
TRIPLE PRODUCT p-ADIC L-FUNCTIONS FOR BALANCED WEIGHTS

MATTHEW GREENBERG AND MARCO ADAMO SEVESO

Abstract. We construct p-adic triple product L-functions that interpolate (square roots of) central critical

L-values in the balanced region. Thus, our construction complements that of M. Harris and J. Tilouine.

There are four central critical regions for the triple product L-functions and two opposite settings,
according to the sign of the functional equation. In the first case, three of these regions are of interpolation,

having positive sign; they are called the unbalanced regions and one gets three p-adic L-functions, one

for each region of interpolation (this is the Harris-Tilouine setting). In the other setting there is only
one region of interpolation, called the balanced region: we produce the corresponding p-adic L-function.

Our triple product p-adic L-function arises as p-adic period integrals interpolating normalizations of the
local archimedean period integrals. The latter encode information about classical representation theoretic

branching laws. The main step in our construction of p-adic period integrals is showing that these branching

laws vary in a p-adic analytic fashion. This relies crucially on the Ash-Stevens theory of highest weight
representations over affinoid algebras.
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1. Introduction

Consider three finite slope cuspidal p-adic Coleman eigenfamilies f = (f1, f2, f3) new of tame levels
(N1, N2, N3), nebetypes (ε1, ε2, ε3) and eigenvalues (α1, α2, α3) for the Up-operator of slope (h1, h2, h3),
parametrized by the product of three connected affinoid subdomains U = U1 × U2 × U3 ⊂ X 3, where X
denotes the weight space and we suppose these rigid analytic objects to be defined over a p-adic field F . By
an integer point we mean k ∈ N3 ∩ U , say k = (k1, k2, k3), such that ki > hi − 1. We also call ki an integer
point. If k is an integer point, we write fk = (f1,k1

, f2,k2
, f3,k3

) for the specialization of f , which is a triple of

classical modular forms with fi,ki of weight ki + 2. Because αi,ki = ±pki/2 if fi,ki is p-new, for every ki 6= 2hi
we know that fi,ki = fi,ki is old at p and it is the p-stabilization of some newform

f#
i,ki

= f#
i,ki
∈ Ski+2 (Γ0 (Ni) , εi)

Ni−new
.

We say that ki is a generic integer point in this case and we say that k is a generic integer point if ki is such
a point for i = 1, 2, 3. We refer the reader to Remark 8.1 below for more details.

The problem we are interested in is about interpolating the function

k := (k1, k2, k3) 7→ L
(
f#

1,k1
× f#

2,k2
× f#

3,k3
, ck

)
for the central critical value ck := k1+k2+k3+4

2 . Here L
(
f#

1,k1
× f#

2,k2
× f#

3,k3
, s
)

is the triple product complex

L-function (see for example [24, §1] for its definition). Let us write πi := πfi,ki for the automorphic

representation attached to fi := f#
i,ki

. If we want Πk := π1 ⊗ π2 ⊗ π3 to be selfdual, the following condition

(CC)k1,k2,k3
needs to be imposed:

(CC)k1,k2,k3
: ε1ε2ε3 = 1, so that k1 + k2 + k3 ∈ 2N.

There are four central critical regions, namely

Σ1 :=
{

(k1, k2, k3) : k1 > k2 + k3 and (CC)k1,k2,k3
holds

}
,

Σ2 :=
{

(k1, k2, k3) : k2 > k1 + k3 and (CC)k1,k2,k3
holds

}
,

Σ3 :=
{

(k1, k2, k3) : k3 > k1 + k2 and (CC)k1,k2,k3
holds

}
,

Σ123 :=
{

(k1, k2, k3) : k1 ≤ k2 + k3, k2 ≤ k1 + k3, k3 ≤ k1 + k2 and (CC)k1,k2,k3
holds

}
.

The transcendental nature of the Deligne’s period Ω depends on the critical region. We have, up to powers
of π,

Ω = (fi, fi)
2

on Σi and Ω = (f1, f1) (f2, f2) (f3, f3) on Σ123.

Here (f, g) = (f, g)k is the Petersson inner product, that we normalized by the volume of the corresponding
modular curve:

(1) (f, g)k :=
1

µ (H/Γ0 (N))

∫
H/Γ0(N)

f (z) g (z) Im (z)
k
µ (z) , µ =

dxdy

y2
.

Let Si be the set of places such that πi,v admits a Jacquet-Langlands lift πDi,v to the group of units of the

division quaternion Qv-algebra. Set S := S1∩S2∩S3 and, for every v ∈ S, let dv (resp. dDv ) be the dimension
of the space of trilinear forms on π1,v ⊗ π2,v ⊗ π3,v (resp. πD1,v ⊗ πD2,v ⊗ πD3,v). Define, for every v ∈ S,

εv (f1 × f2 × f3) =

{
1 if dv = 1 and dDv = 0
−1 if dv = 0 and dDv = 1.

It is a theorem of Prasad (see [34]) that the above function is indeed well defined, i.e. only one of the above
two possibilities occurs. Write S = S+ t S−, where S± := {v : εv (f1 × f2 × f3) = ±1}, set D = D−JL :=∏
l∈S−−{∞} l and let BD = BΠk be the quaternion algebra ramified at the finite primes dividing D. If Π is

an irreducible cuspidal automorphic representation of GL3
2, we let BΠ be the quaternion algebra obtained by

the above recipe and say that it is the one predicted by [34]. Recalling the dependence of these considerations
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from the weight, so that S− = S−k (resp. D = Dk), the sign of the function equation at k is given by the

formula

ε
(
f#
k

)
=
∏
v∈S εv

(
f#
k

)
:=
∏
v∈S εv (f1 × f2 × f3) = (−1)

#S−k .

Let εfin

(
f#
k

)
be the product of the finite local signs, so that ε

(
f#
k

)
= εfin

(
f#
k

)
ε∞

(
f#
k

)
. We remark that

the nature of the local sign at infinity depends on the critical region: we have ε∞

(
f#
k

)
= 1 if k ∈ Σi for

i = 1, 2 or 3, while ε∞

(
f#
k

)
= −1 if k ∈ Σ123. Let us assume that Ni is squarefree for i = 1, 2, 3. It is easy

to see that εfin

(
f#
k

)
≡ 1 or εfin

(
f#
k

)
≡ −1 for every generic integer k. Indeed, under this assumption we

have, for every such k and every finite v = l ∈ S−
f#
k

,

εl

(
f#
k

)
= −al (f1,k1) al (f2,k2) al (f3,k3) l−

k1+k2+k3
2 ,

a function which can be p-adically interpolated and then needs to be constant for all weights (by connect-
edness of the Ui’s). Hence, having fixed f there is a well defined finite “generic sign” εfin (f) of the family,
BD = BΠk does not depend on the generic integer point k and we have a well-posed interpolation problem.
Of course, we expect εfin (f) and BD = BΠk to be defined in general, i.e. independent of the generic integer
point k (as explained below, we can give evidences). At this point the consideration splits in two cases.

If εfin (f) = 1 (hence D is the product of an even number of primes), then ε
(
f#
k

)
= 1 for every generic

k ∈ Σ1, Σ2 or Σ3. One gets three (square root) p-adic L-function LΣi
p (f), one for every region Σi, with the

property that

LΣi
p (f) (k)

2 ·
= L

(
f#

1,k1
× f#

2,k2
× f#

3,k3
, ck

)
for k ∈ Σi generic.

Here we write
·
= to mean equality up to Euler factors, periods and local constants. On the other hand,

L
(
fk1
× fk2

× fk3
, ck
)

= 0 when k ∈ Σ123 is generic because of the sign of the functional equation and
the interpolation problem on Σ123 is trivial. This is the Harris-Tilouine setting studied in [25], under some
ordinariness assumption and supposing N1 = N2 = N3 = D = 1. These p-adic L-functions have recently
found interesting applications in [15] and [16]. See also [1] for an extension of Harris-Tilouine construction
to Coleman families and [14] for related constructions.

When εfin (f) = −1 (hence D is the product of an odd number of primes), then ε
(
f#
k

)
= 1 for every

generic k ∈ Σ123. The interpolation problem is therefore non-trivial only in the balanced region. We get a
(square root) p-adic L-functions LΣ123

p (f) which interpolates in the region Σ123:

LΣ123
p (f) (k)

2 ·
= L

(
f#

1,k1
× f#

2,k2
× f#

3,k3
, ck

)
for k ∈ Σ123 generic.

In order to formulate the result in a simpler form, let us assume that M = N1 = N2 = N3 and that the
nebetypes εi are trivial (but we will keep track of the characters in order to state (5) below with the correct
Euler factors). Then we get a formula

(2) LΣ123
p (f) (k)

2
= Ep (α, k)

2

(
ϕ#
f ,k, ϕ

#
f ,k

)
k

2L
(
1,Πk,Ad

)L (1/2,Πk

)∏
l|M

2

l

(
1 +

1

l

)
,

where the quantities appearing in the right hand side are the following. Define k∗1 := −k1+k2+k3

2 , k∗2 :=
k1−k2+k3

2 , k∗3 := k1+k2−k3

2 and k∗ := k1+k2+k3

2 , which are integers in view of the definition of Σ123. We have
the Euler factor

Ep (α, k) = Ep,1 (α, k) Ep,2 (α, k) Ep,3 (α, k)

(
1− 1

α1α2α3
pk
∗+1

)
,

where Ep,1 (α, k) := 1− ε1 (p)
−1 α1

α2α3
pk
∗
1 and Ep,2 (α, k) and Ep,3 (α, k) are defined in a similar way. By the p-

adic Jacquet-Langlands correspondence (see [10]), the three Coleman families f lift to three eigenfamilies ϕ
f

=(
ϕf1 , ϕf2 , ϕf3

)
on BD, whose specialization ϕf ,k =

(
ϕf1,k1

, ϕf2,k2
, ϕf3,k3

)
at a generic k is the p-stabilization

of three newforms ϕ#
f ,k =

(
ϕ#
f1,k1

, ϕ#
f2,k2

, ϕ#
f3,k3

)
on BD of level M/D; then

(
ϕ#
f ,k, ϕ

#
f ,k

)
k

is the product of
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quaternionic Petersson products
(
ϕ#
i,ki

, ϕ#
i,ki

)
ki

(see (19) and the definition before Lemma 3.2). Finally,

setting ΓC (s) := 2 (2π)
−s

Γ (s), we have

L
(
1/2,Πk

)
= L∞

(
1/2,Πk

)
L
(
f#

1,k1
× f#

2,k2
× f#

3,k3
, ck

)
,

where

L∞
(
1/2,Πk

)
= ΓC (k∗ + 2) ΓC (k∗1 + 1) ΓC (k∗2 + 1) ΓC (k∗3 + 1)

= 24 (2π)
−2k∗−5

(k∗ + 1)!k∗1!k∗2!k∗3!

and L
(
s,Πk,Ad

)
is a adjoint L-function.

Remark 1.1. It follows from Deligne’s proof of the generalized Ramanujan conjecture that Ep (α, k) 6= 0 for
every generic integer point k.

Before explaining the idea of the proof, let us remark that the ratio
(ϕ#

f,k,ϕ
#
f,k)k

L(1,Πk,Ad)
can be given a different

arrangement as follows (see (73)). First, a result of Shimura and Hida relates L
(
1,Πk,Ad

)
to the period(

f#
k , f

#
k

)
k

:=
(
f#

1,k1,
, f#

1,k1,

)
k1

(
f#

2,k2,
, f#

2,k2,

)
k2

(
f#

3,k3,
, f#

3,k3,

)
k3

. Second we define, using Proposition 7.8, a

rigid analytic function
(
ϕ
f
, ϕ

f

)
p

uniquely characterized by the interpolation formula(
ϕ
f
, ϕ

f

)
p

(k) = EΩ
p (α, k)

(
ϕ#
f ,k, ϕ

#
f ,k

)
k

,

where EΩ
p (α, k) =

∏
i=1,2,3 EΩ

p (αi, ki) and EΩ
p (αi, ki) :=

(
1− εi (p)α−2

i pki
) (

1− εi (p)α−2
i pki+1

)
.

Remark 1.2. It follows from Deligne’s proof of the generalized Ramanujan conjecture that, for every generic

integer point k, 1− εi (p)α−2
i pki 6= 0. Hence, we have EΩ

p (αi, ki) = 0 if and only if αi = ±
√
εi (p)p

ki+1

2 . In

particular, assuming that the slope of αi is ≤ hi, we see that the condition EΩ
p (αi, ki) = 0 implies ki ≤ 2hi−1.

Consequently, for all but finitely many generic integer point k, we have EΩ
p (α, k) 6= 0.

Then one finds, assuming that EΩ
p (α, k) 6= 0,(

ϕ#
f ,k, ϕ

#
f ,k

)
k

L
(
1,Πk,Ad

) =
27

4k
∗
π3

∏
l|M

(
1 +

1

l

)3

(
ϕ
f
, ϕ

f

)
p

(k)

EΩ
p (α, k)

(
f#
k , f

#
k

)
k

(see (74)). Hence (2) becomes

LΣ123
p (f) (k)

2
=

27

4k
∗+1π3

Ep (α, k)
2

EΩ
p (α, k)

(
ϕ
f
, ϕ

f

)
p

(k)(
f#
k , f

#
k

)
k

L
(
1/2,Πk

)∏
l|M

2

l

(
1 +

1

l

)4

.

Remark 1.3. The p-adic period function
(
ϕ
f
, ϕ

f

)
p

is the tensor product of the three functions
(
ϕfi , ϕfi

)
p

:=

p+1
αi

(
ϕfi , ϕfi

)
characterized by the interpolation property

(
ϕfi , ϕfi

)
p

(k) = EΩ
p (αi, k)

(
ϕ#
i,k, ϕ

#
i,k

)
k

(see Propo-

sition 7.8). In the ordinary case, one can normalize the families ϕi and relate them to Hida’s canonical periods
and congruence ideals (see [35, §2.1 and §2.2 and Proposition 6.4], [28, Theorem 0.1, Conjecture 0.2 (iii)],
[27, Corollary 10.6], [26, Theorem 5.1] and [32, Proposition 10.1.1]).

Let us now explain how (2) is proved and the relevance of the assumption that we have done on the Coleman
family. First, as explained, one problem is that there a priori no well defined interpolation problem because
of the lack of a generic sign fixing a region of interpolation; second, as we will see, the special value formula
requires test vectors and it is not clear that they move p-adically in general. In order to circumvent this
issue, we are inspired by Ichino’s special value formula. Let us fix a (definite for our purposes) quaternion
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algebra B, let B× be the algebraic group associated to its invertible elements with center ZB× and set
[B× (A)]ZB×

:= ZB× (A) \B× (A) /B×. Then Ichino’s formula takes the form

(3) IB (ψ)
2

=
C

23

ζ2
Q (2)L (1/2,Π′ (ψ))

L (1,Π′ (ψ) ,Ad)

∏
v
Iv (ψv) =

〈
ψ[, ψ[∨

〉
L2

23

ζ2
Q (2)L (1/2,Π′ (ψ))

L (1,Π′ (ψ) ,Ad)

∏
v
Cψ

[,ψ[∨

v (ψv) ,

where the notations are as follows. In the first equality we have that ψ = ⊗vψv ∈ Π (ψ) is an L2-automorphic
form on B×3, that we assume to be in an irreducible representation Π (ψ) of B×3, Π′ (ψ) is the automorphic
representation of GL3

2 which corresponds to Π (ψ) via the Jacquet-Langlands correspondence, IB (ψ) =∫
[B×(A)]Z

B×
ψ (x) dµ[B×(A)]Z

B×
(x), C is a non-zero constant defined in (22) below (which depends on the

choice of local pairings) and Iv (ψv) is defined in (25) (see (17) and the lines after (18) for the definition of

ψ̌ ∈ Π (ψ)
∨

appearing in (25)). In the second equality we have determined C =
〈ψ[,ψ[∨〉

L2∏
v〈ψ[v,ψ[∨v 〉v

and defined

Cψ
[,ψ[∨

v (ψv) := Iv(ϕ)

〈ψ[v,ψ[∨v 〉v
using auxiliary ψ[ ∈ Π (ψ) and ψ[∨ ∈ Π (ψ)

∨
such that

〈
ψ[, ψ[∨

〉
L2
6= 0. Let us

remark that, as explained in the proof of Theorem 3.4, formula (3) is a special case of a more general Ichino’s

formula obtained choosing the dual vector ψ∨ = ψ̌ in order to get the square IB (ψ)
2
. Though qualitatively

equivalent, the local constants Cψ
[,ψ[∨

v (ψv) that appear in the second expression are more convenient to
work with (see Remark 3.5). Although by a result of Prasad (see [34]) IB = 0 on Π (ψ) except in case
B = BΠ′(ψ), a problem which is always meaningful is to try to interpolate the function k 7→ IB

(
ψk
)

if ψk
is an L2-automorphic form canonically attached to a vector valued modular form ϕk =

(
ϕ1,k1

, ϕ2,k2
, ϕ3,k3

)
on B×3 (as explained below) which comes as the specialization of a p-adic family ϕ = (ϕ1, ϕ2, ϕ3) on B×3.
Also, the Jacquet conjecture proved by Harris and Kudla (see [24] and Theorem 3.4 (2) below) tells us that,

when B = BΠ′(ψk)
, there exists ψ′k ∈ Π′

(
ψk
)

such that the associated local constants Iv

(
ψ′k,v

)
are non-zero

and, hence

(4) IB

(
ψ′k

)
6= 0⇐⇒ L

(
1/2,Π′

(
ψk
))
6= 0.

In this case, we say that ψ′k is a test vector. Formulated in this way our interpolation problem, we can remove
all the assumptions that was done on the three Coleman families f and give an unconditional p-adic Ichino’s
formula analogous to (3). In order to state our main result, let us recall that ϕi ∈M�p (Dki(W ), ωki

0,p)
αi where

the notation is the following. Let Σ0 (pZp) ⊂ M2 (Zp) be the subsemigroup of matrices having non-zero
determinant, upper left entry a ∈ Z×p and lower left entry c ∈ pZp and set Γ0 (pZp) := Σ0 (pZp) ∩GL2 (Zp).
The inclusion Ui ⊂ X corresponds to a continuous character ki : Z×p → O (Ui) and one may consider the

space Dki(W ) of locally analytic distributions on W := Z×p × Zp that are “homogeneous of weight ki” (see

§4.1 for the precise definition). Also, ωki
0,p : ZB× (Af) → O (Ui) is the character defined by the formula

ωki
0,p (z) := ωf,i (z)

(
z

Nf (z)

)−ki
p

, where Nf (z) is defined by the formula z = Nf (z) z
Nf (z)

with Nf (z) ∈ Q×+

and z
Nf (z)

∈ Ẑ (see also §2.1), ωf,i is the inverse of the adelization ω−1
f,i (z) := εi

(
z

Nf (z)

)
of εi

1 and (−)p
means that we take the p-component (which is indeed an element of Z×p ). Because Σ0 (pZp) acts on Dki(W )

from the right (by right multiplication on the row vectors in W ) one may form the space M�p (Dki(W ), ωki
0,p),

which is a subspace of the space of those functions ϕi : B× (Af) → Dki(W ) with the property that there
exists an open and compact subgroup Kp ⊂ B× (Apf ) (here Apf is the prime to p part of Af) such that

ϕi (zuxgf) = ωki
0,p (z)ϕi (x)u−1

p for every z ∈ ZB× (Af), u ∈ KpΓ0 (pZp), x ∈ B× (Af) and g ∈ B×. These

spaces are naturally B× (Apf )-modules and they are further endowed with the action of a Up-operator (see the
lines before Proposition 5.4): the superscript (−)

αi refers to the αi-eigenspace for the Up-operator. Also, if
ki ∈ Ui is an integer, we may consider the space of two variables polynomials that are homogeneous of degree

1The fact that the central characters are the inverse of the usual ones is due to the fact that the L2-automorphic forms on
B that appear in §3.2 enjoy the equivariance property f (xg) = f (x), as opposite to the usual convention f (gx) = f (x). Thus
we consider right B×

(
Af
)

action (fu) (x) := f (ux) on them, rather than the usual left action (uf) (x) := f
(
xu−1

)
. The rule

f∗ (x) := f
(
x−1

)
, which satisfies (fu)∗ = uf∗, exchange the two spaces, but the central characters of the corresponding spaces

are reversed.
5



ki and we write Vki,F for its F -dual; next, let ωki0 : ZB× (Af) → F× be defined by the formula ωki0 (z) :=

ωf,i (z) Nki
f (z) and let M�

(
Vki,F , ω

ki
0

)
be the space of functions ϕi,ki : B× (Af)→ Vki,F with the property

that there exists an open and compact subgroup Kp ⊂ B× (Apf ) such that ϕi,ki (zuxgf) = ωki0 (z)ϕi,ki (x) g∞
for every z, u, x and g as above, which is again a B× (Apf )-module endowed with a Up-operator. There

is a specialization map ϕi 7→ ϕi,ki from M�p (Dki(W ), ωki
0,p) to M�

(
Vki,F , ω

ki
0

)
(see (41)) satisfying the

following properties (easily proved by means of the Ash-Stevens machinery [4], see also [9]): it respects the

above actions, both M�p (Dki(W ), ωki
0,p)

Kp

and M�
(
Vki,F , ω

ki
0

)Kp

admit slope ≤ h decompositions for the

Up-operator (as defined in [4]) for every open and compact subgroup Kp as above and the slope ≤ h parts

(−)
≤h

satisfy the control theorem
M�p (Dki

(W ),ω
ki
0,p)K

p,≤h

IkiM
�
p (Dki

(W ),ω
ki
0,p)K

p,≤h

∼→M�
(
Vki,F , ω

ki
0

)Kp,≤h
for every k+1 > h (here

Iki ⊂ O (Ui) is the ideal of functions vanishing at ki). Let us write

Mα
p (U) := M�p (Dk1(W ), ωk1

0,p)
α1 ⊗M�p (Dk2(W ), ωk2

0,p)
α2 ⊗M�p (Dk3

(W ), ωk3
0,p)

α3 ,

so that we focus on elements ϕ ∈ Mα
p (U). Our main result is that there is a (unique up to sign) O (U)-

valued O (U)-linear functional Lαp = Lαp,U : M
α
p (U) → O (U) such that, for every ϕ ∈ M

α
p which is the

tensor product of three families, if ϕk belongs to an irreducible representation Π
(
ϕk
)
, then

Lαp
(
ϕ
)

(k)
2

= Ep (α, k)
2 Ck

2932

ζ2
Q (2)L

(
1/2,Π′

(
ϕ#
k

))
L
(

1,Π′
(
ϕ#
k

)
,Ad

) ∏
v
Iv(ϕ

#
k )

= Ep (α, k)
2

(
ϕ[#k , ϕ[[#k

)
k

2L
(

1,Π′
(
ϕ#
k

)
,Ad

)L(1/2,Π′
(
ϕ#
k

))∏
v 6=∞,p

C
ϕ[#k ,ϕ[[#k
v

(
ϕ#
k

)
,(5)

where ϕ#
k =

(
ϕ#
k1
, ϕ#

k2
, ϕ#

k3

)
is the unique triple which componentwisely has p-stabilization ϕk, Π′

(
ϕ#
k

)
=

Π′
(
ϕk
)

:= Π′
(
ψk
)
, Ck = C is defined in (22) below, Iv(ϕ

#
k ) and C

ϕ[#k ,ϕ[[#k
v

(
ϕ#
k

)
are again defined in (25)

and, as in (3) above, the second equality holds with the auxiliary choice of vectors ϕ[#k and ϕ[[#k such that(
ϕ[#k , ϕ[[#k

)
k
6= 0 and satisfying a local condition at p (see the lines before Theorem 7.3). This is proved

in Theorem 7.3 and Theorem 8.3, from which (2) is deduced as a special case (see also §8.3), is obtained
by providing conditions on the Coleman families under which one knows a priori that B = BDk for every
generic integer k, an explicit test vector ϕ moving in families can be written down for which the corresponding

local constants C
ϕ#
k ,ϕ

#
k

v

(
ϕ#
k

)
has been computed (that is, we take ϕ#

k = ϕ[#k = ϕ[[#k ) and then relating(
ϕ#
k , ϕ

#
k

)
k

to
(
ϕ#
f ,k, ϕ

#
f ,k

)
k

(see (76)).

Let us write M�p

(
U,ϕ

f

)
⊂ M

α
p (U) for the B× (Apf )-representation generated by ϕ

f
over O (U) and

suppose that there is some generic integer point k0 such that L
(
f#

1,k0
1
× f#

2,k0
2
× f#

3,k0
3
, ck0

)
6= 0 for B = BDk0 .

Then we see from (5), (4) and Remark 1.1 that Lαp 6= 0 as a functional on M�p

(
U,ϕ

f

)
and, hence, there

is some ϕ ∈ M�p
(
U,ϕ

f

)
such that Lαp

(
ϕ
)
6= 0. In particular, we see that B = BDk and that ϕ

k
is a test

vector for every generic integer point k in a Zariski open subset of U , by (5) and Remark 1.1.
Let us briefly explain how Theorem 7.3 is proved. First, the L2-automorphic forms to which ψ belongs are

related to the vector valued modular forms to which ϕk described above belongs; via this identification, the

integral IB (ψ) that appear in the left hand side of the Ichino’s formula is related to a functional tk on vector
valued modular forms (see §3 and Theorem 3.4). This is done by appealing to the results of [22], which set
up a general formalism for getting such a kind of results in the setting of Gan-Gross-Prasad conjectures when
the real points of the algebraic group are compact modulo the center. This linear functional tk is obtained
by evaluating the vector valued forms at the product ∆k/E ∈ Pk1,F ⊗ Pk2,F ⊗ Pk3,F of certain powers of
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determinants (see (13)): the resulting formula could be viewed as an analogous of the Hatcher’s formula in
our setting (which indeed can be deduced from Waldspurger’s formula via the method of [22]). It turns out
that tk can not be deformed p-adically, but it is closely related to three linear forms t◦i,k (only defined on

distribution valued modular forms) which can be easily moved p-adically. The relationship between tk and
t◦i,k is that they differs by the Euler factor Ep,i (α, k) and the action of an operator Wp (closely related to the

Atkin-Lehner operator). For example (see Corollary 5.6 and (46)):

t◦3,k(ϕ1 ⊗ ϕ2 ⊗ ϕ3 |Wp) = Ep,3 (α, k) tk(ϕ1 ⊗ ϕ2 ⊗ ϕ3 |Wp).

Expressing tk(ϕ1 ⊗ ϕ2 ⊗ ϕ3 | Wp) in terms of tk

(
ϕ#
k

)
gives rise to another Euler factor αiÊp,i (α, k) such

that Ep,i (α, k) Êp,i (α, k) = Ep (α, k) does not depend on the choice of i = 1, 2, 3 (see Proposition 6.5). The

result is that, writing Lαp
(
ϕ
)

(k) for any one of p+1
α1
t◦1,k (ϕ1 |W3 ⊗ ϕ2 ⊗ ϕ3), p+1

α2
t◦2,k (ϕ1 ⊗ ϕ2 |W3 ⊗ ϕ3) or

p+1
α3
t◦2,k (ϕ1 ⊗ ϕ2 ⊗ ϕ3 |W3), all of them satisfy the same interpolation property

(6) Lαp
(
ϕ
)

(k) := Ep (α, k) tk

(
ϕ#
k

)
;

by Zariski density of the integer points, these p-adically moving quantities needs to be the same and this
interpolation formula uniquely characterize Lαp

(
ϕ
)

(thus fixing the sign). Applying our vector valued version
of Ichino’s formula (Theorem 3.4), (5) is deduced from (6). Let us remark that one feature of our asymmetric
construction is that one gets in a natural way improved p-adic L-functions defined on appropriate improving
planes (see Proposition 7.7).

