifk e, for

i =1, 2 or 3, while e (f,fﬁ) = —1if k € ¥153. Let us assume that N; is squarefree for ¢ = 1,2, 3. It is easy

to see that egy (ff ) =1 or eqp (f,zé£ ) = —1 for every generic integer k. Indeed, under this assumption we

have, for every such k and every finite v =1 € S;#,
k

ElOf):‘ﬂﬂﬁwJaMhﬁﬁathJTﬁﬁ?Ha
a function which can be p-adically interpolated and then needs to be constant for all weights (by connect-
edness of the U;’s). Hence, having fixed f there is a well defined finite “generic sign” egy, (f) of the family,
Bp = Br, does not depend on the generic integer point k£ and we have a well-posed interpolation problem.
Of coursejwe expect eqy (f) and Bp = B, to be defined in general, i.e. independent of the generic integer
point k (as explained below, we can give evidences). At this point the consideration splits in two cases.

If eqn (f) = 1 (hence D is the product of an even number of primes), then (fz&) =1 for every generic

k € ¥1, 39 or ¥3. One gets three (square root) p-adic L-function E?i (f), one for every region %;, with the
property that

E?i (£) (k)> =L (ffkl X fsz X f;ﬁka, CE> for k € ¥; generic.

Here we write = to mean equality up to Euler factors, periods and local constants. On the other hand,
L (fk1 X fr, X fkg,cﬁ) = 0 when k € X3 is generic because of the sign of the functional equation and
the interpolation problem on X3 is trivial. This is the Harris-Tilouine setting studied in [25], under some
ordinariness assumption and supposing Ny = Ny = N3 = D = 1. These p-adic L-functions have recently
found interesting applications in [15] and [16]. See also [1] for an extension of Harris-Tilouine construction
to Coleman families and [14] for related constructions.

When g, (£) = —1 (hence D is the product of an odd number of primes), then ¢ (f,fﬁ) =1 for every

generic k € Y123. The interpolation problem is therefore non-trivial only in the balancediregion. We get a
(square root) p-adic L-functions £372% (f) which interpolates in the region ¥123:

£ (6 (0" = L, xSy x g cx) for k€ Yz generic.

In order to formulate the result in a simpler form, let us assume that M = N; = Ny = N3 and that the
nebetypes ¢; are trivial (but we will keep track of the characters in order to state (5) below with the correct
Euler factors). Then we get a formula
# #
(¢L&’¢LE>

123 _ k 2 1
(2) EE (ﬁ) (E)Q = 5;) (Q7E)2 M(LTAd)L (1/2,1_[&) H”M 7 (1 + l) ’

where the quantities appearing in the right hand side are the following. Define k] :=
’“L;*k?', k3 = M;*k?' and k* = M;H“?’, which are integers in view of the definition of X123. We have
the Euler factor

—kitkotks ko=
2 ) X2

10003

1 «
gp (Qa E) = gp,l (Qy E) gp,2 (Q7 E) gp,?} (Q, E) (1 - pk +1> )

where £, 1 (o, k) :=1—¢1 (p)_1 QL pki and Ep2 (. k) and &, 3 (a, k) are defined in a similar way. By the p-

[65Xe %3
adic Jacquet-Langlands correspondence (see [10]), the three Coleman families £ lift to three eigenfamilies Yr =

(apfl7g0f2,cpf3) on Bp, whose specialization ¢ , = (<pfhk1,<,0f2’k27g0f3’k3) at a generic k is the p-stabilization

of three newforms gofk = (g@f & ,goz kQ,go:f/t k3) on Bp of level M/D; then (gofk,gofk) is the product of
LR 1,h1 ) ) ERLLA ERLLA E
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quaternionic Petersson products (cpfkv,gofkv) (see (19) and the definition before Lemma 3.2). Finally,
2 ve 2 fve kl

setting I'c (s) := 2 (27) °T' (s), we have

L(1/2,10g) = Lo (1/2,0g) L (£, % ff, % fice)
where
Lo (1/2,T;) = T (k" +2)Tc (k] +1)Te (k5 + 1) T (k5 + 1)
= 20 (2m) O (k" + 1) e
and L (57 I, Ad) is a adjoint L-function.

Remark 1.1. It follows from Deligne’s proof of the generalized Ramanujan conjecture that &, (o, k) # 0 for
every generic integer point k.

#o
OF jo?

Before explaining the idea of the proof, let us remark that the ratio m can be given a different
sk

arrangement as follows (see (73)). First, a result of Shimura and Hida relates L (1,11, Ad) to the period
(2.F) = (i it), (Husffn), (7. #8,,) - Second we define, using Proposition 7.8, a
- -/ K 1 2 3

rigid analytic function (<pf, <pf) uniquely characterized by the interpolation formula
— p

_ 0 # o
(££7 fﬁ)p (E) - gp (g7 E) (‘nga wg&)ﬁu
where €8 (a, ) = T,y 05 €5 (o, i) and €8 (. ki) = (1= <3 () o ) (1 - (p) a9 +1).

Remark 1.2. Tt follows from Deligne’s proof of the generalized Ramanujan conjecture that, for every generic
integer point k, 1 — ¢; (p) 04;2]3’“ = (0. Hence, we have EZ? (ai, ki) = 0 if and only if a; = £4/¢; (p)p% In
particular, assuming that the slope of «; is < h;, we see that the condition 51? (v, k;) = 0 implies k; < 2h;—1.
Consequently, for all but finitely many generic integer point k, we have EI? (a, k) #0.

Then one finds, assuming that EZ? (a, k) #0,

(ehwete), o iy (e, ®
L(1,1, Ad) 4573 lM( +1> £ (a. k) (fi’fzﬁ)
= =/k

(see (74)). Hence (2) becomes

k) 4
27 &, (o k) (fffi) (k 2 1
3103 2 _ P \= p z _
L, (£) (k)" = A X (ak)  (p# g# L (1/2vHE) Hl\M l L+ 1)
P kot ),

Remark 1.3. The p-adic period function (cpf, cpf> is the tensor product of the three functions (‘Pfu safi)p =
=y

p+l

(&2

((pfi, gofi) characterized by the interpolation property (<pfi , apfi)p (k) = EZ? (i, k) (gpfk, @fk)k (see Propo-

sition 7.8). In the ordinary case, one can normalize the families ¢, and relate them to Hida’s canonical periods
and congruence ideals (see [35, §2.1 and §2.2 and Proposition 6.4], [28, Theorem 0.1, Conjecture 0.2 (4i)],
[27, Corollary 10.6], [26, Theorem 5.1] and [32, Proposition 10.1.1]).

Let us now explain how (2) is proved and the relevance of the assumption that we have done on the Coleman
family. First, as explained, one problem is that there a priori no well defined interpolation problem because
of the lack of a generic sign fixing a region of interpolation; second, as we will see, the special value formula
requires test vectors and it is not clear that they move p-adically in general. In order to circumvent this
issue, we are inspired by Ichino’s special value formula. Let us fix a (definite for our purposes) quaternion
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algebra B, let B* be the algebraic group associated to its invertible elements with center Zgx and set
[B* (A)}ZBX = Zpx (A)\B* (A) /B*. Then Ichino’s formula takes the form

b bV
CADLUAT W) (") gL (1/2 Iy H e (4
23 L (1,1 (¢), Ad) vl 23 L (1,11 (¢

where the notations are as follows. In the first equality we have that ¢ = ®,9,, € H (w) is an L?-automorphic
form on B*3, that we assume to be in an irreducible representation IT (1) of B*3, Il’ (1) is the automorphic
representation of GL3 which corresponds to II (1) via the Jacquet-Langlands correspondence, Ip (¢) =
f[BX(A)]Z Y (x) d,u[BX(A)]ZB (z), C is a non-zero constant defined in (22) below (which depends on the

BX x

) is defined in (25) (see (17) and the lines after (18) for the definition of

3) Ig ()’ =

choice of local pairings) and I, (¢

v

. b bV

¢ € I (¥)" appearing in (25)). In the second equality we have determined C' = Wihz and defined
H <wb wbv>

C;W’” (¥,) = ﬁ using auxiliary 1° € II (1) and ¢*" € II(¢)" such that <wb,z/)bv>L2 # 0. Let us

remark that, as explained in the proof of Theorem 3.4, formula (3) is a special case of a more general Ichino’s
formula obtained choosing the dual vector ¢" = 1 in order to get the square I (1/1)2. Though qualitatively
equivalent, the local constants C’g’b’ww (1,) that appear in the second expression are more convenient to
work with (see Remark 3.5). Although by a result of Prasad (see [34]) Iz = 0 on II(¢)) except in case
B = Bry(y), a problem which is always meaningful is to try to interpolate the function k — Ip (Z/JE) if 4y,
is an L2-automorphic form canonically attached to a vector valued modular form Y = (%Jcl ) 902,k27803,k3)
on B*? (as explained below) which comes as the specialization of a p-adic family ¢ = (@1, o, ©3) on B*3.
Also, the Jacquet conjecture proved by Harris and Kudla (see [24] and Theorem 3.4 (2) below) tells us that,
when B = BH/(wk)’ there exists 77[’/& eIr (1/)&) such that the associated local constants I, (z//&v) are non-zero
and, hence

(4) I (1) # 0 = L (1/2.10 (4,)) #0.

In this case, we say that v, is a test vector. Formulated in this way our interpolation problem, we can remove
all the assumptions that was done on the three Coleman families f and give an unconditional p-adic Ichino’s
formula analogous to (3). In order to state our main result, let us recall that ; € My (D, (W), wgfp)“i where
the notation is the following. Let Xo (pZ,) C M (Z,) be the subsemigroup of matrices having non-zero
determinant, upper left entry a € Z and lower left entry ¢ € pZ, and set g (pZ) := o (pZy) N GL2 (Zy).
The inclusion U; C X corresponds to a continuous character k; : Z;j — O (U;) and one may consider the
space Dy, (W) of locally analytic distributions on W := Zy x Zy that are “homogeneous of weight k;” (see

§4.1 for the precise definition). Also, ngp : Zpx (Af) — O (U;) is the character defined by the formula
with N¢ (2) € QF

wlgjp (2) == wr,; (2) (ﬁ(z))p ', where N (z) is defined by the formula z = N¢ (2) e)

and 5y € Z (see also §2.1), wg; is the inverse of the adelization wfjil (2) ==& (@) of &;! and (=),
means that we take the p-component (which is indeed an element of Z,). Because X (pZ;) acts on Dy, (W)
from the right (by right multiplication on the row vectors in W) one may form the space M, (D, (W), wgfp),
which is a subspace of the space of those functions ¢, : B* (A¢) — Dy, (W) with the property that there
exists an open and compact subgroup K? C B* (Af) (here A} is the prime to p part of Af) such that
v; (zuxgs) = Wop( z) @; (x) uy ! for every z € Zgx (Ar), u € KPTg (pZy), © € B* (Af) and g € B*. These
spaces are naturally B* (A?)-modules and they are further endowed with the action of a Up,-operator (see the

lines before Proposition 5.4): the superscript (—)* refers to the «;-eigenspace for the U,-operator. Also, if
k; € U; is an integer, we may consider the space of two variables polynomials that are homogeneous of degree

IThe fact that the central characters are the inverse of the usual ones is due to the fact that the L2-automorphic forms on
B that appear in §3.2 enjoy the equivariance property f (xg) = f (z), as opposite to the usual convention f (gz) = f (x). Thus
we Con51der right BX (Ay) action (fu) (x) := f (ux) on them, rather than the usual left action (uf) (z) := f (zu~!). The rule
f*x):=f (x ) which satisfies (fu)* = uf*, exchange the two spaces, but the central characters of the corresponding spaces
are reversed
5



k; and we write Vy, p for its F-dual; next, let wh' : Zgx (A;) — F* be defined by the formula wf’ (z) :=
we i (2) NF (2) and let M® (V;C Py Wt ) be the space of functions ¢, ;.. : B* (Af) — Vy, p with the property
that there exists an open and compact subgroup K” C B* (A{) such that ¢, ;. (zuzgr) = whi (2 ) @ik, (T) goo
for every z, u,  and g as above, which is again a B* (A})-module endowed with a Up-operator. There
is a specialization map ¢; + ¢, ;. from M (Dy, (W), wy p) to M° (Vk Fow ) (see (41)) satisfying the
following properties (easily proved by means of the Ash-Stevens machinery [4], see also [9]): it respects the

Kp
above actions, both My (D, (W), wlo‘p)Kp and M° (V;€ F,Ww ) admit slope < h decompositions for the

Up-operator (as defined in [4]) for every open and compact subgroup K? as above and the slope < h parts

Mg (Die, (W) ) KPS~ N
- — M° Vg, F,W,
Ikng(Dkl(W),wof YKP,<h i

I, C O (U;) is the ideal of functions vanishing at k;). Let us write
Mg (U) := My (D, (W), wg3,) ™ @ My (D, (W), w52,)* © My (Diey (W), w055,) ",

so that we focus on elements ¢ € My (U). Our main result is that there is a (unique up to sign) O (U)-
valued O (U)-linear functional Ly = Lo, @ My (U) — O (U) such that, for every ¢ € Mjp" which is the
tensor product of three families, if ¢, belongs to an irreducible representation 11 (gp&), then

e (f) (E)Q _— (%E)Q 2§§2 CQL( ()1 H(/léi 1_; (‘Pk))> H I( @k
’ k

(wi”) ,
® = sl T GO, ),

where @Z = (‘Pk#lv‘:@k#y <pk#3) is the unique triple which componentwisely has p-stabilization ¢, I’ (@Z) =

(—)=" satisfy the control theorem for every k+1 > h (here

bbt
II' (@) :=1I' (¢4), C = C is defined in (22) below, L,(goﬁ#) and Cf e ((pj) are again defined in (25)

and, as in (3) above, the second equality holds with the auxiliary choice of vectors @Z# and wzb# such that

(cpk ,g@';cb#) # 0 and satisfying a local condition at p (see the lines before Theorem 7.3). This is proved

in Theorem 77.3 and Theorem 8.3, from which (2) is deduced as a special case (see also §8.3), is obtained
by providing conditions on the Coleman families under which one knows a priori that B = Bp, for every
generic integer k, an explicit test vector ¢ moving in families can be written down for which the corresponding

@Z) has been computed (that is, we take @Z = @Z @Zb#) and then relating

(5t.50), 10 (st t), o )

Let us write My (Q, fi) C My (U) for the B* (AF)-representation generated by g over O (U) and

local constants Cy* el

suppose that there is some generic integer point k° such that L (fl#ko X ffko X ffko , cko> # 0for B= Bp,,
»vL 12 V3 - L

Then we see from (5), (4) and Remark 1.1 that £ # 0 as a functional on My (Q, ff) and, hence, there

is some ¢ € M7 (Q, gf) such that Ly (g) # 0. In particular, we see that B = Bp, and that ¢, 1s a test

vector for every generic integer point k in a Zariski open subset of U, by (5) and Remark 1.1.

Let us briefly explain how Theorem 7.3 is proved. First, the L?-automorphic forms to which v belongs are
related to the vector valued modular forms to which ¢, described above belongs; via this identification, the
integral Ip (¢) that appear in the left hand side of the Ichino’s formula is related to a functional t;, on vector
valued modular forms (see §3 and Theorem 3.4). This is done by appealing to the results of [22], which set
up a general formalism for getting such a kind of results in the setting of Gan-Gross-Prasad conjectures when
the real points of the algebraic group are compact modulo the center. This linear functional ¢; is obtained
by evaluating the vector valued forms at the product AE/E € Py, r ® P, r ® P, p of certain powers of
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determinants (see (13)): the resulting formula could be viewed as an analogous of the Hatcher’s formula in
our setting (which indeed can be deduced from Waldspurger’s formula via the method of [22]). It turns out
that t; can not be deformed p-adically, but it is closely related to three linear forms ¢7 . (only defined on
distribution valued modular forms) which can be easily moved p-adically. The relationship between t; and
t7j is that they differs by the Euler factor &, ; (a, k) and the action of an operator W), (closely related to the
Atkin-Lehner operator). For example (see Corollary 5.6 and (46)):

35 (P1 ® o ®@ 03 | Wp) = Ep 3 (a, k) (i1 ® 9y ® 3 | W)y).

Expressing t5(p; ® o @ @3 | Wp) in terms of ¢ (@i) gives rise to another Euler factor aigp,i (a, k) such

that &, (o, k) Ep i (a, k) = & (o, k) does not depend on the choice of i = 1,2, 3 (see Proposition 6.5). The
result is that, writing £5 () (k) for any one of pa—tlt (o1 | W3 ® @y ® p3), B a2 t55 (P1 ® o | W3 @ p3) or

p;;l t5 5 (P1 ® o @ g | W3), all of them satisfy the same interpolation property

®) £5(0) () = & (o, )t ()

by Zariski density of the integer points, these p-adically moving quantities needs to be the same and this
interpolation formula uniquely characterize L (g) (thus fixing the sign). Applying our vector valued version
of Ichino’s formula (Theorem 3.4), (5) is deduced from (6). Let us remark that one feature of our asymmetric
construction is that one gets in a natural way improved p-adic L-functions defined on appropriate improving
planes (see Proposition 7.7).

Remark 1.4. The local constants C’I’f’b’ww (wv, 7,/11\)/) that appear in (24) below have been quite largely studied
in the literature about subconvexity problems when ¢, = ¢’ and ¢ = 4"V =, (see [42] and [30]). They
appear when one specializes Ichino’s formula (27) to the case 1V = ¥: then I (¥)* (of (3)) is replaced
by |Ip (w)|2 and <¢,1}>L2 by <¢,@>L2, which is always non-zero. Our assumption that the nebetype are
trivial in Theorem 8.3 allows us to appeal to this existing literature. Time after our works was completed,
Hsieh has successfully completed the computation of the local constants C¥ S (1/)1,, {pv) = ( taking 1/); and

¢" newvectors as defined in Example 3.3 and explicit vectors ¢, linearly depending on ¢, (see [29, §6.1]).
Rather than appealing to his results, we illustrate the method for specifying the local constants in (5) in
order to get Theorem 8.3 in a simplified setting, allowing us to appeal to the previously existing literature
and make an easier choice of test vectors. In the ordinary case, Hsieh has (also) given a construction of the
balanced triple product p-adic L-functions based on our vector valued version of Ichino’s formula (Theorem
3.4) involving the trilinear form ¢ (see [29, Proposition 4.10]). He was able, in this case, to give a very nice
Gross’ style interpretation of our p-adically moving trilinear form 3 , (cfr. the proof of [29, Proposition 4.9]
with our Proposition 5.4 and Corollary 5.6).

Remark 1.5. Suppose that k : Z5 — O* and k' : Z) — O'* valued in (the invertible elements of)
F-Banach algebras and are two continuous homomorphisms and that ¢ : @ — O’ is a continuous homo-
morphism of F-algebras with the property that k/ = ¢ o k. Then it is easy to see that the canonical map
M;(Dk(W),wl&p)@o@O’ — M (Dw(W),w,) is an isomorphism. In particular, the definition of Mg (U)
can be uniquely extended to arbitrary admissible open subsets of X'. Correspondingly, it follows from the fact
that our construction of L* behaves well with respect to base changes that we can uniquely extend its def-
inition to arbitrary adm1551ble open subsets of X and that the resulting functional is uniquely characterized
by the interpolation property (6) and, up to sign, by (5).

Suppose that k is an integer point which is not generic: then at least one of the forms ¢, ;. is new at p.
We compute the Euler factors in this case in Proposition 7.5. Our interest is motivated by the forthcoming
work [6] in which exceptional zero phenomena of these p-adic L-functions are investigated, an analogue of
those discovered in [33] and studied in [23] (see Remark 7.6). We will give an algebraic interpretation of these
result in the framework of Nekovar-style weight pairings as defined in [39] and [40]. Particularly interesting
is the case where a local change of sign at p produces an extra vanishing due to the complex L-function (see
Remark 7.6): we relate the derivatives of our p-adic L-function to the Abel-Jacobi image of diagonal cycles.
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2. MODULAR FORMS AND p-ADIC MODULAR FORMS

Let B be a definite quaternion division Q-algebra which is split at the prime p and let B (resp. B*) be
the associated ring scheme (resp. algebraic group). We write A = A X R for the adele ring of Q and define
AP by the rule Ay = AY x Q,. We set By := B (A¢) (resp. B :=B* (Ay)), B{"? := B(Af) and B, = B (Q,)
(resp. BY :=B* (Qy)) if v is either a finite place or v = 0o, so that B = B{*" x BX. We write b~ b" for
the main involution and nrd : B* — G,,, for the reduced norm.

