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Abstract

Sulfur dioxide is generally used as an antimicrobial in wine to counteract the activity of spoilage yeasts,
including Brettanomyces bruxellensis. However, this chemical does not exert the same effectiveness on
different B. bruxellensis yeasts since some strains can proliferate in the final product leading to a negative
sensory profile due to 4-ethylguaiacol and 4-ethylphenol. Thus, the capability of deciphering the general
molecular mechanisms characterizing this yeast species’ response in presence of SO, stress could be
considered strategic for a better management of SO, in winemaking. A RNA-Seq approach was used to
investigate the gene expression of two strains of B. bruxellensis, AWRI 1499 and CBS 2499 having
different genetic backgrounds, when exposed to a SO, pulse. Results revealed that sulphites affected yeast
culturability and metabolism, but not volatile phenol production suggesting that a phenotypical heterogeneity
could be involved for the SO, cell adaptation. The transcriptomics variation in response to SO, stress
confirmed the strain-related response in B. bruxellensis and the GO analysis of common differentially
expressed genes showed that the detoxification process carried out by SSU/ gene can be considered as the
principal specific adaptive response to counteract the SO, presence. However, nonspecific mechanisms can
be exploited by cells to assist the SO, tolerance; namely, the metabolisms related to sugar alcohol (polyols)

and oxidative stress, and structural compounds.

Keywords: B. bruxellensis, RNA-Seq, SO, stress, SSUI gene
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1. Introduction

Brettanomyces bruxellensis is one of the yeast species causing wine spoilage, in particular red wines aged in
contact with wood (Fabrizio et al., 2015). It can cause several types of defects, including biofilm formation
(Fugelsang et al., 1993), loss of colour (Mansfield et al., 2002), production of acetic acid (Vigentini et al.,
2008) thus leading to high volatile acidity (Fugelsang et al., 1993), mousy off-flavours, biogenic amines
(Grbin and Henschke, 2000), and volatile phenols (VPs) (Chatonnet et al., 1995; Loureiro and Malfeito-
Ferreira, 2003; Oeclofse et al., 2009). The latter, in particular, can have a detrimental effect on wine aroma
conferring undesirable notes associated to descriptors such as “leather”, “horse sweat”, “medicinal”,
“barnyard” and “bacon” (Chatonnet et al., 1995). The VPs derive from a two-step enzymatic reaction
involving free hydroxycinnamic acids present in wine (Gerbaux et al., 2002; Oelofse et al., 2008). Red wines
are more susceptible to the growth of B. bruxellensis because of their lower acidity and the frequent aging in
wood containers (Campolongo et al., 2014), where a semi-anaerobic environment can be established.
However, B. bruxellensis has also been isolated in bottled wine indicating its ability to survive even in
anaerobic condition (Oelofse et al. 2008).

In order to prevent the production of these off-flavours, the growth of B. bruxellensis needs to be controlled.
Although it displays adverse effects on human health above a certain concentration (Pozo-Bayon et al. 2012),
sulfur dioxide (SO,) is the most common preservative used in winemaking also known for its antioxidant and
antioxidasic properties (Divol et al., 2012). Its antiseptic activity against B. bruxellensis has been well
documented (Agnolucci et al., 2014). Nevertheless, B. bruxellensis displays a certain level of resistance to
SO,, which is variable among yeast species, strains and physiological state (in connection to growth phase),
besides also being a heritable feature (Beech and Thomas 1985; Warth 1985; Pilkington and Rose 1988;
Divol et al. 2006; Ventre 1934). A better understanding of the molecular mechanisms conferring SO,
resistance to Brettanomyces would be useful to fine-tune the winemaking practices in order to reduce the
spoilage risks. Resistance mechanisms previously observed in the reference wine yeast, Saccharomyces
cerevisiae, as a response to SO, stress include the production of acetaldehyde and upregulation of SSUJ, a
gene encoding a plasma-membrane SO, efflux pump (Stratford et al., 1987; Pilkington and Rose 1988S;
Casalone et al., 1992; Park and Bakalinsky 2000). Nardi et al. (2010) highlighted sulphite as the main
regulator of SSU! expression in S. cerevisiae. Recently, Nadai et al. (2016) through a transcriptomic
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approach pointed out that in S. cerevisiae the effects of sulphite stress involve adaptation mechanisms based
on a higher basal gene expression level, rather than a specific gene induction. As for B. bruxellensis,
previous investigations (Curtin et al., 2012b; Vigentini et al., 2013) suggested that the response to SO, in B.
bruxellensis is also a strain-dependent trait. In this yeast species, variations in SSUI expression were
observed. Indeed, Varela et al. (2019) showed that four different SSUI haplotypes contribute to the strain-
dependent character observed upon SO, exposure and this could explain why differences in both culturability
and viability can arise depending on the amount of SO, and on the haplotype of the strain investigated
(Agnolucci et al., 2014). B. bruxellensis has indeed been observed to enter into a Viable but not Culturable
(VBNC) state upon SO, exposure (Millet et al. 2000). The molecular bases of this state were recently studied
by Capozzi et al. (2016). The latter authors observed the induction of genes related to carbohydrate
metabolism, heat shock proteins, amino acid transport and transporter activity during recovery.