Remark 1.4. The local constants Cψ
[,ψ[∨

v

(
ψv, ψ

∨
v

)
that appear in (24) below have been quite largely studied

in the literature about subconvexity problems when ψv = ψ[v and ψ∨v = ψ[∨ = ψv (see [42] and [30]). They

appear when one specializes Ichino’s formula (27) to the case ψ∨ = ψ: then IB (ψ)
2

(of (3)) is replaced

by |IB (ψ)|2 and
〈
ψ, ψ̌

〉
L2 by

〈
ψ,ψ

〉
L2 , which is always non-zero. Our assumption that the nebetype are

trivial in Theorem 8.3 allows us to appeal to this existing literature. Time after our works was completed,

Hsieh has successfully completed the computation of the local constants Cψ
[,ψ[∨

v

(
ψv, ψ̌v

)
6= 0 taking ψ[v and

ψ[∨ newvectors as defined in Example 3.3 and explicit vectors ψv linearly depending on ψ[v (see [29, §6.1]).
Rather than appealing to his results, we illustrate the method for specifying the local constants in (5) in
order to get Theorem 8.3 in a simplified setting, allowing us to appeal to the previously existing literature
and make an easier choice of test vectors. In the ordinary case, Hsieh has (also) given a construction of the
balanced triple product p-adic L-functions based on our vector valued version of Ichino’s formula (Theorem
3.4) involving the trilinear form tk (see [29, Proposition 4.10]). He was able, in this case, to give a very nice
Gross’ style interpretation of our p-adically moving trilinear form t◦3,k (cfr. the proof of [29, Proposition 4.9]

with our Proposition 5.4 and Corollary 5.6).

Remark 1.5. Suppose that k : Z×p → O× and k′ : Z×p → O′× valued in (the invertible elements of)

F -Banach algebras and are two continuous homomorphisms and that φ : O → O′ is a continuous homo-
morphism of F -algebras with the property that k′ = φ ◦ k. Then it is easy to see that the canonical map
M�p (Dk(W ), ωk

0,p)⊗̂O,φO′ → M�p (Dk(W ), ωk
0,p) is an isomorphism. In particular, the definition of M

α
p (U)

can be uniquely extended to arbitrary admissible open subsets of X . Correspondingly, it follows from the fact
that our construction of Lαp,U behaves well with respect to base changes that we can uniquely extend its def-

inition to arbitrary admissible open subsets of X and that the resulting functional is uniquely characterized
by the interpolation property (6) and, up to sign, by (5).

Suppose that k is an integer point which is not generic: then at least one of the forms ϕi,ki is new at p.
We compute the Euler factors in this case in Proposition 7.5. Our interest is motivated by the forthcoming
work [6] in which exceptional zero phenomena of these p-adic L-functions are investigated, an analogue of
those discovered in [33] and studied in [23] (see Remark 7.6). We will give an algebraic interpretation of these
result in the framework of Nekovar-style weight pairings as defined in [39] and [40]. Particularly interesting
is the case where a local change of sign at p produces an extra vanishing due to the complex L-function (see
Remark 7.6): we relate the derivatives of our p-adic L-function to the Abel-Jacobi image of diagonal cycles.
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2. Modular forms and p-adic modular forms

Let B be a definite quaternion division Q-algebra which is split at the prime p and let B (resp. B×) be
the associated ring scheme (resp. algebraic group). We write A = Af × R for the adele ring of Q and define

Apf by the rule Af = Apf ×Qp. We set Bf := B (Af) (resp. B×f := B× (Af)), B
×,p
f := B (Apf ) and Bv = B (Qv)

(resp. B×v := B× (Qv)) if v is either a finite place or v =∞, so that B×f = B×,pf ×B×p . We write b 7→ bι for

the main involution and nrd : B× → Gm for the reduced norm.
If Z ⊂ ZB× = Gm is a closed subgroup (such as the trivial subgroup or the whole center), we define

Zf := Z (Af), Zv := Z (Qv) and Zpf := Z (Apf ), so that Zf = Zpf ×Zp. We will need to consider double cosets
of the form [

B× (A)
]
Z

:= Z (A) \B× (A) /B× and
[
B×f
]
Z

:= Zf\B×f /B
×.

In order to later apply the results from [22], we fix measures as follows. We take the Tamagawa measure
µZ(A)\B×(A) on Z (A) \B× (A) and write µ[B×(A)]Z

for the quotient measure (normalized in the usual way).

Next we choose µZ\B×,∞ on Z (R) \B× (R) and µ := µB×f
on B×f such that µ (K) ∈ Q for some (and

hence every) open and compact subgroup K ⊂ B×f and such that, writing µB×f /B×
for the induced quotient

measure on B×f /B
× (normalized in the usual way), which restricts to an invariant measure µ[B×f ]

Z

on

C(Bf\B×f /B×) ⊂ C(B×f /B
×),

(7)
∫

[B×(A)]Z
f (x) dµ[B×(A)]Z

(x) =
∫

[B×f ]
Z

(∫
Z(R)\B×(R)

f (xfx∞) dµZ\B,∞ (x∞)
)
dµ[B×f ]

Z

(xf)

is satisfied. We let mZ\B×,∞ be the total measure of Z (R) \B× (R).
Let Σ0 (pZp) ⊂M2 (Zp) be the subsemigroup of matrices having non-zero determinant, upper left entry

a ∈ Z×p and lower left entry c ∈ pZp and set Γ0 (pZp) := Σ0 (pZp)∩GL2 (Zp). Consider an open and compact

subgroup K�p ⊂ B×p (it will be Γ0 (pZp) in our applications). We will also need to consider a subsemigroup

K�p ⊂ Σp ⊂ B×p and to define Σp
(
B×f
)

:= B×,pf × Σp (we will take Σp = K�p , Σ0 (pZp) or B×p ).

Let K := K
(
B×f
)

(resp. K� := K
(
B×f ,K

�
p

)
) be the set of open and compact subgroups K ⊂ B×f (resp.

K = Kp ×Kp with Kp ⊂ B×,pf and Kp ⊂ K�p open and compact). If S is a B×f -module (resp. a Σp
(
B×f
)
-

module), then we define

SK :=
⋃
K∈K S

K (resp. SK
�

:=
⋃
K∈K� S

K).

We note that the Hecke operators H
(
B×f
)

(resp. H
(
Σp
(
B×f
))

) act on SK (resp. SK
�
) by double cosets of

elements of B×f (resp. Σp
(
B×f
)
). We describe the action on SK

�
for a Σp

(
B×f
)
-module S (the action of SK

is similar). If K1,K2 ∈ K� and π ∈ Σp
(
B×f
)
, the space K1\K1πK2 is finite2 and we may write

K1πK2 =
⊔
x∈K1\K1πK2

K1x.

As usual, we may define
· | K1πK2 : SK1 → SK2

by the rule

(8) v | K1πK2 =
∑
x∈K1\K1πK2

vx.

The mapping u 7→ πu induces a bijection
(
K2 ∩ π−1K1π

)
\K2 → K1\K1πK2, so that we may take x = πu

in the above expression:

(9) v | K1πK2 =
∑
u∈(K2∩π−1K1π)\K2

vπu.

We can define in this way an action of the Hecke algebra H
(
Σp
(
B×f
))

of elements of Σp
(
B×f
)
. When

K�p = B×p , we have V K
�

= V K and we have an action of H
(
Σp
(
B×f
))

= H
(
B×f
)
. Let K�� ⊂ K� be the

subset of those groups such that Kp = K�p and write H (Σp) for the Hecke algebra of double cosets KπK

with π concentrated in πp ∈ Σp and K ∈ K��. Then (8) defines an operator on V K
��

=
(
V K

�)K�p by means

of the formula vUπ := v | KπK if v ∈ V K where K ∈ K��, i.e. it does not depend on K ∈ K��. It follows

2Indeed note that K1πK2 is compact, being the image of K1 ×K2 by means of the continuous map given by (x, y) 7→ xπy.
Since K1 is open, K1πK2 =

⊔
iK1πi is an open covering which, by compactness, admits a finite refinement.
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that V K
��

is endowed with an action of B×,pf ×H (Σp): write π̂p for the idele concentrated at p, where we

have (π̂p)p = πp :=

(
1 0
0 p

)
; then V K

��
is endowed with an action of the operator Up := Uπ̂p .

Let (V, ρ) be a right representation of G∞ ∈ {B×, B×∞} (resp. Σp) with coefficients in some commutative
unitary ring R. If g ∈ B× (A), we will write gv ∈ B×v for its v-component. When ρ is understood, we simply
write vg∞ (resp. vgp) for vρ (g∞) (resp. vρ (gp)). Fix a character ω0 : Zf −→ R× (resp. ω0,p : Zf −→ R×).
Define S

(
B×f , ρ

)
(resp. Sp

(
B×f , ρ

)
) to be the space of maps ϕ : B×f → V endowed with the

(
B×, B×f

)
-action

(resp.
(
B×,Σp

(
B×f
))

-action) given by

(gϕu) (x) := ϕ (uxgf) ρ
(
g−1
∞
)
, where g ∈ B× and u ∈ B×f

(resp. (gϕu) (x) := ϕ (uxgf) ρ (up) , where g ∈ B× and u ∈ Σp
(
B×f
)

).

Then

S(B×f , ρ, ω0) := {ϕ ∈ S(B×f , ρ) : ϕ(zx) = ω0(z)ϕ(z) for all z ∈ Zf}
(resp. Sp

(
B×f , ρ, ω0,p

)
:=
{
ϕ ∈ Sp(B×f , ρ) : ϕ(zx) = ω0,p(z)ϕ(x) for all z ∈ Zf

}
)

is a sub
(
B×, B×f

)
-module (resp. sub

(
B×,Σp

(
B×f
))

-module). We also write

S
(
B×f /B

×, ρ/B× , ω0

)
:= S

(
B×f , ρ, ω0

)(B×,1)
(resp. Sp

(
B×f /B

×, ρ/B× , ω0,p

)
:= Sp

(
B×f , ρ, ω0,p

)(B×,1)
)

and

M
(
B×f , ρ, ω0

)
:= S

(
B×f /B

×, ρ/B× , ω0

)(1,K)

(resp. Mp

(
B×f , ρ, ω0,p

)
:= Sp

(
B×f /B

×, ρ/B× , ω0,p

)(1,K�)
).

The former is called the space of ρ-valued modular forms and the latter the space of ρ-valued p-adic modular
forms; they are Hecke modules as explained above. Also, setting

M�p
(
B×f , ρ, ω0,p

)
:= Sp

(
B×f /B

×, ρ/B× , ω0,p

)(1,K��)
= Mp

(
B×f , ρ, ω0,p

)K�p ,

M�
(
B×f , ρ, ω0

)
:= S

(
B×f /B

×, ρ/B× , ω0

)(1,K��)
= M

(
B×f , ρ, ω0

)K�p ,

we get a B×,pf ×H (Σp)-module, as explained above. We omit ω0 from the notation when Zf = 1 and write

M
(
Zf\B×f , ρ

)
:= M

(
B×f , ρ, ω0,p

)
when ω0 is the trivial character of Zf . Sometimes we will abusively replace

ρ with the underlying subspace V in the notation. The same shorthands apply in the p-adic case.
The following remarks are easily checked.

Remark 2.1. Suppose that χ0 : B×f → R× is a character with the property that χ0 (K) = 1 for some K ∈ K
and that χ∞ : G∞ → R× is a character with the property that χ0|B× = χ∞|B× .

(1) If ϕ ∈M
(
B×f , ρ, ω0

)
, then the rule (χ0ϕ) (x) := χ0 (x)ϕ (x) defines an element χ0ϕ ∈M

(
B×f , ρ (χ∞) , χ0|Zω0

)
.

(2) We have χ0 ∈M
(
B×f , R (χ∞) , χ0|Z

)
.

Remark 2.2. Suppose that χ0,p : B×f → R×p and χp : Σp → R×p are a characters such that there is some

K ∈ K� such that χ0,p (u) = χp (up)
−1

every u ∈ K and χ0,p|B× = 1.

(1) If ϕ ∈ Mp

(
B×f , ρ, ω0,p

)
, then the rule

(
χ0,pϕ

)
(x) := χ0,p (x)ϕ (x) defines an element χ0ϕ ∈

Mp

(
B×f , χpρ, χ0,p|Zω0,p

)
.

(2) We have χ0,p ∈M
(
B×f , R

(
χp
)
, χ0,p|Z

)
.

The connection between modular forms and p-adic modular forms is the content of the following proposi-
tion. We suppose that we are given ω0 : Zf → R× and coefficient rings i∞ : R ⊂ R∞ and ip : R ⊂ Rp. For a
character χ of some group with values in R×, we let ip∗ (χ) := ip ◦ χ and i∞∗ (χ) := i∞ ◦ χ. We also assume
that we are given a representation ρp (resp. ρ∞) of B×p (resp. B×∞) with coefficients in Rp (resp. R∞) with
the property that

ρ := ρp|B× = ρ∞|B× ⊂ ρp, ρ∞
9



takes coefficients in R: we distinguish between the R-valued representation ρ of B× and the Rp-valued
representation ρp|B× of B×.

Lemma 2.3. The rules

M
(
B×f , ρp|B×

)
→Mp

(
B×f , ρp

)
Mp

(
B×f , ρp|B×

)
→M

(
B×f , ρp

)
ϕ 7→ ψϕ : ψϕ (x) := ϕ (x)x−1

p ψ 7→ ϕψ : ϕψ (x) := ψ (x)xp

set up a right Σp
(
B×f
)
-equivariant bijection and M

(
B×f , ρ

)
⊂M

(
B×f , ρp|B×

)
is identified with the submod-

ule of those ψ ∈ Mp

(
B×f , ρp

)
such that ψ (x) ∈ ρ ⊂ ρp for every x ∈ B×f . Furthermore, if ρp has central

character ωρp and (−)p : Zf → Zp is the projection induced by B×f → B×p , then the bijection induces

M
(
B×f , ρ, ω0

)
⊂M

(
B×f , ρp|B× , ip∗ (ω0)

)
'Mp

(
B×f , ρp, ω0,p

)
with ω0,p := ip∗ (ω0)ω−1

ρp

(
(−)p

)
. These identifications and inclusions are H (Σp (Gf))-equivariant.

Proof. Indeed the above rules induce a
(
B×,Σp

(
B×f
))

-equivariant identification S
(
B×f , ρp|B×

)
' Sp

(
B×f , ρp

)
.

Since Bf = B×,pf × B×p topologically, K� ⊂ K is a cofinal family and we have SK = SK
�

for every B×f -

module. Hence, taking (B×,K)-invariant on the left and (B×,K�)-invariants on the right yields the Σp
(
B×f
)
-

equivariant identification. Then one checks that the correspondence has the required properties. �

Example 2.4. The above lemma notably applies in the following setting: let V be an algebraic representation
of B× over R = Q ⊂ C,Qp (or a quadratic field R = K ⊂ C,Qp which splits B) and set (V, ρ) := V (Q) (or
V (K)), (V∞, ρ∞) := V (C) (with the action restricted to B×∞ ⊂ B× (C)) and

(
Vp, ρp

)
:= V (Qp). We can

also take R large enough for the values of the characters ωρp and ω0 to take values in it (and replace Qp by

a finite extension F and consider the action restricted to B×p ⊂ B× (F )).

Suppose that we are given ω0 : Zf → R× (resp. ω0,p : Zf → R×p ) and write X (B×, ω0) (resp.

Xp (B×, ω0,p)) to denote the set of couples (χ0, χ∞) as in Remark 2.1 (resp. Remark 2.2) such that χ0|Z = ω0

(resp. χ0,p|Z = ω0,p). We also suppose, in the following remark, that we are given characters χ0 : B×f → R×,

χp : B×p → R×p and χ∞ : G∞ → R×∞ such that χ := χp|B× = χ∞|B× : B× → R× and that χp and χ∞
are continuous with respect to topologies on Rp and, respectively, R∞. Then the condition χp|B× = χ∞|B×
implies that χp and χ∞ determine each other.

Remark 2.5. We have (χ0, χ) ∈ X (B×, ω0) (equivalently, (i∞∗ (χ0) , χ∞) ∈ X (B×, i∞∗ (ω0))) if and only
if
(
χ0,p, χp

)
∈ Xp (B×, ω0,p), where χ0,p (x) := ip∗ (χ0) (x)χ−1

p (xp) and ω0,p (z) := ip∗ (ω0) (z)χ−1
p (zp). In

this case, regarding χ0 (resp. χ0,p) as modular forms via Remark 2.1 (2) (resp. Remark 2.2 (1)), we have

that χ0 corresponds to ip∗
(
χp
)
' χ0,p via the inclusion inclusions/identifications

χ0 ∈M (G0, R (χ) , ω0) ⊂M
(
G0, Rp

(
χp
)
, ip∗ (ω0)

)
'Mp

(
G0, Rp

(
χp
)
, ω0,p

)
provided by Lemma 2.3. Furthermore, via the inclusions/identifications provided by Lemma 2.3, twisting
by χ0 (or ip∗

(
χp
)
) as in Remark 2.1 (1) corresponds to twisting by χ0,p as in Remark 2.2 (2).

2.1. The norm forms. Here is a key example of modular form. Consider the (normalized) absolute value
functions |−|v : Q×v → R×+, |−|Af

: A×f → Q×+ and |−|A : A× → R×+. Setting

N := |−|−1
Af
|−|∞ : A× = Gm (A) −→ C×

gives a function such that NfN
−1
∞ = |−|−1

A is trivial on Q× = Gm (Q) by the product formula. Suppose
that χ : B× → Gm is an algebraic character and that τ : R× → G is a character. Then we define

τχ : B× (R)
χR→ R×

τ→ G. In particular, we have the continuous character

Nχ : B× (A)
χA−→ A× N−→ R×+
10



and, recalling that Nf = |−|−1
Af

and N∞ = |−|∞,

Nχ,f : B× (Af)
χAf−→ A×f

|−|−1
Af−→ Q×+ and Nχ,∞ : B× (R)

χ∞−→ R×
|−|∞−→ R×+.

Of course Nχ,f (resp. Nχ,∞) is the finite adele (resp. ∞) component of Nχ, as suggested by the notation. If
κ : Q×+ → R× is a character (that we usually write exponentially r 7→ rκ), we can also define

Nκ
χ,f : G (Af)

Nχ,f−→ Q×+
κ−→ R×

Note that χ∞ (B× (R)) = χ∞
(
B× (R)

◦) ⊂ R×+ (because B is definite), implying that χQ (B× (Q)) ⊂ Q×+
and we may consider κχ := κ ◦χQ. If V = (V, ρ) is a representation of G (R) with coefficients in R, we write
V (κχ) = (V, ρ (κχ)) for the representation ρ (κχ) (g) (v) := κχ (g) ρ (g) v.

Remark 2.6. The continuous character Nχ is such that Nχ,fN
−1
χ,∞ is trivial on B× (Q) and we have

Nκ
χ,f ∈M

(
B× (Af) , R (κχ) ,Nκ

χ,f|Zf

)K
for every open and compact K ∈ K.

Proof. This is an application of the product formula and the fact that χQ (B× (Q)) ⊂ Q×+, implying that

Remark 2.1 (2) applies with (χ0, χ∞) =
(

Nκ
χ,f ,N

κ
χ,∞

)
and Nκ

χ,∞ := κ ◦Nχ,∞ = κ ◦ χQ. �

Taking

χ = nrd : B× → Gm

yields, for every κ = k ∈ Z (viewed as the character k : Q× → R via r 7→ rk), the norm form

Nrdkf := Nk
χ,f ∈M

(
G (Af) ,Q (k) ,N2k

f|Zf

)K
, for every K ∈ K.

We also write Nrdk∞ := Nk
χ,∞ in this case. Applying Lemma 2.3 with ρ = Q (k), ρp = Qp (k) and ϕ =

Nrdkf (−)p ∈M (G (Af) ,Qp (k) , 2k)
K

yields the p-adic modular form

Nrdkp := ψϕ ∈Mp

(
G (Af) ,Qp (k) ,N2k

p|Zf

)K
, for every K ∈ K.

We have, explicitly, writing (−)p for the p-component of an adelic element (and viewing the rational numbers

diagonally in Af):

Nrdkp (x) = Nrdkf (x)p x
−1
p =

(
Nrdf (x)p
nrdp (xp)

)k
=

(
Nrdf (x)

nrdAf
(x)

)k
p

and Np(z) =

(
Nf(z)

z

)
p

.

We now remark that
Nrdf (x)p
nrdp(xp) ∈ Z

×
p for any x ∈ B×f . Suppose now that we are given k : Z×p → O× which

is a continuous group homomorphism, with O a locally convex Qp-algebra. Since K�p ⊂ B×p is a compact

subgroup, nrdp maps it into the maximal open compact subgroup Z×p ⊂ Q×p :

nrdp : K�p → Z×p .

If D is a K�p -module with coefficients in O, it makes sense to consider D (k) := D
(

nrdk
p

)
, the same

representation with action v ·k g := nrdk
p (g) vg. With this notation, we have

Nrdk
p ∈Mp

(
G (Af) ,O (k) ,N2k

p|Zf

)K
, for every K ∈ K�

which interpolates the norm forms Nrdkf ' Nrdkp with k ∈ Z.
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2.2. Multilinear forms. For x ∈ B×f and K ∈ K, define ΓK(x) = B× ∩ x−1Kx. Being discrete (as B× is)

and compact (as K is), the set ΓK(x) is finite. For each K ∈ K and each set RK ⊂ B×f of representatives of
K\Bf/B

×, define

TRK : M
(
B×f , R

)K −→ R by TRK (f) := µ (K)
∑

x∈RK

f (x)

|ΓK (x)|
.

It is easy to see that this is a well defined quantity which is independent from the choice of K (see [22, §3.1.1]
for details), implying that this family defines

TB×f /B×
: M

(
B×f , R

)
→ R and TZf\B×f /B×

: M
(
Zf\B×f , R

)
→ R

where TBf/B× = TK on M
(
B×f , R

)K
and TZf\B×f /B×

:= TB×f /B×|M(Zf\B×f ,R).

Suppose that we are given a right representation (V, ρ) of G∞ ∈ {B×, B×∞} (resp. Σp) with coefficients
in some commutative unitary ring R and group homomorphisms k : Q× → R× (resp. k : Z×p → R×). If

Λ ∈ HomR[B×∞] (ρ,R (k)) (resp. ∈ HomR[K�p ] (ρ,R (k)) ),

Then we may define the R-linear morphisms

M (Λ) : M
(
B×f , ρ,N

2k
f|Zf

)
→ R (resp. Mp (Λ) : Mp

(
B×f , ρ,N

2k
p|Zf

)
→ R)

by the rule

M (Λ) (ϕ) := µ (K)
∑
x∈K\B×/B×

Λ (ϕ (x))

|ΓK (x)|Nrdkf (x)
if ϕ ∈M

(
B×f , ρ,N

2k
f|Zf

)K
(resp. M (Λ) (ϕ) := µ (K)

∑
x∈K\B×/B×

Λ (ϕ (x))

|ΓK (x)|Nrdk
p (x)

if ϕ ∈Mp

(
B×f , ρ,N

2k
p|Zf

)K
)

Alternatively, we have

M (Λ) : M
(
B×f , ρ,N

2k
f|Zf

)
Λ∗→M

(
B×f , R (k) ,N2k

f|Zf

) 〈·,Nrd−kf 〉→ R

(resp. Mp (Λ) : Mp

(
B×f , ρ,N

2k
p|Zf

)
Λ∗→Mp

(
B×f , R (k) ,N2k

p|Zf

) 〈·,Nrd−k
p 〉→ R),

where:

• Λ∗ is the morphism induced by functoriality and Λ, i.e. Λ∗ (ϕ) (x) := Λ (ϕ (x));
• 〈·, ·〉 is the natural pairing

〈·, ·〉 : M
(
B×f , R (k) ,N2k

f|Zf

)
⊗RM

(
B×f , R (−k) ,N−2k

f|Zf

)
⊗→M

(
Zf\B×f , R

) TZf\B
×
f
/B×

→ R

(resp. 〈·, ·〉 : Mp

(
B×f , R (k) ,N2k

f|Zf

)
⊗RMp

(
B×f , R (−k) ,N−2k

f|Zf

)
⊗→Mp

(
Zf\B×f , R

) TZf\B
×
f
/B×

→ R),

with (ϕ1 ⊗ ϕ2) (x) := ϕ1 (x)ϕ2 (x).

It follows from this description that the quantity is well defined. Finally, when ρ = ρ1 ⊗R ... ⊗R ρn and
ω0,i (resp. ω0,p,i) are such that

(10) ω0,1...ω0,n = N2k
f|Zf

(resp. ω0,p,1...ω0,p,n = N2k
p|Zf

),

we can define the R-linear morphism

J (Λ) : M
(
B×f , ρ1, ω0,1

)
⊗R ...⊗RM

(
B×f , ρn, ω0,n

) ⊗→M
(
B×f , ρ,N

2k
f|Zf

)
M(Λ)→ R

(resp. Jp (Λ) : Mp

(
B×f , ρ1, ω0,1

)
⊗R ...⊗RMp

(
B×f , ρn, ω0,n

) ⊗→Mp

(
B×f , ρ,N

2k
f|Zf

)
Mp(Λ)→ R)(11)

where ⊗ is obtained by iteration of (ϕ1 ⊗ ϕ2) (x) := ϕ1 (x)⊗R ϕ2 (x) in case n = 2.

Let us now assume that we are in the setting of Lemma 2.3, with representations ρi,p (resp. ρi,∞) of B×p
(resp. B×∞) having coefficients in Rp (resp. R∞), the property that ρi := ρi,p|B× = ρi,∞|B× ⊂ ρi,p, ρi,∞ has
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coefficients in R and suppose that (10) satisfied. Furthermore, suppose that (Λp,Λ∞) is a couple of elements
Λp ∈ HomRp[B×p ]

(
ρp, Rp (k)

)
and Λ∞ ∈ HomR∞[B×∞] (ρ∞, R∞ (k)) with the property that

Λ := Λp|ρ = Λ∞|ρ ∈ HomR[B×] (ρ,R (k))

(Here we assume that k : Q× → R and identify it with ip∗ (χ) := ip ◦ χ and i∞∗ (χ) := i∞ ◦ χ).

Proposition 2.7. Via the inclusions/identifications provided by Lemma 2.3, we have

Jp (Λp)|⊗ni=1M(B×f ,ρi,ω0,i) = J (Λ)|⊗ni=1M(B×f ,ρi,ω0,i)
on

⊗ni=1M
(
B×f , ρi, ω0,i

)
⊂ ⊗ni=1Mp

(
B×f , ρi,p, ω0,p,i

)
,⊗ni=1M

(
B×f , ρi,∞, i∞∗ (ω0,i)

)
.

Proof. It is easily checked that all the canonical morphisms involved in the definition of Jp (Λp) and J (Λ∞)

match: the non canonical ones, namely
〈
·,Nrd−kf

〉
and

〈
·,Nrd−kp

〉
match because Nrd−kf corresponds to

Nrd−kp via Lemma 2.3. �

2.3. Pairings and adjointness. Suppose that D (resp. E) is a ΣD (resp. ΣE) module, where ΣD (resp.
ΣE) satisfies the assumption that was done on Σp, and we let ω0,p,D, ω0,p,E : Zf → R× be characters such
that ω0,p,Dω0,p,E = ω0,p. We assume that we are given a group homomorphism k : Z×p → R× and a pairing

〈−,−〉 ∈ HomR[K�p ] (D ⊗R E,R (k)) .