If Z C Zgx = Gy, is a closed subgroup (such as the trivial subgroup or the whole center), we define
Zy =7 (As), Zy :=Z(Q,) and ZF := Z (A}), so that Zy = Z¥ x Z,. We will need to consider double cosets
of the form

[BX (A)]Z :=Z(A)\B* (A)/B* and [BfX]Z = Zi\B{ /B*.
In order to later apply the results from [22], we fix measures as follows. We take the Tamagawa measure
Hza)nBx () o0 Z (A)\B* (A) and write fygx 4y for the quotient measure (normalized in the usual way).
on Z(R)\B* (R) and u := fipy on B¢ such that pu(K) € Q for some (and

hence every) open and compact subgroup K C B{* and such that, writing u BX /B> for the induced quotient

Next we choose pz\gx o

measure on B{/B* (normalized in the usual way), which restricts to an invariant measure Klpr], on
flz

C(B{\B{/B*) c C(B{/B*),

(M e, S @ dup ), (@) = [ (fz B ) | (@10) Az o (20) ) ] ()

is satisfied. We let mz\gx o be the total measure of Z (R )\BX (R).

Let ¥¢ (pZp) C My (Z,) be the subsemigroup of matrices having non-zero determinant, upper left entry
a € Z) and lower left entry ¢ € pZ, and set T'g (pZ,,) := o (pZ,) NGL2 (Z,). Consider an open and compact
subgroup K, C B/ (it will be I'g (pZ,) in our applications). We will also need to consider a subsemigroup

K7 C %, C BY and to define &, (B{) := B{"" x £, (we will take ¥, = K¢, £ (pZ;) or BY).

Let K := K (B{) (resp. K°:= K (B{,Kj)) be the set of open and compact subgroups K C B{ (resp.
K = K? x K, with K? C B{” and K, C K} open and compact). If S is a B{-module (resp. a ¥, (B{)-
module), then we define

Sk = Ukex S5 (resp. SF° .= Ukexe SEY.
We note that the Hecke operators H (B{) (resp. H (3, (B; ))) act on SX (resp. SX”) by double cosets of
elements of By (resp. ¥, (B{")). We describe the action on SK° for a ¥, (B{)-module S (the action of S*
is similar). If Ky, Ky € ICo and 7 € X, (B ), the space K1\K1mK> is ﬁmte2 and we may write

KymKy = I—la:EKl\Klﬂ'Kg Kyx.

As usual, we may define
. | KK : SKl — SK2
by the rule

(8) v KimKe =37 e\ Kynkc, VT

The mapping v — 7u induces a bijection (K2 N 7T’1K17r) \Ks — K1\K17Kj, so that we may take x = 7u
in the above expression:

(9) v| KymKy = Zue(Kgﬁﬂ_lKrﬂ')\Kz UTTU.

We can define in this way an action of the Hecke algebra H (Ep (fo)) of elements of ¥, (fo). When
K; = B), we have VK® = VK and we have an action of (2, (BY)) = H(B{). Let K* C K° be the
subset of those groups such that K, = K and write H (3,) for the Hecke algebra of double cosets KmK

with 7 concentrated in 7, € ¥, and K € K°°. Then (8) defines an operator on VX = (V’CO)K” by means
of the formula vU, := v | K7K if v € VX where K € K°°, i.e. it does not depend on K € K°°. It follows

2Indeed note that Ki7K> is compact, being the image of K1 X K2 by means of the continuous map given by (z,y) — zmy.
Since K is open, K1mK2 = | |; K1m; is an open covering which, by compactness, admits a finite refinement.
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that VX7 is endowed with an action of B x H (¥,): write 7, for the idele concentrated at p, where we

have (), = mp := ( (1) 2 >; then VX is endowed with an action of the operator U, := Uz,-

Let (V, p) be a right representation of G, € {B*,BX} (resp. X,) with coefficients in some commutative
unitary ring R. If g € B* (A), we will write g, € B;S for its v-component. When p is understood, we simply
write vgoo (resp. vgp) for vp (9oo) (resp. vp (gp)). Fix a character wg : Zr — R* (resp. wo, : Zr —> R™).
Define S (B{*, p) (resp. Sy (B{,p)) to be the space of maps ¢ : B — V endowed with the (B*, B{)-action
(resp. (B*,%, (B{))-action) given by

(gpu) (z) := ¢ (uzgr) p (95') , Where g € B* and u € BY
(resp. (gpu) (z) := ¢ (uxgr) p (up), where g € B* and u € ¥, (B{")).
Then
S(BE, prwo) = {9 € S(B,p) : 9(2) = wol2)p(2) for all 2 € Zg}
(resp. Sp (B, p,woyp) = {p € Sp(B{, p) : ¢(23) = wo p(2)¢(z) for all z € Z;})
is a sub (B*, B{)-module (resp. sub (B*, 3, (B{))-module). We also write

5 <BfX /B P ,wo) =5 (fom,w())(BX,l) (resp. Sy (fo /B*.p/px ,wo,p) =S, (Bf, p, wO,p)(BXJ) )
and

(1,K)
M (B, p,wo) := S (BfX/BX,p/BX,wO) (resp. M, (B, p,woyp) =S (BfX/BX,p/BmwO,p)

The former is called the space of p-valued modular forms and the latter the space of p-valued p-adic modular
forms; they are Hecke modules as explained above. Also, setting

My (foapa ‘*’047) =5 (BfX/Bxap/BX » Wo,p
)(LKOQ)

(1,K%)

(1,K°°) o
) = M, (fov/’a WO»p)Kp ’

M* (foapaw()) = S(BfX/vap/BX7w0 = M(foapaWO)sz

we get a B{'? x H (¥,)-module, as explained above. We omit wy from the notation when Z¢ = 1 and write
M (Zf\BfX , p) =M (fo s Py wo,p) when wyq is the trivial character of Z;. Sometimes we will abusively replace
p with the underlying subspace V' in the notation. The same shorthands apply in the p-adic case.

The following remarks are easily checked.

Remark 2.1. Suppose that x, : B{* — R* is a character with the property that x, (K) =1 for some K € K
and that X, : Goo = R™ is a character with the property that Xojpx = Xoo|px-

(1) If € M (B{, p,wo), then the rule (xo¢) (z) := xo () ¢ (z) defines an element xyp € M (fo 0 (Xoo) s XO\ZWO)-
(2) We have x, € M (BfX,R(XOO) ,XO‘Z)

Remark 2.2. Suppose that x,, : B — R} and x, : ¥, — R} are a characters such that there is some
K € K° such that x, , (u) = x,, (up)f1 every u € K and xg ppx = 1.
(1) If ¢ € M, (B{,p,wo,), then the rule (Xo,pgo) () = Xo, (z) @ (z) defines an element xqp €

Mp (fo ) pr7 XO,p|Zw07P> .
(2) We have Xop € M (foﬂR (Xp) 7X07P|Z)'

The connection between modular forms and p-adic modular forms is the content of the following proposi-
tion. We suppose that we are given wq : Zr = R* and coeflicient rings io : R C Ro and i, : R C R,,. For a
character x of some group with values in R*, we let ip. (X) 1= ip 0 x and ioox (X) 1= foo © x. We also assume
that we are given a representation p,, (resp. p.,) of B)* (vesp. BX)) with coefficients in R, (resp. R) with
the property that

P = Pp|Bx = Poo|Bx - Pp> Poso
9



takes coefficients in R: we distinguish between the R-valued representation p of B* and the R,-valued
representation p, g« of B*.

Lemma 2.3. The rules

M (BY pye ) = My (BEp,) My (B pyine) = M (B p,)
@H¢¢1¢¢(I)¢:¢(I)$;1 Y oy oy () =1 (2) 2

set up a right ¥, (BX)-equivariant bijection and M (fo , p) cM (fo , pp‘Bx) is identified with the submod-
ule of those ¥ € M, (Bf ,pp) such that ¢ (x) € p C p, for every x € B{*. Furthermore, if pp has central
character w, —and (— )p : Zy — Zy 1is the projection induced by B — B, then the bijection induces

M (fo y Ps wO) cM (fo ) pp|B>< ) ip* (wo)) = Mp (fo ) va wO,p)
with wo p = ip« (Wo) W ;1 ((—)p) These identifications and inclusions are H (£, (Gr))-equivariant.

Proof. Indeed the above rules induce a (B >p (B )) -equivariant identification S ( Iy BX> ~ 5, ( By, pp)'

Since By = B{"? x B, topologically, K¢ C K is a cofinal family and we have SK = SK° for every B -
module. Hence, taking (B*, K)-invariant on the left and (B*, K®)-invariants on the right yields the ¥, (B{)-
equivariant identification. Then one checks that the correspondence has the required properties. O

Ezxample 2.4. The above lemma notably applies in the following setting: let V be an algebraic representation
of B* over R=Q C C,Q, (or a quadratic field R = K C C,Q, which splits B) and set (V, p) :=V (Q) (or
V (K)), (Veo, pso) := V (C) (with the action restricted to BX C B* (C)) and ( p,pp) =V (Q,). We can
also take R large enough for the values of the characters w, and wq to take values in it (and replace Q, by
a finite extension I’ and consider the action restricted to B\ C B* (F')).

Suppose that we are given wo : Zy — R* (resp. wo, @ Zf — R)) and write X (B*,wq) (resp.
Xp (B*,wo,)) to denote the set of couples (X, X ) as in Remark 2.1 (resp. Remark 2.2) such that x,; = wo
(resp. Xo,plz = wo,p). We also suppose, in the following remark, that we are given characters x, : B — R*,

p By = Ry and X 1 Goo — RZ, such that x := X, px = Xogpx : B — R* and that x, and x
are continuous with respect to topologies on R, and, respectively, Roo. Then the condition X, px = X5~
implies that x,, and x., determine each other.

Remark 2.5. We have (xg,x) € X (B*,wo) (equivalently, (icos (X0)sXoo) € X (B, icox (wo))) if and only

wo
if (Xo,pa Xp) € X, (B*,wo,), where Xo.p (@) = ips (x0) () X;l (xp) and wo,p (2) = ips« (wo) (z) 1(2,). In
this case, regarding x, (resp. Xq,) as modular forms via Remark 2.1 (2) (resp. Remark 2.2 (1 )), we have

that x, corresponds to ip. (Xp) ~ Xo,p via the inclusion inclusions/identifications

Xo eM (G07R(X) 7w0) cM (G()a Rp (Xp) 7ip* (WO)) = Mp (GOa Rp (Xp) awO,p)

provided by Lemma 2.3. Furthermore, via the inclusions/identifications provided by Lemma 2.3, twisting
by xo (or ip« (x,)) as in Remark 2.1 (1) corresponds to twisting by x;, as in Remark 2.2 (2).

2.1. The norm forms. Here is a key example of modular form. Consider the (normalized) absolute value
functions |—[, : QF — RY, |=[, : Af — QF and |—[, : AX — R, Setting

N := |—|§f1 |—| : A = Gy (A) — C¥

gives a function such that NyN! = |—|Ig1 is trivial on Q* = G,, (Q) by the product formula. Suppose
that x : B* — G,, is an algebraic character and that 7 : R* — G is a character. Then we define

Ty : B*(R) X% R* 5 G. In particular, we have the continuous character

N, : BX (A) 5 A% T R
10



and, recalling that Ny = |—|1§f1 and N, = |—|

oo?

=1t -

|
Nys: B (Ag) 25 AX —% QX and Ny o : BX (R) X5 RX ~l3 R

Of course N, ¢ (resp. Ny ) is the finite adele (resp. oo) component of N,, as suggested by the notation. If
K: Qi — R* is a character (that we usually write exponentially r — %), we can also define

N% ;G (Af) 25 Q% 5 R

Note that x., (B* (R)) = xo (B*(R)°) C RY (because B is definite), implying that xq (B* (Q)) € QF
and we may consider x, := ko xg. If V = (V,p) is a representation of G (R) with coefficients in R, we write
V (ky) = (V, p(ky)) for the representation p (ky) (g) (v) := Ky (9) p(g) v.

-1

oo 18 trivial on B* (Q) and we have

Remark 2.6. The continuous character N, is such that N, N

K
NYreM (BX (Af), R (ky) 7N;,f|zf>
for every open and compact K € K.
Proof. This is an application of the product formula and the fact that xq (B* (Q)) C QZ, implying that

Remark 2.1 (2) applies with (xg, Xoo) = (N"

X,f7N§,oo> and NY =Ko Ny o = Ko xg- (]

Taking
x=nrd : B* = G,,

yields, for every k = k € Z (viewed as the character k : Q% — R via r — r*), the norm form
K
Nrdf == NE e M (G (Af),Q (k) 7N?‘sz) , for every K € K.

We also write Nrd®, := N¥ _ in this case. Applying Lemma 2.3 with p = Q(k), p, = Q, (k) and ¢ =

X,00 p

Nrdf (=), € M (G (Ar),Qp (k) ,2k)" yields the p-adic modular form

K
Nrdt = ¢, € M, (G (Af),Q, (k) ,Nifzf) , for every K € K.

We have, explicitly, writing (—) » for the p-component of an adelic element (and viewing the rational numbers
diagonally in Ay):

Nrd) (z) = Nrdf (z), 2, ' = (Nrdf(x)pf = (Nrdf(x))k and N, (z) = <Nf(2)>p

PP nrd, (zp) nrdg, (z) /, z

‘We now remark that

Nrd . .
n:d:gi’)’ € Z, for any x € B{*. Suppose now that we are given k : Zy — O* which

is a continuous group homomorphism, with O a locally convex Q,-algebra. Since K, C B is a compact
subgroup, nrd, maps it into the maximal open compact subgroup Z; C Q.

nrd,, : K; — Z;f.

If D is a Kj-module with coefficients in O, it makes sense to consider D (k) := D (mrdlzf)7 the same

representation with action v -k g := nrd]; (g) vg. With this notation, we have

K
Nrdlg € M, (G (Ag), 0 (k), NIQ)T‘ZJ , for every K € K°

which interpolates the norm forms Nrdéc ~ Nrd’; with k € Z.
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2.2. Multilinear forms. For z € B} and K € K, define I'x (z) = B* N2~ 'Kx. Being discrete (as B* is)
and compact (as K is), the set I' () is finite. For each K € K and each set Rx C B/ of representatives of
K\ B¢/B*, define

TRKiM(fovR)K—>R by Tr, (f) = p(K) 2 |FJ;(2)

It is easy to see that this is a well defined quantity which is independent from the choice of K (see [22, §3.1.1]
for details), implying that this family defines

TBfX/BX IM(BfX’R) —>R and TZf\BfX/BX IM(Zf\BfX’R) —)R

T

where Tg, /px = Tk onM(BfX,R) and T By /B*|M(2\BY R)"

ZA\BJ/BX "=

Suppose that we are given a right representation (V,p) of G € {B*,BX} (resp. ¥,) with coefficients
in some commutative unitary ring R and group homomorphisms &k : Q* — R* (resp. k : Z; — R*). If
Ae HomR[Béo] (p,R(k)) (resp. € HomR[Kg} (p, R(k))),
Then we may define the R-linear morphisms
M (A): M (B, p,Ngly, ) = R (resp. My (A): My (B, p,N2y, ) = R)
by the rule

Alp(x) . o K
Tk ()| Nrd? (2) lf“’EM(Bf 7P7Nf|Zf>

— A(p(z))
(resp. M (A) () = p(K) ZweK\BX/BX Tk (2)] Nrdzlf (z)

M (A) (¢) = p(K) ZzGK\BX/BX

K
if o e M, (BY o Ny ) )

Alternatively, we have

A

(- Nrdg )
M(A): M (B, pNEy, ) % M (BY R () NEy, ) 5 R
A (Nrd )
(resp. M, (A) : M, (fo,p, Np\Zf) — My, (BfX?R(k) Np|zf) - " R),
where:
o A, is the morphism induced by functoriality and A, i.e. As () (z) := A (¢ (x));
e (-,-) is the natural pairing
Tz \BX /BX
() M (BfX,R(k),N?(fo) ®r M (BfX,R(—k) Nﬂz) B M (2\B,R) "%

T x
_ ® Ze\B{ ) BX
(resp. () : M, (BfX,R (k). Nﬂzf) ®r M, (BfX,R (—k) ,Nfé‘:) 8 M, (z\By, R) "%
with (1 ® @5) () 1= ¢ (z) @ (2).
It follows from this description that the quantity is well defined. Finally, when p = p; ®gr ... ®r p,, and
wo,; (resp. wo p,;) are such that

R),

_ N2k _ N2k
(10) wo,1---wo,n = Nfj7, (resp. wop,1.--Wo,p,n = Np|Zf)=
we can define the R-linear morphism

J(A) . M (fo,p17wO71) ®R ®RM (Bf ,pn,(.(.)() n) — M (fo’p,Nlef) Mi/)\) R

M, (A)
(1) (resp. Jy (A) My (BY prowon) @n e @ My (BY porwon) S My (B, p, N2 ) " R
where ® is obtained by iteration of (¢; ® ¢,) (x) := @1 (z) Qg @y (x) in case n = 2.

Let us now assume that we are in the setting of Lemma 2.3, with representations p; , (resp. p; ) of B
(resp. BZ,) having coefficients in R, (resp. R ), the property that p; == p; 1 5x = p; ooipx C Pips P00 has
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coeflicients in R and suppose that (10) satisfied. Furthermore, suppose that (A,, A) is a couple of elements
Ay € Home[Bpx] (P, Ry (k)) and Ay € Homp (B2 (Poos Roo (k)) with the property that

A= Ap|p = Aoo\p S HOmR[Bx] (p,R(k’))
(Here we assume that k : Q% — R and identify it with 7. (x) :=17p 0 X and ieos (X) 1= fo0 © X)-
Proposition 2.7. Via the inclusions/identifications provided by Lemma 2.3, we have

Tp (Ap) =J(A)

@1y M (B p;wo.: ) |®1, M (B ,p;wo,:)

on

@i M (foapww(),i) C ®;=1 M, (BfX»Pz',vaO,p,i) @i M (fo7pi,oo7i00* (WO,i)) .
Proof. Tt is easily checked that all the canonical morphisms involved in the definition of J, (A,) and J (Ax)
match: the non canonical ones, namely <-7Nrd; k > and <-,Nrd; k > match because Nrd; * corresponds to
Nrd,* via Lemma 2.3. O
2.3. Pairings and adjointness. Suppose that D (resp. F) is a Xp (resp. Y g) module, where X (resp.

Y ) satisfies the assumption that was done on X, and we let wo p p,wop. 5 : Zr — R* be characters such
that wo p,pwo p, g = wo,p. We assume that we are given a group homomorphism k : Z) — R* and a pairing

(——)€ HomR[Kg] (Dor E,R((k)).
Then (11) gives
(= =)ar, + My (B, Dwop,p) @r My (B, E,wop5) = R.
We suppose Xp = %, ¥p = ¥, and (K;)L = K, C ¥pNnX;(asin case K = ['g (pZp) and ¥, = ¥ (pZy))

and that Z = Zgx = Gy,. Assuming that F has central character kg : Z,; — R™, we can consider the
second of the following compositions:

nrd

d wo,p,E
nrd; """ 0 BX ST AX = Z; T8 RX and nrdy® : Kp =" L) “E RX.

Suppose that k, kg : Z,; — R* extends to a character E, kg : Q) — R*. Then
. nrd Py
nrd;” : X, - Q) X R*

is an extension of nrdZE to 3, and we let HomR[EP)E;] (D ®E, R (E)) be the set of those pairings such
that _

(vo,w) = nrdl];_’/HE (o) (v,we*) for every o € Xy,
We remark that, for every element u € K,

(vu, wu) = nrdlgf'{E (u) (v, wuu') = nrdlg (u) (v, w) ,
so that HomR[Ep’E;] (D ®E,R (E)) - HomR[Kg] (D® E,R(k)).