Then (11) gives
〈−,−〉Mp

: Mp

(
B×f , D, ω0,p,D

)
⊗RMp

(
B×f , E, ω0,p,E

)
→ R.

We suppose ΣD = Σp, ΣD = Σιp and
(
K�p
)ι

= K�p ⊂ Σp∩Σιp(as in case K�p = Γ0 (pZp) and Σp = Σ0 (pZp))
and that Z = ZB× = Gm. Assuming that E has central character κE : Z×p → R×, we can consider the
second of the following compositions:

nrd
ω0,p,E

f : B×f
nrdf→ A×f = Zf

ω0,p,E→ R× and nrdκEp : K�p
nrdp→ Z×p

κE→ R×.

Suppose that k, κE : Z×p → R× extends to a character k̃, κ̃E : Q×p → R×. Then

nrdκ̃Ep : Σp
nrdp→ Q×p

κ̃E→ R×

is an extension of nrdκEp to Σp and we let HomR[Σp,Σιp]

(
D ⊗ E,R

(
k̃
))

be the set of those pairings such

that

〈vσ,w〉 = nrdk̃−κ̃E
p (σ) 〈v, wσι〉 for every σ ∈ Σp.

We remark that, for every element u ∈ K�p ,

〈vu,wu〉 = nrdk−κE
p (u) 〈v, wuuι〉 = nrdk

p (u) 〈v, w〉 ,

so that HomR[Σp,Σιp]

(
D ⊗ E,R

(
k̃
))
⊂ HomR[K�p ] (D ⊗ E,R (k)).

Remark 2.8. Suppose now that D ⊂ D̃ and E ⊂ Ẽ, where D̃ and Ẽ are B×p -modules, the above in-

clusions are Σp and, respectively, Σιp-equivariant and that Ẽ has central character κẼ = κ̃E extending

κE . If 〈·, ·〉 ∈ HomO[K�p ] (D ⊗ E,R (k)) extends to 〈·, ·〉∼ ∈ HomO[B×p ]

(
D̃ ⊗ Ẽ, R

(
k̃
))

then 〈·, ·〉 ∈

HomO[Σp,Σιp]

(
D ⊗ E,R

(
k̃
))

:

〈vσ,w〉 =
〈
vσ,wσ−1σ

〉∼
= nrdk̃

p (σ)
〈
v, wσ−1

〉∼
= nrdk̃−κ̃E

p (σ) 〈v, wσι〉 .

In the following proposition, we suppose that f ∈ Mp

(
B×f , D, ω0,p,D

)K1
and g ∈ Mp

(
B×f , E, ω0,p,E

)K2

(and make a similar assumption for classical, i.e. non p-adic, modular forms in the M ’s spaces). Finally, we
assume that

〈−,−〉 ∈ HomR[Σp,Σιp]

(
D ⊗ E,R

(
k̃
))
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(but for classical modular forms, we suppose 〈−,−〉 ∈ HomR[B×]

(
D ⊗R E,R

(
k̃
))

where k̃ : Q× → R×

and does not require E to have central character κE : Q× → R×). We write Tπ := K1πK2, Tπι := K2π
ιK1

and Tπ−1 := K2π
−1K1.

Proposition 2.9. We have the following formulas, in the p-adic case:

µ (K2)
−1 〈f | Tπ, g〉 = Nrdk̃

f (π)p nrd−κ̃Ep (πp) nrd
−ω0,p,E

f (π)µ (K1)
−1 〈f, g | Tπι〉 .

For classical modular forms, µ (K2)
−1 〈f | Tπ, g〉 = Nrdk̃

f (π)µ (K1)
−1 〈f, g | Tπ−1〉 and, whenever E has

central character κE, µ (K2)
−1 〈f | Tπ, g〉 = Nrdk̃

f (π) nrd−κEf (π)µ (K1)
−1 〈f, g | Tπι〉.

Proof. Note that Ki always contains a decomposable open and compact subgroup K ′i and, because π ∈ B×f ,

we see that πl ∈ K ′i,l ⊂ Ki for all but finitely may l’s (the inclusion viewing B×l ⊂ B
×
f as the l-component of

B×f ). It follows that we may assume that π is concentrated at a finite number of components; then, we leave

to the reader to check that we may assume that |ΓKi (x)| = 1 for all x ∈ B×f and i = 1, 2. Having made this
reduction, we compute, for p-adic modular forms,

µ (K2)
−1 〈f | K1πK2, g〉 =

∑
x∈K2\B×f /B×

〈(f | K1πK2) (x) , g (x)〉
Nrdk

p (x)

=
∑

u∈(K2∩π−1K1π)\K2,x∈K2\B×f /B×
〈f (πux)πpup, g (x)〉

Nrdk
p (x)

=
∑

u∈(K2∩π−1K1π)\K2,x∈K2\B×f /B×
〈f (πux)πpup, g (ux)up〉

Nrdk
p (ux) nrdk

p (u)

=
∑

u∈(K2∩π−1K1π)\K2,x∈K2\B×f /B×
〈f (πux)πp, g (ux)〉

Nrdk
p (ux)

=
∑

y∈(K2∩π−1K1π)\B×f /B×
〈f (πy)πp, g (y)〉

Nrdk
p (y)

.

Here we have employed (9) in the second equality, the K2-invariance of g and Nrdk
p in the third equality and

the K�p -equivariance of 〈−,−〉 in the fourth equality. Letting g, f , K2, K1 and πι play the roles of f , g, K1,
K2 and π respectively, we also see that

µ (K1)
−1 〈f, g | K2π

ιK1〉 =
∑

z∈(K1∩π−ιK2πι)\B×f /B×

〈
f (z) , g (πιz)πιp

〉
Nrdk

p (z)
.

Note, however, that y 7→ πy induces a well defined map H\B×f /B× → πHπ−1\B×f /B× for any subgroup H
and we have πιHπ−ι = π−1Hπ. Taking H = K2 ∩ π−1K1π we see that πHπ−1 = K1 ∩ π−ιK2π

ι. Making
the change of variables z = πy, we have

µ (K1)
−1 〈f, g | K2π

ιK1〉 =
∑

y∈(K2∩π−1K1π)\B×f /B×

〈
f (πy) , g (πιπy)πιp

〉
Nrdk

p (πy)

= nrdκ̃E−k̃p (πp) Nrd−kp (π)
∑

y∈(K2∩π−1K1π)\B×f /B×
〈f (πy)πp, g (πιπy)〉

Nrdk
p (y)

.

Here we have used
〈
v, wπιp

〉
= nrdκ̃E−k̃p (πp) 〈vπp, w〉. We now remark that πιπ = nrd (π) ∈ Zf , so that

g (πιπy) = nrd
ω0,p,E

f (π) g (y). It follows that

µ (K1)
−1 〈f, g | K2π

ιK1〉 = nrdκ̃E−k̃p (πp) Nrd−kp (π) nrd
ω0,p,E

f (π)µ (K2)
−1 〈f | K1πK2, g〉 .

The relation Nrdκp (x) =
(

Nrdf (x)p
nrdp(xp)

)κ
gives the claim:

nrdκ̃E−k̃p (πp) Nrd−kp (π) = nrdκ̃E−k̃p (πp)
Nrd−kf (π)p

nrd−kp (πp)
= nrdκ̃Ep (πp) Nrd−k̃f (π)p .
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For modular forms one finds, by a similar computation,

µ (K2)
−1 〈f | K1πK2, g〉K2

=
∑

y∈(K2∩π−1K1π)\B×f /B×
〈f (πy) , g (y)〉

Nrdk
f (y)

,

µ (K1)
−1 〈

f, g | K2π
−1K1

〉
K1

=
∑

z∈(K1∩πK2π−1)\B×f /B×
〈f (z) , g (πz)〉

Nrdk
f (z)

.

The first equality in this case follows and the second, which can also be proved by a similar computation as
above, is actually a consequence of the first in this setting, since one checks g | K2π

−1K1 = nrd−κEf (π) · g |
K2π

ιK1 (because nrd (π) ∈ Zf = ZB×f
). �

3. The special value formula and its p-adic avatar

We are now going to recall the special value formula proved in [22], specialized to the triple product case,
which can be regarded as a vector valued version of Ichino’s formula [31] and a generalization of [7].

Let E/Q be a Galois splitting field for B and fix B/E 'M2/E inducing B×/E ' GL2/E . If k ∈ N, we let

Pk/E be the left GL2/E-representation on two variables polynomials of degree k, the action being defined by
the rule (gP ) (X,Y ) = P ((X,Y ) g). We write Vk for the dual right representation. If k := (k1, ..., kr) ∈ Nr,
we may identify Pk1/E ⊗ ...⊗Pkr/E with the space of 2r-variable polynomials Pk/E which are homogeneous
of degree ki in the i-th couple of variables Wi := (Xi, Yi). Then Vk1/E ⊗ ... ⊗Vkr/E is identified with the

dual Vk/E of Pk/E and any P ∈ Pk/E (−r)GL2/E , i.e. such that gP = det (g)
r
P , induces

ΛP ∈ HomGL2/E

(
Vk/E ,1/E (r)

)
by the rule ΛP (l) := l (P ). Note also that, if P 6= 0 then there is l such that l (P ) = 1 and we see that

ΛP 6= 0. Setting 0 6= δk (X1, Y1, X2, Y2) :=

∣∣∣∣ X1 Y1

X2 Y2

∣∣∣∣k, we have δ1 (W1g,W2g) = det (g) δ1 (W1,W2), from

which it follows that δk ∈ Pk,k/E and gδk = det (g)
k
δk. We deduce that 〈−,−〉k/E := Λδk 6= 0 satisfies the

above requirement and, hence, defines

(12) 〈−,−〉k/E ∈ HomGL2/E

(
Vk/E ⊗Vk/E ,1/E (k)

)
;

then the irreducibility of the GL2/E representation Vk/E implies that this non-zero pairing is perfect and

symmetric. Next, if k := (k1, k2, k3) ∈ N3, we define

〈−,−〉k/E := 〈−,−〉k1/E
⊗ 〈−,−〉k2/E

⊗ 〈−,−〉k3/E
∈ HomGL3

2/E

(
Vk/E ⊗Vk/E ,1/E (k)

)
.

We remark that, viewing a left representation as a right representation by means of the inversion we have
Pk/E = V∨k/E (resp. Pk/E = V∨k/E) and, hence, 〈−,−〉k/E (resp. 〈−,−〉k/E) induces Pk/E = V∨k/E '
Vk/E(−k) (resp. Pk/E = V∨k/E ' Vk/E(−k∗)), which in turn induces

〈−,−〉k/E ∈ HomGL2/E

(
Pk/E ⊗Pk/E ,1/E (−k)

)
and 〈−,−〉k/E ∈ HomGL3

2/E

(
Pk/E ⊗Pk/E ,1/E (−k)

)
(and the latter is the tensor product of the former pairings).

If k := (k1, k2, k3) ∈ N3, we define the quantities k∗ := k1+k2+k3

2 , k∗1 := −k1+k2+k3

2 , k∗2 := k1−k2+k3

2 and

k∗3 := k1+k2−k3

2 . With a slight abuse of notation, we write Pk/E and Vk/E to denote the external tensor

product, which is a representation of GL3
2/E . When k is balanced, we can also define

Λk/E ∈ HomGL2/E

(
Vk/E ,1/E (k∗)

)
as follows. The balanced condition precisely means that k∗i ∈ N for i = 1, 2, 3, so that we can consider

(13) 0 6= ∆k/E := δk
∗
1 (W2,W3) δk

∗
2 (W1,W3) δk

∗
3 (W1,W2) ∈ Pk/E .

We have g∆k/E = det (g)
k∗

∆k/E . Hence ∆k/E ∈ Pk/E (−k∗)GL2/E and we may set Λk/E := Λ∆k/E
6= 0.

The following result is an application of the Clebsch-Gordan decomposition that we leave to the reader.

Lemma 3.1. Suppose that 2k∗ = k1 + k2 + k3 ∈ 2N and k is balanced.

(1) There is a representation Vk of B× (with the diagonal action) such that E ⊗ Vk ' Vk/E via

B×/E ' GL2/E.
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(2) We have, setting B×1 := ker (nrd),

dim
(
HomB×1

(
Vk,1

))
= dim

(
HomSL2/E

(
Vk/E ,1/E

))
= 1.

For i = 1, 2, 3, let ωi be an unitary Hecke character of the form ωi = ωf,i⊗sgn (−)
ki and set ω0,i := ωf,iN

ki
f .

Assuming that ω1ω2ω3 = 1, we see that

(14) k∗ ∈ N and N
2k∗

f = ω1,0ω2,0ω3,0.

It follows from an adelic version of the Peter-Weyl Theorem (see [22, Proposition 6.1]) that, if πi = πi,f⊗Vu
ki,C

is an irreducible unitary automorphic form with central character ωi (and Vu
ki,C the unitary twist of Vki,C),

the rule fi (Λ⊗ ϕ) (x) := Nrd
−ki/2
f (xf) Nrdk/2∞ (x∞) Λ

(
ϕ (xf )x−1

∞
)

defines a canonical B× (A)-equivariant
identification:

(15) fi : V∨,uki,C ⊗C M
(
B×f ,Vki,C, ω0,i

) [
Nrd

−ki/2
f πi,f

]
' A

(
B× (A) , ωi

)
[πi] ,

where (−) [θ] means taking the θ-component and A (B× (A) , ωi) is the space of K-finite automorphic forms.
We remark the we could have considered automorphic forms for the algebraic group B×3 and, with Π :=
π1 ⊗ π2 ⊗ π3, so that Π = Πf ⊗Vu

k,C, we have the canonical B× (A)-equivariant identification:

(16) f : V∨,uk,C ⊗C M
(
B×3

f ,Vk,C, ω0

) [
Nrd

−k/2
f Πf

]
' A

(
B×3 (A) , ω

)
[Π] ,

where ω = (ω1, ω2, ω3), Nrd
−k/2
f :=

(
Nrd

−k1/2
f ,Nrd

−k2/2
f ,Nrd

−k3/2
f

)
, Nrdk/2∞ and N

k
f = (Nk1

f ,N
k2

f ,N
k3

f ) are

defined in a similar way, ω0 := ωfN
k
f and f (Λ⊗ ϕ) (x) := Nrd

−k/2
f (xf) Nrdk/2∞ (x∞) Λ

(
ϕ (xf )x−1

∞
)
.

3.1. Periods. From now on, we will need to fix an embedding E ⊂ C, which allows us to regard Vki,E-
valued (resp. Vk,E-valued) modular forms as Vki,C-valued (resp. Vk,C-valued) and suppose that E is large
enough to contain the values of the characters ωi,0. Let us remark that we have a morphism

(17) M
(
B×f ,Vki,E , ω0,i

)
−→M

(
B×f ,Vki,E ,N

2ki
f ω−1

0,i

)
defined by the rule ϕ 7→ ϕ̌, where ϕ̌(x) := nrd

−ωf,i

f (x)ϕ(x) = Nrdkif (x)nrd
−ω0,i

f (x)ϕ(x) with our usual

shorthand nrd−χf := χ−1 ◦ nrdf (the equality because ωi,f = ω0N−kif ). Indeed, Remark 2.1 applies as

follows. Since ωi is a Hecke character, we have nrd
−ωf,i

f|B× = nrd
ωi,∞
∞|B× and we see that

(
nrd
−ωf,i

f ,nrdωi,∞∞

)
∈

X
(
B×,nrd

−ωf,i

f|ZB× (Af )

)
. Finally, because B is definite, nrd∞(B×(R)) ⊂ R×+, so that nrdω∞,i∞ = 1 (because

ω∞,i = sgn(−)ki), and nrd
−ωf,i

f|ZB× (Af )
= ω−2

f,i , so that nrd
−ωf,i

f|ZB× (Af )
ω0,i = N2ki

f ω−1
0,i : we have checked that

(18)
(

nrd
−ωf,i

f , 1
)
∈ X

(
B×, ω−2

f,i

)
.

A similar twist works with the modular forms on B×3, with nrd
−ωf,i

f replaced by nrd
−ωf

f :=
(
nrd−ωf,1 ,nrd−ωf,2 ,nrd−ωf,3

)
and N2ki

f ω−1
0,i replaced by N

2k
f ω−1

0 , where N
2k
f = (N2k1

f ,N2k2

f ,N2k3

f ). Then, of course, ϕ 7→ ϕ̌ commutes with
the tensor product.

It follows that we can consider

(19) (−,−)ki : M
(
B×f ,Vki/E , ω0,i

)
⊗C M

(
B×f ,Vki/E , ω0,i

)
−→ E

and
(−,−)k : M

(
B×3

f ,Vk,/E , ω0

)
⊗C M

(
B×3

f ,Vk,E , ω0

)
−→ E

defined as follows. Let us write again

〈−,−〉ki/E : M
(
B×f ,Vki/E , ω0,i

)
⊗E M

(
B×f ,Vki/E ,N

2ki
f ω−1

0,i

)
−→ E

for the morphism (11) induced by 〈−,−〉ki/E (see (12)) on modular forms (defined because ω0,iN
2ki
f ω−1

0,i =

N2ki
f ). Then we define

(ϕ1, ϕ2)ki := 〈ϕ1, ϕ̌2〉ki/E = µ (K)
∑
x∈K\B×/B×

〈ϕ1(x), ϕ2(x)〉ki/E
|ΓK (x)|nrd

ω0,i

f (x)
,
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if ϕ1 and ϕ̌2 are K-invariant. Working in a similar way with the algebraic group B×3 we get (−,−)k.

Alternatively, the right hand side of the equality

(−,−)k = (−,−)k1
⊗E (−,−)k2

⊗E (−,−)k3

gives an alternative definition.

Lemma 3.2. We have that (−,−)k is a perfect pairing.

Proof. Let us first remark that, from the definition of the adelic Peter-Weyl theorem [22, Proposition 6.1],

the fact that ϕ̌(x) := nrd
−ωf,i

f (x)ϕ(x) and the fact that nrd−ω∞,i∞ = 1 there is a commutative diagram

V∨,uki,C ⊗C M
(
B×f ,Vki,C, ω0,i

) [
Nrd

−ki/2
f πi,f

]
−→ V∨,uki,C ⊗C M

(
B×f ,Vki,C,N

2ki
f ω−1

0,i

) [
Nrd

−ki/2
f π∨i,f

]
fi ↓ ↓ fi

A (B× (A) , ωi) [πi] −→ A (B× (A) , ωi) [π∨i ]

if we define the lower arrow via ψ 7→ ψ̌, where ψ̌(x) := nrd−ωiA (x)ψ(x). There is also a similar commutative
diagram for automorphic forms on B×3, which is the tensor product of the above commutative diagrams.
Then, arguing as in the proof of [22, Proposition 6.1 (2)] (based on the Schur orthogonality relations, but
for linear pairings, to which [22, Lemma 3.7] and (7) are applied), we see that〈

ψ1, ψ̌2

〉
L2

:=

∫
[B×3(A)]Z

B×3

ψ1(x)ψ̌2(x)µ[B×3(A)]Z
B×3

(x) =
〈∆1,∆2〉k

dk
〈ϕ1, ϕ̌2〉k =

〈∆1,∆2〉k
dk

(ϕ1, ϕ2)k

if ψh = f(∆h ⊗C ϕh) is in A
(
B×3 (A) , ω

)
[Π] and

[
B×3 (A)

]
ZB×3

= ZB×3(A)\B×3(A)/B×3(Q) with the

product measure. Here dk is the formal degree of Vk,C (which only depends on the Haar measure, once
〈−,−〉k on Pk/E = V∨k/E is obtained from 〈−,−〉k on Vk/E tautologically as above). Recalling that the

formal degree of a representation of B×3(R) equals the dimension times the inverse of the total measure
m3

ZB\B×,∞ of ZB×3(R)\B×3(R) (by compactness of ZB×3(R)\B×3(R)), we find

(20)
〈
ψ1, ψ̌2

〉
L2 =

m3
ZB\B×,∞ 〈∆1,∆2〉k

(k1 + 1) (k2 + 1) (k3 + 1)
(ϕ1, ϕ2)k .

Because the left hand side is a perfect pairing, our claim follows. (It is not difficult to see that 〈−,−〉k/E
on modular forms is perfect because it is induced by the perfect pairing 〈−,−〉k/E on the finite dimensional

vector spaces Vk; next, noticing that ϕ 7→ ϕ̌ is a linear bijection, gives a direct proof of the perfectness of
(−,−)k. However, we will need (20) below). �

Fix an identification B
(
ADisc(B)

f

)
' M2

(
ADisc(B)

f

)
and, for an integer N such that (N,Disc (B)) = 1,

write K
Disc(B)
0 (N) ⊂ B×

(
ADisc(B)

f

)
(resp. K

Disc(B)
1 (N) ⊂ K

Disc(B)
0 (N)) for the subgroup which corre-

sponds to matrices with integral coefficients having lower left entry c ≡ 0 mod (N) (resp. c ≡ 0 mod (N)
and upper left entry a = 1). Setting ODisc(B) :=

∏
l|Disc(B)O

×
Bv

we can define

K0 (N) := K
Disc(B)
0 (N)×O×Disc(B) and K1 (N) := K

Disc(B)
1 (N)×O×Disc(B).

Assuming that µϕ(N) ⊂ E, we can decompose

M
(
B×f ,Vk,E

)K1(N)
=
⊕

ε:( Z
NZ )

×→O×M
(
B×f ,Vk,E

)K1(N)
(ε) ,

where M (ε) is the submodule of elements x ∈ M such that xu = ε (u)x if we define ε (u) := ε (au) for au
the upper left entry of u ∈ K0 (N). We also have

M
(
B×f ,Vk,E

)K1(N)
(ε) = M

(
B×f ,Vk,E , ω

ε,k
0

)K0(N)

.
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Example 3.3. Suppose that ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 and that

ϕi ∈M
(
B×f ,Vki,E

)K1(Ni)
(εi) = M

(
B×f ,Vki,E , ω

εi,ki
0

)K0(Ni)

.

Then we see that ϕ 7→ ϕ̌ is a map

M
(
B×f ,Vki,E , ω

εi,ki
0

)K0(Ni)

−→M
(
B×f ,Vki,E , ω

ε−1
i ,ki

0

)K0(Ni)

.

Indeed, ωεi,ki0 ω
ε−1
i ,ki

0 = N2ki
f , so that we have

〈−,−〉ki/E : M
(
B×f ,Vki,E , ω

ε,ki
0

)
⊗E M

(
B×f ,Vki,E , ω

ε−1
i ,ki

0

)
−→ E

and (ϕi, ψi)ki =
〈
ϕi, ψ̌i

〉
ki/E

by definition. Write ω̂Ni ∈ B×f for the matrix concentrated at the primes l

such that lel ‖ Ni, where we have (ω̂Ni)l = ωlel :=

(
0 −1
lel 0

)
and write WNi for the Hecke operator it

induces. If ϕ[i ∈M
(
B×f ,Vk,E , ω

εi,k
0

)K0(Ni)

is a newvector, then setting ϕ[[i := ϕ[i |WNi it is easily checked

that ˇ(ϕ[[i ) is a newvector in the dual representation, hence a scalar multiple of ϕ[i and then the proof of

Lemma 3.2 shows that
(
ϕ[i , ϕ

[[
i

)
ki
6= 0; in particular, setting ϕ[ := ϕ[1 ⊗ ϕ[2 ⊗ ϕ[3 and ϕ[[ := ϕ[[1 ⊗ ϕ[[2 ⊗ ϕ[[3

we see that

(21) Ω
(
ϕ[
)

:=
(
ϕ[, ϕ[[

)
k
6= 0.

3.2. The special value formula. It follows from (14), that we can consider the quantity tk := J
(
Λk/E

)
defined by (11):

tk : M
(
B×3

f ,Vk,E , ω0

)
= M

(
B×f ,Vk1,E , ω0,1

)
⊗E M

(
B×f ,Vk2,E , ω0,2

)
⊗E M

(
B×f ,Vk3,E , ω0,3

)
→ E.

The choice of Λk/E ∈ V∨k,E (and E ∈ C) yields, via (16), the embedding

fΛk/E : M
(
B×3

f ,Vk,C, ω0

) [
Nrd

−k/2
f Πf

]
↪→ A

(
B×3 (A) , ω

)
[Π]

for every irreducible automorphic representation Π of B×3. Let us write Π′ for the automorphic representa-
tion of GL3

2 which corresponds to Π under the Jacquet-Langlands correspondence.
Before stating our next result, we need to recall the definitions of some relevant quantities. Let 〈−,−〉L2

be the pairing defined before (20) and fix non-zero B×3(Qv)-invariant pairings 〈−,−〉v between Πv and its
dual representation. The irreducibility of Πv implies that there is a non-zero constant C such that

(22)
〈
ψ[, ψ[∨

〉
L2

= C
∏

v

〈
ψ[v, ψ

[∨
v

〉
v

.

Then one defines the bilinear form on Πv ×Π∨v via the formula

(23) Iv(ψv ⊗ ψ
∨
v ) :=

Lv (1,Π′v,Ad)

ζ2
Qv (2)Lv (1/2,Π′v)

∫
ZB(Qv)\B×(Qv)

〈
ψvΠv(x)−1, ψ∨v

〉
v
µZB\B×,v(x),

depending on the choice of the local measure, and set

(24) C
ψ[v,ψ

[∨
v

v (ψv, ψ
∨
v ) :=

Iv(ψv ⊗ ψ
∨
v )〈

ψ[v, ψ
[∨
v

〉
v

.

Note also that (16) shows that

fΛk/E : CΛk/E ⊗M
(
B×3

f ,Vk,C, ω0

) [
Nrd

−k/2
f Πf

]
∼→ Πf .

Suppose that ϕ, ϕ[ and ϕ[[ in M
(
B×3

f ,Vk,C, ω0

) [
Nrd

−k/2
f Πf

]
corresponds to pure tensors ψ := fΛk/E (ϕ) =

⊗vψv, ψ
[ := fΛk/E

(
ϕ[
)

= ⊗vψ[v and ψ[[ := fΛk/E

(
ϕ[[
)

= ⊗vψ[[v . Setting ψ[∨ :=
ˇ

(ψ[[) (where ψ[[ 7→ ˇ
(ψ[[)

is the operation in the lower horizontal row in the proof of Lemma 3.2), we define

(25) Iv(ϕ) = Iv(ψv) := Iv(ψv, ψ̌v) and Cϕ
[,ϕ[[

v (ϕ) = Cϕ
[,ϕ[[

v (ψv) := C
ψ[v,ψ

[∨
v

v (ψv, ψ̌v).
18



(Note that
ˇ

(ψ[[) is again a pure tensor, being the product of ψ[[ by a pure tensor).
The following result is deduced in [22, Theorem 8.2] from [31] or [24] and the Jacquet conjecture proved

in [24].

Theorem 3.4. Suppose that k is balanced and that ωi = ωi,f ⊗ sgn (−)
ki are unitary Hecke characters such

that ω1ω2ω3 = 1, implying k∗ ∈ N. Consider the quantity

tk (ϕ) = µ (Kϕ)
∑

x∈Kϕ\B×f /B×

Λk (ϕ1 (x)⊗ ϕ2 (x)⊗ ϕ3 (x))∣∣ΓKϕ (x)
∣∣Nrd

k∗

f (x)
,

where Kϕ ∈ K is such that Kϕ ⊂ Kϕ1
∩Kϕ2

∩Kϕ3
and

ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 ∈
⊗3

i=1M
(
B×f ,Vki,C, ωi,0

)Kϕi = M
(
B×3

f ,Vk,E , ω0

)Kϕ1
×Kϕ2

×Kϕ3 .