Remark 2.8. Suppose now that D C D and E C E, where D and E are B-modules, the above in-

clusions are Y, and, respectively, X -equivariant and that E has central character ki = kg extending
kp. If () € HomO[Ko] (D®E,R(k)) extends to (-,-)~ € HomO[BN (5®E,R<E>) then (-,-) €

Homoys, ) (P® B, R (K)):

(vo,w) = (vo,wo"'o)” = nrdg (o) (v,woe™)" = nrd;;‘_'%E (o) (v, wo*) .

In the following proposition, we suppose that f € M, (BfX,D,o.)O,p,D)K1 and g € M, (BfX,E,wOJ,’E)K2
(and make a similar assumption for classical, i.e. non p-adic, modular forms in the M’s spaces). Finally, we
assume that _

(=) € Hompyy, i1 (D@ B, R (K))
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(but for classical modular forms, we suppose (—,—) € Hompg|px] (D ®r E, R (E)) where k : Q% — R

and does not require E to have central character kg : Q% — R*). We write Ty, := K17 Ky, Ty := Kom* K,
and T.-1:= KQ’ITilKl.

Proposition 2.9. We have the following formulas, in the p-adic case:
p(K) ™' (f | Tr,g) = Nxdf (), mrd,) ™% (m,) nedy 0% () (K1) ™ (fog | Te) -

For classical modular forms, pu(K2) " (f | Tr,g) = Nrd% () (K1) (f, 9 | Toe1r) and, whenever E has

central character kg, 11 (K2) ™" (f | Tr, g) = Nrd¥ () nrd; " (m) (K1)~ (f,g | Two).

Proof. Note that K, always contains a decomposable open and compact subgroup K| and, because m € B/,
we see that m; € K l’ , C K; for all but finitely may I’s (the inclusion viewing B;* C B{* as the I-component of
B{). Tt follows that we may assume that 7 is concentrated at a finite number of components; then, we leave
to the reader to check that we may assume that |I'g, (z)| =1 for all z € B} and 7 = 1, 2. Having made this
reduction, we compute, for p-adic modular forms,

(f | KinKs) (2), g (x))
ZxEKz\BfX /B* lNrd?; (l‘)

Z (f (ruz) mpup, g (2))
uE(K2ﬂ7I'_1K17T)\K2,$EK2\BfX /Bx Nl"dI; (.’E)

1 (K2) " H(f | KimKa, g)

Z (f (muzx) mpup, g (uz) up)
u€(KoNm—'K1m)\K2,2€K2\B{* /BX NrdI; (ux) nrdl; (u)

Z (f (muz) mp, g (uz))
u€(KoNm— 1K m)\K2,2€K2\B /BX Nrd;f (uzx)

> Y myg )
ye(anm L Kim\B{/B*  NrdX (y)

Here we have employed (9) in the second equality, the Ks-invariance of g and Nrd;f in the third equality and
the K -equivariance of (—, —) in the fourth equality. Letting g, f, K2, K1 and 7* play the roles of f, g, K1,
K5 and 7 respectively, we also see that

(£ ()9 (n'2) my)

z€(KiNm—+ Kyt )\ B / BX Nrd]; (2)

p(K) ™ (fog | Kom Ki) =)

Note, however, that y — 7y induces a well defined map H\B{/B* — tHrx '\ B{/B* for any subgroup H
and we have m*Hn ™t = 7~ Hr. Taking H = Ko N7 'K 7 we see that 7Hr ™! = K; N 7w *Kom*. Making
the change of variables z = 7y, we have
Z <f (7y), g (7TL7Ty) 7T;L7>

yE(INm— K1 m)\ B /B> Nrdlg (ry)

_ mE—k K (f (ry) mp, g (m'7y))
E nrdp (7Tp) NI'dp (7‘(’) Zye(Kgr‘m’lKur)\BfX /BX NI‘dI; (y) .

p(Ky) N (f.g | Kom'Ky) =

Here we have used (v, wm) = nrdg’é_E (mp) (vmp, w). We now remark that 7'm = nrd(m) € Zg, so that

g (rtmy) = nrd; 7" (1) g (y). It follows that

1 (K1) (g | Kom' Ky) = Hrdgﬂé_i (Wp)Nrd;k () nrd; ™" () p (K2) ™' (f | KinKoa, g) -

Nrd¢(z),,
nrdy (zp)

The relation Nrd;, (z) = ( > gives the claim:

Nrd; * (7 . -
(), = nrd/* (m,) Nrdf* (r)

nrd%_E 7,) Nrd ¥ (7 :m"d%_E Ty) ———
D ( p) '4 ( ) P ( ZD) IlI'dp_k (’/Tp)

p*
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For modular forms one finds, by a similar computation,

p () " (| KimKa, g) g, = ()9 ()

Z:ZJG(Kzﬁ’T”K17f)\BfX/BX Nrd}( (y)

> (f(2),9(m2))
z€(KinmKom=\B{/B*  NrdK (z)

)

(K~ (f,9] K27T_1K1>K1 =

The first equality in this case follows and the second, which can also be proved by a similar computation as
above, is actually a consequence of the first in this setting, since one checks g | Kom 'Ky = nrd; "7 () - ¢ |
Kom* Ky (because nrd (7)) € Z; = Zpx ). O

3. THE SPECIAL VALUE FORMULA AND ITS p-ADIC AVATAR

We are now going to recall the special value formula proved in [22], specialized to the triple product case,
which can be regarded as a vector valued version of Ichino’s formula [31] and a generalization of [7].

Let ££/Q be a Galois splitting field for B and fix B,g ~ My, inducing B/XE ~ GLy/p. If k € N, we let
P}/ be the left GLy, g-representation on two variables polynomials of degree k, the action being defined by
the rule (gP) (X,Y) =P ((X,Y)g). We write V}, for the dual right representation. If k := (kq, ..., k) € N",
we may identify Py, /g ®...® Py, g with the space of 2r-variable polynomials P}z which are homogeneous
of degree k; in the i-th couple of variables W; := (X;,Y;). Then Vi, /g ® ... ® V, /g is identified with the

dual Vi, /p of Py/p and any P € Py/p (—T)GLQ/E, i.e. such that gP = det (g)" P, induces
Ap € Homgy,,, (Ve 1/E (1))
by the rule Ap (I) := I (P). Note also that, if P # 0 then there is I such that [ (P) = 1 and we see that

k
§1 }};1 , we have §' (W, g, Wag) = det (g) 6 (W1, Wy), from
2 Yo

which it follows that 65 € Py /g and g6* = det (g)lC 6%, We deduce that (—, —)iyp = Agr # 0 satisfies the
above requirement and, hence, defines
(12) (= =)/p € Homar,,, (Vi/e ® Viyg. 15 (k) ;

then the irreducibility of the GLy, g representation Vi, p implies that this non-zero pairing is perfect and
symmetric. Next, if k := (kq, ko, k3) € N3, we define

(— _>E/E = (-, _>k1/E ® (-, _>k2/E ® (-, _>k3/E € HomGLg/E (VE/E ®@ Ve, 1/E (E)) :

We remark that, viewing a left representation as a right representation by means of the inversion we have
Pyp = VX/E (resp. Py/p = VE/E) and, hence, (—,—}k/E (resp. <_’_>&/E) induces Py p = V,\C//E ~

Ap # 0. Setting 0 # 0% (X1, V1, Xo,Ys) :=

Vi e(=k) (resp. Py/p = VE/E ~ Vi 5(—k")), which in turn induces

<_7_>k/E € HOmGL2/E (Pk/E ® Pk/Ea 1/E (—k)) and <—, _>E/E S HomGLg/E (PE/E ®PE/E71/E (—E))
(and the latter is the tensor product of the former pairings).
If k == (k1, ko, k3) € N?, we define the quantities k* = Kitheths g o —kithoths o, mihaths apq
k3 = W With a slight abuse of notation, we write Py/r and Vg to denote the external tensor
product, which is a representation of GL3 /e~ When k is balanced, we can also define

Ar/p € Homar,,, (Vi/e, 1/ (E7))
as follows. The balanced condition precisely means that kf € N for i = 1,2, 3, so that we can consider
(13) 0# Ap/p = 65 (W, Wa) 652 (W, Wa) 655 (W1, Wh) € Py .

We have gAy/p = det (g)E Ay/p. Hence Ay /p € Py /g (—E*)GL”E and we may set A p := Aa,,, # 0.
The following result is an application of the Clebsch-Gordan decomposition that we leave to the reader.

Lemma 3.1. Suppose that 2k™ = ki + ko + k3 € 2N and k is balanced.
(1) There is a representation Vi of B* (with the diagonal action) such that E ® Vi ~ Vg via
15



(2) We have, setting By := ker (nrd),
dim (Homle (VE’ 1)) = dim (HomSLz/E (VE/EU 1/E)) =1.

Fori =1,2,3, let w; be an unitary Hecke character of the form w; = wt ;®sgn (—)ki and set wo; 1= Wf’iN?i.
Assuming that wijwsws = 1, we see that
(14) k* € N and N?E = W1,0W2,0W3,0-
It follows from an adelic version of the Peter-Weyl Theorem (see [22, Proposition 6.1]) that, if 7; = m; @V}, ¢
is an irreducible unitary automorphic form with central character w; (and Vi, ¢ the unitary twist of Vi.c),
the rule f; (A® @) (z) := Nrdf_ki/2 (26) Nrd®/? (25) A (¢ (z5)x3!) defines a canonical B* (A)-equivariant
identification:

(15) fi : Ve @ M (B, Vi, c,wo.:) [Nrdf_ki/Qﬂ'i,f] ~ A(B*(A),wi) [mi],

where (—) [0] means taking the §-component and A (B* (A),w;) is the space of K-finite automorphic forms.
We remark the we could have considered automorphic forms for the algebraic group B*? and, with II :=
T ® o ® 73, so that II = Il ® V};C, we have the canonical B* (A)-equivariant identification:

(16) fiViE@e M (BE, Vie,wo) [Nrdf—wnf} ~ A (B**(A),w) [IT],

where w = (w1, ws, ws), Nrd; /2 : (N d; /2 Nrd;"/% Nrdp ’“3/2) Nrd®/? and NE = (N1 NF2 NI9) are
defined in a similar way, wg := waf* and f(A® ) (x):= Nrdf_ﬁ/z (z¢) Nrd®? (z5,) A (o (zp)asd).

3.1. Periods. From now on, we will need to fix an embedding £ C C, which allows us to regard Vy, g-
valued (resp. Vy, g-valued) modular forms as Vi, c-valued (resp. Vy c-valued) and suppose that E is large
enough to contain the values of the characters w; ¢. Let us remark that we have a morphism

(17) M(BfX,thE,woﬂ-) — M (Bf ,\/v;.C E,N w(”)

defined by the rule ¢ ~ @, where ¢(z) := nrd; “"(z)p(z) = Nrdf(z)nrd; “(z)p(z) with our usual
shorthand nrd; X := X! onrds (the equality because w;¢ = woNy k) Indeed, Remark 2.1 applies as

. . —Wwr i Wi, oo —Wif,i i,00
follows. Since w; is a Hecke character, we have mdf| fo’ = nrdooi 5x and we see that (nrdf O nrdSh ) €

X (Bx,nrda;;’;(m)). Finally, because B is definite, nrdo (B*(R)) C R}, so that nrd5>* = 1 (because

Woo,i = sgn(—)k?), and nrdf_‘;;iX (he) = wg?, so that mrdf_‘;)f’iX (A W0, N Wo ;+ we have checked that

(18) (nrd wr 1) EX(BX wh).

A similar twist works with the modular forms on B*3, with nrd,; et

and ka Wo,i replaced by Nf Wo , Where Nf* = (kal,N?k2, N?kig). Then, of course, ¢ — ¢ commutes with
the tensor product.
It follows that we can consider

(19) (7, 7)]% . M (fo,vki/E,WQi) ®(C M (BfX,Vki/E,wOJ) — E

and
(= =) M (BfXS»VE,/E,wo) ®c M (BfXS,VE,EMO) — FE

defined as follows. Let us write again

(= =Ny M (B Vi wo) @8 M (BY Vi p, NiFugl) — B

K2

for the morphism (11) induced by (—, =), g (see (12)) on modular forms (defined because wo, ,N% Wo ;=
N#%). Then we define

<901(33)7<P2($)>kv/E
, = ) . = K z x /| Bx w0 il ,
(¢4 902)1% {1 902>k1/E p(K) > €K\B* /B Tk ()| nrd" (z)

16
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if ¢, and ¢y are K-invariant. Working in a similar way with the algebraic group B*3 we get (—,—) ke
Alternatively, the right hand side of the equality

(_7 _)E = (_7 _)kl OF (_7 _)k;2 OF (_7 _)k;S
gives an alternative definition.
Lemma 3.2. We have that (—, _)& s a perfect pairing.

Proof. Let us first remark that, from the definition of the adelic Peter-Weyl theorem [22, Proposition 6.1],
the fact that ¢(z) := nrd; “"* (z)¢(z) and the fact that nrd > = 1 there is a commutative diagram

Vit @c M (B Vi cowoa) [Ny "Prig] VT @ M (BY Vi e, NPt ) [Nedy /2y

Jid L fi
AB*(A),w;) [r] — AB*(A),w;) [r)]

K2

if we define the lower arrow via ¢ — ¢, where ¢)(z) := nrd,;“" (z)¢(x). There is also a similar commutative
diagram for automorphic forms on B*3, which is the tensor product of the above commutative diagrams.
Then, arguing as in the proof of [22, Proposition 6.1 (2)] (based on the Schur orthogonality relations, but
for linear pairings, to which [22, Lemma 3.7] and (7) are applied), we see that

/ . (A1, Az),, (A1, Az)y
Bl

<1/11a7vﬁ2>L2 = ¢1($)¢2(x)M[Bx3(A)] ()= —1—= <¢1a¢2>£ = T (le%ﬂz)g

Zpx3 dg

if ¥, = f(An ®c ¢y) is in A(BX3 (A),w) [M] and [Bxg(A)]Z , = Zpx3(A)\B*3(A)/B*3(Q) with the
BX

product measure. Here dj, is the formal degree of V¢ (which only depends on the Haar measure, once

(= =) on Py/p = VZ/E is obtained from (—,—), on Vy, p tautologically as above). Recalling that the

formal degree of a representation of B*3(R) equals the dimension times the inverse of the total measure
m%B\BXm of Zgxs(R)\B*3(R) (by compactness of Zgxs(R)\B*3(R)), we find

m%B\BX,oo <A17A2>E
k1 +1) (kg +1) (k3 + 1

Because the left hand side is a perfect pairing, our claim follows. (It is not difficult to see that (—,—) k/E

(20) <¢1a"2)2>L2 = ( ) (901”02)&’

on modular forms is perfect because it is induced by the perfect pairing (—, —), /E O the finite dimensional
vector spaces Vj; next, noticing that ¢ — ¢ is a linear bijection, gives a direct proof of the perfectness of
(= =), However, we will need (20) below). O

Fix an identification B (A?isc(3)> ~ My (A?iSC(B)) and, for an integer N such that (N, Disc (B)) = 1,

write K(])Disc(B) (N) c B~ (A?iSC(B)) (resp. K?iSC(B) (N) C K[])DiSC(B) (N)) for the subgroup which corre-
sponds to matrices with integral coefficients having lower left entry ¢ = 0 mod (N) (resp. ¢ = 0 mod (N)
and upper left entry a = 1). Setting Opjsc(p) := H”DiSC(B) Ogv we can define

Ko (N) i= K™ (N) X Oy and Ko (N) i= K (N) X O

Assuming that po(ny C E, we can decompose

Ki(N)

(E) )

where M () is the submodule of elements € M such that zu = € (u)  if we define € (u) := € (a,,) for a,
the upper left entry of u € Ky (N). We also have

M (foyvk,E)Kl(N) = @E:( z

N—‘Z)X—>OX

M (B{,Vi.g)

K1(N)

Ko(N)
M (BY, Vi) )

(e) = M (BY, Vi, wi*
17



Ezample 3.3. Suppose that ¢ = p; ® ¢y ® @3 and that
KN o\ Ko(Ni)
p, €M (BfX7Vki,E) 1(N3) () =M (Bf><vvki,E7w8“k‘) '

Then we see that ¢ — ¢ is a map
L\ Ko(N) LK)
M (BfX,Vki,E7wghk1> 0 Y, (BfX,Vki,E7wgl ,kl) .

-1
ks € ki "
Indeed, w " wy’ " = N#¥ | so that we have

—1 5.
(= =y M (fovvki,ang’ki) ®p M (BfXaVkuEngi k) — E

and (¢, 1), = <‘/’i’1z’i>k-/E by definition. Write Wy, € B for the matrix concentrated at the primes I
0 -1

such that I || N;, where we have (@y,), = wier := ( 0

) and write Wy, for the Hecke operator it

Ko(N.L)
k) is a newvector, then setting cp?b = gp? | W, it is easily checked

induces. If @2 € M (BfX,Vk,E,wff’

that (gov?b) is a newvector in the dual representation, hence a scalar multiple of ;2 and then the proof of
Lemma 3.2 shows that (905, @Zb)k‘ # 0; in particular, setting ¢° = gpﬁ ® 5 ® 5 and o = P ® @Zb ® Oy
we see that

(21) Q (wb) = (wb,wbb) # 0.
k
3.2. The special value formula. It follows from (14), that we can consider the quantity ¢ := J (AE / E)
defined by (11):
ty: M (B{®, Vig,wo) = M (B, Vi, g,wo1) @8 M (B, Vi, g,wo2) @8 M (B, Vi, p,woz) = E.
The choice of A/ € V) i (and E € C) yields, via (16), the embedding

Fae + M (B, Viewo) [Nrdp 21| 5 A (B (4) ,w) 11

for every irreducible automorphic representation IT of B*3. Let us write II' for the automorphic representa-
tion of GL% which corresponds to IT under the Jacquet-Langlands correspondence.

Before stating our next result, we need to recall the definitions of some relevant quantities. Let (—, —) ;.
be the pairing defined before (20) and fix non-zero B*3(Q, )-invariant pairings (—, —), between II, and its
dual representation. The irreducibility of II, implies that there is a non-zero constant C' such that

(22) (o), =CIL (vhe),

Then one defines the bilinear form on I, x IT; via the formula

, L, (1,11, Ad)
23 Ly(, ® ) :=
(23) (¢, ®9y) Cév (2) L, (1/2,11)) /zE,(@u)\BX(Qv)

depending on the choice of the local measure, and set

(I, (z) 7", ¢7\J/>v 1z \Bx o (T),

b bV I, M
(24) O () o= e O W)
(vh.0)

Note also that (16) shows that
fAE/E : (CAE/E ® M (BfXS,VE7c,wO) [Nrd;ﬁ/2ﬂf:| 5 II;.

Suppose that ¢, ¢” and ¢”” in M (BfXS, Vic, wo) [Nrd;k/zﬂf} corresponds to pure tensors ¢ := fp, . (¢) =

©uthys ¥ = fay s (9°) = @ty and 07 = fi, , (97) = @4y Setting ¢ = (¢”") (where ¢ = (477)
is the operation in the lower horizontal row in the proof of Lemma 3.2), we define

(25) L,() = L(,) == L,(h,,,) and 9" (p) = 2" (1) 1= CL*% (1, D).
18



(Note that (’t/)bb) is again a pure tensor, being the product of z/Jbb by a pure tensor).
The following result is deduced in [22, Theorem 8.2] from [31] or [24] and the Jacquet conjecture proved
in [24].

Theorem 3.4. Suppose that k is balanced and that w; = w; s @ sgn (f)k are unitary Hecke characters such

that wiwows = 1, implying k™ € N. Consider the quantity
Ak (o1 (2) @ 0y () @ 3 (x))

=
zeK,\B} | BX T, ()| Nrdy ()

l

where K, € K is such that K, C K, NK,, N K, and

K. Ky, xK,, xK,
=P Qs B3 € ®f:1M (B, Vi, cowio) 7 =M (Bf*, Vi p,wy) 777270

(1) We have the equality

2 - c g@( ) 1/2 H, _ (Sﬁbﬂobb)ﬁ / R
(26) t (9) = 5042 L (LI7, Ad) H I ( 72L(1’H,7Ad)L(1/27H)H#oocf 7 (p)

as quadratic forms on

Fawse + M (B{®, Vi p,wo) [Ned 2210 < 4 (B (4),w) [11],

where C # 0 is the constant defined in (22) below, I,(p) and C“Db*”bb (p) are defined in (25) and the
second equality depends on the choice of vectors ¢°, " € Nrdk/QHf cM (BfX37VE,E,w0) such that
(%, ")k # 0 (see Lemma 3.2 for their existence and (21) for a specific choice).

(2) Suppose that B = By is the quaternion algebra predicted by [34]. Then there exists ¢ whose as-
sociated local constants I, are all non-zero and, hence, L (1I';1/2) # 0 if and only if tx # 0 on

M (B}*, Vi g, wo) [Nrd k/2qy }

Proof. (1) Let us explain how to deduce the result from [22, Theorem 8.2] in the form we need here. There,
it is taken the normalization from [31, Theorem 1.1], which requires [31, (1.3) and (1.4)]. We will explicitly
fix our local measures in §3.2.1 below in such a way that [31, (1.4)] is in force and (7) and the conditions
before it are satisfied (so that [22, Theorem 7.2] is in force).

If ¢ (resp. ¢ in the dual representation) correspond to a pure tensor ¢ := fa, . (p) = @, (resp.
P = Tae(@Y) = ®@,%)), then [31, Theorem 1.1] (but where we allow C to be arbitrary, i.e. [31, (1.4)] is
in force but [31, (1.3)] may be not) gives, thanks to [22, Theorem 7.2 and §8.1]:

) = g 2O L, 0 0)

B B 2 MZ\BX 00 ’

b b
<1P P V>L2 Cé (2)11;(1/2 H)H Cﬁ’?”wb

(27) = 231, L( ,H/,Ad) ! (1%»1/}:;/)7

zB\BX

where the latter equality holds when <1/Jb, 1/)W> ) # 0. If we specialize to the case where ©¥ := @, then we
L

see that tj, (¢) = t; () because we are twisting by nrd,; “', which restricts on the diagonally embedded center
of B* to 1 and t; only depend on its diagonal restriction. Define Y’ = Az (gpb), ¢|’b = fAym (gpbb) and
¢’V := (). The first formula is obtained from the definition (25), once we recall that ¢ = fay s (@) = R,

(from the commutative diagram for automorphic forms on B*? analogous to those displayed in the proof of
Lemma 3.2) and we will fix the measures in such a way that mz_\px o = 24.

It follows from (16) and the definition of fy, . that we have ¢, = wio = wii = A = Ay (via Vg”é =Pic

provided by the tautological evaluation pairing) and {pm = (1/1“’)oo = 1, because there is no twist at infinity
in the definition of ¢ (as remarked in the proof of Lemma 3.2, nrd_“>* = 1). Then, the invariance property
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of Ay under the (unitarized) diagonal action implies that the integral that appears in (24) for v = oo is
MZ5\BX 00 <A£> AQOO. Hence we find

Lo, (1,1, Ad)
(2(2) Lo (1/2,11})

b bb
CL? (Yoo) = Mzg\Bx 00

Also, (20) specializes to

My \Bx oo (Dks Ak)
b bV _ Zp\B*,00 \T& TE/ | bbb
<w7w >L2_(k1+1)(k2+1)(k3+1) (90,(,0 )

Inserting these last two equations in (27) gives the formula:

(@, ")k

ty (o) = %O,EC?@,f (2) mL (1/2,1') Hv?éoo Cffb’w (¥y,)

where
1 <w712)>[,2 b o 2 B m2ZB\B><,oo <AE’ AE>EL°° (1’H;’Ad)
O W) () = = 0 (1 1) (k1) Lo (1/2,10,)°

Yoo,k =
00,k 23m%B\BX’OO (¢, ")k

The claim is proved, once we fix local measures which in turn fix the local constants C’;fb (=) in such a

(Ao Aco)y, Loo (1,1T,,Ad) g )
Tt D (ot D) (ks VL (12,00 — dnT and insert the value

way that mzg\Bx o = 24, make explicit the ratio

Cor(2) = %2: this is detailed in 3.2.1 below.
(2) This is proved in [22, Theorem 8.1 (3)], as a consequence of the Jacquet’s conjecture proved in [24],
using [22, Theorem 8.1 (2)] and (27). O

Remark 3.5. If one wants to make (26) explicit, the first equality is poorly useful because I,, depends on the
choice of (—, —), and, hence, on the fixed local model. On the other hand, ijb""bb is much more canonical:
in fact, we see from (23) and (24) that C’%’wzv (¢,,1.) does not depend on the choice of the local pairing
(—,—),; also, if ¢, and Y linearly depends on 77/15} and, respectively, wzv, we see that C o (¥, 10))) does
not depend on the line spanned by either 1, and d),bj or 1/)1\,/ and z/)fjv. This is very convenient in order to

“transport” calculations from abstract local models.

Regarding ¢} as the algebraic part of L (1/2,11) (see [22] for a justification), it follows from Theorem 3.4
that the relevant part to be interpolated is ;. Applying Proposition 2.7, we place t; in a p-adic setting,
making it correspond to ty, :=J, (Ag/q,)

_ Agjq, (91 () @ @y () @ @3 ()
(28) te (91, P2, p3) = p (Ky) zeKq,\%;/Bx T )| NedlE (2) .

We have already interpolated the association k — Nrdg* (z) in §2.1 and we will now proceed to interpolate
the association k — Ay/q,. To this end, we first review and prove some facts on distribution modules, by
means of which p-adic families of modular forms are defined.

3.2.1. Choice of measures and further computations. Let us fix local measures in a such a way that the
condition p BX (K') € Q for some (and hence every) open and compact subgroup K C B/ and the integration
formula (7) are satisfied: at the same time this fix the constant mzg\px , that we have to determine, and
show that [31, (1.4)] is in force. To this end, we first record the following lemma, whose proof is easy
and left to the reader. Suppose that I' C G = Gy X G is a discrete subgroup of a product of Hausdorft
and locally compact topological groups G and that composition with the projection makes I' C G — Gg a
discrete subgroup such that Go/T" is compact. Let us fix Haar measures pg (resp. pg,) on G (resp. Go)
and let pg /p (resp. pig, r) be the G-invariant (resp. Go-invariant) quotient measures on G/T" (resp. Go/I'),
normalized as usual. Let Z = Zy X Zo, C Gg X G = G be a fixed closed subgroup in the center. Using
the compactness of Go/T', it is not difficult to see that there is a (unique up to non-zero scalar) non-zero left
Go-invariant Radon measure jiz\ ¢, /r on Zo\Go /T with the property that K Zo\Go/T = HGo/T|Co(Zo\Go/T) L
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C. (Zp\Go/T) C C.(Gy/T) by means of the pull-back induced by 7 : Go/T' = Z\Gy/T. On the other hand,
we set pz\gr = UG Iz, where once again the subquotient measures on the right hand side are obtained
from pg with the usual normalizations.

We normalize the Haar measure pug_  on Goo 80 that pg = g, x pe_ is satisfied:

Jf(9)dug(9)= [ (f f (90900) dpir (goo)> dpc, (90) -

G GU Goc

Assuming that Z,,\Ge is compact, we get the formula

fZ\G/p f (@) dpp /e () = CfZO\GO/p (fzm\c& [ (@ozeo) dpz, a, (l‘oo)) dpiz,\Go 1 (o)
for some ¢ € RY.

Lemma 3.6. Suppose that G is locally profinite and let K = KC(Gg) be the set of its open and compact
subgroups.
(1) We have ¢ = 1.

(2) ppar (Z\G/T) = pzngor (Zo\Go/T) bz ja.. (Zoo/Geo).
(3) If pg, (K) € Q for some (and hence every) K € K, we have piz g, v (Zo\Go/I') € Q.

Let us apply this lemma with I' = B*, Gy = B{* and Go = B*(R). Let us write D for the discriminant
of our quaternion algebras and fix an identification B (A? ) ~ My (AfD ) Fix local measures pgx ; (resp.
pzg\gx 1) of BX(Qi) (resp. Zp(Q:)\B*(Q)) at the finite primes [ as in [42, 2.2]: if [ 1 D (resp. [ | D),
pipx ; is the Haar measure such that pgx ; (GLg (Z;)) = 1 (resp. pugx,; (O ) = (p—1)~", where Op, is a
maximal order in B;) and fiz\px ; the quotient measure, normalized in the usual way. Then u BX satisfies
our first requirement. Next, we take pigx(4) on B* (A) in such a way that the induced quotient measure
PzganBx (o) o0 Zp (A)\B* (A) is the Tamagawa measure, so that [31, (1.4)] is in force. Finally, we fix
KBx oo Via the formula pgx () = fipx X IBx oo It follows from Lemma 3.6 (1) that (7) is in force and from
Lemma 3.6 (2) that we have:

KB (4)]y,, ([BX (A)]ZB> = Mze\B* 0oll[py], ([fo]zB) :

The left hand side is the Tamagawa number of Zg\B*, which is known to be 2 (see [41, Theorem 3.2.1]).
On the other hand, choosing the local measures at the finite primes / | D in such a way that ugx ; ((’)gl) =1,

the total measure of [fo] L 18 known to be 1—12 H”D(l —1) by the Eichler’s mass formula (see [43, Lemma 2.2

z

and Theorem 3.6, (3.17)], for example, where (g ¢(—1) = —1/12). We deduce that S ([BNZB) =+
z

and, hence, °

mZB\Bxpo = 24.

Next, we recall that we have, setting T'r(s) := 7~%/2T'(s/2) and I'c(s) := 2(27)~*T\(s),

Leo (5,11',Ad) = 7 3Tc(s + k1 + 2)Tc(s + ko + 2)Te(s + k3 + 2),

3 1 1 1
Lo (5,11') =T'¢ <5+k*+2)rc (s+k’{+2>rc <s+k;+2>r<c (s+k§+2>.

Then we see that
Lo (1,11, Ad) 1 (k1 + 2)T(E" +2)T(k" + 2)

Loo (1/2,T0) — 4m* T(k* + 2)T(k} + DT (k3 + DT(k; + 1)

We claim that

(A A (K + D)Wk (K" +2)D (kT + 1) (ks + 1) (k5 + 1)
e N T (ki + DT (ks + )T (ks + 1) ’
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(Ap,Ak), Loo (1,IT,,Ad)
R+ 1) (k2 +1) (ks +1) Loo (172,117,
mials is explicitly given by

from which the equality 1 = ﬁ follows. The pairing (—, —) ki /B OLL the polyno-

R T
(xryForxeyhe) = (D" s =k,
v v ki/E 0 if 7+ s # k;.

Let us write 03 : Pr, ks ks — Pry+1,k041,k, for the multiplication by 5t (W1, Wy) map and let 63 : Py, 41 pyt1,ky —
Ppy kaky be its adjoint with respect to the perfect pairings (—, =), k, ko) @0 (= =) (4, 11 k4 1.05) (WE
do not write the subscript /E for brevity). Then one checks that d3 (Mg, ko ks) = Okyt+1kst1ks and

k" +2) (kS I .
85 (Aky 1 ko t1,ks) = %Akhk%ks (note that 63 and hence 03 are SLg-equivariant, from which

the equality 05 (Aky+1ks+1,ks) = Ak ko ks 1S known a priori taking the SLo-invariants for a scalar fac-
tor A%). Assuming by induction that we have proved our claim for k = (ki, k2, k3), we find the claim for
(kl +1,ko+1, k3)

(ki1 k2 1k Dby 1k + 1k )y 41 kg 1k = (03 (Db kaks) s Dk +1,ko+1,ka) by 11 kot 1,45

. (k" +2) (k5 +1)
= <Ak1,k2,k3753 (Ak1+1,k2+1,k3)>k17k27k3 = (kl + 1) (kj ¥ 1) <Ak1,k2,k37Ak1,k2,k3>k1,k2)k3

(B"+2) (ks +1) (B" + 1)k k55! (K" + 2)k; k5! (B3 + 1)
(k1 +1) (ka + 1) k1lkolks! (kD) (kg + 1)1Es5!

4. SPACES OF HOMOGENEOUS p-ADIC DISTRIBUTION SPACES

4.1. Locally analytic homogeneous distributions. By a p-adic manifold X we always mean a locally
compact and paracompact manifold over a fixed spherically complete non-archimedean p-adic field. For
a Banach algebra O, we let A(X,O) be the space of O-valued locally analytic functions on X and set
D(X,0) = Lo(A(X,0),0) C L(A(X,0),0), the strong O-dual of A(X,0). If f : X —» YV is a
morphism of p-adic manifolds, we have
f5 1 A(Y,0) — A(X,0) and O : D (X,0) — D(Y,0),

the first being the pull-back of functions f (F) := F o f and the second operation being the strong O-dual
of the first. We note that

(29) re (5?) = 5?@), for every z € X

if6®: X > D (X, 0) denotes the Dirac distribution map. It is useful to remark that the O-linear span of
{5? tx € X} is dense in D (X, O) (see [21, (52)]): we refer to this fact using the set phrase “by density of

Dirac distributions”. It can be shown that there are topological identifications*

T3x) : OXD (X) 5 D (X, 0)

and
PO pixy D (X1,01) 8D (X2, 05) 5 D (X1 % Xp,01805) .
They are characterized by the equalities:
2 01,0 ~ _
(30) T%X) (1o®6,) = 09 and P D(xa) (521&5;922) _ 5811%(3)2'

We will usually suppress the reference to the Banach algebra when this is the fixed p-adic field.

Suppose from now on that X is endowed with the action of a p-adic Lie group 7', meaning that the action
is given by a locally analytic map a : T x X — X. Then T naturally acts from the right on A (X, O) and

3Tn order to determine A, note that
— * —
AP, Aklvk2vk3>k1,k2,k3 = (P83 (Ak1+1,k2+1,k3)>k1+1,k2+17k3 = (3P, Ak1+1,kz+l,k3>k1+1,k2+1,k3 :

A good choice is to take P = Ylk1 ® ng YQE1 ® X;“S.
4We write V ®, W (resp. V ® W) to denote V ® W with the inductive (resp. projective) tensor topology.
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from the left on D (X, ). The left action of T on D (X) can be extended, with respect to §. : T — D (T),
to a left action of D (T') making D (X) a D (T)-module by the convolution product:

(31) D(T) @, D(X) "DFY D(T x X) %5 D(X).
We note the formula
(32) 0;+0, =04y forteT and x € X,

which indeed characterizes the multiplication law by density of the Dirac distributions. Also, we remark that
the multiplication map is in general separately continuous, while it is continuous if we assume that 7" and X
are compact. In particular, one checks that D (T') becomes an algebra in this way. We write Hom 4 (T, O*)
to denote the group of those group homomorphisms such that their composition with the inclusion O* C O
belongs to A (T,0). We also write Hom, (D (T),O) to denote the space of those morphisms of locally
convex spaces that are morphisms of algebras. Then there is a bijection (see [21, Lemma 7.2])

(33) C° : Homg (D(T),0) = Homa (T,0%), via C° (k) (t) ==k (5;) .

We will abuse of notations, when there will be no risk of confusion, and identify these two sets, deserving
the exponential notation to the group homomorphisms and calling the elements of these sets weights.
If k is a weight, we may consider the space of locally analytic homogeneous functions:

Ak (X) = A(X, k) = {F € A(X,0): F (tz) = t“F ()} .

It is indeed a closed O-submodule of A (X, 0). Viewing both O and D (X) as D (T)-modules by means of
k and, respectively, the convolution product, we may define

Dy (X) := 02D (X) and D (X, k) := Lo (Ax (X),0).

We also assume from now on that X is endowed with a right action by a semigroup ¥ such that o : ¥ — %
is locally analytic for every o € 3, which is compatible with the left T-action in the sense that t(zo) = (tz)o
forallt € T,z € X, and 0 € X. Tt follows that o induces a well defined action on Ay (X), Dk (X) and
D (X, k). The relation between the space Dy (X) and D (X, k) is expressed by means of an (O, X)-equivariant
morphism of locally convex spaces

(34) T5x) : D (X) = D (X,k)

which is an isomorphism when X is a trivial (equivalently locally trivial) T-bundle. It is characterized by
the property that
TII{J(X) (18kd,) = o for every = € X,

if 6% is the image of 6C. We refer the reader to [21, Lemma 7.3 and Proposition 7.6] for details.
It follows from (34) that the elements of Dy (X) naturally integrates functions in Ay (X). Furthermore
they are endowed with natural specialization maps, not possessed by the spaces D (X, k), defined as follows.

If we are given k; € Hom, (D (T),0;), we say that k; specializes via ¢ to ko, and we write k; 2 ko, if
¢ € Homp (O1,02) and ko = ¢ o ky. Then we have an induced specialization map

(35) 6. : Die, (X) = Dig, (X) via 6, (aBi 1) 1= 6 (@) Bt

4.2. Multiplying locally analytic homogeneous distributions. Now suppose that we are given two
p-adic locally compact and paracompact manifolds X; endowed with analytic actions of T; for ¢ = 1,2, so
that 77 x Ty act on X; X Xo in the obvious way. Let us be given k; € Hom, (D (T;),0;). We define the
continuous morphism of locally convex spaces

1 ~ ~
(36) ki Bky : D(T) x Tp) e 1 (T1) 8,0 (T») & 0,8,05, 5 0,80,.
Exploiting the effect on Dirac distributions and noticing that the multiplications laws are separately contin-
uous by (31), it is not difficult to deduce from the density of Dirac distributions that k; B ko is a morphism
of algebras, hence

ki Bko € Homg (D (Ty x Ta), 0180,) .
We assume that X; is further endowed with a right action by a semigroup ¥; having the same properties of
the Y-action considered above.
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Lemma 4.1. There is a unique morphism of locally convez spaces Plg(}lg) D(X2) making the following diagram

commutative, which is ((’)1@)(’)2, Y1 X 22)-equivariant:

10,60, ®PD(x1),D(X2)
_>

018D (X1) ®,0.,8D (X5) 018028D (X; x Xo)
(37) 1 l
ki,ko
Dk1 (Xl) ®LDk2 (XQ)

D(X1_),>’D(X2)

DklEEkg (X1 X XQ) .

Proof. Let B be the composition of 1, &0, ®PD(X1),D(X2) with the right vertical morphism. Since we know
that B is continuous and Dy, mk, (X1 X X2) is Hausdorff and complete, we first need to show that, for every
a; € O;, p; € D(X;) and v; € D(T;)

B (0411(1 (l/l) <§>,u1®b042k1 (Vz) @Mg) =B (041(?@ (l/1 : Ml) @ﬂz@ (V2 : H2)) :

It turns out that this is equivalent to checking the equalities

(38) Pory)pm) (V1®r2) - Poix,) pixs) (11®hs) = Poix,) pix,) (V1 111) @ (V2 - ) in D (X1 x Xa).
When p; = d,, and v; = §;, we have indeed, by (30) and (32)

Poiry) o) (V1802) - Poix,) (xs) (11@H) = 8(14,12) - 0ar22) = O(tran,ta0)s
Ppx,),00x) (11 11) @ (V2 - 115)) = Pox),(Xs) (01120 @0t005) = O(t101 tam0)-

We note that both the left and the right hand sides of (38) are linear in the variables p; and v;. Furthermore,
if we fix three of these variables, the two resulting functions are continuous in the remaining variable thanks to
(31) showing that the multiplication laws are separately continuous. Hence the claimed equality (38) follows

from the density of Dirac distributions. The existence and uniqueness of Plf;(’;f) D(X) follows and, since

0,&D (X1) ®,0,8D (X2) = Dy, (X1) ®LDk1 (X2) is surjective and all the arrows other than P;l(’)lz)p(xz)
in (37) are (01®0,, X1 x Xg)-equivariant (by (30)), implying that Plg(’;i),p(&) is equivariant as well. O

In particular we may define

Kk ko kq Bko
ki,k2 D(X1),D(X2) D(X_1>><X2)

N P
Ppix)pxs) : P (X1) ®. D, (X2) - Dy, i, (X1 % X2)
If u; € Dy, (X;) for i = 1,2, we set

D(Xl X X2,k1 Eakg)

=k .k ~
fq B g = PDl(Xi),D(Xg) (N1®LM2) € D (X1 x X3, ki Hks).