(1) We have the equality

(26) t2k (ϕ) =
C

2932

ζ2
Q (2)L (1/2,Π′)

L (1,Π′,Ad)

∏
v
Iv(ϕ) =

(ϕ[, ϕ[[)k
2L (1,Π′,Ad)

L (1/2,Π′)
∏

v 6=∞
Cϕ

[,ϕ[[

v (ϕ)

as quadratic forms on

fΛk/E : M
(
B×3

f ,Vk,E , ω0

) [
Nrd

−k/2
f Πf

]
↪→ A

(
B×3 (A) , ω

)
[Π] ,

where C 6= 0 is the constant defined in (22) below, Iv(ϕ) and Cϕ
[,ϕ[[

v (ϕ) are defined in (25) and the

second equality depends on the choice of vectors ϕ[, ϕ[[ ∈ Nrd
k/2
f Πf ⊂ M

(
B×3

f ,Vk,E , ω0

)
such that

(ϕ[, ϕ[[)k 6= 0 (see Lemma 3.2 for their existence and (21) for a specific choice).
(2) Suppose that B = BΠ′ is the quaternion algebra predicted by [34]. Then there exists ϕ whose as-

sociated local constants Iv are all non-zero and, hence, L (Π′, 1/2) 6= 0 if and only if tk 6= 0 on

M
(
B×3

f ,Vk,E , ω0

) [
Nrd

−k/2
f Πf

]
.

Proof. (1) Let us explain how to deduce the result from [22, Theorem 8.2] in the form we need here. There,
it is taken the normalization from [31, Theorem 1.1], which requires [31, (1.3) and (1.4)]. We will explicitly
fix our local measures in §3.2.1 below in such a way that [31, (1.4)] is in force and (7) and the conditions
before it are satisfied (so that [22, Theorem 7.2] is in force).

If ϕ (resp. ϕ∨ in the dual representation) correspond to a pure tensor ψ := fΛk/E (ϕ) = ⊗vψv (resp.

ψ∨ := fΛk/E (ϕ∨) = ⊗vψ∨v ), then [31, Theorem 1.1] (but where we allow C to be arbitrary, i.e. [31, (1.4)] is

in force but [31, (1.3)] may be not) gives, thanks to [22, Theorem 7.2 and §8.1]:

tk (ϕ) tk (ϕ∨) =
C

23m2
ZB\B×,∞

ζ2
Q (2)L (1/2,Π′)

L (1,Π′,Ad)

∏
v
Iv(ψv ⊗ ψ

∨
v )

=

〈
ψ[, ψ[∨

〉
L2

23m2
ZB\B×,∞

ζ2
Q (2)L (1/2,Π′)

L (1,Π′,Ad)

∏
v
C
ψ[v,ψ

[∨
v

v (ψv, ψ
∨
v ),(27)

where the latter equality holds when
〈
ψ[, ψ[∨

〉
L2
6= 0. If we specialize to the case where ϕ∨ := ϕ̌, then we

see that tk (ϕ) = tk (ϕ̌) because we are twisting by nrd
−ωf

f , which restricts on the diagonally embedded center

of B× to 1 and tk only depend on its diagonal restriction. Define ψ[ := fΛk/E

(
ϕ[
)
, ψ[[ := fΛk/E

(
ϕ[[
)

and

ψ[∨ :=
ˇ

(ψ[[). The first formula is obtained from the definition (25), once we recall that ψ̌ = fΛk/E (ϕ̌) = ⊗vψ̌v
(from the commutative diagram for automorphic forms on B×3 analogous to those displayed in the proof of
Lemma 3.2) and we will fix the measures in such a way that mZB\B×,∞ = 24.

It follows from (16) and the definition of fΛk/E that we have ψ∞ = ψ[∞ = ψ[[∞ = Λk = ∆k (via V∨,uk,C = Puk,C

provided by the tautological evaluation pairing) and ψ̌∞ =
ˇ

(ψ[[)∞ = ψ∞ because there is no twist at infinity

in the definition of ψ̌ (as remarked in the proof of Lemma 3.2, nrd−ω∞,i∞ = 1). Then, the invariance property
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of ∆k under the (unitarized) diagonal action implies that the integral that appears in (24) for v = ∞ is

mZB\B×,∞
〈
∆k,∆k

〉
∞. Hence we find

Cϕ
[,ϕ[[

∞ (ψ∞) = mZB\B×,∞
L∞ (1,Π′v,Ad)

ζ2
R (2)L∞ (1/2,Π′v)

.

Also, (20) specializes to 〈
ψ[, ψ[∨

〉
L2

=
m3

ZB\B×,∞
〈
∆k,∆k

〉
k

(k1 + 1) (k2 + 1) (k3 + 1)

(
ϕ[, ϕ[[

)
k

.

Inserting these last two equations in (27) gives the formula:

t2k (ϕ) = γ∞,kζ
2
Q,f (2)

(ϕ[, ϕ[[)k
L (1,Π′,Ad)

L (1/2,Π′)
∏

v 6=∞
Cϕ

[,ϕ[[

v (ψv)

where

γ∞,k =
1

23m2
ZB\B×,∞

〈
ψ, ψ̌

〉
L2

(ϕ[, ϕ[[)k
Cϕ

[,ϕ[[

∞ (ψ∞)ζ2
R (2) =

m2
ZB\B×,∞

23

〈
∆k,∆k

〉
k
L∞ (1,Π′v,Ad)

(k1 + 1) (k2 + 1) (k3 + 1)L∞ (1/2,Π′v)
.

The claim is proved, once we fix local measures which in turn fix the local constants Cϕ
[

v (−) in such a

way that mZB\B×,∞ = 24, make explicit the ratio
〈∆∞,∆∞〉kL∞(1,Π′v,Ad)

(k1+1)(k2+1)(k3+1)L∞(1/2,Π′v) = 1
4π4 and insert the value

ζQ,f (2) = π2

6 : this is detailed in 3.2.1 below.
(2) This is proved in [22, Theorem 8.1 (3)], as a consequence of the Jacquet’s conjecture proved in [24],

using [22, Theorem 8.1 (2)] and (27). �

Remark 3.5. If one wants to make (26) explicit, the first equality is poorly useful because Iv depends on the

choice of 〈−,−〉v and, hence, on the fixed local model. On the other hand, Cϕ
[,ϕ[[

v is much more canonical:

in fact, we see from (23) and (24) that C
ψ[v,ψ

[∨
v

v (ψv, ψ
∨
v ) does not depend on the choice of the local pairing

〈−,−〉v; also, if ψv and ψ∨v linearly depends on ψ[v and, respectively, ψ[∨v , we see that C
ψ[v,ψ

[∨
v

v (ψv, ψ
∨
v ) does

not depend on the line spanned by either ψv and ψ[v or ψ∨v and ψ[∨v . This is very convenient in order to
“transport” calculations from abstract local models.

Regarding t2k as the algebraic part of L (1/2,Π) (see [22] for a justification), it follows from Theorem 3.4
that the relevant part to be interpolated is tk. Applying Proposition 2.7, we place tk in a p-adic setting,

making it correspond to tk := Jp
(
Λk/Qp

)
(28) tk (ϕ1, ϕ2, ϕ3) = µ (Kϕ)

∑
x∈Kϕ\B×f /B×

Λk/Qp (ϕ1 (x)⊗ ϕ2 (x)⊗ ϕ3 (x))∣∣ΓKϕ (x)
∣∣Nrdk

∗

p (x)
.

We have already interpolated the association k 7→ Nrdk
∗

p (x) in §2.1 and we will now proceed to interpolate
the association k 7→ Λk/Qp . To this end, we first review and prove some facts on distribution modules, by
means of which p-adic families of modular forms are defined.

3.2.1. Choice of measures and further computations. Let us fix local measures in a such a way that the
condition µB×f

(K) ∈ Q for some (and hence every) open and compact subgroup K ⊂ B×f and the integration

formula (7) are satisfied: at the same time this fix the constant mZB\B×,∞, that we have to determine, and
show that [31, (1.4)] is in force. To this end, we first record the following lemma, whose proof is easy
and left to the reader. Suppose that Γ ⊂ G = G0 × G∞ is a discrete subgroup of a product of Hausdorff
and locally compact topological groups G and that composition with the projection makes Γ ⊂ G → G0 a
discrete subgroup such that G0/Γ is compact. Let us fix Haar measures µG (resp. µG0

) on G (resp. G0)
and let µG/Γ (resp. µG0/Γ) be the G-invariant (resp. G0-invariant) quotient measures on G/Γ (resp. G0/Γ),
normalized as usual. Let Z = Z0 × Z∞ ⊂ G0 × G∞ = G be a fixed closed subgroup in the center. Using
the compactness of G0/Γ, it is not difficult to see that there is a (unique up to non-zero scalar) non-zero left
G0-invariant Radon measure µZ0\G0/Γ on Z0\G0/Γ with the property that µZ0\G0/Γ = µG0/Γ|Cc(Z0\G0/Γ) if
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Cc (Z0\G0/Γ) ⊂ Cc (G0/Γ) by means of the pull-back induced by π : G0/Γ→ Z\G0/Γ. On the other hand,
we set µZ\G/Γ := µG

Z /
ΓZ
Z

, where once again the subquotient measures on the right hand side are obtained

from µG with the usual normalizations.
We normalize the Haar measure µG∞ on G∞ so that µG = µG0

× µG∞ is satisfied:

∫
G

f (g) dµG (g) =
∫
G0

( ∫
G∞

f (g0g∞) dµG∞ (g∞)

)
dµG0

(g0) .

Assuming that Z∞\G∞ is compact, we get the formula∫
Z\G/Γ f (x) dµZ\G/Γ (x) = c

∫
Z0\G0/Γ

(∫
Z∞\G∞ f (x0x∞) dµZ∞/G∞ (x∞)

)
dµZ0\G0/Γ (x0)

for some c ∈ R×+.

Lemma 3.6. Suppose that G0 is locally profinite and let K = K (G0) be the set of its open and compact
subgroups.

(1) We have c = 1.
(2) µZ\G/Γ (Z\G/Γ) = µZ0\G0/Γ (Z0\G0/Γ)µZ∞/G∞ (Z∞/G∞).

(3) If µG0
(K) ∈ Q for some (and hence every) K ∈ K, we have µZ0\G0/Γ (Z0\G0/Γ) ∈ Q.

Let us apply this lemma with Γ = B×, G0 = B×f and G∞ = B×(R). Let us write D for the discriminant

of our quaternion algebras and fix an identification B
(
ADf
)
' M2

(
ADf
)
. Fix local measures µB×,l (resp.

µZB\B×,l) of B×(Ql) (resp. ZB(Ql)\B×(Ql)) at the finite primes l as in [42, 2.2]: if l - D (resp. l | D),

µB×,l is the Haar measure such that µB×,l (GL2 (Zl)) = 1 (resp. µB×,l

(
O×Bl

)
= (p − 1)−1, where OBl is a

maximal order in Bl) and µZB\B×,l the quotient measure, normalized in the usual way. Then µB×f
satisfies

our first requirement. Next, we take µB×(A) on B× (A) in such a way that the induced quotient measure

µZB(A)\B×(A) on ZB (A) \B× (A) is the Tamagawa measure, so that [31, (1.4)] is in force. Finally, we fix

µB×,∞ via the formula µB×(A) = µB×f
× µB×,∞. It follows from Lemma 3.6 (1) that (7) is in force and from

Lemma 3.6 (2) that we have:

µ[B×(A)]ZB

([
B× (A)

]
ZB

)
= mZB\B×,∞µ[B×f ]

ZB

([
B×f
]
ZB

)
.

The left hand side is the Tamagawa number of ZB\B×, which is known to be 2 (see [41, Theorem 3.2.1]).
On the other hand, choosing the local measures at the finite primes l | D in such a way that µB×,l

(
O×Bl

)
= 1,

the total measure of
[
B×f
]
ZB

is known to be 1
12

∏
l|D(l−1) by the Eichler’s mass formula (see [43, Lemma 2.2

and Theorem 3.6, (3.17)], for example, where ζQ,f(−1) = −1/12). We deduce that µ[B×f ]
ZB

([
B×f
]
ZB

)
= 1

12

and, hence,

mZB\B×,∞ = 24.

Next, we recall that we have, setting ΓR(s) := π−s/2Γ(s/2) and ΓC(s) := 2(2π)−sΓ(s),

L∞ (s,Π′,Ad) = π−3ΓC(s+ k1 + 2)ΓC(s+ k2 + 2)ΓC(s+ k3 + 2),

L∞ (s,Π′) = ΓC

(
s+ k∗ +

3

2

)
ΓC

(
s+ k∗1 +

1

2

)
ΓC

(
s+ k∗2 +

1

2

)
ΓC

(
s+ k∗3 +

1

2

)
.

Then we see that

L∞ (1,Π′,Ad)

L∞ (1/2,Π′)
=

1

4π4

Γ(k1 + 2)Γ(k∗ + 2)Γ(k∗ + 2)

Γ(k∗ + 2)Γ(k∗1 + 1)Γ(k∗2 + 1)Γ(k∗3 + 1)
.

We claim that 〈
∆k,∆k

〉
k

=
(k∗ + 1)!k∗1!k∗2!k∗3!

k1!k2!k3!
=

Γ (k∗ + 2) Γ (k∗1 + 1) Γ (k∗2 + 1) Γ (k∗3 + 1)

Γ (k1 + 1) Γ (k2 + 1) Γ (k3 + 1)
,
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from which the equality
〈∆k,∆k〉

k
L∞(1,Π′v,Ad)

(k1+1)(k2+1)(k3+1)L∞(1/2,Π′v) = 1
4π4 follows. The pairing 〈−,−〉ki/E on the polyno-

mials is explicitly given by〈
Xr
i Y

ki−r
i , Xs

i Y
ki−s
i

〉
ki/E

=

{
(−1)

ki−r (ki
r

)−1
if r + s = ki,

0 if r + s 6= ki.

Let us write δ3 : Pk1,k2,k3 → Pk1+1,k2+1,k3 for the multiplication by δ1 (W1,W2) map and let δ∗3 : Pk1+1,k2+1,k3 →
Pk1,k2,k3 be its adjoint with respect to the perfect pairings 〈−,−〉(k1,k2,k3) and 〈−,−〉(k1+1,k2+1,k3) (we

do not write the subscript /E for brevity). Then one checks that δ3 (∆k1,k2,k3
) = ∆k1+1,k2+1,k3

and

δ∗3 (∆k1+1,k2+1,k3
) =

(k∗+2)(k∗3+1)
(k1+1)(k2+1) ∆k1,k2,k3

(note that δ3 and hence δ∗3 are SL2-equivariant, from which

the equality δ∗3 (∆k1+1,k2+1,k3) = λ∆k1,k2,k3 is known a priori taking the SL2-invariants for a scalar fac-
tor λ3). Assuming by induction that we have proved our claim for k = (k1, k2, k3), we find the claim for
(k1 + 1, k2 + 1, k3):

〈∆k1+1,k2+1,k3 ,∆k1+1,k2+1,k3〉k1+1,k2+1,k3
= 〈δ3 (∆k1,k2,k3) ,∆k1+1,k2+1,k3〉k1+1,k2+1,k3

= 〈∆k1,k2,k3
, δ∗3 (∆k1+1,k2+1,k3

)〉k1,k2,k3
=

(k∗ + 2) (k∗3 + 1)

(k1 + 1) (k2 + 1)
〈∆k1,k2,k3

,∆k1,k2,k3
〉k1,k2,k3

=
(k∗ + 2) (k∗3 + 1)

(k1 + 1) (k2 + 1)

(k∗ + 1)!k∗1!k∗2!k∗3!

k1!k2!k3!
=

(k∗ + 2)!k∗1!k∗2! (k∗3 + 1)!

(k1 + 1)! (k2 + 1)!k3!
.

4. Spaces of homogeneous p-adic distribution spaces

4.1. Locally analytic homogeneous distributions. By a p-adic manifold X we always mean a locally
compact and paracompact manifold over a fixed spherically complete non-archimedean p-adic field. For
a Banach algebra O, we let A (X,O) be the space of O-valued locally analytic functions on X and set
D (X,O) := LO (A (X,O) ,O) ⊂ L (A (X,O) ,O), the strong O-dual of A (X,O). If f : X → Y is a
morphism of p-adic manifolds, we have

f∗O : A (Y,O) −→ A (X,O) and fO∗ : D (X,O) −→ D (Y,O) ,

the first being the pull-back of functions f∗O (F ) := F ◦ f and the second operation being the strong O-dual
of the first. We note that

(29) fO∗

(
δOx

)
= δOf(x), for every x ∈ X

if δO· : X → D (X,O) denotes the Dirac distribution map. It is useful to remark that the O-linear span of{
δOx : x ∈ X

}
is dense in D (X,O) (see [21, (52)]): we refer to this fact using the set phrase “by density of

Dirac distributions”. It can be shown that there are topological identifications4

TOD(X) : O⊗̂D (X)
∼→ D (X,O)

and

PO1,O2

D(X1),D(X2) : D (X1,O1) ⊗̂ιD (X2,O2)
∼→ D

(
X1 ×X2,O1⊗̂O2

)
.

They are characterized by the equalities:

(30) TOD(X)

(
1O⊗̂δx

)
= δOx and PO1,O2

D(X1),D(X2)

(
δO1
x1
⊗̂ιδO2

x2

)
= δO1⊗̂O2

(x1,x2) .

We will usually suppress the reference to the Banach algebra when this is the fixed p-adic field.

Suppose from now on that X is endowed with the action of a p-adic Lie group T , meaning that the action
is given by a locally analytic map a : T ×X → X. Then T naturally acts from the right on A (X,O) and

3In order to determine λ, note that

λ
〈
P,∆k1,k2,k3

〉
k1,k2,k3

=
〈
P, δ∗3

(
∆k1+1,k2+1,k3

)〉
k1+1,k2+1,k3

=
〈
δ3P,∆k1+1,k2+1,k3

〉
k1+1,k2+1,k3

.

A good choice is to take P = Y k1
1 ⊗Xk∗3

2 Y
k∗1
2 ⊗Xk3

3 .
4We write V ⊗ιW (resp. V ⊗W ) to denote V ⊗W with the inductive (resp. projective) tensor topology.
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from the left on D (X,O). The left action of T on D (X) can be extended, with respect to δ· : T → D (T ),
to a left action of D (T ) making D (X) a D (T )-module by the convolution product:

(31) D (T )⊗ι D (X)
PD(T ),D(X)−→ D (T ×X)

a∗−→ D (X) .

We note the formula

(32) δt · δx = δtx for t ∈ T and x ∈ X,

which indeed characterizes the multiplication law by density of the Dirac distributions. Also, we remark that
the multiplication map is in general separately continuous, while it is continuous if we assume that T and X
are compact. In particular, one checks that D (T ) becomes an algebra in this way. We write HomA (T,O×)
to denote the group of those group homomorphisms such that their composition with the inclusion O× ⊂ O
belongs to A (T,O). We also write HomL (D (T ) ,O) to denote the space of those morphisms of locally
convex spaces that are morphisms of algebras. Then there is a bijection (see [21, Lemma 7.2])

(33) CO : HomL (D (T ) ,O)
∼→ HomA

(
T,O×

)
, via CO (k) (t) := k (δt) .

We will abuse of notations, when there will be no risk of confusion, and identify these two sets, deserving
the exponential notation to the group homomorphisms and calling the elements of these sets weights.

If k is a weight, we may consider the space of locally analytic homogeneous functions:

Ak (X) = A (X,k) =
{
F ∈ A (X,O) : F (tx) = tkF (x)

}
.

It is indeed a closed O-submodule of A (X,O). Viewing both O and D (X) as D (T )-modules by means of
k and, respectively, the convolution product, we may define

Dk (X) := O⊗̂kD (X) and D (X,k) := LO (Ak (X) ,O) .

We also assume from now on that X is endowed with a right action by a semigroup Σ such that σ : Σ→ Σ
is locally analytic for every σ ∈ Σ, which is compatible with the left T -action in the sense that t(xσ) = (tx)σ
for all t ∈ T , x ∈ X, and σ ∈ Σ. It follows that σ induces a well defined action on Ak (X), Dk (X) and
D (X,k). The relation between the space Dk (X) and D (X,k) is expressed by means of an (O,Σ)-equivariant
morphism of locally convex spaces

(34) Tk
D(X) : Dk (X)→ D (X,k)

which is an isomorphism when X is a trivial (equivalently locally trivial) T -bundle. It is characterized by
the property that

Tk
D(X)

(
1⊗̂kδx

)
= δkx for every x ∈ X,

if δkx is the image of δOx . We refer the reader to [21, Lemma 7.3 and Proposition 7.6] for details.
It follows from (34) that the elements of Dk (X) naturally integrates functions in Ak (X). Furthermore

they are endowed with natural specialization maps, not possessed by the spaces D (X,k), defined as follows.

If we are given ki ∈ HomL (D (T ) ,Oi), we say that k1 specializes via φ to k2, and we write k1
φ→ k2, if

φ ∈ HomL (O1,O2) and k2 = φ ◦ k1. Then we have an induced specialization map

(35) φ∗ : Dk1 (X)→ Dk2 (X) via φ∗
(
α⊗̂k1µ

)
:= φ (α) ⊗̂k2µ.

4.2. Multiplying locally analytic homogeneous distributions. Now suppose that we are given two
p-adic locally compact and paracompact manifolds Xi endowed with analytic actions of Ti for i = 1, 2, so
that T1 × T2 act on X1 ×X2 in the obvious way. Let us be given ki ∈ HomL (D (Ti) ,Oi). We define the
continuous morphism of locally convex spaces

(36) k1 � k2 : D (T1 × T2)
P−1
D(T1),D(T2)→ D (T1) ⊗̂ιD (T2)

k1⊗̂ιk2→ O1⊗̂ιO2
1̂→ O1⊗̂O2.

Exploiting the effect on Dirac distributions and noticing that the multiplications laws are separately contin-
uous by (31), it is not difficult to deduce from the density of Dirac distributions that k1 � k2 is a morphism
of algebras, hence

k1 � k2 ∈ HomL
(
D (T1 × T2) ,O1⊗̂O2

)
.

We assume that Xi is further endowed with a right action by a semigroup Σi having the same properties of
the Σ-action considered above.
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Lemma 4.1. There is a unique morphism of locally convex spaces Pk1,k2

D(X1),D(X2) making the following diagram

commutative, which is
(
O1⊗̂O2,Σ1 × Σ2

)
-equivariant:

(37)

O1⊗̂D (X1) ⊗̂ιO2⊗̂D (X2)
1O1⊗̂O2

⊗̂PD(X1),D(X2)

→ O1⊗̂O2⊗̂D (X1 ×X2)
↓ ↓

Dk1 (X1) ⊗̂ιDk2 (X2)
P

k1,k2
D(X1),D(X2)→ Dk1�k2

(X1 ×X2) .

Proof. Let B be the composition of 1O1⊗̂O2
⊗̂PD(X1),D(X2) with the right vertical morphism. Since we know

that B is continuous and Dk1�k2
(X1 ×X2) is Hausdorff and complete, we first need to show that, for every

αi ∈ Oi, µi ∈ D (Xi) and νi ∈ D (Ti)

B
(
α1k1 (ν1) ⊗̂µ1⊗̂ια2k1 (ν2) ⊗̂µ2

)
= B

(
α1⊗̂ (ν1 · µ1) ⊗̂ια2⊗̂ (ν2 · µ2)

)
.

It turns out that this is equivalent to checking the equalities

(38) PD(T1),D(T2)

(
ν1⊗̂ν2

)
·PD(X1),D(X2)

(
µ1⊗̂µ2

)
= PD(X1),D(X2)

(
(ν1 · µ1) ⊗̂ (ν2 · µ2)

)
in D (X1 ×X2) .

When µi = δxi and νi = δti we have indeed, by (30) and (32)

PD(T1),D(T2)

(
ν1⊗̂ν2

)
·PD(X1),D(X2)

(
µ1⊗̂µ2

)
= δ(t1,t2) · δ(x1,x2) = δ(t1x1,t2x2),

PD(X1),D(X2)

(
(ν1 · µ1) ⊗̂ (ν2 · µ2)

)
= PD(X1),D(X2)

(
δt1x1⊗̂δt2x2

)
= δ(t1x1,t2x2).

We note that both the left and the right hand sides of (38) are linear in the variables µi and νi. Furthermore,
if we fix three of these variables, the two resulting functions are continuous in the remaining variable thanks to
(31) showing that the multiplication laws are separately continuous. Hence the claimed equality (38) follows

from the density of Dirac distributions. The existence and uniqueness of Pk1,k2

D(X1),D(X2) follows and, since

O1⊗̂D (X1) ⊗̂ιO2⊗̂D (X2) → Dk1
(X1) ⊗̂ιDk1

(X2) is surjective and all the arrows other than Pk1,k2

D(X1),D(X2)

in (37) are
(
O1⊗̂O2,Σ1 × Σ2

)
-equivariant (by (30)), implying that Pk1,k2

D(X1),D(X2) is equivariant as well. �

In particular we may define

P
k1,k2

D(X1),D(X2) : Dk1
(X1) ⊗̂ιDk1

(X2)
P

k1,k2
D(X1),D(X2)→ Dk1�k2

(X1 ×X2)
T

k1�k2
D(X1×X2)→ D (X1 ×X2,k1 � k2) .

If µi ∈ Dki (Xi) for i = 1, 2, we set

µ1 � µ2 := P
k1,k2

D(X1),D(X2)

(
µ1⊗̂ιµ2

)
∈ D (X1 ×X2,k1 � k2) .

Of course, the formation of k1 � k2, Pk1,k2

D(X1),D(X2) and P
k1,k2

D(X1),D(X2) extends to a finite number of indices

and the usual associativity constraints are satisfied, as well as the compatibility with the commutativity
constraints in the sources and the targets of these maps. We finally remark that the equations

Pk1,k2

D(X1),D(X2)

(
1O1
⊗̂k1

δx1
⊗̂ι1O2

⊗̂k2
δx2

)
= 1O1⊗̂O2

⊗̂k1�k2
δ(x1,x2),

P
k1,k2

D(X1),D(X2)

(
1O1⊗̂k1δx1⊗̂ι1O2⊗̂k2δx2

)
= δk1�k2

(x1,x2)(39)

characterize these maps.

4.3. Algebraic operations on weights. Setting XT (O) := HomA (T,O×) defines a group functor on
Banach algebras, so that we have

+ : XT (O)×XT (O) −→ XT (O) and − : XT (O) −→ XT (O) .

It follows from (33) that we may transport these operations getting

+ : HomL (D (T ) ,Oi)×HomL (D (T ) ,Oi) −→ HomL (D (T ) ,Oi)
and

− : HomL (D (T ) ,Oi) −→ HomL (D (T ) ,Oi) .

Our next task it to interpolate these operations.
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If we are given ki ∈ HomL (D (T ) ,Oi), then we define

k1 ⊕ k2 : D (T )
∆∗−→ D (T × T )

k1�k2−→ O1⊗̂O2,

where ∆ : T → T × T is the diagonal map and k1 � k2 is given by (36).
If k ∈ HomL (D (T ) ,O), then we define

	k :D (T )
i∗−→ D (T )

k−→ O,

where i : T → T is the inversion, and set

k1 	 k2 := k1 ⊕ (	k2)

We note that these operations are obviously functorial and compatible with specialization.
Exploiting the definitions and making (36) explicit it is easy to check the following result.