—ki,k
Of course, the formation of k; H ks, PII‘;(’;?) D(x,) and Ppl(’Xi)’D(XQ) extends to a finite number of indices

and the usual associativity constraints are satisfied, as well as the compatibility with the commutativity
constraints in the sources and the targets of these maps. We finally remark that the equations

ki .k ~ ~ . = ~
Prixi) p(xs) (10, Ok, 02, 2,10,0k,00,) = 1o, 50, Pky ka0 (w1 ,05)5
pkk ~ =~ =~ ki Bk

(39) Poixi) p(xs) (10, 0k, 62,0010, 81,00,) = (21,03)

characterize these maps.

4.3. Algebraic operations on weights. Setting Xp (0O) := Hom (T, O*) defines a group functor on
Banach algebras, so that we have
+2XT(O) X XT(O) HXT(O) and 7:XT(O) —)XT(O)
It follows from (33) that we may transport these operations getting
+:Homg (D(T),0;) x Homg (D (T),0;) — Homg (D(T),0;)
and
—:Hom, (D(T),0;) — Hom, (D(T),0;).

Our next task it to interpolate these operations.
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If we are given k; € Homg (D (T),0;), then we define

ki @ ko : D(T) 25 D (T x T) 25 0,80,,

where A : T — T x T is the diagonal map and k; B ks is given by (36).
Ifk € Hom, (D(T), ), then we define

ek D (T) -5 D (T) 5 0,

where ¢ : T'— T is the inversion, and set
kl @ k2 = k1 @ (@kg)

We note that these operations are obviously functorial and compatible with specialization.
Exploiting the definitions and making (36) explicit it is easy to check the following result.

Lemma 4.2. Suppose that k,k; € Hom, (D (T),O) and write
me : 0RO — O

for the multiplication map. Then —k =6k and

ki + ko : D(T) 25 020 3 0.

We now illustrate why ki @ ko interpolates the 4+ operation. Suppose that F' is our p-adic working field
and that k; € Homyg (D (T), F) are such that k; 2t k;. Then

K, ks 5% by @ ks

by the compatibility of the @-operation with specializations. But we have FQF = F canonically and the
identification is given by mpg. Hence ki & ko specializes via ¢1(§>¢2 to k1 + ko, thanks to Lemma 4.2. In
particular, suppose that X7 is representable by a rigid analytic space (for example because T is compact)

and that k; ﬁ) k; corresponds to k; € U;, with U; C A an affinoid neighbourhood of k. Then k; & ko
corresponds to

Uy x Uy C X x Xp 5 X
We finally remark that, as a consequence of the associativity of the operation in T, we have
(k1 @ ko) ® ks ~ k1 P (ka @ k3)
up to
(01 ®02)®03~0;® (0 ® O3).

A similar compatibility holds true for the commutativity, when 7' is commutative as in our applications.

Suppose now T ~ A x (1+pZ,)", where A is the torsion part of T, and consider the multiplication
by 2 map t — t? (we write 7' multiplicatively). We say that k € X (O) is even if it is in the image of
2% : Xp (0O) = Xr (O) and set % for an element in the inverse image of k. For example, suppose that p # 2
and T' = Z,0 ~ F) x (1+pZ,). We can decompose every k € X7 (O) in the form k = ([k], (k)), where
k] € F)* and (k) € X144z, (O). Since t — #* is invertible on 1 + pZ,, k = ([k], (k)) is even if and only if

k] € IF;Q and then % € {([25}, %) , (7[25], <2L>> }; if [k] = [ko] for some integer kg our convention is to choose

k= (@, %) Thenk % ke N implies k € 2N and ¥ 4 k. The elements of Homg (D (T),0) ~ Xy (O)
are called O-weights; we will freely identify k; B ks ~ (ki,ky). We will write X := ij-
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5. THE p-ADIC TRILINEAR FORM
The semigroup ¥ (pZ,) C Mz (Z,) acts from the right on the set W := Z) x Z,. Setting w, :=

( ;?) _01 ), we have W : = Wuw, = pZy x L), on which X (pZy)" = w, '5q (pZy) wp acts from the right.

Hence, for a O-weight k, we may form the right o (pZ,)-module (resp. ¢ (pZ,)-module) Dy (W) (resp.
Dx (W)) Taking K = g (pZy) := X0 (pZy) N GLz (Z,), we may form the spaces of p-adic families of
modular forms on B*:
M (D (W) ,wo,p) := My (B, Dk (W) ,wo,p) -
Recall we work over a p-adic field F’ and consider Banach F-algebras: we set M (Vi p,wop) = Mg (Bf Vi, Fywo p)

and M° (Vi p,wo) := M® (B, Vj,p,wo). As explained after (9), they are naturally BIP x H (EO (pZy))-
modules and, in particular, they are endowed with a U,-operator.

Ezample 5.1. Recall the open and compact subgroups Ky (N), K (N) C B{* defined before Example 3.3.
Assuming that .,y C F, we can decompose

My (D (W) N =@ ye o My (D (W) (2),

‘\ NZ

where M () is the submodule of elements © € M such that zu = € (u)  if we define € (u) := € (a,,) for a,

—k
the upper left entry of u € Ky (N). Setting wf):l; (2) :=¢ (Nf(z)) NX(2) =€ (Nf(z)) (ﬁ) , we have
P

0,p

Ko(N)
; )

M2 (D (W) (0) = b2 (Dk (W), wi C MS (Dk (W) ,wswk) .

Ik 3k € N, there is a specialization map

(40) G5+ M (D (W) 255 Mg (Dy (W) 5 My (Vi)

where the first arrow is induced by (35) and the second is the restriction to polynomials map (regarded as
functions on W). We will usually write ¢, := ¢! (¢) when ¢ € My (Dy (W)).

Ezample 5.2. Suppose that we are in the setting of Example 5.1, so that p,ny C F. Then we can decompose
Me® (Vk’F)Kl(N) as we did for p-adic forms. Setting wg’k (2) :==¢ (Nf( )) NF (2), we have

)KO(N)

MO (Vk7F)K1(N) ( ) M© (Vk W s k Me <VkF, sk) '

Furthermore, when ¢ : (%)X = Hyny C F*, the specialization map induces (see Lemma 2.3 for the
isomorphism)

o2 s My (D (W) ,wi) = Mg (Vi wih) = M (Vi wi).

Justified by the above example and changing a bit the notation to make it consistent with that of §3, we
-k
will consider characters of the form wlo‘yp (z) = wr (2) Nl; (z) = wr (2) (ﬁ(z)) , where wy is the finite part of
P

a unitary Hecke character which is unramified outside p. As explained above, setting w§ () := wg (2) N¥ (2)
we see that (40) induces

(41) M; (Dk (W) wy p> — ]\4<> (\/v]c F,Wq p) ~ M° (Vk F7UJ0)

We identify 9 : Qg X Qg 5 Ms (Qp) by the rule ¢ (z1,y1,22,y2) = < 1 hn > and, for a subset S C

T2 Y2
Q2 x Q2, we define

65:8 = Qp, dg (s) :=det (¢ (s)) and S, := dg" (p"Z)) .
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For a continuous group homomorphism k : Z — O* valued in a Q,-Banach algebra O, we may consider
5 S0 = X 5 0%, 8% (s) == 6 (5)*.

It is a locally analytic function, when S C Qf, X Qf, is a submanifold, because k is locally analytic and Sy C S
is a submanifold.

Since ¢ (w19, w2g) = ¢ (w1, w2) g for any w; = (z;,y;) with ¢ = 1,2 and g € GL2 (Q,), we have dg4 (sg) =
ds (s)det (g) for any s € S and (S9),, = Sn_.,(g)9 Where v, := ord,, o det. In particular, if ¥ C GL3 (Q,) is
a subsemigroup acting on S, then I'y, := X N det ™! (Z;) acts on S, for every n. We have

(42) 05, (sg) = det (9)* 5%, (s)
and, in particular,
(43) 85, (t1s1,t2s2) = tXt55S, (s).

Noticing that (W X W)o =W x W and (W X W)O =W x W, we may consider the locally analytic
functions

0, WX W = 0% 8% W x W — 0% and 6y, : W x W = 0%,

Recall our notation for the twists by the norm. Since I'y (pZ,) C GL2(Q,) is compact, nrd, maps it into
the maximal open compact subgroup Z; C Q. Hence, if D is a I'g (pZ,)-module with coefficients in O, it

makes sense to consider D (k) := D (nlrdl;)7 the same representation with action v -k g := nrdlzf (g) vg. Also,

recall we have Nrd;f € M7 (O (k) 7N12,k)K for every K € K° (indeed N2k = Nrdlzf on Zy = A)).

If k = (ky,ko,ks) where k; : Ly — O are O;-valued weights such that ki @ ko @ k3 is even, set
K= kool gy cliledla ks okl g ki = RS0k o that k) : 23 — O for
O = 0180,803. We define W := W x W x W, W, .= W x W x W, Wy, := W x W x W and
Wa =W xW x W. Also, if p; : W, = W x W denotes the projection onto the components which are
different from 4, we define W := p; ' (W x W),) (for example, W$ := (W x W), x W). Then we define

the locally analytic functions
ik W; — OF

by the rule
o ) k] k3 k3
A7 g (w1, wa,ws) 5(wa)0 (w2, ws) 6A><W (w1, ws) 5A W (wy,w2),
o k k
Ad g (wi, w2, w3) @ = 5 w (w2, ws) 6 (wa) (wi,w3) 6 2 = (wi,w2),
ASy (w1, wo,w3) 1 = 5* (wz,ws) T (w1,w3)5(&,xw>0 (w1, ws) .

We remark that Ty (pZ,) = T'o (pZ,)" = X0 (pr) AP (pr)L acts diagonally on W?. The following lemma
is an application of (42), (43) and the definitions of §4.3.

Lemma 5.3. We have Af, € Ay, @i, Bk, (w3) (—k*)FO(pZ”).

We will now focus on the ¢ = 3 index, the other cases being similar. Since W, = W3 U (W4 — W3) (resp.
W2 = (W2)0 U (W2 = (W2)0)) is a disjoint decomposition in open subsets, we have an extension by zero
map - : A (W3) = Ak (W3) (vesp. -0 = Aw,mk, ((W?),) = Ak, ik, (W?)). By duality, we obtain a map

D (W3, k) = D (W5, k) (resp. -*: Dy, (W x W) — Dy e, (W x W),)).

It follows from Lemma 5.3 that we may consider

A3y (s s pg) = (pag B pag B pag)° (Ag,k) € Ok (p; € Dy, (W) for i =1,2 and pg € Dk, (W) )

and that we have

o~

A3 x € Homoprygz,)) (Pi, (W) ©0 Di (W) @0 P, (W) , O (k1)) -
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Suppose that we are given characters Wo for i = 1,2, 3 such that N s = wglpwz?pwo - Taking A = A3, in

(11)) gives the trilinear form
s Mg (D, W), 0b,) @ M5 (D, (W), k) @ Mg (Di, (W) k5, ) = O

Suppose, for example, that we may write wgi (2) = we;(2) Nki (2) = we;(2) (ﬁ) with wg,; taking

values in F' with wswsowr3 = 1; then we see that wy pwgzpwoﬁ‘p = N X" and the above definition applies.
Let us remark that, when k is such that ki = ¢ € N, the expression (13) defines an element Agy €

Ay, w8k, (W3) (—K‘)F”(p Z) . We can therefore integrate this function without first applying -° to the
measures involved. The result is a trilinear form

(44) tae s Mg (D, (W), b,) @ M5 (D, (W), i) @ Mg (Diy (W) k5, ) = O

Let @, be the idele concentrated at p, where we have (&,), = w,. Because wy, : Dk, (W) — Dk, (W), the
formula (@3 | Wp) () := (030p) (x) = @3 (Wpx) wp defines

(45) W, : M2 (Dk3 (W), w};;) — M (Dks (W) w‘gap)

It follows from (39) that, if ki =c € Nand ¢, ;, = = ¢ (¢;) where ¢ : k; — k;, then

(46) ¢ (tsx (01 @ 0y @ 3 | W3)) = th (@115 P ks Paks | W) -

This applies, in particular, when ¢ is the identity and k = k € N* is balanced: then ¢, , = = ¢ (¢;) = vk (;)
is just the restriction to polynomials map (see (40)) and ¢ that appears in (46) is the identity.

The following key calculation relates the trilinear form ¢35, to 3, under the running assumption that
k = k € N? is balanced (to be in force from now until the end of Corollary 5.6 below). Write 7, for the
(1) g ) If ¢ € M3 (Dy(W)), recall the Up-operator
defined by the double coset K7, K, where K = K*T (pZ,) and ¢ € MS(Dy(W))X" (see the discussion after
(9))-
Proposition 5.4. Fori= 1,2, suppose ¢, € M7 (Dy,(W)) is a Up-eigenvector with ¢,|U, = a;p;, and view
1 ® @q as an element of MJ(Dy, @k, (W x W)). Then

idele concentrated at p, where we have (), = ), 1= (

(01 ® 3)|Up = a1a2(1 ® 03 — is (1 @ 92)°),
where i 1 Mg (Dy, @, (W x W)g)) = Mg (D, mr, (W xW)) is induced by the map i : Dy, @, (W x W)y) —
Dy, @k, (W x W) obtained from the inclusion i : (W x W), —= W x W.
Proof. Consider the decomposition

p—1
W = |_| W;, where W, =Wm, ={w=(z,y) e W:y=izr (modp)}.
=0

Then K7pK = |_|p Km; and we can compute:
a1a2(p1 ® @5)(x) = (01|Up ® @o|Up)(x)

p—1

= Z @1 (mix)mi @ o (mjm)m;
,j=0
p—1 p—1

=Y o (re)mi @ py(mz)mi + Y @y (mix)mi ® @y (mjz)m;
i=0 i,j=0

i)
= ((p1 @ o) |Up) () + A.
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It remains to show that A = aja2i.((p; ® v,)°(x)). To this end, note that we may write

p—1 p—1 p—1

W2 = | | WixW,; = |[WixW;u | | Wix W,
i,j=0 i=0 i,j=0
i#j

Subordinate to this decomposition of spaces, we have a corresponding decomposition of Dy, gy, (W?):

p—1 p—1

’DklEEkQ (Wz) = @Dklﬂﬂkz (Wz X Wz) 57 @ DklEEkg (Wl X Wj)
i=0 i,j=0
i#£]

Note that the spaces W; are all Z,-stable, so that these spaces of distributions are defined. Writing proj, ; :
Dy @k, (W?) — Dy, mr, (Wi x W;) for the associated projections, we have

p—1 p—1
araz Y proji ;(1(x) ® 95(x)) = a1az(y(2) ® () = Y iy (ms)mi @ oy ().
i,j=0 i,j=0

Since
P @ pomj € Dy, (Wi X Wj),

for every p1q € Dy, (W) and py € Dy, (W) (as it can be checked on Dirac distributions), taking p, = ¢ (m;z)
and f1, = @, (m;z) it follows that

arag proj; ; (1 () ® ¢a(2)) = ¢y (miw)mi @ o (7;)

for all 7, j. Therefore,

p—1
(47) A=aiaz Y proj; ;(1(x) ® pa()).
4,j=0
i
One easily verifies the equality
p—1
(W x W)= | | wixw;,
i,j=0
i#
implying that
p—1
(48) Y proji (#1(2) © pa()) = ix((01 ® 2)" ().
4,j=0
i#j
Now substitute (48) into (47). O

We are going to apply the results of §2.3. We take X, = ¥¢ (pZ,,), D = Dy, mk, (W x W) and E = Dy, (/V[7)

Then k = k" (resp. the central character kg = k3 of E' = Dy, (W)) extends to the character k = k™ of Q)
(resp. the character kg = k3 of Q). Finally, we suppose that we may write wgfp (2) = wr; (2) (ﬁ(z))
P

—ks
; wop,E (2) = wi s (2) (Nfz(z)>p and

—k1—ko

with we 1w ows g = 1. Then wop, p (2) = wi (2) we2 (2) (ﬁ)
—k1—ko—ks

P

we have wo p, pWo.p,E = Wo,p With wo, (2) = (@) = Nrd%* (2).

p

Lemma 5.5. With these notations the trilinear form ts j, defines an element of Homo[zpﬂ,] (DR E,0(k")).

Furthermore, we have Nrdg‘ (7), nrdg% (mp) nrd, 0" (1) = wy 3 (1‘;‘3&;?) Nrdfﬁg (), in Proposition 2.9.
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Proof. Note that A;j defines indeed Ay € Al 8,0, (Q2 x Q2 x Q2) such that E&Iw3 = A; . We take
D= Dy, 1k, (Q3 x Q) and E := Dy, (Q2), so that kj = kg = k3. The pairing associated to ts ) is given by
(125 113) = (p1128p13) (Ag) and we define (5, 113)™ = (1150p13)(Ag). Since Q;xQp xQp = (W?xW)uZz
with Z an open subset,

Ay 8oy (Q2 X Q2 x Q2) = Ay, o, (W X W) ® Ay, mr,m, (2)
and Dy, Bk, Bks (@,2, X @?, X Qf,) = Dy, Bk, @hs (W2 X W) ® Dy, Bk, Bks (Z£)-

For elements (1,5 € Dy, mr, (W?) and g € Dy, (/V[7), the distribution ji,,®p is supported on Dy, @, @k, (W2 X
/I/I7) and we see that (fq4, s)” = (p19, it3). We note that the relation aﬁE = det(o)kﬁk for every 0 € ¥,
implies

(11150, 1130)™ = (p11208p130) (Ag) = det(0)E(11oBp1y) (Ag) = det (o) (15, p13)" -
Now apply Remark 2.8 in order to get the first statement. Finally, the second statement follows by a simple
computation. ]

Write p’ € A[ for the finite idele (p’), = p for every v # p and (p), =1

Corollary 5.(1.\ Fori = 1,2, let ¢, € M;(Dki(W),wISfp) be a Up-eigenvector with ¢;|U, = a;p; and let
g € M;(DkB(W),wlgfp) be a Uy -eigenvector with ¢3|U, = azps. Then

Qs *
pE3> t3.6(01 ® Yo ® 3).

t35(01 ® 3 ® 3) = (1 — w3 (p') o

Proof. Recall the morphism -0 : Dy gy, (W x W) — Dy, @, (W x W),). Given p; € Dy, (W) for i =1,2
and ps € Dy, (W), we may therefore consider
(t12: 13); = (12 B i) (Ai) :
This is granted by Lemma 5.3, which also implies (—, —); € Homor(yz,)] (Dklggkg ((WQ)O) ® Dk, (W) ,O (K‘))

Taking A = (—, —);

t

(= 0% = M5 (Drmis (W2),) 05.0) © M (i, (W) w0) = O,

in (11) gives the bilinear form
It is clear that <Pk1’k2 (u1®LM2)O ,/l3> = 15 (H1, to, t3) (we just need to check the equality on Dirac
: k

distributions), from which we see that

o 0 °

31 (1, P2, 03) = <(<P1 ® ©q) 7%03>t ,

if 1 ® 4 is viewed as an element of My (DklEEkQ (W2) ,wo,p,D). A similar result holds true for ¢35, namely
we may define as above

(= =)y : My (Di,, (W?),w0,p,0) @ My (Diey (W), wop,5) = O
for which

tak (P15 02, %3) = (91 @ 2, 03) -
By Proposition 5.4, we have

(49) (1 ® @9, p3)¢ = (01 ®@ 03)|Up, ©3)¢ + {ix(01 ® ©2)°, 03}t

[e5Ke%)