Lemma 4.2. Suppose that k,ki ∈ HomL (D (T ) ,O) and write

mO : O⊗̂O → O

for the multiplication map. Then −k =	 k and

k1 + k2 : D (T )
k1⊕k2−→ O⊗̂O mO−→ O.

We now illustrate why k1 ⊕ k2 interpolates the + operation. Suppose that F is our p-adic working field

and that ki ∈ HomL (D (T ) , F ) are such that ki
φi→ ki. Then

k1 ⊕ k2
φ1⊗̂φ2→ k1 ⊕ k2

by the compatibility of the ⊕-operation with specializations. But we have F ⊗̂F = F canonically and the
identification is given by mF . Hence k1 ⊕ k2 specializes via φ1⊗̂φ2 to k1 + k2, thanks to Lemma 4.2. In
particular, suppose that XT is representable by a rigid analytic space (for example because T is compact)

and that ki
φi→ ki corresponds to ki ∈ Ui, with Ui ⊂ XT an affinoid neighbourhood of k. Then k1 ⊕ k2

corresponds to

U1 × U2 ⊂ XT ×XT
+→ XT .

We finally remark that, as a consequence of the associativity of the operation in T , we have

(k1 ⊕ k2)⊕ k3 ' k1 ⊕ (k2 ⊕ k3)

up to

(O1 ⊗O2)⊗O3 ' O1 ⊗ (O2 ⊗O3) .

A similar compatibility holds true for the commutativity, when T is commutative as in our applications.

Suppose now T ' ∆ × (1 + pZp)r, where ∆ is the torsion part of T , and consider the multiplication
by 2 map t 7→ t2 (we write T multiplicatively). We say that k ∈ XT (O) is even if it is in the image of
2∗ : XT (O)→ XT (O) and set k

2 for an element in the inverse image of k. For example, suppose that p 6= 2
and T = Z×p ' F×p × (1 + pZp). We can decompose every k ∈ XT (O) in the form k = ([k] , 〈k〉), where

[k] ∈ F×p and 〈k〉 ∈ X1+pZp (O). Since t 7→ t2 is invertible on 1 + pZp, k = ([k] , 〈k〉) is even if and only if

[k] ∈ F×2
p and then k

2 ∈
{(

[k]
2 ,
〈k〉
2

)
,
(
− [k]

2 ,
〈k〉
2

)}
; if [k] = [k0] for some integer k0 our convention is to choose

k
2 =

(
[k0]
2 , 〈k〉2

)
. Then k

φ→ k ∈ N implies k ∈ 2N and k
2

φ→ k
2 . The elements of HomL (D (T ) ,O) ' XT (O)

are called O-weights; we will freely identify k1 � k2 ' (k1,k2). We will write X := XZ×p .

25



5. The p-adic trilinear form

The semigroup Σ0 (pZp) ⊂ M2 (Zp) acts from the right on the set W := Z×p × Zp. Setting ωp :=(
0 −1
p 0

)
, we have Ŵ := Wωp = pZp × Z×p , on which Σ0 (pZp)ι = ω−1

p Σ0 (pZp)ωp acts from the right.

Hence, for a O-weight k, we may form the right Σ0 (pZp)-module (resp. Σ0 (pZp)ι-module) Dk (W ) (resp.

Dk

(
Ŵ
)

). Taking K�p = Γ0 (pZp) := Σ0 (pZp) ∩ GL2 (Zp), we may form the spaces of p-adic families of

modular forms on B×:

M�p (Dk (W ) , ω0,p) := M�p
(
B×f ,Dk (W ) , ω0,p

)
.

Recall we work over a p-adic field F and consider Banach F -algebras: we setM�p (Vk,F , ω0,p) := M�p
(
B×f ,Vk,F , ω0,p

)
and M� (Vk,F , ω0) := M�

(
B×f ,Vk,F , ω0

)
. As explained after (9), they are naturally B×,pf ×H (Σ0 (pZp))-

modules and, in particular, they are endowed with a Up-operator.

Example 5.1. Recall the open and compact subgroups K0 (N) ,K1 (N) ⊂ B×f defined before Example 3.3.
Assuming that µϕ(N) ⊂ F , we can decompose

M�p (Dk (W ))
K1(N)

=
⊕

ε:( Z
NZ )

×→O×M
�
p (Dk (W ))

K1(N)
(ε) ,

where M (ε) is the submodule of elements x ∈ M such that xu = ε (u)x if we define ε (u) := ε (au) for au

the upper left entry of u ∈ K0 (N). Setting ωε,k0,p (z) := ε
(

z
Nf (z)

)
Nk
p (z) = ε

(
z

Nf (z)

)(
z

Nf (z)

)−k
p

, we have

M�p (Dk (W ))
K1(N)

(ε) = M�p

(
Dk (W ) , ωε,k0,p

)K0(N)

⊂M�p
(
Dk (W ) , ωε,k0,p

)
.

If k
φ→ k ∈ N, there is a specialization map

(40) φalg
∗ : M�p (Dk (W ))

φ∗−→M�p (Dk (W ))
νk−→M�p (Vk,F )

where the first arrow is induced by (35) and the second is the restriction to polynomials map (regarded as

functions on W ). We will usually write ϕk := φalg
∗ (ϕ) when ϕ ∈M�p (Dk (W )).

Example 5.2. Suppose that we are in the setting of Example 5.1, so that µϕ(N) ⊂ F . Then we can decompose

M� (Vk,F )
K1(N)

as we did for p-adic forms. Setting ωε,k0 (z) := ε
(

z
Nf (z)

)
Nk

f (z), we have

M� (Vk,F )
K1(N)

(ε) = M�
(
Vk,F , ω

ε,k
0

)K0(N)

⊂M�
(
Vk,F , ω

ε,k
0

)
.

Furthermore, when ε :
( Z
NZ
)× → µϕ(N) ⊂ F×, the specialization map induces (see Lemma 2.3 for the

isomorphism)

φalg
∗ : M�p

(
Dk (W ) , ωε,k0,p

)
→M�p

(
Vk,F , ω

ε,k
0,p

)
'M�

(
Vk,F , ω

ε,k
0

)
.

Justified by the above example and changing a bit the notation to make it consistent with that of §3, we

will consider characters of the form ωk
0,p (z) = ωf (z) Nk

p (z) = ωf (z)
(

z
Nf (z)

)−k
p

, where ωf is the finite part of

a unitary Hecke character which is unramified outside p. As explained above, setting ωk0 (z) := ωf (z) Nk
f (z)

we see that (40) induces

(41) M�p
(
Dk (W ) , ωk

0,p

)
−→M�p

(
Vk,F , ω

k
0,p

)
'M�

(
Vk,F , ω

k
0

)
.

We identify ψ : Q2
p × Q2

p
∼→ M2 (Qp) by the rule ψ (x1, y1, x2, y2) :=

(
x1 y1

x2 y2

)
and, for a subset S ⊂

Q2
p ×Q2

p, we define

δS : S → Qp, δS (s) := det (ψ (s)) and Sn := δ−1
S

(
pnZ×p

)
.
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For a continuous group homomorphism k : Z×p → O× valued in a Qp-Banach algebra O, we may consider

δkS0
: S0 → Z×p

k→ O×, δkS (s) := δS (s)
k

.

It is a locally analytic function, when S ⊂ Q2
p×Q2

p is a submanifold, because k is locally analytic and S0 ⊂ S
is a submanifold.

Since ψ (w1g, w2g) = ψ (w1, w2) g for any wi = (xi, yi) with i = 1, 2 and g ∈ GL2 (Qp), we have δSg (sg) =
δS (s) det (g) for any s ∈ S and (Sg)n = Sn−νp(g)g where νp := ordp ◦ det. In particular, if Σ ⊂ GL2 (Qp) is

a subsemigroup acting on S, then ΓΣ := Σ ∩ det−1
(
Z×p
)

acts on Sn for every n. We have

(42) δkS0
(sg) = det (g)

k
δkS0

(s)

and, in particular,

(43) δkS0
(t1s1, t2s2) = tk1 t

k
2δ

k
S0

(s) .

Noticing that
(
W × Ŵ

)
0

= W × Ŵ and
(
Ŵ ×W

)
0

= Ŵ × W , we may consider the locally analytic

functions
δk
W×Ŵ : W × Ŵ → O×, δk

Ŵ×W : Ŵ ×W → O× and δk(W×W )0
: W ×W → O×.

Recall our notation for the twists by the norm. Since Γ0 (pZp) ⊂ GL2 (Qp) is compact, nrdp maps it into
the maximal open compact subgroup Z×p ⊂ Q×p . Hence, if D is a Γ0 (pZp)-module with coefficients in O, it

makes sense to consider D (k) := D
(

nrdk
p

)
, the same representation with action v ·k g := nrdk

p (g) vg. Also,

recall we have Nrdk
p ∈M�p

(
O (k) ,N2k

p

)K
for every K ∈ K� (indeed N2k

p = Nrdk
p on Zf = A×f ).

If k = (k1,k2,k3) where ki : Z×p → O×i are Oi-valued weights such that k1 ⊕ k2 ⊕ k3 is even, set

k∗ := k1⊕k2⊕k3

2 , k∗1 := 	k1⊕k2⊕k3

2 , k∗2 := k1	k2⊕k3

2 and k∗3 := k1⊕k2	k3

2 , so that k∗i : Z×p → O×k for

Ok := O1⊗̂O2⊗̂O3. We define W := W × W × W , W 1 := Ŵ × W × W , W 2 := W × Ŵ × W and

W 3 := W ×W × Ŵ . Also, if pi : W i → W ×W denotes the projection onto the components which are

different from i, we define W ◦i := p−1
i ((W ×W )0) (for example, W ◦3 := (W ×W )0 × Ŵ ). Then we define

the locally analytic functions
∆◦i,k : W ◦i → O×k

by the rule

∆◦1,k (w1, w2, w3) : = δ
k∗1
(W×W )0

(w2, w3) δ
k∗2
Ŵ×W

(w1, w3) δ
k∗3
Ŵ×W

(w1, w2) ,

∆◦2,k (w1, w2, w3) : = δ
k∗1
Ŵ×W

(w2, w3) δ
k∗2
(W×W )0

(w1, w3) δ
k∗3
W×Ŵ

(w1, w2) ,

∆◦3,k (w1, w2, w3) : = δ
k∗1
W×Ŵ

(w2, w3) δ
k∗2
W×Ŵ

(w1, w3) δ
k∗3
(W×W )0

(w1, w2) .

We remark that Γ0 (pZp) = Γ0 (pZp)ι = Σ0 (pZp) ∩ Σ0 (pZp)ι acts diagonally on W ◦i . The following lemma
is an application of (42), (43) and the definitions of §4.3.

Lemma 5.3. We have ∆◦i,k ∈ Ak1�k2�k3
(W ◦i ) (−k∗)Γ0(pZp)

.

We will now focus on the i = 3 index, the other cases being similar. Since W 3 = W ◦3 t (W 3 −W
◦
3) (resp.

W 2 =
(
W 2
)

0
t
(
W 2 −

(
W 2
)

0

)
) is a disjoint decomposition in open subsets, we have an extension by zero

map ·◦ : Ak (W ◦3)→ Ak (W 3) (resp. ·0 : Ak1�k2

((
W 2
)

0

)
→ Ak1�k2

(
W 2
)
). By duality, we obtain a map

·◦ : D (W 3,k)→ D (W ◦3,k) (resp. ·0 : Dk1�k2
(W ×W )→ Dk1�k2

((W ×W )0) ).

It follows from Lemma 5.3 that we may consider

Λ◦3,k (µ1, µ2, µ3) := (µ1 � µ2 � µ3)
◦
(

∆◦3,k

)
∈ Ok (µi ∈ Dki (W ) for i = 1, 2 and µ3 ∈ Dk3

(
Ŵ
)

)

and that we have

Λ◦3,k ∈ HomO[Γ0(pZp)]

(
Dk1

(W )⊗O Dk2
(W )⊗O Dk3

(
Ŵ
)
,Ok (k∗)

)
.
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Suppose that we are given characters ωki
0,p for i = 1, 2, 3 such that N

2k∗

p = ωk1
0,pω

k2
0,pω

k3
0,p. Taking Λ = Λ◦3,k in

(11)) gives the trilinear form

t◦3,k : M�p

(
Dk1

(W ) , ωk1
0,p

)
⊗M�p

(
Dk2

(W ) , ωk2
0,p

)
⊗M�p

(
Dk3

(
Ŵ
)
, ωk3

0,p

)
→ Ok.

Suppose, for example, that we may write ωki
0,p (z) = ωf,i (z) Nki

p (z) = ωf,i (z)
(

z
Nf (z)

)−ki
p

with ωf,i taking

values in F with ωf,1ωf,2ωf,3 = 1; then we see that ωk1
0,pω

k2
0,pω

k3
0,p = N

2k∗

p and the above definition applies.

Let us remark that, when k is such that k∗i = c ∈ N, the expression (13) defines an element ∆3,k ∈
Ak1�k2�k3

(W 3) (−k∗)Γ0(pZp)
. We can therefore integrate this function without first applying ·0 to the

measures involved. The result is a trilinear form

(44) t3,k : M�p

(
Dk1

(W ) , ωk1
0,p

)
⊗M�p

(
Dk2

(W ) , ωk2
0,p

)
⊗M�p

(
Dk3

(
Ŵ
)
, ωk3

0,p

)
→ Ok.

Let ω̂p be the idele concentrated at p, where we have (ω̂p)p = ωp. Because ωp : Dk3
(W ) → Dk3

(
Ŵ
)

, the

formula (ϕ3 |Wp) (x) := (ϕ3ω̂p) (x) = ϕ3 (ω̂px)ωp defines

(45) Wp : M�p

(
Dk3

(W ) , ωk3
0,p

)
−→M�p

(
Dk3

(
Ŵ
)
, ωk3

0,p

)
It follows from (39) that, if k∗i = c ∈ N and ϕi,ki = φalg

i∗ (ϕi) where φ : ki → ki, then

(46) φ
(
t3,k (ϕ1 ⊗ ϕ2 ⊗ ϕ3 |W3)

)
= tk

(
ϕ1,k1

, ϕ2,k2
, ϕ3,k3

|Wp

)
.

This applies, in particular, when φ is the identity and k = k ∈ N3 is balanced: then ϕi,ki = φalg
i∗ (ϕi) = νk (ϕi)

is just the restriction to polynomials map (see (40)) and φ that appears in (46) is the identity.

The following key calculation relates the trilinear form t◦3,k to t3,k under the running assumption that

k = k ∈ N3 is balanced (to be in force from now until the end of Corollary 5.6 below). Write π̂p for the

idele concentrated at p, where we have (π̂p)p = πp :=

(
1 0
0 p

)
. If ϕ ∈M�p (Dk(W )), recall the Up-operator

defined by the double coset Kπ̂pK, where K = KpΓ0 (pZp) and ϕ ∈M�p (Dk(W ))K
p

(see the discussion after
(9)).

Proposition 5.4. For i = 1, 2, suppose ϕi ∈M�p (Dki(W )) is a Up-eigenvector with ϕi|Up = aiϕi, and view
ϕ1 ⊗ ϕ2 as an element of M�p (Dk1�k2

(W ×W )). Then

(ϕ1 ⊗ ϕ2)|Up = a1a2

(
ϕ1 ⊗ ϕ2 − i∗(ϕ1 ⊗ ϕ2)0

)
,

where i∗ : M�p (Dk1�k2
((W ×W )0))→M�p (Dk1�k2

(W×W )) is induced by the map i∗ : Dk1�k2
((W ×W )0)→

Dk1�k2
(W ×W ) obtained from the inclusion i : (W ×W )0 ↪→W ×W .

Proof. Consider the decomposition

W =

p−1⊔
i=0

Wi, where Wi = Wπi = {w = (x, y) ∈W : y ≡ ix (mod p)}.

Then Kπ̂pK =
⊔p−1
i=0 Kπi and we can compute:

a1a2(ϕ1 ⊗ ϕ2)(x) = (ϕ1|Up ⊗ ϕ2|Up)(x)

=

p−1∑
i,j=0

ϕ1(πix)πi ⊗ ϕ2(πjx)πj

=

p−1∑
i=0

ϕ1(πx)πi ⊗ ϕ3(πix)πi +

p−1∑
i,j=0
i6=j

ϕ1(πix)πi ⊗ ϕ2(πjx)πj

= ((ϕ1 ⊗ ϕ2)|Up)(x) +A.
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It remains to show that A = a1a2i∗((ϕ1 ⊗ ϕ2)0(x)). To this end, note that we may write

W 2 =

p−1⊔
i,j=0

Wi ×Wj =

p−1⊔
i=0

Wi ×Wi t
p−1⊔
i,j=0
i 6=j

Wi ×Wj .

Subordinate to this decomposition of spaces, we have a corresponding decomposition of Dk1�k2
(W 2):

Dk1�k2
(W 2) =

p−1⊕
i=0

Dk1�k2
(Wi ×Wi)⊕

p−1⊕
i,j=0
i 6=j

Dk1�k2
(Wi ×Wj).

Note that the spaces Wi are all Z×p -stable, so that these spaces of distributions are defined. Writing proji,j :

Dk1�k2
(W 2)→ Dk1�k2

(Wi ×Wj) for the associated projections, we have

a1a2

p−1∑
i,j=0

proji,j(ϕ1(x)⊗ ϕ2(x)) = a1a2(ϕ1(x)⊗ ϕ2(x)) =

p−1∑
i,j=0

ϕ1(πix)πi ⊗ ϕ2(πjx)πj .

Since

µ1πi ⊗ µ2πj ∈ Dk1�k2
(Wi ×Wj),

for every µ1 ∈ Dk1
(W ) and µ2 ∈ Dk2

(W ) (as it can be checked on Dirac distributions), taking µ1 = ϕ1(πix)
and µ2 = ϕ2(πjx) it follows that

a1a2 proji,j(ϕ1(x)⊗ ϕ2(x)) = ϕ1(πix)πi ⊗ ϕ2(πjx)

for all i, j. Therefore,

(47) A = a1a2

p−1∑
i,j=0
i 6=j

proji,j(ϕ1(x)⊗ ϕ2(x)).

One easily verifies the equality

(W ×W )0 =

p−1⊔
i,j=0
i 6=j

Wi ×Wj ,

implying that

(48)

p−1∑
i,j=0
i 6=j

proji,j(ϕ1(x)⊗ ϕ2(x)) = i∗((ϕ1 ⊗ ϕ2)0(x)).

Now substitute (48) into (47). �

We are going to apply the results of §2.3. We take Σp = Σ0 (pZp), D = Dk1�k2
(W×W ) and E = Dk3

(Ŵ ).

Then k = k∗ (resp. the central character κE = k3 of E = Dk3
(Ŵ )) extends to the character k̃ = k∗ of Q×p

(resp. the character κ̃E = k3 of Q×p ). Finally, we suppose that we may write ωki0,p (z) = ωf,i (z)
(

z
Nf (z)

)−ki
p

with ωf,1ωf,2ωf,3 = 1. Then ω0,p,D (z) = ωf,1 (z)ωf,2 (z)
(

z
Nf (z)

)−k1−k2

p
, ω0,p,E (z) = ωf,3 (z)

(
z

Nf (z)

)−k3

p
and

we have ω0,p,Dω0,p,E = ω0,p with ω0,p (z) =
(

z
Nf (z)

)−k1−k2−k3

p
= Nrdk

∗

p (z).

Lemma 5.5. With these notations the trilinear form t3,k defines an element of HomO[Σp,Σιp]
(D⊗E,O(k∗)).

Furthermore, we have Nrdk̃
f (π)p nrd−κ̃Ep (πp) nrd

−ω0,p,E

f (π) = ωf,3

(
Nrdf (π)
nrd(π)

)
Nrd

k∗3
f (π)p in Proposition 2.9.
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Proof. Note that ∆i,k defines indeed ∆̃k ∈ Ak1�k2�k3
(Q2

p × Q2
p × Q2

p) such that ∆̃k|W 3
= ∆i,k. We take

D̃ := Dk1�k2
(Q2

p ×Q2
p) and Ẽ := Dk3(Q2

p), so that kẼ = k̃E = k3. The pairing associated to t3,k is given by

〈µ12, µ3〉 := (µ12⊗̂µ3)(∆k) and we define 〈µ12, µ3〉
∼

:= (µ12⊗̂µ3)(∆̃k). Since Q2
p×Q2

p×Q2
p = (W 2× Ŵ )tZ

with Z an open subset,

Ak1�k2�k3
(Q2

p ×Q2
p ×Q2

p) = Ak1�k2�k3
(W 2 × Ŵ )⊕Ak1�k2�k3

(Z)

and Dk1�k2�k3
(Q2

p ×Q2
p ×Q2

p) = Dk1�k2�k3
(W 2 × Ŵ )⊕Dk1�k2�k3

(Z).

For elements µ12 ∈ Dk1�k2
(W 2) and µ3 ∈ Dk3

(Ŵ ), the distribution µ12⊗̂µ3 is supported on Dk1�k2�k3
(W 2×

Ŵ ) and we see that 〈µ12, µ3〉
∼

= 〈µ12, µ3〉. We note that the relation σ∆̃k = det(σ)k∆̃k for every σ ∈ Σp
implies

〈µ12σ, µ3σ〉
∼

:= (µ12σ⊗̂µ3σ)(∆̃k) = det(σ)k(µ12⊗̂µ3)(∆̃k) = det(σ)k 〈µ12, µ3〉
∼

.

Now apply Remark 2.8 in order to get the first statement. Finally, the second statement follows by a simple
computation. �

Write p′ ∈ A×f for the finite idele (p′)v = p for every v 6= p and (p′)p = 1.

Corollary 5.6. For i = 1, 2, let ϕi ∈ M�p (Dki(W ), ωki0,p) be a Up-eigenvector with ϕi|Up = αiϕi and let

ϕ3 ∈M�p (Dk3(Ŵ ), ωk3
0,p) be a U ιp-eigenvector with ϕ3|U ιp = α3ϕ3. Then

t◦3,k(ϕ1 ⊗ ϕ2 ⊗ ϕ3) =

(
1− ωf,3 (p′)

α3

α1α2
pk
∗
3

)
t3,k(ϕ1 ⊗ ϕ2 ⊗ ϕ3).

Proof. Recall the morphism ·0 : Dk1�k2
(W ×W ) → Dk1�k2

((W ×W )0). Given µi ∈ Dki (W ) for i = 1, 2

and µ3 ∈ Dk3

(
Ŵ
)

, we may therefore consider

〈µ12, µ3〉
◦
t :=

(
µ0

12 � µ3

) (
∆◦k

)
.

This is granted by Lemma 5.3, which also implies 〈−,−〉◦t ∈ HomO[Γ0(pZp)]

(
Dk1�k2

((
W 2
)

0

)
⊗Dk3

(
Ŵ
)
,O (k∗)

)
.

Taking Λ = 〈−,−〉◦t in (11) gives the bilinear form

〈−,−〉◦t : M�p
(
Dk1�k2

((
W 2
)

0

)
, ω0,p,D

)
⊗M�p

(
Dk3

(
Ŵ
)
, ω0,p,E

)
→ O,

It is clear that
〈
Pk1,k2

(
µ1⊗̂ιµ2

)0
, µ3

〉◦
t

= t◦3,k (µ1, µ2, µ3) (we just need to check the equality on Dirac

distributions), from which we see that

t◦3,k (ϕ1, ϕ2, ϕ3) =
〈

(ϕ1 ⊗ ϕ2)
0
, ϕ3

〉◦
t

,

if ϕ1⊗ϕ2 is viewed as an element of M�p
(
Dk1�k2

(
W 2
)
, ω0,p,D

)
. A similar result holds true for t3,k, namely

we may define as above

〈−,−〉t : M�p
(
Dk1�k2

(
W 2
)
, ω0,p,D

)
⊗M�p (Dk3

(W ) , ω0,p,E)→ O

for which

t3,k (ϕ1, ϕ2, ϕ3) = 〈ϕ1 ⊗ ϕ2, ϕ3〉t .

By Proposition 5.4, we have

(49) 〈ϕ1 ⊗ ϕ2, ϕ3〉t =
1

α1α2
〈(ϕ1 ⊗ ϕ2)|Up, ϕ3〉t + 〈i∗(ϕ1 ⊗ ϕ2)0, ϕ3〉t

Proposition 2.9, which applies thanks to Lemma 5.5, implies that

(50) 〈(ϕ1 ⊗ ϕ2)|Up, ϕ3〉t = ωf,3 (p′) pk
∗
3 〈ϕ1 ⊗ ϕ2, ϕ3|U ιp〉t = ωf,3 (p′) pk

∗
3α3〈ϕ1 ⊗ ϕ2, ϕ3〉t.
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Finally, it is easy to see that
〈
i∗ (µ1 ⊗ µ2)

0
, µ3

〉
t

=
〈

(µ1 ⊗ µ2)
0
, µ3

〉◦
t

(once again checking the equality on

Dirac distributions), from which we see that

(51)
〈
i∗ (ϕ1 ⊗ ϕ2)

0
, ϕ3

〉
t

=
〈

(ϕ1 ⊗ ϕ2)
0
, ϕ3

〉◦
t

.

The result follows by combining (49), (50), and (51). �

5.1. p-adic periods. Writing k = ki and O = Oi, as remarked after (43), we have δk
W×Ŵ : W × Ŵ → O×:

it follows from (42) that we have δk
W×Ŵ ∈ Ak�k

(
W × Ŵ

)
(−k)

Γ0(pZp)
and we can consider

Bk ∈ HomO[Γ0(pZp)]

(
Dk (W )⊗O Dk

(
Ŵ
)
,O (k)

)
defined by Bk (µ1 ⊗ µ2) := (µ1 � µ2)

(
δk
W×Ŵ

)
. Taking Λ = Bk in (11)) gives the bilinear form

〈−,−〉k : M�p
(
Dk (W ) , ωk

0,p

)
⊗M�p

(
Dk

(
Ŵ
)
,N2k

p

(
ωk

0,p

)−1
)
→ O.