Proposition 2.9, which applies thanks to Lemma 5.5, implies that

(50) (61 ® o) |Up, 03)¢ = w3 (P') P55 (01 @ 09, 05|UL)e = we 3 (P)) 3 a3 () @ 09, 03)1
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o
Finally, it is easy to see that <z* (1 ® u2) u3> <(u1 ® #2) ,,u3> (once again checking the equality on
t

Dirac distributions), from which we see that

(51) (i- (01 ©92) 05), = (L1 ©92)" 03) -
The result follows by combining (49), (50), and (51). O
5.1. p-adic periods. Writing k = k; and O = O;, as remarked after (43), we have 51;wa W x W — O

it follows from (42) that we have 61;V><W € Axmx (W X /W) (—k)FO(pZP) and we can consider
By € Homor,(pz,)] (Dk (W) ®0 Dk (W> , O (k)>
defined by B (117 ® po) := (11 B p19) (61;VXW). Taking A = By in (11)) gives the bilinear form
(==t My (Dac (W), ,) @ M5 (Dac (W) N2Z< () ) = O,

Suppose now that k Lk € N and let us remark that there are specialization maps

e 0 (D (W) by — M3 (Vi) = M° (Vi) and

0,p

(52) o2 Mg (D (W) N2 () ) — Mg (Vi N2 (wh ) ) = M0 (Vi NE () )

defined in the same way as (41) was defined, i.e. via the morphism induced by (35) and the restriction
to polynomials (now regarded as functions on W) Let us apply Remark 2.5 to (18). First, it tells use
that (nrdf_wf,l) e X (Bx,wf_Q) corresponds to (nrdf_wf,l) € X, (Bx,wf_2) (taking xq = nrd;“* and
Xoo = Xp = 1 in loc.cit. we see that x, , = nrd; “*). Second, it tells us that (17) (for the central character
wk (2) = wt (2) NF (2)) corresponds to

(53) Mg (Vigwh,) — Mg (Vios, N2 (wf,) )

ok
defined via Remark 2.2 (1), i.e. given by ¢ > @, where ¢(x) :=nrd; " (z)p(z) = Nrdk'( )nrd; “or (1) ()
(the equality because wf , (z) = wg (2) N¥ (2), implying that we = w’é N, %). Hence, the same formula ¢ — @,
where p(z) := nrd; “"* (z)p(z), defines

(54) My (D (W), ) — Mg (D (W) N2< () )

which interpolates (53) ~ (17) via (52). Recall the W,-operator M¢ (Dy (W), wk ) — M3 (Dk (ﬁ/\) wlgp)
(see (45)) which interpolates the Wp-operator Mg (Vi g,wf ) — Mg (Vi,g,w,) (defined by the same
formula) via the specialization maps (41) and (52) Finally, it is clear from its definition that (—,—),
interpolates (—, —), via the specialization maps (41) and (52). Hence, setting (p,1)) := <<p, (¥ | Wp)>k we

have proved the following result (the uniqueness follows from the fact that the weight space is reduced and
N is Zariski dense in the open affinoid subdomain U C X).
Lemma 5.7. Suppose that k : Z; — O corresponds to an open affinoid subdomain U C X and that
@, € M (Dy (W) ,w&p). There is a unique (@,v) € O such that for every k € U NN which corresponds
tok 3 keN we have, setting o, == ¢™9 (@) and ¢, = ¢ ():

(p,1) (k) :== ¢ (0, ¥)) = (ps ¥ | W)y, -
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6. DEGENERACY MAPS AND p-STABILIZATIONS

If g € GL2 (Q,), we let g be the idele concentrated in p, where we have g, = g. In particular, we write
7p (resp. W) for the idele concentrated at p, where we have

=m0 =5 3 )+ @y=wni= (5 3 )

We fix levels K C K# of the form K = KPT (pZ,) and K# = KPGLsy (Z,). Let us record the following
fact.

Lemma 6.1. We have K# = Uizo....p1.00 K7 with v; = ( 1 (1) ) fori = 0,..,p—1and v, =

0 1 ~ 1 . 1 4
# P . -
( 1 0 > and K7, K7 = | |._y K7; U K&, with m; = < 0 p ) Also,

K#7,K# = Li—o. K#&y, = Lio...p K#*7, UK#7,.

..,p—1,00
Proof. Indeed, a direct computation shows that | |, K7, C K# (resp. |_|f;01 K#7; U K@, C K#,K#,
L %7y, € K#7,K# and | |,_, ,_ K#%; U K#7, C K#7,K#). The first equality is then easily
checked (and equivalent to [KZ,‘?é : Kp] = p+ 1 or the fact that there are p + 1 index p Z,-sublattices in Zg).
To see the other equalities, we may fix a left and right invariant Haar measure p and check that both sides
have the same measure as follows. First we remark that, because ©,7,, = Tp,
(55) K7, K# = Kb,7 . K% = Kb, K* =6,KK* =5,K*.
Then we see that

p(E7pK*) = p(@pK*) = (K*) = (p+1) p(K),
proving the second equality because

u (L]f;g K7, U K@,,) —(p+ 1) u(K).
Using the first equality, one checks that

K#7,K#* = ] 7 K7, K7

i=0,...,p—1,00
Then we see that

p(K#7,K%) < (p+ V)p (K7,K#) = (p+ 1)p (K7),
proving the third and the fourth equalities because

H (Ui:O,...,p—Loo K#%;ﬁi) =K (Ui:o,...,p—l K#%i U K#%;) =@+ pu (K#) :
O

We suppose in this §6 that Z* C K and that we may write w (z) = wg (2) NF (2). We have have two
degeneracy maps
K#1K = K#*1, K*3 K : M (Vi p,w0)® = M (Vi wo)™
Define
eP) = | K#ﬁ;K € M(VhF,OJQ)K

Let us now fix 0 # ¢ € M(Vk,F,wo)K# such that ¢ | T, = a, (¢) ¢ and define M(Vk7F,wO)K’W'°1d C

M (Vi wo)™ to be the span of {0, }. We define the Hecke polynomial at p and the quantities ay (i)
and 3,(¢) to via the formula

(56) X? —a, (9) X +wi (p)

Next, let us set

TP = (X — 0y (9)) (X — B, ().

¢ = 9@ =, (p) P € M (Vi p,wp) ¥,

ng = (pﬁp(@) = — Bp (@)_1 gp(p) c M (Vk,waO)K7LP_01d .
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We say that ¢ is semisimple (resp. not semisimple) if o, (p) # 8, (¢) (resp. ay (¢) = B, (¢)). Conjecturally,
¢ is always semisimple, as shown in [12, Corollary 3.2 and Remark 3.3].

Remark 6.2. Suppose that 7X C K' and that e M (Vk7F,UJ0)K/. Write p := p (resp. p’ € 7Zx C K') for
the idele concentrated at p, where we have p, = p (resp. the finite idele defined by the conditions (p’), = p
for every v # p and (p’)p =1). Then ¢ | K'p = wt (p’)_lpkgo.

Proof. Indeed, we may write p = pp’ and we see that:
_ -1 -1
(| K'p) (z) = o (pz) = ¢ (P 'ap) =wi (P) @ (@)p=wi (p)) pro(a).
O

#

Set T, := K#7,K# (acting on M(Vk,p,wo)K ), Up := K7pK and W, := K, (both acting on
M (Vi wo)™).

Corollary 6.3. If ¢ € M(Vk’p,wO)K# we have
-1

o | Up=¢|T—¢®, o® U, =w (p) "y

o | Wy =" and o® | W, = we (p) ' phe.
Proof. Noticing that K#ﬂ'LK K#’/T (because Y, W, = 7r , arguing as in (55)), the first equality is a
direct consequence of the last decomposmon of Lemma 6.1 and the definition o®) := o | K# %;K . Since
o) = ¢ | K#7 we find

W Up = X (¢ | K#7) 7o = £ o7, 7

o _(p ip Y\ _ 1 1
(85 )= (0 1)n

so that 7,7; € Kp. It follows from Remark 6.2 and the K-invariance of ¢ that we have o7, 7; = ¢p = ¢ |

We now remark that

Kp = wy (p’)_lpkgo. Hence we find

~1
PP U, = wr (p) 9" i = wr (p) 7 P e,
The equality ¢ | W, = ¢® follows from K #7,K = K#G, (because we remarked that K#7 K =
K#7, and K#7, = K#wp in view of 7, = WOon) and the fact that ¢ | K&, = ¢ | K#©, because

# ~ ~
€M (Vip,wo)™ . Finally, since w? = —p, once again noticing that K#7, K = K#&,,, we find

—1
e | W, = (p | K*#8,) 0, = 002 = ¢ | K*p =w; (p') " pe.
0

The following result, whose proof is left to the reader, can now be deduced from Corollary 6.3 by standard
linear algebra and the well-known fact that Im(K #1K ) ﬂIm(K #%;K ) =0.

Proposition 6.4. The following facts are true, assuming that F is a field such that oy, (¢), 8, () € F for
the statements (2) — (5).

(1) The space M(Vk,p,wO)K’w_Old is two dimensional with basis {¢, pP)}, stable under the action of
the U, and W, operators.

(2) We have ¢* | Uy, = ap(0)p, ¢° | Uy = B, (¢) ¢ and, if ¢ € M(Vk,p,wo)K’“’_om is such that
Y | Uy = p, then ¢ = o* orp = ©” up to a scalar factor.

(3) We have

F(p% | Wy) N Fp™ = F (¢ | W,) N Fp? =0 (resp. F(gpﬁ | Wp) N Fe® :F(wﬂ | Wp)ﬁFgoﬁ =0)

unless oy (0)? = we (') p* (resp. By (o) = ws (p') " p*) and, in this case, o | Wy = —ay (@) ©
(resp. o’ | W, = =B, (¥) ©?). In general,

o - -1 - -1
¢ | W, = 0@ —ay, () wr (p)) 7 R (resp. ¢ | W, =@ — B, (0) " we (p) 7 pF).
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K, p-old
P and we have

(4) If ¢ is semisimple, then U, is diagonalizable on M (Vi F,wo)
M (Vi pwo) 971 = Fo @ FyP.
(5) If ¢ is not semisimple, then
0# Fo = Fp’ € M (Vi p,w0) %"

K,p-old )K,ga—old

is a one dimensional subspace of M (Vi r,wo) and U, is not diagonalizable on M (Vi p,wo

6.1. The case of three p-old forms. Let us assume that ¢, € M (Vki’F,wo,i)K# are such that ¢, | T, =
ap (p;) @; for i =1,2,3 and let us write o; := o (¢p;) and 3, := B (p;). If a = (au, a2, a3) and k = (k1, ko, k3),
we define

aq a
Epi (k) :=1—weq (p)) 2

s 043 *
ki g k):=1-— ! ka & k):=1- ! ks
ais p- P,2 (o, k) Wf 2 (p) alagr y €p,3 (a, k) wf,3 (p) 010y

1 x
= 1-— k™41
() = €y (2.0 2 @) Epa () (1= ot
and then (the last equality with the convention that it simply means “formally remove the &, ; (o, k) factor”):
~ 1 . &y (a, k)
Epilak) =T Epi (k) [1 — ———ptH1) = 2220
pi(@ k) = llpiEps (0 k) ( arasas’ Epi (a, k)
Proposition 6.5. With the above notations, the following formulas hold:
ti (@5“1) | Wy 7<p§a2),<p§a3)) ﬁgp, 1 (@, )t (91502, 03)
(1) (a2) (as)
b (A A7 | Wy ) =
@3 | Wp, 03 p+ 1

1 a3 &
(soﬁo‘ ) oy o) | Wp) =5 TEp8 (@) L (@1, P20 03) -

~

Ep2 (@, k) tr (01,92, 93) 5

Proof. We have, by definition and Proposition 6.4 (3),

1 2 —1
th ( () 42, ) | W) = —t (% — a7 o, 0y — o ag prwes (p) g — @ﬁp))

_(4® _ B® 4 c® _ p®
( + )

where
A® = Wi (p')” "o kStk (1,92, 03) 5
B® = ws () artey ' py (<P§ )a<ﬂ2a903) +wis (P) 7 agtag Rt (‘Ph@gp)’%)
+ir (@ @2#’3 )
C® = wrs(p)ortay tag Pt (soﬁ”),soé”)vws) +ay (cpﬁ”),%wé”)) +ag 'ty (%s@ép)’wé”))
DB — arlay (90( )7¢ép)7@(p))

Regarding tj as a pairing as we did in the proof of Corollary 5.6 (for t3 ), we compute

t ((pgp)’ 0o, (Pg) = (¢ | K#%;K, Py ® <p3>t (the pairing does not depend on the level)
= (¢ | K#%;K, Vg ® g | K#1K>t (by Proposition 2.9)
(p+1)~" ((o1 | K#%;K) | KIK# p, ® g03>t (we have K#%;K = K#ﬂ,)
—1 ~L
(57) = @+1)7 X, crvi# (P17 2 @ @3), -
It follows from Lemma 6.1 that, if K# = | |, Kv;, then K#7,K# =| |, K*#7,,. Therefore,

Z%,GK\K# <<P17Tp’Yi> Py @ <P3>t = (1| Tp, 02 ® 3), = ap (1) (P1, P2 ® ¥3),

(58) = ap (¢1)te (91,92, P3) -
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We have proved that
~1
ti (cpﬁ”), Pa; wg) =@+1) ap(p1) tr (01,92, 03) -
Working in a similar way for the other two terms of B®) we deduce (recall azp™* = w; 3 (p’) B3 'p):
-1 _ _ -1 _ —
(p+ I)B(S) = {Wf,S P) o 1% (¢1) az 't + wiz (P)  ay 1% (p2) a3 'phs + ap (903)} te (91, P2, P3)
= {wrs () ag ' twis (0) 7 oy ey B +wes (p) o P
-1
+wis (P) " ay ey Bop®® + as + Byt (91,92, %3) -
Noticing that we have K#7 K = K#7, we find
P © ) = (91 ® ) | K*FLK.
Hence we find, using the adjointness property of Proposition 2.9,
(A7 6 0s) = (01 ©00) | KFRLK 05 | K#1K),
= (P+1) wes ()5 (0 @ @y, (05 | K#1K) | K7,K#),
71 *
= 0+ 1) wiz (@)™ ay(ps) (p1 @ @a,03),
-1 X
(P+ 1) wis (P) P2 ay(p3)te (01,02, %3) -

Working in a similar way for the other two terms of C'®) we deduce (recall azp=*s = w; 3 (p') 85 'p)

(p+1)CP = {ar'ay ay (ps) a3 ' HE +wrs () ap tay (o) P2
+we1 (p') oy (%)rl }tk (1,92, ¢3)
— {al_ o o1 k3+k3 +aj on a ﬁ pk3+&§
+ws,2 (p )a1 Oé2lf2 + w2 (p’ )ay 522?%
+we 1 (p) eyt aapt +wr (P') ag ! B1p8 M (01, 0o, 03) -
Finally, once again using K#7, K = K#7, we find

(p) (p) (»)

P Qg © Py _801®902®903|K#7AT;

and ty ( (p), Sﬂép)a 90( )) =Xty (@1, @y, p3). Hence we find

D® = aflaglpk*tﬁ (1, P2: 3) -
Putting everything together, we have computed that
(59) i (01,082, 08 [ W) = = (0 + 1) Bty (01,00, 09).
where (using 3; = wi; (p/) " a; tphith):
E = wis®) az'ph +wes(p) " aglphet!
—wrs (P) g R —wry (p) T wes () ag 2ag PR — g (p) T 0 tph
*wf,Q () wes (p) 7 ag%ag PR — g — w5 () ag phe !
tap a 1pk3+k3 + w3 (p')_l ] 1a2 a; 2p2k3+k 1
+wi g (P) oy aophs + oy lay Tt R
+wi (p)) ag tanpht + oy tag tpf TR

—aflaglpﬁ* — aflaglpk +1
Let us now remark that, writing (4,j) for the j-term of the i-line, we have the following simplifications:
(1,1) with (2,1), (1,2) with (3,3), (4,1) with (7,1) (because ks + k5 = k) and (6,2) with (7,2) (because
k1 + k7 = k). Hence, we find (recalling that wewrows 3 = 1 on Z* in the first equality and noticing that
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ki+ks+1=ki+k"+1, ks=ki+k5, kao+hks+1=k +k"+1, 2ks+k;+1=Fk +k;+k"+1and
ko + k5 +1=Fk"+1 to get the factorization):

E = —ag(wre(p)) oy oz pM TRt 4wy (p') we o (P/)OZQQP’“

2 —2 ko+tka+l n—1 —3, 2kz+k;+1
Fwe 1 () o 2o 2pP T 1 —we g () oy Ty tag Pt

—wig (p) ap tasay pM — aptag g PR —w (p) o tanag )

. e * 1 *
= —ag (1—wf,1 (P) ——pt ) (1—wf,2 () — zr’%) (1—#“ “).
Qo3 103 103

Inserting this computation of E in (59) gives the third equation. The first two equations are proved in a
similar way. 0

Let us discuss the p-adic periods.

Lemma 6.6. Suppose that 0 # pq,¢q € M(V;@7F,w0)K# are such that ; | T, = a, (v;) ¢; and let o; =
ap (p;) be a root of the Hecke polynomial at p of p; (see (56)). If ap (1) = ap (ps) and o := a1 = ag, then
we have

a (1 —wi (p)) 7 a_zpk) (1 —we (p)~! a—2pk+1> (

(@) @) ) _
(90 W) | @) -
Proof. We have, by Proposition 6.4 (3),
(90(10()7902 | W) - (% 1o o —a~lwp (p')” p’“@z)k
-1 _ -1 _
(60) = —we () a ' (@1 00) Fwr (P) PP (@ﬁp),wz) +(<p1,<p§p))k—a (wﬁ),%

# 1\ K
If 0,0 € M(Vyp,wo)® and v € M (V;%F,N?k (w) 1) are such that ¢ | T, = a, (¢)¢p, the
adjointness property of Proposition 2.9 gives, arguing as in (57) and (58):

(61) (p+1) <so(p),wv>k = (¢ | Tp, "), = ap () {0, 0"), = (4 1) (so(”)ﬂ/f)k = ap () (¢, ¥),, -

In order to get a symmetrical relation, suppose now we have 1" | T, = ap (z/JV) ¥" and apply once again
Proposition 2.9 arguing as in (57) and (58) in order to get

-+ 1) (o () 7)) =0 (0") (p.8), .

Next, note that twisting does not exactly commutes with the right B;*-actions: rather we have ¢g =

nrd;“(g)(¢g). Tt follows that ¢(p) wi ' (p )(1/1(1’)) and a, (¢¥) = w; ' (P)ay (). Then, taking ¢" = 1) in the
above relation gives

p+1 '@ (0. @) =@+ (00" =a,(B) (0 0), =i Bap () (0, ),
(62) & 0+ () =0, @) (p.0), & @+ (06") =a, @) (e0);-
Finally, the invariance property of (—, —), gives <<p<p>, (¢V)(‘°)>k — p¥ (10", and then we find (because
wi () = wi(p)):
(63)  wi'(D) <<p"’), wf”))}k = <<p(p)7zlj(p)>k =p" (p,0), & (w(p)w(”))k = wi(p')7'p" (0, 9),, -
Inserting (61), (62) and (63) in (60) yields

(1,087 | W) =@+ 1 E- (e, 00
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-1 _ -1 _
a PP —we (p) T a P+ we (p)T o ?pPa, (9)

P) — Wf(p’)‘la‘lp’““ —we(p) ot

-1 _ -1 _ -2
—we(P) o +wr(P) e wr () T
—1 k+1 (p/) 1 —1 k+1 wf(p/)—la—lpk
k+1_|_w ( ’)_2a p2k+1+a wf(p/)—la—lpk
)

a?p > (1*wf(p/ fa? kH)

E:—Wf

-3, 2k+1
p

I
|
&
.
Q
’—"U

O

6.2. The case of two p-old forms. Let us assume that ¢, € M(thF,woJ)K# are such that ¢, | T, =
ap (¢;) p; for i = 1,2 and that ¢3 € M (Vi F, 1)® is p-new, has even weight and trivial central character,
ie. it is such that @5 | U, = —w,3p*/ 204 and ¢g | W, = w, 3p**/2p, with wy, 3 € {£1}. To make the

notation uniform, we define g := —w, sp™/2 and {**) := ;. Then
(k2—Fk1)/2 (k1—k2)/2
Epa (@, k) = 1+ wy 5w (P') ]#’ Ep2 (a, k) = 1+ wy3wr (P') pa712
(k1+k2)/2

and & k)=1
nd &3 (a, k) + Wp,3 10y

Proposition 6.7. With the above notations, the following formulas hold:
b ( ) | Wy, 2, (a?’)) = &Salak)ty (‘ng)yﬂ%a%’zz)
= wpawra () PO T8, (0 k)t (01,08 0
ti (da“,wéaz) W, ,soéa”) = &Ealak)t («puwép),%>
= Wp,3wr2 (P/)_lp(krklwgp,?) (o, k)t (‘ng)v%a%) ;

aq «@ «@ a3
e (@0 o8 e W) = 226 (k)i (0168 0)

ar
= =2 p,1 (k) tx (gogp),g@,cpg) .
aq

Proof. We begin with the following remark from [17, discussion after Theorem 2]: because tj, is K #-invariant
(resp. w;lK#wp—invariant)‘r’ and ¢, € M (thp,wo,i)K# (resp. go Ve M (Vi Fywo.:) ;IK#“"’) fori=1,2,
@ =t (91, Pq, @) (Tesp. @ >t (ap&p), cpgp), go)) is K#-invariant (resp. Wy, ! K#w,-invariant) and, hence, it
is zero on the irreducible representation V,,, C M (Vy, r,wo 3) generated by o3, whose dual representation
does not have non-zero K#-invariant (resp. w, 'K #wp—invariant) vectors. In particular,

(64) tr (01,02, 0) =t (@ﬁp), P, so) =0.

The computations of ¢ (gogm) | W, goéa"’), <p3> and t&( (al), s o2) | W, 303) are the same, so that we can
work with the second. We have, by Proposition 6.4 (3) and (64):

[e} @ —1
ty (@5 RS IWp,wg) = t (%—a Lo 0P — agtph2ue, (p) wg,wg)

(65)

-1 _ —
e (108 03) +wrz () ooz e (0, a0 03)

5The trilinear form tj, satisfies the invariance formula

i
t (P1U; Pau, p3u) = Nrdy (w)* tx (91, P2, ¥3)

and we have Nrdy (u) = 1 for u € K# or u € wp PK#wy,.
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Similarly, because o5 | W, = w, 3p"*/%p; and by (64):

123 (‘Pgal)a @é%)v @3 | Wp) = wp,Spk3/2 (‘P1 - a;1¢§p), Po — a;1<pgp)’ ‘P3)
(66) = —wp,3p™/? (aflt@ (@ﬁp), P2 903) + oyt (sol, P, sog)) :

1

(®) ¢; | K#@y; also, noticing that @127 = Zp, we see that w, =

Because K#7, K = K#G,, we have ¢;
:E)_lfup = :\1?1&71,, implying that K’@;l = K'p~ '@, for K’ € {K#,K}. Applying Remark 6.2 gives

;| K'szl = wr; (p')p~Fp; | K'G,. Hence we find (using the invariance property of tj in the second

equality® and ¢4 | W, = wp’gpk3/2cp3 in the last equality):
(p) - ~ _ ok ~—1  ~—1
k\P1 P2, ¥3 - E(wiwp>w27(p3) =pr tﬁ (p17<p2wp ,4,03(*)1)
w2 (P)

phatks P t (91, Palp, P3tp)

(67) = w2 (p) wpap® 2

o1, o, s03) :

Inserting (67) in (65) and (66) yields the claimed formulas. O

6.3. The case of one p-old form. Let us assume that ¢, € M(Vki,F,WO,i)K# are such that ¢, | T, =
ap (@;) ; for i = 1 and that ¢, € M (Vy, F, 1)¥ are p-new, have even weight and trivial central character
for i = 2,3 (implying w1 (p’) = 1). As in the setting of Proposition 6.7, we write a; := —w, ;p"/? and
ol = o, for i =2

= ¢, for ¢ = 2,3. Then

gp,l (Qa E) =1- wp,pr,Balp_kl/2 and gp,2 (Qv E) = gp 3 (a k) =1- Wp 2Wp, 30[1 pkl/Q

Proposition 6.8. With the above notations, the following formulas hold:

k( )] Wp,soga”,sog,as)> = =o' P& (0 k) tr (91,09, 03)
tk (90(0(1) 0‘2) ‘ Wp7 (O‘S)> = 70[2513,2 (gv E) tﬁ (@17@27S03) )
te (@gal),w(“2)7¢§“3 | Wp) = —a3&s (a, k)t (91,09, 03) -

Proof. The computations of ¢ (<p(1a1), 0y | W, gpg) and t, (npgal), Vg, P3| Wp) are the same, so that we can

work with the second. We have, by Proposition 6.4 (3):

%( i | va%#ﬁg) = ( P — e (p) 7 sal,sow?,)
(68) = (<p§p)7 o, @3) —arwrn (0) 7 P e (01,92 03) 4
Also, because 5 | W, = w, 3p"*/%p,
te (‘Pgal)’%@zﬂﬂs | Wp> = wpap™ Pt (so —ar el ),%#3)
(69) = wyap® ( k(15920 03) — 7 e (‘ng)v%a%)) ‘
Arguing similarly as we did in (67) we find
(70) t (wﬁp),%,wg) = wp,2wp 30?1y, (01, 02, 03)
Inserting (70) in (68) and (70) yields the claimed formulas (recall w1 (p’) = 1). O

OWe have Nid (@p) = |nxd @p)l} = Ipl, ' = p.
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6.4. The case of three p-new forms. Let us assume that p; € M (Vi, r, 1)K are p-new, have even weight
and trivial central character for i = 1,2,3. As usual, we write «; := pr,ipki/2 and @E‘“) =, fori=1,2,3.
Then

Epa(ayk) = Epa (k) = Eps (k) = 1+ w1 pwa pw3 p.

Proposition 6.9. With the above notations, the following formulas hold:

(as3) (a1) | (a2)

tk ( i | WP? (@2) )y P3 ) = _altﬁ (9017S027()03) <§01 ) P2 | Wp’(péas)) - _OéZtE (SDDQO%SOB)

and ty (‘Pgal)a Sﬁéw)v éaa) | Wp) = —asty (@1, P2, 93) -

Furthermore, we have ty (¢1,9q, p3) = 0 when wi pws pws p, = —1.

Proof. Just use ¢; | W, = wp_,ipki/ 2, to get the first formulas. The last assertion is a consequence of the
invariance property of ¢, which gives the first of the following equalities, and again the relation ¢, | W, =

wpyipki/ 2p,;, which gives second equality below:

Pk*t& (1,02, 03) =ti (1 | Wy oo | Wy, 03 | Wy) = wl,pw?ypw&pp&*t& (1, P2, 03)

7. PROOF OF THE MAIN RESULT

7.1. Interpolation property of the p-adic trilinear form. Recall our given k = (ki, ko, k3) such that
ki @ ks @ k3 is even, where k; : Z; — O; and O := 01R0>205. Consider the spaces M;;(Dki(W), wlgfp),
where wgfp (2) = wi,; (2) NK (2) with wg; the finite part of a unitary Hecke character taking values in F
that are unramified outside p and such that wsweowss = 1. Recall that specialization maps attached to
¢, ki > ki eN:

P Mﬁ(Dki(W) wii) — M (Vi powpiy) = MO (Vi powh),

where wgfp (2) = we,i (2)NE (2) and Wi (2) = we,i (2) NF(2). Let set up the following notation in order to

precisely give our statement. Let us fix o := (a1, a2, a3), where a; € O and write M;(Dki(W),wlgfp)o‘i for

the subspace of My (Dx, (W), Wo * ) which is the kernel of U, — «;.

Remark 7.1. There are plenty of examples of non-zero eigenvectors with associated invertible eigenvalue
because the U,-operator acts on these spaces and the Ash-Stevens theory of [4] applies to show that they
have slope < h € R decompositions (as defined in [4]): writing (f)sh for the slope < h part, any eigenvector
in My (D, (W),wlgfp)gh has eigenvalue in O;°. Furthermore, the Ash-Stevens theory of [4] applies to show
that we have the control theorem in our setting, from which one can easily deduce that the U, eigenvectors
of slope < h < k+1 on M;(Vki,p,wlgfp)gh lifts to eigenfamilies belonging to My (D, (W), Wo )= in an
essential unique way, when ¢, : k; — k; is obtained from k; € U; C X (see also [9] and [38, Theorem 3.7]
for the control theorem in our setting and [11, Corollary B5.7.1] and [20, Corollary 11.4] for these kind of

)<h

applications of the control theorem). These lifts to eigenfamilies in My (Dy, (W), wo'p provide such a kind

of examples.
Next, we define the Og-valued Oy-linear functionals
Ly o Mgt = My (Di, (W), w53,)™ © M (Diy (W), 0052,)* © My (Diey (W), w055,) ™ — O

via the formula
a p+1,
Lp1 (91 @ 02 ®pg) = =t (01 | W3 @02 ®5),

and L, and L 4 are defined in a similar way. We will use the notation ¢ to denote an element of My, that
we may and will assume to be a pure tensor product.

Let us assume, from now on, that k; corresponds to U; C X and, if ¢; : k; = k; € NN U; is obtained
fromk; € Uy CX, F € Ox = O(Ur x Uy x Us) and k = (k1, ks, k3), let F (k) 1= (¢1 @ ¢y ® ¢3) (F') be its
evaluation at k. Also, we write ¢, ;. (;Salg( ;)- Because we assume that o is invertible in O; and, hence,
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it has finite slope, except for a finite number of points ¢; ;. is old at p and, more precisely, there is a unique
cpfki € M°(Vy, ,wh)G2(Z) such that ik, = gof&ki%) Let us write U := Uy x Us X Us.

Definition 7.2. We say that k = (ky, ke, k3) € N> NU C X3 (vesp. k; € NNU; C X) is a generic integer
point for ¢ (resp. ;) if ¢, ;, is old at p for i = 1,2,3 (resp. ¢, ;, is old at p).

If k e N3 NU, we write ¢, := ©1 4, ® 9o, ® @31, and, when k is a generic integer point, we also
write @Z = @ﬁkl ® ‘ijg ® gof’ks. When it happens that ¢, belongs to an irreducible representation, we
denote it by II (4,0&) and let I’ (QDE) be its Jacquet-Langlands lifts to GLg, so that 11 (gob) =1I (gof) and
IU' (@) = 11 (@Z) when k is generic. Finally, we write Mg (p) C Mg for the B*? (Af)-representation
generated by ¢ over Oy: note that, if ¢’ € My (g), then IT (QDIE) =1 ((pﬁ) for every integer point k. Finally,
we choose vectors cpz#, @27# ell ((pz) such that (wz#, gpb&b#)k # 0 (see Lemma 3.2 for their existence and

(21) for a specific choice); we further assume that they satisfy the property that the local components at p
equals the local component at p of gok# (indeed, because gpk# is new at p, <pk# is the tensor product of its local
component at p, which is defined, and a prime to p—comanent). Having setup our notations, we can state
our main result, which is a combination of Theorem 3.4, (46), Corollary 5.6 and Proposition 6.5.

Theorem 7.3. There is a unique Oyx-valued Oy-linear functional Ly : My — Oy such that, for every
XS Mg and every balanced generic integer point k € U for ©,

(71) £3 () (8) 1= & (. bt (] ) -

We have, indeed, Ly = Eii fori=1,2,3 and, furthermore, if v € My is a tensor product of three families
and ¢y, belongs to the irreducible representation IT (g%), then

) i ¢, @)L (121 (o))
L) ) = &lah) 5o L (1 (¢f) . Ad)

b#  bb
(cpﬁ#,goﬁ#)k

2L (LH’ (@’g) Ad

HU Iv(‘PZ)

(72) = &l(ak)’

vt ()L, (ot

bbb
where Cj, # 0 is defined in (22) and Iv(goZ) and Cy = 7% ((p’ﬁ) are defined in (25).
Also, suppose that there is a balanced generic integer point k° for @ such that B = BH/ («p#) is the
hid #

quaternion algebra predicted by [34] and L (1/2, I ((pi%)) # 0. Then, up to shrinking U in a neighbourhood

of k°, there exists [2s My (g) such that, for every balanced generic integer point k € U, we know that
B= BH/(SDI#) = BH,(W#) is the quaternion algebra predicted by [34] and we have satisfied the equivalence
K ke

Lo(Q) (k) #0 & L (1/2,11’ (@'&#)) -y (1/2,11’ (@&#)) £ 0.

Proof. Applying Corollary 5.6 and Proposition 6.5 to any one of the £;’s gives (71) with £ := £, and

the uniqueness follows from the Zariski density of the balanced generic integer points in the open affinoid

subdomain U; x Uy x Us of X3. Then everything is clear from Theorem 3.4, except we have to explain why
bbb

we have excluded C;)O Lok (gok#) from our local constants. This is because @f is the tensor product of

p-new vectors which gives rise, in the local representation at p attached to II (@k#), to a vector 1, which is

the tensor product of the (unique up to a scalar factor) p-new vectors in the local representations attached

to the @f,;(ai)’s. Then, because the local components of @Z# and @';Cb# at p equals the local component at p
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bt
of <pk , the equality C’w" o (gpi) =1 follows from [31, Lemma 2.2] (see §8.2 below for more details). The

last assertion follows from (72), Theorem 3.4 (2) and Remark 1.1. O

Remark 7.4. The equality (72) should be understood as an equality of quadratic forms although, with an
eye to its applications (see §8), we have suggestively stated it as if gok were a pure tensor. In general,
even in case ¢ is a tensor product of three families, it may happen that ¢, belongs to a sum of irreducible
automorphic representations: then the scalar factor relating the two sides of (72) depend of these irreducible
components via the above L-values. Let us also remark that, in the applications, one usually start with a
tensor product of three eigenfamilies ¢ and then take linear combinations of them: in this case ¢, belongs
to a single irreducible representation II ((pk) for every balanced integer point.

Let us now discuss the value of £ (g) at some balanced integer point £ € U where one, two or three of
the Galois representations attached to ¢, ;. are semistable: more precisely, we suppose that, in this case,
the p-new form ¢, ;.. has even weight and trivial central character, thus forcing the corresponding we ; of the
family ¢, to be 1. The proof is essentially the same of Theorem 7.3: one replaces 6.5 by either 6.7, 6.8 or
6.9.

Proposition 7.5. Suppose that k € U is a balanced integer point such that (i) @5 1., resp. (i) gy, and Qs .
or resp. (i11) ¢1 k,, Pak, and Q3 1. are p-new with even weight and trivial central character. Then (72) holds

with the following modified Euler factor E replacing &, (a, @)2, where we write &, := (p+ 1) we i (p') P
€2 1 (@ k)E2 5 (k) 2 (@ h)E,(a k)

. E ak & a,k a,k
()E:é- ’7a1’ :€k2 P, ag‘ s
(if) B =16 2aah) — 1y 4 1)26,, (0 k)’ = L (p+1)* &3 (@, B);
(i1i)) =3 <1 + 5) (1+ wl’pwgﬁpwg,p)?

Proof. Case (i). Applying Corollary 5.6 and Proposition 6.7 gives (71) with ¢, (cpk ) replaced by tj ( #(p), gof, gof)

(resp. tg (gal ,gpf(p), 3 )) and &, (a, k) replaced by the modified Euler factor E' := %5%1 (o, k) Eps (an k),
&wp’gwf o (p)) pke=k)/28 o (k) Eps (k) or pa—tlgp’g (a, k) Epa (e, k), which can be checked to agree

(resp. E-lwy, swey (p) 7 pFIR)/28, ) (0, k) €y 5 ( k), BEELE 2 (k) Eps (e k) or EELE, 5 (0, k) Epa (a0 k),
which again can be checked to agree). Next, as above one applies Theorem 3.4 now with gok# replaced by

bb
of #(p) ._ w#(p) ® 90 ® @3 (resp. w#(z’) — (pfﬁ ® cp;#( #

bbb
(Lp?c#, @Zb#> X and the local constants Cp& Ve ((pﬁ(p)> . On the other hand, with the notations introduced in

) @3#) and again with gobk and ¢, which fixes

the proof of Theorem 3.4, set 1/"#®) = f, A (wbk#(p)), PP = fy A ( b"#(l’)) and ' #@V .— (wbb%ﬁ(p))

b (p) . _ b#(p) #( bb# (p)

where ¢} gob#(p) ® %%2 ® goks (resp. ®y = <,0k1 ® ¢y, ) sak ) and the same for ¢, . Simi-

larly as in the global calculation (63), one checks that <w;#(p), w;# > = wy 1( Npks <¢p ,wz#v> (resp.
P ’ P

b#(p) bb#(p)

b bb
® #(p) (ph#(p) (

bbb
(resp. Cp* #(p)) = wr2(p')p s loChe ( #(p))) Because the local components of @Z# and

b#(p) bb#(p)

cpi,’f at p equals the local component at p of gok , the local components at p of @ and P equals

#(o) GED ) -1
the local component at p of ¢} P’ and [42, Corollary 4.2] gives C, e (@E P ) =3 (1 + ;) = p%

(see §8.2 below for more details). Hence
bt bb b#(p) | bb#(p) w—l(p')pk‘l
OFE P ( #(m) — 1 ofe Pk ( #(p)) _ rf
o5 we, (PP Ch P
41

bb#

b
<¢;#(p), ¢b#(p)v> = wgz( "pk <w wb#v> ) and, consequently, C’,f& i (gpk#(p)) = wf,1(p')p_k105ﬁ e (<p
p P Kk

#(p)

k

)



w—l ok ,
(resp. ka o’ (@k#(p)) = M) and we see that C’SO'c wl ( #(p)) E” = E, as claimed. The proof

p+1
of the cases (i7) an (zm) is similar, notlclng that we already have everything expressed in term of cpk and
bbt b
W" e ( k) ~1 (resp. C’w" o (gpk#) =2p ' (1+p7')) in case (i) (resp. (iii)) thanks to [42,
Prop051t10n 4.3] (resp. [42, Proposition 4.4]). |

Remark 7.6. It follows from Deligne’s proof of the generalized Ramanujan conjecture that, in the setting of
the above Proposition 7.5, we may have the vanishing of the Euler factor E only in case (i) or (iii). In the
first case, we have indeed &, 3 (a, k) # 0 and &, 1 (a, k) = &2 (o, k) = 0 if and only if the equivalence

—1

ay - - a2 -
— = —wy sp* T P (p) T & = = —wy 3p™F P (p)
Qg (€3]
is satisfied (recall w1 (p") w2 (P') = 1). In the second case, we have E = 0 if and only if w; ,ws pws , = —1

and, in this case, we see from Proposition 6.9 that there is an extra vanishing due to the complex L-function.

Finally, let us discuss improved p-adic L-functions. Suppose that ¢ € N and consider the plane
Hf:={keU:rl=c} CU.

Let us remark that the Euler factor &, ; (a, k) extends to a rigid analytic function on Hf. Suppose that
k' is such that k" = ¢; geometrically, this means that k' : Zg?’ — Ok factors through the morphism
Ok = O(U) - O(Hf) which corresponds to Hf C U. Then we can consider the Oy -valued Oy-linear
functional L3} : My — Oy defined via the formula

1
tl,k (o1 | Wy ®@ 3 ® p3),

L37 (p1 ® g @ p3) i=

and L35 and L}’ are defined in a similar way when k5" = c or, respectively, ki = ¢ (see (44) for the
definition of tz,g) Taking k' to be the morphism which corresponds to Hf C U and applying Corollary 5.6
yields the following result.
Proposition 7.7. The above O (Hf)-linear functional Ei’f is uniquely characterized by the property that,
for every p € My,

ﬁ%(f)\Hiczgpz( )ﬁgc(f)

as rigid analytic functions on Hf .