Suppose now that k
φ→ k ∈ N and let us remark that there are specialization maps

φalg
∗ : M�p

(
Dk

(
Ŵ
)
, ωk

0,p

)
−→M�p

(
Vk,E , ω

k
0,p

)
'M�

(
Vk,E , ω

k
0

)
and

φalg
∗ : M�p

(
Dk

(
Ŵ
)
,N2k

p

(
ωk

0,p

)−1
)
−→M�p

(
Vk,E ,N

2k
p

(
ωk0,p

)−1
)
'M�

(
Vk,E ,N

2k
f

(
ωk0
)−1
)

,(52)

defined in the same way as (41) was defined, i.e. via the morphism induced by (35) and the restriction

to polynomials (now regarded as functions on Ŵ ). Let us apply Remark 2.5 to (18). First, it tells use
that

(
nrd−ωf

f , 1
)
∈ X

(
B×, ω−2

f

)
corresponds to

(
nrd−ωf

f , 1
)
∈ Xp

(
B×, ω−2

f

)
(taking χ0 = nrd−ωf

f and

χ∞ = χp = 1 in loc.cit. we see that χ0,p = nrd−ωf

f ). Second, it tells us that (17) (for the central character

ωk0 (z) = ωf (z) Nk
f (z)) corresponds to

(53) M�p
(
Vk,E , ω

k
0,p

)
−→M�p

(
Vk,E ,N

2k
p

(
ωk0,p

)−1
)

defined via Remark 2.2 (1), i.e. given by ϕ 7→ ϕ̌, where ϕ̌(x) := nrd
−ωf,i

f (x)ϕ(x) = Nrdkip (x)nrd
−ωk0,p
f (x)ϕ(x)

(the equality because ωk0,p (z) = ωf (z) Nk
p (z), implying that ωf = ωk0,pN

−k
p ). Hence, the same formula ϕ 7→ ϕ̌,

where ϕ̌(x) := nrd
−ωf,i

f (x)ϕ(x), defines

(54) M�p

(
Dk

(
Ŵ
)
, ωk

0,p

)
−→M�p

(
Dk

(
Ŵ
)
,N2k

p

(
ωk

0,p

)−1
)

which interpolates (53) ' (17) via (52). Recall the Wp-operator M�p
(
Dk (W ) , ωk

0,p

)
→M�p

(
Dk

(
Ŵ
)
, ωk

0,p

)
(see (45)) which interpolates the Wp-operator M�p

(
Vk,E , ω

k
0,p

)
→ M�p

(
Vk,E , ω

k
0,p

)
(defined by the same

formula) via the specialization maps (41) and (52). Finally, it is clear from its definition that 〈−,−〉k
interpolates 〈−,−〉k via the specialization maps (41) and (52). Hence, setting (ϕ,ψ) :=

〈
ϕ, ˇ(ψ |Wp)

〉
k

we

have proved the following result (the uniqueness follows from the fact that the weight space is reduced and
N is Zariski dense in the open affinoid subdomain U ⊂ X ).

Lemma 5.7. Suppose that k : Z×p → O corresponds to an open affinoid subdomain U ⊂ X and that

ϕ,ψ ∈ M�p
(
Dk (W ) , ωk

0,p

)
. There is a unique (ϕ,ψ) ∈ O such that for every k ∈ U ∩ N which corresponds

to k
φ→ k ∈ N we have, setting ϕk := φalg

∗ (ϕ) and ψk := φalg
∗ (ψ):

(ϕ,ψ) (k) := φ ((ϕ,ψ)) = (ϕk, ψk |Wp)k .
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6. Degeneracy maps and p-stabilizations

If g ∈ GL2 (Qp), we let ĝ be the idele concentrated in p, where we have ĝp = g. In particular, we write
π̂p (resp. ω̂p) for the idele concentrated at p, where we have

(π̂p)p = πp :=

(
1 0
0 p

)
, (ω̂p)p = ωp :=

(
0 −1
p 0

)
.

We fix levels K ⊂ K# of the form K = KpΓ0 (pZp) and K# = KpGL2 (Zp). Let us record the following
fact.

Lemma 6.1. We have K# =
⊔
i=0,...,p−1,∞Kγ̂i with γi =

(
1 0
i 1

)
for i = 0, ..., p − 1 and γ∞ =(

0 1
−1 0

)
and Kπ̂pK

# =
⊔p−1
i=0 Kπ̂i tKω̂p with πi =

(
1 i
0 p

)
. Also,

K#π̂pK
# =

⊔
i=0,...,p−1,∞K#π̂ιpγi =

⊔
i=0,...,p−1K

#π̂i tK#π̂ιp.

Proof. Indeed, a direct computation shows that
⊔
iKγ̂i ⊂ K# (resp.

⊔p−1
i=0 Kπ̂i t Kω̂p ⊂ Kπ̂pK

#,⊔
iK

#π̂ιpγi ⊂ K#π̂pK
# and

⊔
i=0,...,p−1K

#π̂i t K#π̂ιp ⊂ K#π̂pK
#). The first equality is then easily

checked (and equivalent to
[
K#
p : Kp

]
= p+ 1 or the fact that there are p+ 1 index p Zp-sublattices in Z2

p).
To see the other equalities, we may fix a left and right invariant Haar measure µ and check that both sides
have the same measure as follows. First we remark that, because ω̂pγ̂∞ = π̂p,

(55) Kπ̂pK
# = Kω̂pγ̂∞K

# = Kω̂pK
# = ω̂pKK

# = ω̂pK
#.

Then we see that
µ
(
Kπ̂pK

#
)

= µ
(
ω̂pK

#
)

= µ
(
K#

)
= (p+ 1)µ (K) ,

proving the second equality because

µ
(⊔p−1

i=0 Kπ̂i tKω̂p
)

= (p+ 1)µ (K) .

Using the first equality, one checks that

K#π̂pK
# =

⋃
i=0,...,p−1,∞

γ̂−1
i Kπ̂pK

#.

Then we see that
µ
(
K#π̂pK

#
)
6 (p+ 1)µ

(
Kπ̂pK

#
)

= (p+ 1)µ
(
K#

)
,

proving the third and the fourth equalities because

µ
(⊔

i=0,...,p−1,∞K#π̂ιpγ̂i

)
= µ

(⊔
i=0,...,p−1K

#π̂i tK#π̂ιp

)
= (p+ 1)µ

(
K#

)
.

�

We suppose in this §6 that Ẑ× ⊂ K and that we may write ω0 (z) = ωf (z) Nk
f (z). We have have two

degeneracy maps

K#1K = K#1,K#π̂ιpK : M (Vk,F , ω0)
K#

→M (Vk,F , ω0)
K

.

Define
ϕ(p) := ϕ | K#π̂ιpK ∈M (Vk,F , ω0)

K
.

Let us now fix 0 6= ϕ ∈ M (Vk,F , ω0)
K#

such that ϕ | Tp = ap (ϕ)ϕ and define M (Vk,F , ω0)
K,ϕ-old ⊂

M (Vk,F , ω0)
K

to be the span of
{
ϕ,ϕ(p)

}
. We define the Hecke polynomial at p and the quantities αp(ϕ)

and βp(ϕ) to via the formula

(56) X2 − ap (ϕ)X + ωf (p′)
−1
pk+1 = (X − αp (ϕ))

(
X − βp (ϕ)

)
.

Next, let us set

ϕα = ϕαp(ϕ) := ϕ− αp (ϕ)
−1
ϕ(p) ∈M (Vk,F , ω0)

K,ϕ-old
,

ϕβ = ϕβp(ϕ) := ϕ− βp (ϕ)
−1
ϕ(p) ∈M (Vk,F , ω0)

K,ϕ-old
.
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We say that ϕ is semisimple (resp. not semisimple) if αp (ϕ) 6= βp (ϕ) (resp. αp (ϕ) = βp (ϕ)). Conjecturally,
ϕ is always semisimple, as shown in [12, Corollary 3.2 and Remark 3.3].

Remark 6.2. Suppose that Ẑ× ⊂ K ′ and that ψ ∈ M (Vk,F , ω0)
K′

. Write p := p̂ (resp. p′ ∈ Ẑ× ⊂ K ′) for
the idele concentrated at p, where we have pp = p (resp. the finite idele defined by the conditions (p′)v = p

for every v 6= p and (p′)p = 1). Then ϕ | K ′p = ωf (p′)
−1
pkϕ.

Proof. Indeed, we may write p = pp′ and we see that:

(ϕ | K ′p) (x) = ϕ (px) = ϕ
(
p′−1xp

)
= ωf (p′)

−1
ϕ (x) p = ωf (p′)

−1
pkϕ (x) .

�

Set Tp := K#π̂pK
# (acting on M (Vk,F , ω0)

K#

), Up := Kπ̂pK and Wp := Kω̂p (both acting on

M (Vk,F , ω0)
K

).

Corollary 6.3. If ϕ ∈M (Vk,F , ω0)
K#

we have

ϕ | Up = ϕ | Tp − ϕ(p), ϕ(p) | Up = ωf (p′)
−1
pk+1ϕ

ϕ | Wp = ϕ(p) and ϕ(p) |Wp = ωf (p′)
−1
pkϕ.

Proof. Noticing that K#π̂ιpK = K#π̂ιp (because γ̂∞ω̂p = π̂ιp, arguing as in (55)), the first equality is a

direct consequence of the last decomposition of Lemma 6.1 and the definition ϕ(p) := ϕ | K#π̂ιpK. Since

ϕ(p) = ϕ | K#π̂ιp we find

ϕ(p) | Up =
∑p−1
i=0

(
ϕ | K#π̂ιp

)
π̂i =

∑p−1
i=0 ϕπ̂

ι
pπ̂i.

We now remark that

πιpπi =

(
p ip
0 p

)
=

(
1 i
0 1

)
p,

so that π̂ιpπ̂i ∈ Kp. It follows from Remark 6.2 and the K-invariance of ϕ that we have ϕπ̂ιpπ̂i = ϕp = ϕ |
Kp = ωf (p′)

−1
pkϕ. Hence we find

ϕ(p) | Up = ωf (p′)
−1
pk
∑p−1
i=0 ϕ = ωf (p′)

−1
pk+1ϕ.

The equality ϕ | Wp = ϕ(p) follows from K#π̂ιpK = K#ω̂p (because we remarked that K#π̂ιpK =

K#π̂ιp and K#π̂ιp = K#ω̂p in view of π̂ιp = γ̂∞ω̂p) and the fact that ϕ | Kω̂p = ϕ | K#ω̂p because

ϕ ∈M (Vk,F , ω0)
K#

. Finally, since ω2
p = −p, once again noticing that K#π̂ιpK = K#ω̂p, we find

ϕ(p) |Wp =
(
ϕ | K#ω̂p

)
ω̂p = ϕω̂2

p = ϕ | K#p = ωf (p′)
−1
pkϕ.

�

The following result, whose proof is left to the reader, can now be deduced from Corollary 6.3 by standard
linear algebra and the well-known fact that Im

(
K#1K

)
∩Im

(
K#π̂ιpK

)
= 0.

Proposition 6.4. The following facts are true, assuming that F is a field such that αp (ϕ) , βp (ϕ) ∈ F for
the statements (2)− (5).

(1) The space M (Vk,F , ω0)
K,ϕ-old

is two dimensional with basis
{
ϕ,ϕ(p)

}
, stable under the action of

the Up and Wp operators.

(2) We have ϕα | Up = αp (ϕ)ϕ, ϕβ | Up = βp (ϕ)ϕ and, if ψ ∈ M (Vk,F , ω0)
K,ϕ-old

is such that

ψ | Up = ρψ, then ψ = ϕα or ψ = ϕβ up to a scalar factor.
(3) We have

F (ϕα |Wp) ∩ Fϕα = F (ϕα |Wp) ∩ Fϕβ = 0 (resp. F
(
ϕβ |Wp

)
∩ Fϕα = F

(
ϕβ |Wp

)
∩ Fϕβ = 0)

unless αp (ϕ)
2

= ωf (p′)
−1
pk (resp. βp (ϕ)

2
= ωf (p′)

−1
pk) and, in this case, ϕα |Wp = −αp (ϕ)ϕα

(resp. ϕβ |Wp = −βp (ϕ)ϕβ). In general,

ϕα |Wp = ϕ(p) − αp (ϕ)
−1
ωf (p′)

−1
pkϕ (resp. ϕβ |Wp = ϕ(p) − βp (ϕ)

−1
ωf (p′)

−1
pkϕ).
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(4) If ϕ is semisimple, then Up is diagonalizable on M (Vk,F , ω0)
K,ϕ-old

and we have

M (Vk,F , ω0)
K,ϕ-old

= Fϕα ⊕ Fϕβ.

(5) If ϕ is not semisimple, then

0 6= Fϕα = Fϕβ ⊂M (Vk,F , ω0)
K,ϕ-old

is a one dimensional subspace of M (Vk,F , ω0)
K,ϕ-old

and Up is not diagonalizable on M (Vk,F , ω0)
K,ϕ-old

.

6.1. The case of three p-old forms. Let us assume that ϕi ∈M (Vki,F , ω0,i)
K#

are such that ϕi | Tp =
ap (ϕi)ϕi for i = 1, 2, 3 and let us write αi := α (ϕi) and βi := β (ϕi). If α = (α1, α2, α3) and k = (k1, k2, k3),
we define

Ep,1 (α, k) := 1− ωf,1 (p′)
α1

α2α3
pk
∗
1 , Ep,2 (α, k) := 1− ωf,2 (p′)

α2

α1α3
pk
∗
2 , Ep,3 (α, k) := 1− ωf,3 (p′)

α3

α1α2
pk
∗
3 ,

Ep (α, k) := Ep,1 (α, k) Ep,2 (α, k) Ep,3 (α, k)

(
1− 1

α1α2α3
pk
∗+1

)
and then (the last equality with the convention that it simply means “formally remove the Ep,i (α, k) factor”):

Êp,i (α, k) :=
∏
j 6=i Ep,j (α, k)

(
1− 1

α1α2α3
pk
∗+1

)
=
Ep (α, k)

Ep,i (α, k)
.

Proposition 6.5. With the above notations, the following formulas hold:

tk

(
ϕ

(α1)
1 |Wp, ϕ

(α2)
2 , ϕ

(α3)
3

)
=

α1

p+ 1
Êp,1 (α, k) tk (ϕ1, ϕ2, ϕ3) ,

tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 |Wp, ϕ

(α3)
3

)
=

α2

p+ 1
Êp,2 (α, k) tk (ϕ1, ϕ2, ϕ3) ,

tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 , ϕ

(α3)
3 |Wp

)
=

α3

p+ 1
Êp,3 (α, k) tk (ϕ1, ϕ2, ϕ3) .

Proof. We have, by definition and Proposition 6.4 (3),

tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 , ϕ

(α3)
3 |Wp

)
= −tk

(
ϕ1 − α−1

1 ϕ
(p)
1 , ϕ2 − α−1

2 ϕ
(p)
2 , α−1

3 pk3ωf,3 (p′)
−1
ϕ3 − ϕ

(p)
3

)
= −

(
A(3) −B(3) + C(3) −D(3)

)
where

A(3) = ωf,3 (p′)
−1
α−1

3 pk3tk (ϕ1, ϕ2, ϕ3) ,

B(3) = ωf,3 (p′)
−1
α−1

1 α−1
3 pk3tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
+ ωf,3 (p′)

−1
α−1

2 α−1
3 pk3tk

(
ϕ1, ϕ

(p)
2 , ϕ3

)
+tk

(
ϕ1, ϕ2, ϕ

(p)
3

)
C(3) = ωf,3 (p′)

−1
α−1

1 α−1
2 α−1

3 pk3tk

(
ϕ

(p)
1 , ϕ

(p)
2 , ϕ3

)
+ α−1

1 tk

(
ϕ

(p)
1 , ϕ2, ϕ

(p)
3

)
+ α−1

2 tk

(
ϕ1, ϕ

(p)
2 , ϕ

(p)
3

)
D(3) = α−1

1 α−1
2 tk

(
ϕ

(p)
1 , ϕ

(p)
2 , ϕ

(p)
3

)
.

Regarding tk as a pairing as we did in the proof of Corollary 5.6 (for t3,k), we compute

tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
=

〈
ϕ1 | K#π̂ιpK,ϕ2 ⊗ ϕ3

〉
t

(the pairing does not depend on the level)

=
〈
ϕ1 | K#π̂ιpK,ϕ2 ⊗ ϕ3 | K#1K

〉
t

(by Proposition 2.9)

= (p+ 1)
−1 〈(

ϕ1 | K#π̂ιpK
)
| K1K#, ϕ2 ⊗ ϕ3

〉
t

(we have K#π̂ιpK = K#π̂ιp)

= (p+ 1)
−1∑

γi∈K\K#

〈
ϕ1π̂

ι
pγi, ϕ2 ⊗ ϕ3

〉
t
.(57)

It follows from Lemma 6.1 that, if K# =
⊔
iKγi, then K#π̂pK

# =
⊔
iK

#π̂ιpγi. Therefore,∑
γi∈K\K#

〈
ϕ1π̂

ι
pγi, ϕ2 ⊗ ϕ3

〉
t

= 〈ϕ1 | Tp, ϕ2 ⊗ ϕ3〉t = ap (ϕ1) 〈ϕ1, ϕ2 ⊗ ϕ3〉t
= ap (ϕ1) tk (ϕ1, ϕ2, ϕ3) .(58)
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We have proved that

tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
= (p+ 1)

−1
ap (ϕ1) tk (ϕ1, ϕ2, ϕ3) .

Working in a similar way for the other two terms of B(3) we deduce (recall α3p
−k3 = ωf,3 (p′)β−1

3 p):

(p+ 1)B(3) =
{
ωf,3 (p′)

−1
α−1

1 ap (ϕ1)α−1
3 pk3 + ωf,3 (p′)

−1
α−1

2 ap (ϕ2)α−1
3 pk3 + ap (ϕ3)

}
tk (ϕ1, ϕ2, ϕ3)

= {ωf,3 (p′)
−1
α−1

3 pk3 + ωf,3 (p′)
−1
α−1

1 α−1
3 β1p

k3 + ωf,3 (p′)
−1
α−1

3 pk3

+ωf,3 (p′)
−1
α−1

2 α−1
3 β2p

k3 + α3 + β3}tk (ϕ1, ϕ2, ϕ3) .

Noticing that we have K#π̂ιpK = K#π̂ιp, we find

ϕ
(p)
1 ⊗ ϕ(p)

2 = (ϕ1 ⊗ ϕ2) | K#π̂ιpK.

Hence we find, using the adjointness property of Proposition 2.9,

tk

(
ϕ

(p)
1 , ϕ

(p)
2 , ϕ3

)
=

〈
(ϕ1 ⊗ ϕ2) | K#π̂ιpK,ϕ3 | K#1K

〉
t

= (p+ 1)
−1
ωf,3 (p′) pk

∗
3
〈
ϕ1 ⊗ ϕ2,

(
ϕ3 | K#1K

)
| Kπ̂pK#

〉
t

= (p+ 1)
−1
ωf,3 (p′) pk

∗
3ap(ϕ3) 〈ϕ1 ⊗ ϕ2, ϕ3〉t

= (p+ 1)
−1
ωf,3 (p′) pk

∗
3ap(ϕ3)tk (ϕ1, ϕ2, ϕ3) .

Working in a similar way for the other two terms of C(3) we deduce (recall α3p
−k3 = ωf,3 (p′)β−1

3 p)

(p+ 1)C(3) = {α−1
1 α−1

2 ap (ϕ3)α−1
3 pk3+k∗3 + ωf,2 (p′)α−1

1 ap (ϕ2) pk
∗
2

+ωf,1 (p′)α−1
2 ap (ϕ1) pk

∗
1}tk (ϕ1, ϕ2, ϕ3)

= {α−1
1 α−1

2 pk3+k∗3 + α−1
1 α−1

2 α−1
3 β3p

k3+k∗3

+ωf,2 (p′)α−1
1 α2p

k∗2 + ωf,2 (p′)α−1
1 β2p

k∗2

+ωf,1 (p′)α−1
2 α1p

k∗1 + ωf,1 (p′)α−1
2 β1p

k∗1}tk (ϕ1, ϕ2, ϕ3) .

Finally, once again using K#π̂ιpK = K#π̂ιp, we find

ϕ
(p)
1 ⊗ ϕ(p)

2 ⊗ ϕ(p)
3 = ϕ1 ⊗ ϕ2 ⊗ ϕ3 | K#π̂ιp

and tk

(
ϕ

(p)
1 , ϕ

(p)
2 , ϕ

(p)
3

)
= pk

∗
tk (ϕ1, ϕ2, ϕ3). Hence we find

D(3) = α−1
1 α−1

2 pk
∗
tk (ϕ1, ϕ2, ϕ3) .

Putting everything together, we have computed that

(59) tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 , ϕ

(α3)
3 |Wp

)
= − (p+ 1)

−1
E · tk (ϕ1, ϕ2, ϕ3) ,

where (using βi = ωf,i (p′)
−1
α−1
i pki+1):

E = ωf,3 (p′)
−1
α−1

3 pk3 + ωf,3 (p′)
−1
α−1

3 pk3+1

−ωf,3 (p′)
−1
α−1

3 pk3 − ωf,1 (p′)
−1
ωf,3 (p′)

−1
α−2

1 α−1
3 pk1+k3+1 − ωf,3 (p′)

−1
α−1

3 pk3

−ωf,2 (p′)
−1
ωf,3 (p′)

−1
α−2

2 α−1
3 pk2+k3+1 − α3 − ωf,3 (p′)

−1
α−1

3 pk3+1

+α−1
1 α−1

2 pk3+k∗3 + ωf,3 (p′)
−1
α−1

1 α−1
2 α−2

3 p2k3+k∗3+1

+ωf,2 (p′)α−1
1 α2p

k∗2 + α−1
1 α−1

2 pk2+k∗2+1

+ωf,1 (p′)α−1
2 α1p

k∗1 + α−1
2 α−1

1 pk1+k∗1+1

−α−1
1 α−1

2 pk
∗
− α−1

1 α−1
2 pk

∗+1.

Let us now remark that, writing (i, j) for the j-term of the i-line, we have the following simplifications:
(1, 1) with (2, 1), (1, 2) with (3, 3), (4, 1) with (7, 1) (because k3 + k∗3 = k) and (6, 2) with (7, 2) (because

k1 + k∗1 = k). Hence, we find (recalling that ωf,1ωf,2ωf,3 = 1 on Ẑ× in the first equality and noticing that
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k1 + k3 + 1 = k∗2 + k∗ + 1, k3 = k∗1 + k∗2, k2 + k3 + 1 = k∗1 + k∗ + 1, 2k3 + k∗3 + 1 = k∗1 + k∗2 + k∗ + 1 and
k2 + k∗2 + 1 = k∗ + 1 to get the factorization):

E = −α3(ωf,2 (p′)α−2
1 α−2

3 pk1+k3+1 + ωf,1 (p′)ωf,2 (p′)α−2
3 pk3

+ωf,1 (p′)α−2
2 α−2

3 pk2+k3+1 + 1− ωf,3 (p′)
−1
α−1

1 α−1
2 α−3

3 p2k3+k∗3+1

−ωf,2 (p′)α−1
1 α2α

−1
3 pk

∗
2 − α−1

1 α−1
2 α−1

3 pk2+k∗2+1 − ωf,1 (p′)α−1
2 α1α

−1
3 pk

∗
1 )

= −α3

(
1− ωf,1 (p′)

α1

α2α3
pk
∗
1

)(
1− ωf,2 (p′)

α2

α1α3
pk
∗
2

)(
1− 1

α1α2α3
pk
∗+1

)
.

Inserting this computation of E in (59) gives the third equation. The first two equations are proved in a
similar way. �

Let us discuss the p-adic periods.

Lemma 6.6. Suppose that 0 6= ϕ1, ϕ2 ∈ M (Vk,F , ω0)
K#

are such that ϕi | Tp = ap (ϕi)ϕi and let αi =
αp (ϕi) be a root of the Hecke polynomial at p of ϕi (see (56)). If ap (ϕ1) = ap (ϕ2) and α := α1 = α2, then
we have (

ϕ(α), ϕ(α) |Wp

)
k

=
α
(

1− ωf (p′)
−1
α−2pk

)(
1− ωf (p′)

−1
α−2pk+1

)
p+ 1

(ϕ,ϕ)k .

Proof. We have, by Proposition 6.4 (3),(
ϕ

(α)
1 , ϕ

(α)
2 |Wp

)
k

=
(
ϕ1 − α−1ϕ

(p)
1 , ϕ

(p)
2 − α−1ωf (p′)

−1
pkϕ2

)
k

= −ωf (p′)
−1
α−1pk (ϕ1, ϕ2)k + ωf (p′)

−1
α−2pk

(
ϕ

(p)
1 , ϕ2

)
k

+
(
ϕ1, ϕ

(p)
2

)
k
− α−1

(
ϕ

(p)
1 , ϕ

(p)
2

)
k

.(60)

If ϕ,ψ ∈ M (Vk,F , ω0)
K#

and ψ∨ ∈ M
(
Vk,F ,N

2k
f

(
ωk0
)−1
)K#

are such that ϕ | Tp = ap (ϕ)ϕ, the

adjointness property of Proposition 2.9 gives, arguing as in (57) and (58):

(61) (p+ 1)
〈
ϕ(p), ψ∨

〉
k

=
〈
ϕ | Tp, ψ∨

〉
k

= ap (ϕ)
〈
ϕ,ψ∨

〉
k

take ψ∨=ψ̌
=⇒ (p+ 1)

(
ϕ(p), ψ

)
k

= ap (ϕ) (ϕ,ψ)k .

In order to get a symmetrical relation, suppose now we have ψ∨ | Tp = ap
(
ψ∨
)
ψ∨ and apply once again

Proposition 2.9 arguing as in (57) and (58) in order to get

(p+ 1)
〈
ϕ,
(
ψ∨
)(p)〉

k
= ap

(
ψ∨
) 〈
ϕ,ψ∨

〉
k

.

Next, note that twisting does not exactly commutes with the right B×f -actions: rather we have ϕ̌g =

nrd−ωf

f (g) ˇ(ϕg). It follows that ψ̌
(p)

= ω−1
f (p̂)

ˇ
(ψ(p)) and ap

(
ψ̌
)

= ω−1
f (p̂)ap (ψ). Then, taking ψ∨ = ψ̌ in the

above relation gives

(p+ 1)ω−1
f (p̂)

〈
ϕ,

ˇ
(ψ(p))

〉
k

= (p+ 1)
〈
ϕ, ψ̌

(p)
〉
k

= ap
(
ψ̌
) 〈
ϕ, ψ̌

〉
k

= ω−1
f (p̂)ap (ψ)

〈
ϕ, ψ̌

〉
k

⇔ (p+ 1)
〈
ϕ, ˇ(ϕ(p))

〉
k

= ap (ψ)
〈
ϕ, ψ̌

〉
k
⇔ (p+ 1)

(
ϕ,ψ(p)

)
k

= ap (ψ) (ϕ,ψ)k .(62)

Finally, the invariance property of 〈−,−〉k gives
〈
ϕ(p),

(
ψ∨
)(p)〉

k
= pk

〈
ϕ,ψ∨

〉
k

and then we find (because

ω−1
f (p̂) = ωf(p

′)):

(63) ω−1
f (p̂)

〈
ϕ(p),

ˇ
(ψ(p))

〉
k

=
〈
ϕ(p), ψ̌

(p)
〉
k

= pk
〈
ϕ, ψ̌

〉
k
⇔
(
ϕ(p), ψ(p)

)
k

= ωf(p
′)−1pk (ϕ,ψ)k .

Inserting (61), (62) and (63) in (60) yields(
ϕ

(α)
1 , ϕ

(α)
2 |Wp

)
k

= (p+ 1)
−1
E · (ϕ1, ϕ1)k ,
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where (using β = ωf (p′)
−1
α−1pk+1):

E = −ωf (p′)
−1
α−1pk+1 − ωf (p′)

−1
α−1pk + ωf (p′)

−1
α−2pkap (ϕ)

+ap (ψ)− ωf(p
′)−1α−1pk+1 − ωf(p

′)−1α−1pk

= −ωf (p′)
−1
α−1pk+1 − ωf (p′)

−1
α−1pk + ωf (p′)

−1
α−1pk + ωf (p′)

−2
α−3p2k+1

+α+ ωf (p′)
−1
α−1pk+1 − ωf(p

′)−1α−1pk+1 − ωf(p
′)−1α−1pk

= −ωf (p′)
−1
α−1pk+1 + ωf (p′)

−2
α−3p2k+1 + α− ωf(p

′)−1α−1pk

= α
(

1− ωf (p′)
−1
α−2pk

)(
1− ωf (p′)

−1
α−2pk+1

)
.

�

6.2. The case of two p-old forms. Let us assume that ϕi ∈ M (Vki,F , ω0,i)
K#

are such that ϕi | Tp =

ap (ϕi)ϕi for i = 1, 2 and that ϕ3 ∈ M (Vk3,F , 1)
K

is p-new, has even weight and trivial central character,

i.e. it is such that ϕ3 | Up = −wp,3pk3/2ϕ3 and ϕ3 | Wp = wp,3p
k3/2ϕ3 with wp,3 ∈ {±1}. To make the

notation uniform, we define α3 := −wp,3pk3/2 and ϕ
(α3)
3 := ϕ3. Then

Ep,1 (α, k) = 1 + wp,3ωf,1 (p′)
p(k2−k1)/2α1

α2
, Ep,2 (α, k) = 1 + wp,3ωf,2 (p′)

p(k1−k2)/2α2

α1

and Ep,3 (α, k) = 1 + wp,3
p(k1+k2)/2

α1α2
.

Proposition 6.7. With the above notations, the following formulas hold:

tk

(
ϕ

(α1)
1 |Wp, ϕ

(α2)
2 , ϕ

(α3)
3

)
= Ep,3 (α, k) tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
= wp,3ωf,1 (p′)

−1
p(k1−k2)/2Ep,3 (α, k) tk

(
ϕ1, ϕ

(p)
2 , ϕ3

)
,

tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 |Wp, ϕ

(α3)
3

)
= Ep,3 (α, k) tk

(
ϕ1, ϕ

(p)
2 , ϕ3

)
= wp,3ωf,2 (p′)

−1
p(k2−k1)/2Ep,3 (α, k) tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
,

tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 , ϕ

(α3)
3 |Wp

)
=

α3

α2
Ep,2 (α, k) tk

(
ϕ1, ϕ

(p)
2 , ϕ3

)
=

α3

α1
Ep,1 (α, k) tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
.

Proof. We begin with the following remark from [17, discussion after Theorem 2]: because tk is K#-invariant

(resp. ω−1
p K#ωp-invariant)5 and ϕi ∈M (Vki,F , ω0,i)

K#

(resp. ϕ
(p)
i ∈M (Vki,F , ω0,i)

ω−1
p K#ωp) for i = 1, 2,

ϕ 7→ tk (ϕ1, ϕ2, ϕ) (resp. ϕ 7→ tk

(
ϕ

(p)
1 , ϕ

(p)
2 , ϕ

)
) is K#-invariant (resp. ω−1

p K#ωp-invariant) and, hence, it

is zero on the irreducible representation Vϕ3
⊂ M (Vk3,F , ω0,3) generated by ϕ3, whose dual representation

does not have non-zero K#-invariant (resp. ω−1
p K#ωp-invariant) vectors. In particular,

(64) tk (ϕ1, ϕ2, ϕ) = tk

(
ϕ

(p)
1 , ϕ

(p)
2 , ϕ

)
= 0.

The computations of tk

(
ϕ

(α1)
1 |Wp, ϕ

(α2)
2 , ϕ3

)
and tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 |Wp, ϕ3

)
are the same, so that we can

work with the second. We have, by Proposition 6.4 (3) and (64):

tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 |Wp, ϕ3

)
= tk

(
ϕ1 − α−1

1 ϕ
(p)
1 , ϕ

(p)
2 − α−1

2 pk2ωf,2 (p′)
−1
ϕ2, ϕ3

)
= tk

(
ϕ1, ϕ

(p)
2 , ϕ3

)
+ ωf,2 (p′)

−1
α−1

1 α−1
2 pk2tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
(65)

5The trilinear form tk satisfies the invariance formula

tk (ϕ1u, ϕ2u, ϕ3u) = Nrdf (u)k
∗
tk (g1, ϕ2, ϕ3)

and we have Nrdf (u) = 1 for u ∈ K# or u ∈ ω−1
p K#ωp.
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Similarly, because ϕ3 |Wp = wp,3p
k3/2ϕ3 and by (64):

tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 , ϕ3 |Wp

)
= wp,3p

k3/2
(
ϕ1 − α−1

1 ϕ
(p)
1 , ϕ2 − α−1

2 ϕ
(p)
2 , ϕ3

)
= −wp,3pk3/2

(
α−1

1 tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
+ α−1

2 tk

(
ϕ1, ϕ

(p)
2 , ϕ3

))
.(66)

Because K#π̂ιpK = K#ω̂p, we have ϕ
(p)
i = ϕi | K#ω̂p; also, noticing that ω̂2

p = −̂p, we see that ω̂−1
p =

−̂p−1
ω̂p = −̂1p̂−1ω̂p, implying that K ′ω̂−1

p = K ′p−1ω̂p for K ′ ∈
{
K#,K

}
. Applying Remark 6.2 gives

ϕi | K ′ω̂
−1
p = ωf,i (p′) p−kiϕi | K ′ω̂p. Hence we find (using the invariance property of tk in the second

equality6 and ϕ3 |Wp = wp,3p
k3/2ϕ3 in the last equality):

tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
= tk (ϕiω̂p, ϕ2, ϕ3) = pk

∗
tk

(
ϕ1, ϕ2ω̂

−1
p , ϕ3ω̂

−1
p

)
=

ωf,2 (p′)

pk2+k3
pk
∗
tk (ϕ1, ϕ2ω̂p, ϕ3ω̂p)

= ωf,2 (p′)wp,3p
(k1−k2)/2tk

(
ϕ1, ϕ

(p)
2 , ϕ3

)
.(67)

Inserting (67) in (65) and (66) yields the claimed formulas. �

6.3. The case of one p-old form. Let us assume that ϕi ∈ M (Vki,F , ω0,i)
K#

are such that ϕi | Tp =

ap (ϕi)ϕi for i = 1 and that ϕi ∈ M (Vki,F , 1)
K

are p-new, have even weight and trivial central character

for i = 2, 3 (implying ωf,1 (p′) = 1). As in the setting of Proposition 6.7, we write αi := −wp,ipki/2 and

ϕ
(α3)
i := ϕi for i = 2, 3. Then

Ep,1 (α, k) = 1− wp,2wp,3α1p
−k1/2 and Ep,2 (α, k) = Ep,3 (α, k) = 1− wp,2wp,3α−1

1 pk1/2.

Proposition 6.8. With the above notations, the following formulas hold:

tk

(
ϕ

(α1)
1 |Wp, ϕ

(α2)
2 , ϕ

(α3)
3

)
= −α−1

1 pk1Ep,1 (α, k) tk (ϕ1, ϕ2, ϕ3) ,

tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 |Wp, ϕ

(α3)
3

)
= −α2Ep,2 (α, k) tk (ϕ1, ϕ2, ϕ3) ,

tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 , ϕ

(α3)
3 |Wp

)
= −α3Ep,3 (α, k) tk (ϕ1, ϕ2, ϕ3) .

Proof. The computations of tk

(
ϕ

(α1)
1 , ϕ2 |Wp, ϕ3

)
and tk

(
ϕ

(α1)
1 , ϕ2, ϕ3 |Wp

)
are the same, so that we can

work with the second. We have, by Proposition 6.4 (3):

tk

(
ϕ

(α1)
1 |Wp, ϕ2, ϕ3

)
= tk

(
ϕ

(p)
1 − α−1

1 pk1ωf,1 (p′)
−1
ϕ1, ϕ2, ϕ3

)
= tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
− α−1

1 ωf,1 (p′)
−1
pk1tk (ϕ1, ϕ2, ϕ3) ,(68)

Also, because ϕ3 |Wp = wp,3p
k3/2ϕ3:

tk

(
ϕ

(α1)
1 , ϕ2, ϕ3 |Wp

)
= wp,3p

k3/2tk

(
ϕ1 − α−1

1 ϕ
(p)
1 , ϕ2, ϕ3

)
= wp,3p

k3/2
(
tk (ϕ1, ϕ2, ϕ3)− α−1

1 tk

(
ϕ

(p)
1 , ϕ2, ϕ3

))
.(69)

Arguing similarly as we did in (67) we find

(70) tk

(
ϕ

(p)
1 , ϕ2, ϕ3

)
= wp,2wp,3p

k1/2tk (ϕ1, ϕ2, ϕ3)

Inserting (70) in (68) and (70) yields the claimed formulas (recall ωf,1 (p′) = 1). �

6We have Nrdf (ω̂p) = |nrd (ω̂p)|−1
Af

= |p|−1
p = p.
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6.4. The case of three p-new forms. Let us assume that ϕi ∈M (Vki,F , 1)
K

are p-new, have even weight

and trivial central character for i = 1, 2, 3. As usual, we write αi := −wp,ipki/2 and ϕ
(α3)
i := ϕi for i = 1, 2, 3.

Then

Ep,1 (α, k) = Ep,2 (α, k) = Ep,3 (α, k) = 1 + w1,pw2,pw3,p.

Proposition 6.9. With the above notations, the following formulas hold:

tk

(
ϕ

(α1)
1 |Wp, ϕ

(α2)
2 , ϕ

(α3)
3

)
= −α1tk (ϕ1, ϕ2, ϕ3) , tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 |Wp, ϕ

(α3)
3

)
= −α2tk (ϕ1, ϕ2, ϕ3)

and tk

(
ϕ

(α1)
1 , ϕ

(α2)
2 , ϕ

(α3)
3 |Wp

)
= −α3tk (ϕ1, ϕ2, ϕ3) .

Furthermore, we have tk (ϕ1, ϕ2, ϕ3) = 0 when w1,pw2,pw3,p = −1.

Proof. Just use ϕi | Wp = wp,ip
ki/2ϕi to get the first formulas. The last assertion is a consequence of the

invariance property of tk, which gives the first of the following equalities, and again the relation ϕi | Wp =

wp,ip
ki/2ϕi, which gives second equality below:

pk
∗
tk (ϕ1, ϕ2, ϕ3) = tk (ϕ1 |Wp, ϕ2 |Wp, ϕ3 |Wp) = w1,pw2,pw3,pp

k∗tk (ϕ1, ϕ2, ϕ3)

�

7. Proof of the main result

7.1. Interpolation property of the p-adic trilinear form. Recall our given k = (k1,k2,k3) such that

k1 ⊕ k2 ⊕ k3 is even, where ki : Z×p → Oi and Ok := O1⊗̂O2⊗̂O3. Consider the spaces M�p (Dki(W ), ωki
0,p),

where ωki
0,p (z) = ωf,i (z) Nki

p (z) with ωf,i the finite part of a unitary Hecke character taking values in F
that are unramified outside p and such that ωf,1ωf,2ωf,3 = 1. Recall that specialization maps attached to
φi : ki → ki ∈ N:

φalg
i,∗ : M�p (Dki(W ), ωki

0,p) −→M�p (Vki,F , ω
ki
0,p) 'M�(Vki,F , ω

ki
0 ),

where ωki0,p (z) = ωf,i (z) Nk
p (z) and ωki0 (z) = ωf,i (z) Nk

f (z). Let set up the following notation in order to

precisely give our statement. Let us fix α := (α1, α2, α3), where αi ∈ O×i and write M�p (Dki(W ), ωki
0,p)

αi for

the subspace of M�p (Dki(W ), ωki
0,p) which is the kernel of Up − αi.

Remark 7.1. There are plenty of examples of non-zero eigenvectors with associated invertible eigenvalue
because the Up-operator acts on these spaces and the Ash-Stevens theory of [4] applies to show that they

have slope ≤ h ∈ R decompositions (as defined in [4]): writing (−)
≤h

for the slope ≤ h part, any eigenvector

in M�p (Dki(W ), ωki
0,p)
≤h has eigenvalue in O×i . Furthermore, the Ash-Stevens theory of [4] applies to show

that we have the control theorem in our setting, from which one can easily deduce that the Up-eigenvectors

of slope ≤ h < k + 1 on M�p (Vki,F , ω
ki
0,p)
≤h lifts to eigenfamilies belonging to M�p (Dki(W ), ωki

0,p)
≤h in an

essential unique way, when φi : ki → ki is obtained from ki ∈ Ui ⊂ X (see also [9] and [38, Theorem 3.7]
for the control theorem in our setting and [11, Corollary B5.7.1] and [20, Corollary 11.4] for these kind of

applications of the control theorem). These lifts to eigenfamilies in M�p (Dki(W ), ωki
0,p)
≤h provide such a kind

of examples.

Next, we define the Ok-valued Ok-linear functionals

Lαp,i : Mα
p := M�p (Dk1

(W ), ωk1
0,p)

α1 ⊗M�p (Dk2
(W ), ωk2

0,p)
α2 ⊗M�p (Dk3

(W ), ωk3
0,p)

α3 → Ok

via the formula

Lαp,1 (ϕ1 ⊗ ϕ2 ⊗ ϕ3) :=
p+ 1

α1
t◦1,k (ϕ1 |W3 ⊗ ϕ2 ⊗ ϕ3) ,

and Lαp,2 and Lαp,3 are defined in a similar way. We will use the notation ϕ to denote an element of M
α
p , that

we may and will assume to be a pure tensor product.
Let us assume, from now on, that ki corresponds to Ui ⊂ X and, if φi : ki → ki ∈ N ∩ Ui is obtained

from ki ∈ Ui ⊂ X , F ∈ Ok = O (U1 × U2 × U3) and k = (k1, k2, k3), let F (k) := (φ1 ⊗ φ2 ⊗ φ3) (F ) be its

evaluation at k. Also, we write ϕi,ki := φalg
i,∗ (ϕi). Because we assume that αi is invertible in Oi and, hence,
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it has finite slope, except for a finite number of points ϕi,ki is old at p and, more precisely, there is a unique

ϕ#
i,ki
∈M�(Vki,F , ω

ki
0 )GL2(Zp) such that ϕi,ki = ϕ

#,(αi)
i,ki

. Let us write U := U1 × U2 × U3.

Definition 7.2. We say that k = (k1, k2, k3) ∈ N3 ∩ U ⊂ X 3 (resp. ki ∈ N ∩ Ui ⊂ X ) is a generic integer
point for ϕ (resp. ϕi) if ϕi,ki is old at p for i = 1, 2, 3 (resp. ϕi,ki is old at p).

If k ∈ N3 ∩ U , we write ϕk := ϕ1,k1
⊗ ϕ2,k2

⊗ ϕ3,k3
and, when k is a generic integer point, we also

write ϕ#
k := ϕ#

1,k1
⊗ ϕ#

2,k2
⊗ ϕ#

3,k3
. When it happens that ϕk belongs to an irreducible representation, we

denote it by Π
(
ϕk
)

and let Π′
(
ϕk
)

be its Jacquet-Langlands lifts to GL2, so that Π
(
ϕk
)

= Π
(
ϕ#
k

)
and

Π′
(
ϕk
)

= Π′
(
ϕ#
k

)
when k is generic. Finally, we write M�p

(
ϕ
)
⊂ M

α
p for the B×3 (Apf )-representation

generated by ϕ over Ok: note that, if ϕ′ ∈M�p
(
ϕ
)
, then Π

(
ϕ′k

)
= Π

(
ϕk
)

for every integer point k. Finally,

we choose vectors ϕ[#k , ϕ[[#k ∈ Π
(
ϕ#
k

)
such that

(
ϕ[#k , ϕ[[#k

)
k
6= 0 (see Lemma 3.2 for their existence and

(21) for a specific choice); we further assume that they satisfy the property that the local components at p

equals the local component at p of ϕ#
k (indeed, because ϕ#

k is new at p, ϕ#
k is the tensor product of its local

component at p, which is defined, and a prime to p-component). Having setup our notations, we can state
our main result, which is a combination of Theorem 3.4, (46), Corollary 5.6 and Proposition 6.5.

Theorem 7.3. There is a unique Ok-valued Ok-linear functional Lαp : M
α
p → Ok such that, for every

ϕ ∈Mα
p and every balanced generic integer point k ∈ U for ϕ,

(71) Lαp
(
ϕ
)

(k) := Ep (α, k) tk

(
ϕ#
k

)
.

We have, indeed, Lαp = Lαp,i for i = 1, 2, 3 and, furthermore, if ϕ ∈Mα
p is a tensor product of three families

and ϕk belongs to the irreducible representation Π
(
ϕk
)
, then

Lαp
(
ϕ
)

(k)
2

= Ep (α, k)
2 Ck

2932

ζ2
Q (2)L

(
1/2,Π′

(
ϕ#
k

))
L
(

1,Π′
(
ϕ#
k

)
,Ad

) ∏
v
Iv(ϕ

#
k )

= Ep (α, k)
2

(
ϕ[#k , ϕ[[#k

)
k

2L
(

1,Π′
(
ϕ#
k

)
,Ad

)L(1/2,Π′
(
ϕ#
k

))∏
v 6=∞,p

C
ϕ[#k ,ϕ[[#k
v

(
ϕ#
k

)
,(72)

where Ck 6= 0 is defined in (22) and Iv(ϕ
#
k ) and C

ϕ[#k ,ϕ[[#k
v

(
ϕ#
k

)
are defined in (25).

Also, suppose that there is a balanced generic integer point k0 for ϕ such that B = B
Π′
(
ϕ#

k0

) is the

quaternion algebra predicted by [34] and L
(

1/2,Π′
(
ϕ#
k0

))
6= 0. Then, up to shrinking U in a neighbourhood

of k0, there exists ϕ′ ∈ M�p
(
ϕ
)

such that, for every balanced generic integer point k ∈ U , we know that
B = BΠ′(ϕ′#k ) = BΠ′(ϕ#

k ) is the quaternion algebra predicted by [34] and we have satisfied the equivalence

Lαp
(
ϕ′
)

(k) 6= 0⇔ L
(

1/2,Π′
(
ϕ′#k

))
= L

(
1/2,Π′

(
ϕ#
k

))
6= 0.

Proof. Applying Corollary 5.6 and Proposition 6.5 to any one of the Lαp,i’s gives (71) with Lαp := Lαp,i and
the uniqueness follows from the Zariski density of the balanced generic integer points in the open affinoid
subdomain U1 ×U2 ×U3 of X 3. Then everything is clear from Theorem 3.4, except we have to explain why

we have excluded C
ϕ[#k ,ϕ[[#k
p

(
ϕ#
k

)
from our local constants. This is because ϕ#

k is the tensor product of

p-new vectors which gives rise, in the local representation at p attached to Π
(
ϕ#
k

)
, to a vector ψp which is

the tensor product of the (unique up to a scalar factor) p-new vectors in the local representations attached

to the ϕ
#,(αi)
i,ki

’s. Then, because the local components of ϕ[#k and ϕ[[#k at p equals the local component at p
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of ϕ#
k , the equality C

ϕ[#k ,ϕ[[#k
p

(
ϕ#
k

)
= 1 follows from [31, Lemma 2.2] (see §8.2 below for more details). The

last assertion follows from (72), Theorem 3.4 (2) and Remark 1.1. �

Remark 7.4. The equality (72) should be understood as an equality of quadratic forms although, with an

eye to its applications (see §8), we have suggestively stated it as if ϕ#
k were a pure tensor. In general,

even in case ϕ is a tensor product of three families, it may happen that ϕk belongs to a sum of irreducible

automorphic representations: then the scalar factor relating the two sides of (72) depend of these irreducible
components via the above L-values. Let us also remark that, in the applications, one usually start with a
tensor product of three eigenfamilies ϕ and then take linear combinations of them: in this case ϕk belongs

to a single irreducible representation Π
(
ϕk
)

for every balanced integer point.

Let us now discuss the value of Lαp
(
ϕ
)

at some balanced integer point k ∈ U where one, two or three of
the Galois representations attached to ϕi,ki are semistable: more precisely, we suppose that, in this case,
the p-new form ϕi,ki has even weight and trivial central character, thus forcing the corresponding ωf,i of the
family ϕi to be 1. The proof is essentially the same of Theorem 7.3: one replaces 6.5 by either 6.7, 6.8 or
6.9.

Proposition 7.5. Suppose that k ∈ U is a balanced integer point such that (i) ϕ3,k3
, resp. (ii) ϕ2,k2

and ϕ3,k3

or resp. (iii) ϕ1,k2
, ϕ2,k2

and ϕ3,k3
are p-new with even weight and trivial central character. Then (72) holds

with the following modified Euler factor E replacing Ep (α, k)
2
, where we write ξki := (p+ 1)ωf,i(p

′)−1pki :

(i) E = ξk1

E2
p,1(α,k)E2

p,3(α,k)

α2
1

= ξk2

E2
p,2(α,k)E2

p,3(α,k)

α2
2

;

(ii) E = 1
pξ

2
k1

Ep,1(α,k)2

α2
1

= 1
p (p+ 1)

2 Ep,2 (α, k)
2

= 1
p (p+ 1)

2 Ep,3 (α, k)
2
;

(iii) E = 2
p

(
1 + 1

p

)
(1 + w1,pw2,pw3,p)

2
.

Proof. Case (i). Applying Corollary 5.6 and Proposition 6.7 gives (71) with tk

(
ϕ#
k

)
replaced by tk

(
ϕ

#(p)
1 , ϕ#

2 , ϕ
#
3

)
(resp. tk

(
ϕ#

1 , ϕ
#(p)
2 , ϕ#

3

)
) and Ep (α, k) replaced by the modified Euler factor E′ := p+1

α1
Ep,1 (α, k) Ep,3 (α, k),

p+1
α2
wp,3ωf,2 (p′)

−1
p(k2−k1)/2Ep,2 (α, k) Ep,3 (α, k) or p+1

α1
Ep,3 (α, k) Ep,1 (α, k), which can be checked to agree

(resp. p+1
α1
wp,3ωf,1 (p′)

−1
p(k1−k2)/2Ep,1 (α, k) Ep,3 (α, k), p+1

α2
Ep,2 (α, k) Ep,3 (α, k) or p+1

α2
Ep,3 (α, k) Ep,2 (α, k),

which again can be checked to agree). Next, as above one applies Theorem 3.4 now with ϕ#
k replaced by

ϕ
#(p)
k := ϕ

#(p)
1 ⊗ ϕ#

2 ⊗ ϕ
#
3 (resp. ϕ

#(p)
k := ϕ#

1 ⊗ ϕ
#(p)
2 ⊗ ϕ#

3 ) and again with ϕ[#k and ϕ[[#k , which fixes(
ϕ[#k , ϕ[[#k

)
k

and the local constants C
ϕ[#k ,ϕ[[#k
p

(
ϕ

#(p)
k

)
. On the other hand, with the notations introduced in

the proof of Theorem 3.4, set ψ[#(p) := fΛk/E

(
ϕ
[#(p)
k

)
, ψ[[#(p) := fΛk/E

(
ϕ
[[#(p)
k

)
and ψ[#(p)∨ :=

ˇ
(ψ[[#(p))

where ϕ
[#(p)
k := ϕ

[#(p)
k1

⊗ ϕ#
k2
⊗ ϕ#

k3
(resp. ϕ

[#(p)
k := ϕ#

k1
⊗ ϕ#(p)

k2
⊗ ϕ#

k3
) and the same for ϕ

[[#(p)
k . Simi-

larly as in the global calculation (63), one checks that
〈
ψ[#(p)
p , ψ[#(p)∨

p

〉
p

= ω−1
f,1 (p′)pk1

〈
ψ[#p , ψ[#∨p

〉
p

(resp.〈
ψ[#(p)
p , ψ[#(p)∨

p

〉
p

= ω−1
f,2 (p′)pk2

〈
ψ[#p , ψ[#∨p

〉
p
) and, consequently, C

ϕ
[#(p)
k ,ϕ

[[#(p)
k

p

(
ϕ

#(p)
k

)
= ωf,1(p′)p−k1C

ϕ[#k ,ϕ[[#k
p

(
ϕ

#(p)
k

)
(resp. C

ϕ
[#(p)
k ,ϕ

[[#(p)
k

p

(
ϕ

#(p)
k

)
= ωf,2(p′)p−k2C

ϕ[#k ,ϕ[[#k
p

(
ϕ

#(p)
k

)
). Because the local components of ϕ[#k and

ϕ[[#k at p equals the local component at p of ϕ#
k , the local components at p of ϕ

[#(p)
k and ϕ

[[#(p)
k equals

the local component at p of ϕ
#(p)
k and [42, Corollary 4.2] gives C

ϕ
[#(p)
k ,ϕ

[[#(p)
k

p

(
ϕ

#(p)
k

)
= 1

p

(
1 + 1

p

)−1

= 1
p+1

(see §8.2 below for more details). Hence

C
ϕ[#k ,ϕ[[#k
p

(
ϕ

#(p)
k

)
= ω−1

f,1 (p′)pk1C
ϕ
[#(p)
k ,ϕ

[[#(p)
k

p

(
ϕ

#(p)
k

)
=
ω−1

f,1 (p′)pk1

p+ 1
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(resp. C
ϕ[#k ,ϕ[[#k
p

(
ϕ

#(p)
k

)
=

ω−1
f,2 (p′)pk2

p+1 ) and we see that C
ϕ[#k ,ϕ[[#k
p

(
ϕ

#(p)
k

)
E′2 = E, as claimed. The proof

of the cases (ii) and (iii) is similar, noticing that we already have everything expressed in term of ϕ#
k and

C
ϕ[#k ,ϕ[[#k
p

(
ϕ#
k

)
= p−1 (resp. C

ϕ[#k ,ϕ[[#k
p

(
ϕ#
k

)
= 2p−1

(
1 + p−1

)
) in case (ii) (resp. (iii)) thanks to [42,

Proposition 4.3] (resp. [42, Proposition 4.4]). �

Remark 7.6. It follows from Deligne’s proof of the generalized Ramanujan conjecture that, in the setting of
the above Proposition 7.5, we may have the vanishing of the Euler factor E only in case (i) or (iii). In the
first case, we have indeed Ep,3 (α, k) 6= 0 and Ep,1 (α, k) = Ep,2 (α, k) = 0 if and only if the equivalence

α1

α2
= −wp,3p(k1−k2)/2ωf,1 (p′)

−1 ⇔ α2

α1
= −wp,3p(k2−k1)/2ωf,2 (p′)

−1

is satisfied (recall ωf,1 (p′)ωf,2 (p′) = 1). In the second case, we have E = 0 if and only if w1,pw2,pw3,p = −1
and, in this case, we see from Proposition 6.9 that there is an extra vanishing due to the complex L-function.

Finally, let us discuss improved p-adic L-functions. Suppose that c ∈ N and consider the plane

Hc
i := {κ ∈ U : κ∗i = c} ⊂ U .

Let us remark that the Euler factor Ep,i (α, k) extends to a rigid analytic function on Hc
i . Suppose that

k′ is such that k′∗1 = c; geometrically, this means that k′ : Z×3
p → Ok factors through the morphism

Ok = O (U) � O (Hc
1) which corresponds to Hc

1 ⊂ U . Then we can consider the Ok′ -valued Ok′ -linear

functional Lα,cp,1 : M
α
p → Ok′ defined via the formula

Lα,cp,1 (ϕ1 ⊗ ϕ2 ⊗ ϕ3) :=
p+ 1

α1
t1,k (ϕ1 |Wp ⊗ ϕ2 ⊗ ϕ3) ,

and Lα,cp,2 and Lα,cp,3 are defined in a similar way when k′∗2 = c or, respectively, k′∗3 = c (see (44) for the

definition of ti,k). Taking k′ to be the morphism which corresponds to Hc
i ⊂ U and applying Corollary 5.6

yields the following result.

Proposition 7.7. The above O (Hc
i )-linear functional Lα,cp,i is uniquely characterized by the property that,

for every ϕ ∈Mα
p ,

Lαp
(
ϕ
)
|Hci

= Ep,i (α,−)Lα,cp,i
(
ϕ
)

as rigid analytic functions on Hc
i .