Q(o#
7.2. Variants. Let us explain how one can rewrite the term (i) ) that appears in the interpolation

formula (72) when Q((pk#) # 0. Suppose that f € Si(N,e) is a normalized newform with nebetype &
having conductor N, and write 7 (f) = @, 7, (f) for the corresponding automorphic representation: we
recall that a formula of Shimura and Hida relates L (ad (7 (f)),1) and the Petersson inner product (f, f),
that we normalized as in (1). Let us define L (ad (7 (f)),s) = [I, L. (ad (7 (f)),s) and L7 (ad (f),s) =
[Tz00 Li' (ad (f) , 5), where

Leo (ad (m (£)) ,8) = 2(2m) 7DD (s 4 k — 1) m(+D/2T ( =n 1)

and the Euler factors are defined as follows:

(=17 (1= T (1) (=T (D1), 71 =7 (1, Xz) s principal
1 1—-177%, 7y is special,
Ly (ad (), 5) - 14175, m; is supercuspidal and m; >~ m; ® 1,
1, m; is supercuspidal and m; 22 T ® 1.
(1 — 1=1=9) (1 —e(g)" ale*S) (1 —e(g)! Bflk**s) . if LfN,

L (ad(f),5)" = (=) (A, 1| N and L N,

1—-175, if || N and I f N/N.,
1417075, otherwise;
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Then (see [26, Theorem 5.1] and [14, Theorem 2.2.3 and Corollary 2.2.4] for the notations employed here):

Ll (ad (7T (f)) ) 1)
L (ad (f),1)

kﬂ'
(73) L{ad (r (£)),1) = 25" (£ Dy Tl

#(

Let us now go back to our family ¢ € My specializing to ¢, = wﬁ(al) ® pr, (@)

) g @k#l and write
the GLy representation 7’ (gok) attached to ¢, as 7’ (gok) =7 (f,f) where f,zf € Sk, (Ni,¢e;) is a nor-
malized newform (in particular, ¢; (2) = w;; () viewing 2 € Z diagonally embedded in A¢) and set f,f =

(7.5t 62 ) and (ef) = (f,jf,f;f)kl (f,ﬁ,f,jg)kz (f;f,f]ﬁ)ks. Then we have L, (s, (¢ff ) ,Ad) =

Hi:172’3 L, (ad (7r (fz&)) ,s) and we define L/ (s, fgﬁAd) = Hz‘:l,z,s L (ad (f,f) ,s) and M := lem(Ny, N3, N3)).
The following result is a direct consequence of Lemmas 5.7 and 6.6.

Proposition 7.8. Suppose that k : Z; — O corresponds to an open affinoid subdomain and that R
My (Dk (W) ,wlo"p)a for the same o € O*. Then pTH ((pb,gobb) € O is the unique rigid analytic function
such that, for every generic integer k € NNU (for ©° and wbb),

p+1 -1 -1 bb

— (¢.9") (1) = (1= wr (o) a2 ) (1= wi (@) a2 (o3 A@ﬁ)k,

where gpk (resp ® b7‘@’&) is the unique vector in M<>(V;C rywh)GL2(Ze) sych that gob#( ) = = b (resp. @bb#(a)
©) and 5, (resp. @3’ ) is the specialization of @° (resp. <pbb) at k.

In particular, if ¢?, %" € M;(Dki(W),o.)%)‘fp)o"'7 0= Py R) € My and ¢ 1= ¢ ® oY ® Y € My,
we can define
3 (P 07) & (08 08) (3 %)
® ®
Qa7 Qo Qa3

(¢.¢”) =0+

which satisfies, at every generic integer point £ € N> N U (for fb and f”b), the interpolation property

(¢2") ® =&l @) (e e

€ Okv

where
-1 _ ) -1 _ )
5,? (a,k) = Hizl,g,g (1—wre @) ar%") (1—wr (0) " a7 %phH)

and wz# = o7 ® <p # @ <p (resp. @Zb 90161# ® <p:b2# ® gpbb#) if gp?j (resp. cpbb#) is the unique

vector in MO(V;%F, Wy )GLQ(Z ») such that goki o) - <pki (resp. <pki #lew) - @) and ¢}, (resp. ¢}) is the
specialization of cp? (resp. go?") at k;. We may choose cp and gpgb in such a way that, for every generic integer

point k£ € N> N U for both g" and g"b, we have (cpk ,gobkb#)k # 0 and so that the local components at p of

the specialization of gp? and @Zb equals the local components at p of the specializations of ¢;: indeed, for
example, we may take ¢} a newvector of tame level N; and ¢?* := ¢ | Wy, (see (21).
Then, thanks to (73) and Proposition 7.8, we find for every generic integer point k € N> N U for both ©,

¢’ and ¢” (the notation “ZF) heans that the equality holds when £} (a, k) # 0, see Remark 1.2):
#
@ o e @ e 10 Lt (5.8, Ad)
L (1,11/ (@E) ,Ad) 4B TS Qe M, (s,H’ (sok#) ,Ad)
H
(74) @NE) 27 L (s £y ’Ad) (¢ ¢ b)p (E)
4k 3 L im L (5 I (gok> Ad) 59 (o, k) Q(fz’é)
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8. AN EXPLICIT EXAMPLE

Recall the cuspidal finite slope h; Coleman eigenfamilies f; of tame level N;, trivial nebentype ¢; = 1
and U,-eigenvalue o; € O defined in the connected affinoid subdomain U; of the weight space X' that was
considered in the introduction (we are going to relax the assumption on the level that we did there, which
is no longer in force).

W) ¥ 5 C of level prime to p. It follows from the work of

Coleman that prime to p newforms vary in families: there is a sheaf of families of overconvergent modular
N —new
for

Remark 8.1. Let us fix a Dirichlet character ¢ : ( Z

forms f of finite slope on the weight space whose specializations at k belongs to Si12 (T'o (pN) ,¢€)
almost every k’s (see [11, discussion after Corollary B5.7.1]). Working over connected affinoids U C X there
are plenty of sections of this sheaf. More precisely, let us fix a real number h > 0 and let us assume that
f € Skyxa (To (pN),2)N 7" is such that ko > h + 1 and has slope k. Under a mild further assumption,
it is shown in [11, Corollary B5.7.1] the existence of a family f such that fy, = f and, for every integer
k > h+1 (an integer points in our notations), fy € Sgia (Do (pN), €)™ ™" and has slope h. Let us also
remark that, if f is a finite slope overconvergent modular forms as above defined on a connected affinoid,
then its slope is constant, say h, and f;, € Sgy2 (I'g (pNV) 7€)N7new for every integer k > h + 1, as it follows
from the Coleman’s classicality result.

One can give the following geometric interpretation of this result. As explained in [20, §12.1 and Corollary
10.7], the work on Ash-Stevens on slope decompositions combined with standard techniques due to Coleman-
Mazur and Buzzard yields the construction of a curve w : C]%,he — X parametrizing cuspidal eigenforms
of level T'g (pN) and nebetype € which are N-new and of slope < h. The Coleman-Mazur eigencurve
w : Cy, — X parametrizing these objects with the relaxed finite slope condition admits Cﬁhg as a closed
curve’ and it is the union of them. The families f obtained from [11, Corollary B5.7.1] corresponds to
sections s : U — CJ%}; C Cne of w (see [20, Corollary 10.7 (i47)]). Moreover, if s : U — Cn . is a section of

w:Cne — X, because U is a connected affinoid, s (U) C CJ%Z for some h.

Recall that, for every generic integer point k, the specialization f; ; = f; 1 is the p-stabilization of a level
N; newform fl#k = fﬁc and we let m; 1, = @), Ti ko be the associated automorphic representation. We write

D := gcd(Ny, Na, N3) (resp. M :=lem(Ny, Na, N3))
for the greatest common multiple (resp. the least common multiple).

Lemma 8.2. Suppose that £ is a finite slope cuspidal p-adic Coleman eigenfamily new of tame level N and
nebetype € defined on some open affinoid subdomain U as in Remark 8.1 above. Let us write mj, = Q, Tk,v
for the automorphic representation attached to an integer point k € U. If my, , is a principal series, special
or supercuspidal representation of conductor cy, . at an integer point kg € U and v # p, 00, then my, has
the same property for every integer point k € U.

Proof. According to the work of Coleman-Mazur [13] (see also [2, Theorem 5.1]), there is a pseudocharacter
T : Gg — Oc,.. such that the specialization T, of T" at a classical point y € Cn,. is (the pseudocharacter of)
the representation p, attached to the eigenform y, characterized by the fact that the trace of the geometric
Frobenius at [ is the eigenvalue of T} acting on y for almost every I. Let us write s% : Oc, . — O := Ox (U)
for the morphism induced by s : U — Cn ., where s corresponds to f, as explained in Remark 8.1. Then
T, := 57 oT has the property that its specialization at an integer point k € U is (the pseudocharacter of) the
representation pj, := py, attached to the eigenform fi. Because O is a PID, it follows from [13, Theorem 5.1.2
and Remark after it] that 7' = p is indeed (the pseudocharacter of) a representation p : Gg — GL3 (O) which
interpolates the representations p,’s. We also refer the reader to [2, §6.2] for an alternative construction of
this representation.

According to [5, Lemma 7.8.14], writing W, for the Weil-Deligne group of Q at v, we have that Piw,
is monodromic in the sense of [36, Definition 2.2]. This means that we can attach to it a Weil-Deligne

"Via the morphism O¢, . — O_<pn which sends a Hecke operator acting on finite slope overconvergent modular forms to

N.,e
the Hecke operator acting on overconvergent modular forms of slope < h.
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representation WD, (p) with coefficients in O via [5, Definition 7.8.13]: we remark that, writing WD, (p),
for its specialization at k, we have WD, (p), = WD, (p,,) by the uniqueness assertion of [5, Lemma 7.8.12]
characterizing the monodromy and the definition of 7 in loc.cit. Let us remark that the automorphic type of
.o and its conductor are encoded in the Frobenius semisimplification WD, (p,)™ " of WD, (p,,) thanks
to the local-global compatibility, which is well known in this case and widely covered by the Hilbert case
handled in [8]. We can now apply [36, Theorem 3.1 (1) and (4)] and [37, Theorem 3.1] to deduce that
the automorphic type of 7, and its conductor are constant if WD, (pe)™ % is pure, i.e. it satisfies the
monodromy conjecture (see [36, Definition 2.10]). Since the conjecture is well known in our setting and,
again, widely covered by [8], the lemma is proved.

Let us also remark that the assertion about the conductor also follows from the fact that f;, is new outside
p and the costancy of automorphic types can also be proved along the lines of [19, Lemma 2.14]. Indeed, the
proof of [19, Lemma 2.14] needs as an input a representation interpolating the p,’s as the p above and then
the arguments of loc.cit. apply. More precisely, case (a) of loc.cit. does not need any further explanation,
while case (b) of loc.cit. take advantage of a base change argument and, hence, needs a theory of Coleman
families attached to Hilbert modular forms, which has been developed in [2, Theorem 5.1], and also a base
change theorem for Coleman families. This latter ingredient can be proved as in the case of Hida families,
but we have not been able to provide a reference in our broader setting. Alternatively, we remark that case
(b) of loc.cit. also follows from [18, Lemma 2.6.2] without the need to make a base change, but again this
result is formulated in the setting of Hida families. Let us explain another approach based on [36, Theorem
3.1 (2)] which avoids the base change argument and applies to Coleman families. The main point of (b)
is proving that, if 7, , is special, then the same is true for m,. By the local Langlands correspondence

for GL3 (Qp), this means that if the monodromy of WD, (pkO)Fr_ss is non-trivial, then the same is true
for WD, (p,)™ ™: but this follows from [36, Theorem 3.1 (2)]. More precisely, writing £ for an algebraic
closure of the fraction field of O, let us write ¢ (resp. t;) for the smallest integer s such that N® = 0 on
(£ ®o WD, (p))FFSS (resp. WD, (p,)™ ). Then a priori t; < ¢ and [36, Theorem 3.1 (2)] gives t; = ¢
whenever WD, (pk)ﬁfss is pure, from which the required ¢, = ¢t = tx, = 2 follows. We note that [36,
Theorem 3.1 (2)] is already proved in the first paragraph of pag. 890 of loc.cit. taking into account that the
integer t; can be characterized by the fact that 2 (tx — 1) equals the difference between the larger and the
smaller weight of WD, (p,)"" ™ when WD, (p,)"" ™ is pure (or when it is indecomposable). O

According to Lemma 8.2, the conductor of 7; 1 ; at a finite prime [ # p is a well defined quantity which
does not depend on the choice of the point k € NNU;: we denote it by ¢;(f;) and let ¢; :== max;—; 23 {c1(f;)}
We recall that, if [ is a finite prime, an irreducible admissible representation of GL2(Q;) admits a Jacquet-
Langlands lift if and only if it is special or supercuspidal. Hence, in view of Lemma 8.2, it makes sense to
consider

Sy :={l # p finite primes : m; ;; admits a JL-lift, Vk e NN U, and i = 1,2,3} and Dy, := HleSJL | D.

Next, we suppose that Dy, is squarefree and define
_ _k1tkatks _
Sy = {l | Dyr s —ar (fie) a (f2,r2) @i (fams) 1 2 = _1} and Dy, = Hzes;L L

where we remark that D7, is indeed independent of k: because | # p, the function of £ that appears in the
definition of D7 is rigid analytic and, being {£1}-valued on the Zariski dense subset of integer points of the
connected affinoid subdomain U; x Us x Us, is indeed constant. Because we assume that D ;j, is squarefree,

we have the equality
kq +k22+k3

€l (fZ#) = —a; (i) a1 (foro) a1 (fahs) 1 ,
and we see that there is a well defined finite “generic sign” egy, (£). Next, we make the following further
assumptions that will be in force until the end of this section.
(Bal) eqn (f) = —1, i.e. D}, is the product of an odd number of primes;
(Con) For every | | M, we have ¢(f; ) < 1 for i = 1,2,3 or there is an index 4; such that ¢;(f;, ) >

2max;»;, {¢(f;),1}.
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Let us write a; for the U,-eigenvalues attached to f;, so that o; € O. Write B for the definite quaternion
algebra of discriminant D7} : then f; lifts to an element of My (Dk, (W),wlgfp)ai (by the p-adic Jacquet-
Langlands correspondence, see [10]) and it follows from (Bal) that B is the quaternion algebra predicted by
[34] at every integer and balanced point k.

Under these assumptions, we can prove the following result.

Theorem 8.3. There exists
@ € My (Di, (W), wesh,)* @ My (Di, (W), wi3,)** @ My (Di, (W), w3, )
such that, for every balanced generic integer point k € U for ¢,

(ot 22),

£5 () (k) = & (k) oL (1,1, Ad)

(1/2m) I T, ,, €
where the constants Cy are defined as follows.
o Ifl| Dy, then C; =2} (1-1);
o Ifl| M/D7, and ¢/(f;)) <1 fori=1,2,3, then®
1
1

% (1 + )71 , if one of the representations is special unramified.
C = %, if two of the representations are special unramified,
% (1 + %) , if three of the representations are special unramified;
L, (1,17, ,Ad)

o Ifl | M/Dj, and c := ¢(f;) > 2max;y;, {c(f;),1}, then C; = C}, where C] =

@)L, (1/21L)

(1Al
Hz;étz(lc (m )) (1 + %) and
ﬁ, if m; is supercuspidal or w; = 7 (X1, X2) with X ramified for k = 1,2,
f; . . L .
Ar) = %-i-l (E?l')(lk)ﬂ — (1 + )) if mi = 7 (X1, X2) 18 principal unramified,
}, if m; is special unramified,
0, if mi = (X1, Xa) with one X, ramified and the other unramified.

Remark 8.4. The contribution of the local L-factors in the third case depends on the nature of the repre-
sentations. For example, we have C; = C] when the two representations having the smaller conductor are
unramified.

8.1. The p-adic Jacquet-Langlands correspondence and the choice of the test vector. By Ch-
enevier’s p-adic Jacquet-Langlands correspondence (see [10]), the eigenvector f; corresponds to an eigenvec-
tor oy, in M7 (Dy, (W), wlgfp)ai with the property that its specializations are new at all the primes [, the only
possible exception being at [ = p. If [ { D, p is a finite prime, we write 0pc for the element of GLo (Af)

defined by the following local conditions:
1 ifv#1,

(gl“)v =9 6. = (ZC 0) ifo=1

0 1
k;

Set Py = g ® g, @ g, and define ¢ in M;(Dki(W),wO,p
i1 be the index which realizes the largest conductor ¢;(f;,) and let j; # 4; be the index which realizes
the second largest conductor ¢(f},). Suppose we have, for example, 7, = 3 and j; = 2: then we define

)¥i as follows. For every finite prime [, let

51 =1® 6lrl(f3) a2 ® 1. Finally, we set 5M = H”Mél and define ¢ := = ¢, 5M Let us remark that ¢ is
designed so that its specialization at an arithmetic point k is a pure tensor whose component at the finite
primes different from p are either a tensor product of new vectors when [ { M or, assuming as above that
iy = 3 and j; = 2 and taking into account the twist (15):

(75) P =120, | @1y 10 ks)—erien) ® gy =t 1721240,

8By a special unramified representation, we mean the twist by an unramified character of the special representation. Of
course, this is a ramified representation of conductor 1
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where v, ; is a new vector in m; x, ; . In particular, the same property is enjoyed by gk#, whose local component
at the primes [ # p agrees with the local component of . a

8.2. Proof of Theorem 8.3. We have to make explicit the local constants Cyot (¥,) == I(iiqb”iq%w)”) associ-

ated to the local components of gok# whose p-stabilization ¢, is the specialization of ¢ at the finite primes that

appear in Theorem 7.3 where we choose 302# = np?:# = gak# (at the same time we will see that (cpb#, @b}:#) L

(@Z, @Z)k # 0 from the local calculation and (22)). As noticed in Remark 3.5, cYets (¥, 1)) does not

depend on the non-zero vector in the lines spanned by either v, or 1.: thanks to our assumption on the
central characters, we see that ¢, = w;llwu (resp. (¢, ,01c) = wi (1), 101 = wi7l(l)cw;ll¢i7lélc) is a new
vector (resp. the translate by d;c of a new vector) as it is @i’v (resp. Ei’vélc); it follows that <wl,12)l>l # 0

; — - —0 _
and, from (75), that we have C»"" (,) = Yot (Vy,¥,) = Cyg’w”(wg,wg). Hence our claim follows

from the following computations of the local constants C,,(¥2,%,), which always uses (75) as a test vector.
When [ is prime to M, C;(¢;) =1 by [31, Lemma 2.2]. When [ | D7, this is done in [42, Proposition 4.5].
When ! | M/D7, and ¢(f; ) <1, then my 5, 1 ® T2 k,1 ® T35y, is the tensor product of unramified principal
series representations with either one, two or three special unramified representations: then we may apply
[42, Corollary 4.2], [42, Proposition 4.3] or, respectively, [42, Proposition 4.4)°. Finally, the computation of

¢, (L. (1/2,11,)
L, (LI, Ad)
and 3; of the Hecke polynomial of a weight k + 2 supercuspidal eigenform f at [ satisfy x;(l) = W and

Cy(1,) in the last case follows from [30, Theorem 4.1], once we remark that the roots o

xo(1) = p(kfﬁ, when the associated automorphic representation at [ is principal unramified of the form
7 (X1, X2), implying that we have

a® el _ xi+x30) _ of + 87 (i +B)? - 2B

x2()  x1(0) B x1(xa () a3 a3
in loc.cit.

8.3. Variants. Let us remark that we have (¢g) = w(urd(g))dg = wi(nrd(g))ig and then we see from the
invariance of the left hand side of (20) (or directly from the definition of (—, —), ) that we have

(019, 29), = we(nrd(9)) ™ (1, P2),.-
Write cpz’; = <pfik1 ® @im ® gogk:}, where gogyki is the unique vector whose p-stabilization g, ;. is the
specialization of Py Then it follows from (75) that we have an equality (cpz,cpz)k =u (@ﬁk,wg‘l)k for
a non-zero constant p which does not depend on k: a product of values of the kind w;il(nrd(dlc)), indeed,
which is therefore 1. Thus we can substitute

(76) (ot et), = (etuvls),
in Theorem 8.3 and also apply (74).
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