7.2. Variants. Let us explain how one can rewrite the term
Ω(ϕ#

k )

L(1,Π′(ϕ#
k ),Ad)

that appears in the interpolation

formula (72) when Ω(ϕ#
k ) 6= 0. Suppose that f ∈ Sk (N, ε) is a normalized newform with nebetype ε

having conductor Nε and write π (f) =
⊗

v πv (f) for the corresponding automorphic representation: we
recall that a formula of Shimura and Hida relates L (ad (π (f)) , 1) and the Petersson inner product (f, f)k
that we normalized as in (1). Let us define L (ad (π (f)) , s) =

∏
v Lv (ad (π (f)) , s) and LH (ad (f) , s) =∏

v 6=∞ LHv (ad (f) , s), where

L∞ (ad (π (f)) , s) = 2 (2π)
−(s+k−1)

Γ (s+ k − 1)π−(s+1)/2Γ

(
s+ 1

2

)
and the Euler factors are defined as follows:

Ll (ad (π) , s)
−1

=


(1− l−s) (1− χ1χ2 (l) l−s) (1− χ1χ2 (l) l−s) , πl = π (χ1, χ2) is principal

1− l−1−s, πl is special,
1 + l−s, πl is supercuspidal and πl ' πl ⊗ ηl,

1, πl is supercuspidal and πl � πl ⊗ ηl.

LHl (ad (f) , s)
−1

=


(
1− lk−1−s) (1− ε (q)

−1
α2
l l
k−1−s

)(
1− ε (q)

−1
β2
l l
k−1−s

)
, if l - N ,(

1− l−1−s) (1 + l−s) , if l ‖ N and l - Nε,
1− l−1−s, if l | N and l - N/Nε,
1 + l−s, otherwise;
42



Then (see [26, Theorem 5.1] and [14, Theorem 2.2.3 and Corollary 2.2.4] for the notations employed here):

(73) L (ad (π (f)) , 1) =
2kπ

3
(f, f)k

∏
l|N

Ll (ad (π (f)) , 1)

LHl (ad (f) , 1)
.

Let us now go back to our family ϕ ∈ M
α
p specializing to ϕk = ϕ

#(α1)
k1

⊗ ϕ
#(α2)
k1

⊗ ϕ
#(α3)
k1

and write

the GL2 representation π′
(
ϕki
)

attached to ϕki as π′
(
ϕki
)

= π
(
f#
ki

)
where f#

ki
∈ Ski (Ni, εi) is a nor-

malized newform (in particular, εi (z) = ω−1
f,i (z) viewing z ∈ Z diagonally embedded in Af) and set f#

k :=(
f#
k1
, f#
k2
, f#
k3

)
and Ω(f#

k ) :=
(
f#
k1
, f#
k1

)
k1

(
f#
k2
, f#
k2

)
k2

(
f#
k1
, f#
k1

)
k3

. Then we have Lv

(
s,Π′

(
ϕ#
k

)
,Ad

)
=∏

i=1,2,3 Lv

(
ad
(
π
(
f#
ki

))
, s
)

and we define LHl

(
s, f#

k ,Ad
)

:=
∏
i=1,2,3 L

H
l

(
ad
(
f#
ki

)
, s
)

andM := lcm(N1, N2, N3)).

The following result is a direct consequence of Lemmas 5.7 and 6.6.

Proposition 7.8. Suppose that k : Z×p → O corresponds to an open affinoid subdomain and that ϕ[, ϕ[[ ∈
M�p

(
Dk (W ) , ωk

0,p

)α
for the same α ∈ O×. Then p+1

α

(
ϕ[, ϕ[[

)
∈ O is the unique rigid analytic function

such that, for every generic integer k ∈ N ∩ U (for ϕ[ and ϕ[[),

p+ 1

α

(
ϕ[, ϕ[[

)
(k) =

(
1− ωf (p′)

−1
α−2pk

)(
1− ωf (p′)

−1
α−2pk+1

)(
ϕ[#k , ϕ[[#k

)
k

,

where ϕ[#k (resp. ϕ[[#k ) is the unique vector in M�(Vk,F , ω
k
0)GL2(Zp) such that ϕ

[#(α)
k = ϕ[k (resp. ϕ

[[#(α)
k =

ϕ[[k ) and ϕ[k (resp. ϕ[[k ) is the specialization of ϕ[ (resp. ϕ[[) at k.

In particular, if ϕ[i , ϕ
[[
i ∈M�p (Dki(W ), ωki

0,p)
αi , ϕ[ := ϕ[1⊗ϕ[2⊗ϕ[3 ∈M

α
p and ϕ[[ := ϕ[[1 ⊗ϕ[[2 ⊗ϕ[[3 ∈M

α
p ,

we can define (
ϕ[, ϕ[[

)
p

:= (p+ 1)
3

(
ϕ[1, ϕ

[[
1

)
α1

⊗̂
(
ϕ[2, ϕ

[[
2

)
α2

⊗̂
(
ϕ[3, ϕ

[[
3

)
α3

∈ Ok,

which satisfies, at every generic integer point k ∈ N3 ∩ U (for ϕ[ and ϕ[[), the interpolation property(
ϕ[, ϕ[[

)
p

(k) = EΩ
p (α, k) (ϕ[#k , ϕ[[#k )k,

where

EΩ
p (α, k) :=

∏
i=1,2,3

(
1− ωf,i (p′)

−1
α−2
i pki

)(
1− ωf,i (p′)

−1
α−2
i pki+1

)
and ϕ[#k := ϕ[#k1

⊗ ϕ[#k2
⊗ ϕ[#k3

(resp. ϕ[[#k := ϕ[[#k1
⊗ ϕ[[#k2

⊗ ϕ[[#k3
) if ϕ[#ki (resp. ϕ[[#ki ) is the unique

vector in M�(Vki,F , ω
ki
0 )GL2(Zp) such that ϕ

[#(αi)
ki

= ϕ[ki (resp. ϕ
[[#(αi)
ki

= ϕ[[ki) and ϕ[ki (resp. ϕ[[ki) is the

specialization of ϕ[i (resp. ϕ[[i ) at ki. We may choose ϕ[i and ϕ[[i in such a way that, for every generic integer

point k ∈ N3 ∩ U for both ϕ[ and ϕ[[, we have (ϕ[#k , ϕ[[#k )k 6= 0 and so that the local components at p of

the specialization of ϕ[i and ϕ[[i equals the local components at p of the specializations of ϕi: indeed, for
example, we may take ϕ[i a newvector of tame level Ni and ϕ[[i := ϕ[i |WNi (see (21).

Then, thanks to (73) and Proposition 7.8, we find for every generic integer point k ∈ N3 ∩ U for both ϕ,

ϕ[ and ϕ[[ (the notation
(ΩNE)

= means that the equality holds when EΩ
p (α, k) 6= 0, see Remark 1.2):

(ϕ[#k , ϕ[[#k )k

L
(

1,Π′
(
ϕ#
k

)
,Ad

) =
27

4k
∗
π3

(ϕ[#k , ϕ[[#k )k

Ω(f#
k )

∏
l|M

LHl

(
s, f#

k ,Ad
)

Ll

(
s,Π′

(
ϕ#
k

)
,Ad

)
(ΩNE)

=
27

4k
∗
π3

∏
l|M

LHl

(
s, f#

k ,Ad
)

Ll

(
s,Π′

(
ϕ#
k

)
,Ad

) (
ϕ[, ϕ[[

)
p

(k)

EΩ
p (α, k) Ω(f#

k )
.(74)
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8. An explicit example

Recall the cuspidal finite slope hi Coleman eigenfamilies fi of tame level Ni, trivial nebentype εi = 1
and Up-eigenvalue αi ∈ O defined in the connected affinoid subdomain Ui of the weight space X that was
considered in the introduction (we are going to relax the assumption on the level that we did there, which
is no longer in force).

Remark 8.1. Let us fix a Dirichlet character ε :
( Z
NZ
)× → C of level prime to p. It follows from the work of

Coleman that prime to p newforms vary in families: there is a sheaf of families of overconvergent modular

forms f of finite slope on the weight space whose specializations at k belongs to Sk+2 (Γ0 (pN) , ε)
N−new

for
almost every k’s (see [11, discussion after Corollary B5.7.1]). Working over connected affinoids U ⊂ X there
are plenty of sections of this sheaf. More precisely, let us fix a real number h ≥ 0 and let us assume that

f ∈ Sk0+2 (Γ0 (pN) , ε)
N−new

is such that k0 > h + 1 and has slope h. Under a mild further assumption,
it is shown in [11, Corollary B5.7.1] the existence of a family f such that fk0 = f and, for every integer

k > h + 1 (an integer points in our notations), fk ∈ Sk+2 (Γ0 (pN) , ε)
N−new

and has slope h. Let us also
remark that, if f is a finite slope overconvergent modular forms as above defined on a connected affinoid,

then its slope is constant, say h, and fk ∈ Sk+2 (Γ0 (pN) , ε)
N−new

for every integer k > h + 1, as it follows
from the Coleman’s classicality result.

One can give the following geometric interpretation of this result. As explained in [20, §12.1 and Corollary
10.7], the work on Ash-Stevens on slope decompositions combined with standard techniques due to Coleman-

Mazur and Buzzard yields the construction of a curve w : C≤hN,ε → X parametrizing cuspidal eigenforms

of level Γ0 (pN) and nebetype ε which are N -new and of slope ≤ h. The Coleman-Mazur eigencurve

w : CN,ε → X parametrizing these objects with the relaxed finite slope condition admits C≤hN,ε as a closed

curve7 and it is the union of them. The families f obtained from [11, Corollary B5.7.1] corresponds to

sections s : U → C≤hN,ε ⊂ CN,ε of w (see [20, Corollary 10.7 (iii)]). Moreover, if s : U → CN,ε is a section of

w : CN,ε → X , because U is a connected affinoid, s (U) ⊂ C≤hN,ε for some h.

Recall that, for every generic integer point k, the specialization fi,k = fi,k is the p-stabilization of a level

Ni newform f#
i,k = f#

i,k and we let πi,k =
⊗

v πi,k,v be the associated automorphic representation. We write

D := gcd(N1, N2, N3) (resp. M := lcm(N1, N2, N3))

for the greatest common multiple (resp. the least common multiple).

Lemma 8.2. Suppose that f is a finite slope cuspidal p-adic Coleman eigenfamily new of tame level N and
nebetype ε defined on some open affinoid subdomain U as in Remark 8.1 above. Let us write πk =

⊗
v πk,v

for the automorphic representation attached to an integer point k ∈ U . If πk0,v is a principal series, special
or supercuspidal representation of conductor ck0,v at an integer point k0 ∈ U and v 6= p,∞, then πk,v has
the same property for every integer point k ∈ U .

Proof. According to the work of Coleman-Mazur [13] (see also [2, Theorem 5.1]), there is a pseudocharacter
T : GQ → OCN,ε such that the specialization Ty of T at a classical point y ∈ CN,ε is (the pseudocharacter of)
the representation ρy attached to the eigenform y, characterized by the fact that the trace of the geometric

Frobenius at l is the eigenvalue of Tl acting on y for almost every l. Let us write s# : OCN,ε → O := OX (U)
for the morphism induced by s : U → CN,ε, where s corresponds to f , as explained in Remark 8.1. Then
Ts := s# ◦T has the property that its specialization at an integer point k ∈ U is (the pseudocharacter of) the
representation ρk := ρfk attached to the eigenform fk. Because O is a PID, it follows from [13, Theorem 5.1.2
and Remark after it] that T = ρ is indeed (the pseudocharacter of) a representation ρ : GQ → GL2 (O) which
interpolates the representations ρk’s. We also refer the reader to [2, §6.2] for an alternative construction of
this representation.

According to [5, Lemma 7.8.14], writing Wv for the Weil-Deligne group of Q at v, we have that ρ|Wv

is monodromic in the sense of [36, Definition 2.2]. This means that we can attach to it a Weil-Deligne

7Via the morphism OCN,ε → OC≤h
N,ε

which sends a Hecke operator acting on finite slope overconvergent modular forms to

the Hecke operator acting on overconvergent modular forms of slope ≤ h.
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representation WDv (ρ) with coefficients in O via [5, Definition 7.8.13]: we remark that, writing WDv (ρ)k
for its specialization at k, we have WDv (ρ)k = WDv (ρk) by the uniqueness assertion of [5, Lemma 7.8.12]
characterizing the monodromy and the definition of r in loc.cit. Let us remark that the automorphic type of

πk,v and its conductor are encoded in the Frobenius semisimplification WDv (ρk)
Fr−ss

of WDv (ρk) thanks
to the local-global compatibility, which is well known in this case and widely covered by the Hilbert case
handled in [8]. We can now apply [36, Theorem 3.1 (1) and (4)] and [37, Theorem 3.1] to deduce that

the automorphic type of πk,v and its conductor are constant if WDv (ρk)
Fr−ss

is pure, i.e. it satisfies the
monodromy conjecture (see [36, Definition 2.10]). Since the conjecture is well known in our setting and,
again, widely covered by [8], the lemma is proved.

Let us also remark that the assertion about the conductor also follows from the fact that fk is new outside
p and the costancy of automorphic types can also be proved along the lines of [19, Lemma 2.14]. Indeed, the
proof of [19, Lemma 2.14] needs as an input a representation interpolating the ρk’s as the ρ above and then
the arguments of loc.cit. apply. More precisely, case (a) of loc.cit. does not need any further explanation,
while case (b) of loc.cit. take advantage of a base change argument and, hence, needs a theory of Coleman
families attached to Hilbert modular forms, which has been developed in [2, Theorem 5.1], and also a base
change theorem for Coleman families. This latter ingredient can be proved as in the case of Hida families,
but we have not been able to provide a reference in our broader setting. Alternatively, we remark that case
(b) of loc.cit. also follows from [18, Lemma 2.6.2] without the need to make a base change, but again this
result is formulated in the setting of Hida families. Let us explain another approach based on [36, Theorem
3.1 (2)] which avoids the base change argument and applies to Coleman families. The main point of (b)
is proving that, if πk0,v is special, then the same is true for πk,v. By the local Langlands correspondence

for GL2 (Qp), this means that if the monodromy of WDv

(
ρk0

)Fr−ss
is non-trivial, then the same is true

for WDv (ρk)
Fr−ss

: but this follows from [36, Theorem 3.1 (2)]. More precisely, writing L for an algebraic
closure of the fraction field of O, let us write t (resp. tk) for the smallest integer s such that Ns = 0 on(
L ⊗O WDv (ρ)

)Fr−ss
(resp. WDv (ρk)

Fr−ss
). Then a priori tk ≤ t and [36, Theorem 3.1 (2)] gives tk = t

whenever WDv (ρk)
Fr−ss

is pure, from which the required tk = t = tk0 = 2 follows. We note that [36,
Theorem 3.1 (2)] is already proved in the first paragraph of pag. 890 of loc.cit. taking into account that the
integer tk can be characterized by the fact that 2 (tk − 1) equals the difference between the larger and the

smaller weight of WDv (ρk)
Fr−ss

when WDv (ρk)
Fr−ss

is pure (or when it is indecomposable). �

According to Lemma 8.2, the conductor of πi,k,l at a finite prime l 6= p is a well defined quantity which
does not depend on the choice of the point k ∈ N∩Ui: we denote it by cl(fi) and let cl := maxi=1,2,3 {cl(fi)}.
We recall that, if l is a finite prime, an irreducible admissible representation of GL2(Ql) admits a Jacquet-
Langlands lift if and only if it is special or supercuspidal. Hence, in view of Lemma 8.2, it makes sense to
consider

SJL := {l 6= p finite primes : πi,k,l admits a JL-lift, ∀k ∈ N ∩ Ui and i = 1, 2, 3} and DJL :=
∏
l∈SJL l

cl | D.

Next, we suppose that DJL is squarefree and define

S−JL :=
{
l | DJL : −al (f1,k1) al (f2,k2) al (f3,k3) l−

k1+k2+k3
2 = −1

}
and D−JL :=

∏
l∈S−JL

l,

where we remark that D−JL is indeed independent of k: because l 6= p, the function of k that appears in the

definition of D−JL is rigid analytic and, being {±1}-valued on the Zariski dense subset of integer points of the
connected affinoid subdomain U1 ×U2 ×U3, is indeed constant. Because we assume that DJL is squarefree,
we have the equality

εl

(
f#
k

)
= −al (f1,k1) al (f2,k2) al (f3,k3) l−

k1+k2+k3
2 ,

and we see that there is a well defined finite “generic sign” εfin (f). Next, we make the following further
assumptions that will be in force until the end of this section.

(Bal) εfin (f) = −1, i.e. D−JL is the product of an odd number of primes;

(Con) For every l | M , we have cl(fi ) ≤ 1 for i = 1, 2, 3 or there is an index il such that cl(fil ) ≥
2 maxi 6=il {cl(fi) , 1}.
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Let us write αi for the Up-eigenvalues attached to fi, so that αi ∈ O. Write B for the definite quaternion

algebra of discriminant D−JL: then fi lifts to an element of M�p (Dki(W ), ωki
0,p)

αi (by the p-adic Jacquet-

Langlands correspondence, see [10]) and it follows from (Bal) that B is the quaternion algebra predicted by
[34] at every integer and balanced point k.

Under these assumptions, we can prove the following result.

Theorem 8.3. There exists

ϕ ∈M�p (Dk1
(W ), ωk1

0,p)
α1 ⊗M�p (Dk2

(W ), ωk2
0,p)

α2 ⊗M�p (Dk3
(W ), ωk3

0,p)
α3

such that, for every balanced generic integer point k ∈ U for ϕ,

Lαp
(
ϕ
)

(k)
2

= Ep (α, k)
2

(
ϕ#
k , ϕ

#
k

)
k

2L
(
1,Πk,Ad

)L (1/2,Πk

)∏
l|M

Cl,

where the constants Cl are defined as follows.

• If l | D−JL, then Cl = 2 1
l

(
1− 1

l

)
;

• If l |M/D−JL and cl(fi) ≤ 1 for i = 1, 2, 3, then8

Cl =


1
l

(
1 + 1

l

)−1
, if one of the representations is special unramified.

1
l , if two of the representations are special unramified,

2
l

(
1 + 1

l

)
, if three of the representations are special unramified;

• If l | M/D−JL and c := cl(fil) ≥ 2 maxi 6=il {cl(fi) , 1}, then Cl =
Lv(1,Π′v,Ad)

ζ2
Qv (2)Lv(1/2,Π′v)

C ′l , where C ′l =∏
i6=il

(1−A(πi))

lc

(
1 + 1

l

)
and

A(πi) :=


1

1−l , if πi is supercuspidal or πi = π (χ1, χ2) with χk ramified for k = 1, 2,
1

1+l

(
al(fi)

2

ε(l)lki+1 −
(
1 + 1

l

))
, if πi = π (χ1, χ2) is principal unramified,

− 1
l , if πi is special unramified,

0, if πi = π (χ1, χ2) with one χk ramified and the other unramified.

Remark 8.4. The contribution of the local L-factors in the third case depends on the nature of the repre-
sentations. For example, we have Cl = C ′l when the two representations having the smaller conductor are
unramified.

8.1. The p-adic Jacquet-Langlands correspondence and the choice of the test vector. By Ch-
enevier’s p-adic Jacquet-Langlands correspondence (see [10]), the eigenvector fi corresponds to an eigenvec-

tor ϕfi in M�p (Dki(W ), ωki
0,p)

αi with the property that its specializations are new at all the primes l, the only

possible exception being at l = p. If l - D−JLp is a finite prime, we write δ̂lc for the element of GL2 (Af)
defined by the following local conditions:(

δ̂lc
)
v

=

 1 if v 6= l,

δlc =

(
lc 0
0 1

)
if v = l.

Set ϕ
f

:= ϕf1 ⊗ ϕf2 ⊗ ϕf3 and define ϕ in M�p (Dki(W ), ωki
0,p)

αi as follows. For every finite prime l, let

il be the index which realizes the largest conductor cl(fil) and let jl 6= il be the index which realizes
the second largest conductor cl(fjl). Suppose we have, for example, il = 3 and jl = 2: then we define

δ̃l := 1 ⊗ δ̂lcl(f3)−cl(f2) ⊗ 1. Finally, we set δ̃M :=
∏
l|M δ̃l and define ϕ := ϕ

f
δ̃M . Let us remark that ϕ is

designed so that its specialization at an arithmetic point k is a pure tensor whose component at the finite
primes different from p are either a tensor product of new vectors when l - M or, assuming as above that
il = 3 and jl = 2 and taking into account the twist (15):

(75) ψl = lk2/2ψ1,l ⊗ ψ2,lδlcl(f3)−cl(f2) ⊗ ψ3,l =: lk2/2ψ0
l ,

8By a special unramified representation, we mean the twist by an unramified character of the special representation. Of
course, this is a ramified representation of conductor 1
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where ψi,l is a new vector in πi,ki,l . In particular, the same property is enjoyed by ϕ#
k

, whose local component

at the primes l 6= p agrees with the local component of ϕ.

8.2. Proof of Theorem 8.3. We have to make explicit the local constants C
ψv,ψ̌v
v (ψv) := Iv(ψv⊗ψ̌v)

(ψv,ψ̌v)v
associ-

ated to the local components of ϕ#
k whose p-stabilization ϕk is the specialization of ϕ at the finite primes that

appear in Theorem 7.3 where we choose ϕ[#k = ϕ[[#k = ϕ#
k (at the same time we will see that

(
ϕ[#k , ϕ[[#k

)
k

=(
ϕ#
k , ϕ

#
k

)
k
6= 0 from the local calculation and (22)). As noticed in Remark 3.5, C

ψv,ψ
∨
v

v (ψv, ψ
∨
v ) does not

depend on the non-zero vector in the lines spanned by either ψv or ψ∨v : thanks to our assumption on the

central characters, we see that ψ̌i,l = ω−1
i,l ψi,l (resp. ˇ(ψi,lδlc) = ωi,l(l)

cψ̌i,lδlc = ωi,l(l)
cω−1

i,l ψi,lδlc) is a new

vector (resp. the translate by δlc of a new vector) as it is ψi,v (resp. ψi,vδlc); it follows that
〈
ψl, ψ̌l

〉
l
6= 0

and, from (75), that we have C
ψv,ψ̌v
v (ψv) = C

ψv,ψv
v (ψv, ψv) = C

ψ0
v,ψ

0
v

v (ψ0
v, ψ

0

v). Hence our claim follows

from the following computations of the local constants Cv(ψ
0
v, ψ

0

v), which always uses (75) as a test vector.
When l is prime to M , Cl(ψl) = 1 by [31, Lemma 2.2]. When l | D−JL this is done in [42, Proposition 4.5].

When l |M/D−JL and cl(fi ) ≤ 1, then π1,k1,l ⊗ π2,k2,l ⊗ π3,k3,l is the tensor product of unramified principal
series representations with either one, two or three special unramified representations: then we may apply
[42, Corollary 4.2], [42, Proposition 4.3] or, respectively, [42, Proposition 4.4]9. Finally, the computation of
ζ2
Qv (2)Lv(1/2,Π′v)
Lv(1,Π′v,Ad) Cv(ψv) in the last case follows from [30, Theorem 4.1], once we remark that the roots αl

and βl of the Hecke polynomial of a weight k+ 2 supercuspidal eigenform f at l satisfy χ1(l) = αl
p(k+1)/2 and

χ2(l) = βl
p(k+1)/2 , when the associated automorphic representation at l is principal unramified of the form

π (χ1, χ2), implying that we have

χ1(l)

χ2(l)
+
χ2(l)

χ1(l)
=
χ2

1(l) + χ2
2(l)

χ1(l)χ2(l)
=
α2
l + β2

l

αlβl
=

(αl + βl)
2 − 2αlβl

αlβl

in loc.cit.

8.3. Variants. Let us remark that we have ˇ(ψg) = ω(nrd(g))ψ̌g = ωf(nrd(g))ψ̌g and then we see from the
invariance of the left hand side of (20) (or directly from the definition of (−,−)

k
) that we have

(ϕ1g, ϕ2g)
k

= ωf(nrd(g))−1(ϕ1, ϕ2)
k
.

Write ϕ#
f ,k := ϕ#

f1,k1
⊗ ϕ#

f2,k2
⊗ ϕ#

f3,k3
, where ϕ#

fi,ki
is the unique vector whose p-stabilization ϕfi,ki is the

specialization of ϕ
f
. Then it follows from (75) that we have an equality

(
ϕ#
k , ϕ

#
k

)
k

= µ
(
ϕ#
f ,k, ϕ

#
f ,k

)
k

for

a non-zero constant µ which does not depend on k: a product of values of the kind ω−1
l,i (nrd(δlc)), indeed,

which is therefore 1. Thus we can substitute

(76)
(
ϕ#
k , ϕ

#
k

)
k

=
(
ϕ#
f ,k, ϕ

#
f ,k

)
k

in Theorem 8.3 and also apply (74).
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[23] R. Greenberg and G. Stevens, p-adic L-functions and p-adic periods of modular forms, Invent. math. 111 (1993), 401-447.
[24] M. Harris and S. S. Kudla, The Central Critical Value of a Triple Product L-Function, Ann. of Math. (2) 133 no. 3 (1991),

605-672.

[25] M. Harris and J. Tilouine, p-adic measures and square roots of special values of triple product L-functions, Math. Annalen
320 (2001), 127-147.

[26] H. Hida, Congruence of cusp forms and special values of their zeta functions, Invent. Math. 63 no. 2 (1981), 225-261.

[27] H. Hida, Galois representations into GL2 (Zp [[X]]) attached to ordinary cusp forms, Invent. Math. 85 no. 3 (1986),
545-613.

[28] H. Hida, Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math. 110 (1988),
323-382.

[29] M. L. Hsieh, Hida families and p-adic triple product L-functions. Preprint arXiv:1705.02717.

[30] Y. Hu, The subconvexity bound for the triple product L-function in level aspect, Am. J. Math. 139 no. 1 (2017).
[31] A. Ichino, Trilinear forms and the central values of triple product L-functions, Duke Math. J. 145 no. 2 (2008), 281-307.

[32] G. Kings, D. Loeffler and S.-L. Zerbes, Rankin-Eisenstein classes and explixit reciprocity laws, Cambrdige J. Math. 5 no.

1 (2017), 1-122.
[33] B. Mazur, J. Tate and J. Teitelbaum, On p-adic analogs of the conjectures of Birch and Swinnerton-Dyer, Invent. Math.

84 (1986), 1-48.

[34] D. Prasad, Trilinear forms for representations of GL(2) and local ε-factors, Compos. Math. 75 Issue 1 (1990), 1-46.
[35] R. Pollack and T. Weston, On anticyclotomic µ-invariants of modular forms, Compos. Math. 147 Issue 5 (2011), 1353-

1381.

[36] J. P. Saha, Purity for families of Galois representations, Ann. I. Fourier 67 (2017), 879-910.
[37] J. P. Saha, Conductors in p-adic families, Ramanujan J. 44 (2017), 359-366.

[38] M. A. Seveso, Heegner cycles and derivatives of p-adic L-functions, J. Reine Angew. Math. 686 (2014), 111-148.
[39] R. Venerucci, p-adic regulators and p-adic families of modular forms, Ph. D. thesis.
[40] R. Venerucci, Exceptional zero formulae and a conjecture of Perrin-Riou, Invent. Math. 203 (2016), 923-972.

[41] A. Weil, Adeles and algebraic groups, Progress in Mathematics vol. 23, Birkhäuser Boston, 1982.
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