Although several studies investigated the B. bruxellensis tolerance toward the SO, stress, information on the
species-associated specific and/or general adaptive molecular mechanisms shared by different strains to
counteract the presence of SO, is still fragmented.

In this study, two strains of B. bruxellensis, AWRI 1499 and CBS 2499, were investigated under oenological
conditions using a transcriptomic approach. In order to standardize the environmental conditions and to
generate consistent data, the growth of both strains was performed in a bioreactor and the RNA-Seq analysis
was carried out at pertinent sampling times to determine possible short- and long-term stress responses.
Considering the diversity of genetic backgrounds within the species B. bruxellensis, the yeast strains were
carefully chosen for (1) the availability of their complete genome sequence, (2) their different ploidy, and (3)
their distinct sensitivity to SO, (i.e. AWRI 1499 is more resistant than CBS 2499) (Avramova et al., 2018).
The aim was to describe the molecular mechanisms allowing strains across this yeast species to survive and
grow under SO, stress. The information generated can be considered strategic for an optimized management

of SO, during wine fermentation and ageing.
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2. Materials and Methods
2.1. Yeasts, media and culturing conditions

Two strains of B. bruxellensis, AWRI 1499 (Curtin et al., 2012a;
https://www.ncbi.nlm.nih.gov/genome/119017genome assembly id=40324) and CBS 2499 (Piskur et al.,
2012; https://genome.jgi.doe.gov/Dekbr2/Dekbr2.home.html), were used. Yeasts cultures were maintained in
YPD medium [10 g/L Yeast extract, 20 g/L. Peptone, 20 g/L Glucose, pH 5.6] supplemented with 20% (v/v)
glycerol, at -80°C. Yeast pre-cultures were prepared by inoculation into YPD medium and incubation at
25°C for 3 days in shaking flasks. Cells were collected by centrifugation (2900 g x 15 min - Hettich, Rotina
380R, Tuttlingen, Germany) and washed with 0.9% saline solution (sodium chloride in distilled water). Fifty
mL of a synthetic wine medium (SWM) [2.5 g/L Glucose, 2.5 g/L Fructose, 5 g/L Glycerol, 5 g/L Tartaric
acid, 0.5 g/LL Malic acid, 0.2 g/L Citric acid, 4 g/L L-lactic acid, 1.7 g/L Yeast Nitrogen Base w/o AA and
Ammonium sulphate (Difco, Sparks, USA), 1.5 g/L Ammonium sulphate, 0.5 mL/L Tween 80, 20 mg/L
Uracil, 10 mg/L p-Coumaric acid, 10 mg/L Ferulic acid, 15 mg/L Ergosterol, 5 mg/L Oleic acid, pH 3.5]
plus 5% ethanol (v/v) were distributed into flasks (100 mL). The flasks were inoculated with the yeast pre-
culture at an 0.1 ODgponn at 25°C in aerobic conditions. At about 5 ODggonm Units, cells were collected by
centrifugation at 2900 g for 15 min (Hettich, Rotina 380R) and inoculated at 0.1 ODggony unit in batches (800

mL) filled with SWM plus 10% ethanol (v/v).

2.2. Batch cultivations
Triplicate batch cultures for both strains were carried out in a Biostat-Q system (B-Braun, Melsungen,
Germany). Anaerobic conditions were obtained with N, sparging before the inoculum. During the
experiment the concentration of the dissolved oxygen was maintained at about 5 + 2 mg/L simulating a semi-
anaerobic condition (Smith and Divol, 2018) by introducing nitrogen gas into the batch. Temperature was
maintained at 22°C with a continuous stirring speed of 200 rpm. Cellular growth was monitored daily by
measuring the ODgopn, until biomass reached 1 + 0.1, then SO, was added in the form of sodium
metabisulphite (prepared according to Valdetara et al., 2017). The concentration corresponded to a calculated
molecular SO, (mSO,) concentration of 0.35 mg/L (Ribéreau-Gayon et al., 2006; Usseglio-Tomasset and
Bosia, 1984). Thereafter, sugar consumption and yeast growth were monitored daily. The experiments were

terminated when the concentration of residual sugars reached 0.5 g/L. For transcriptomic analysis, a cell
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amount corresponding to 20 ODggony units per culture was collected immediately before the SO, pulse (TO0),

5 hours after addition (T5) and once sugar consumption resumed (Tr), depending on the strain.

2.3. Microbial and chemical analysis
Cell enumeration and chemical analysis were performed on each sample, namely each time point (T0/T5/Tr)
of each triplicate for both strains. Moreover, the quantification of volatile phenols and organic acids was
carried out at the inoculation time (Ti). Samples were centrifuged at 18,000 g for 3 min (Hettich, MIKRO
200) and the supernatants were stored at -20°C until further analysis. The concentrations of ethanol, glycerol,
glucose and fructose were determined using Megazyme’s enzymatic assay kits (Wicklow, Ireland) according
to the manufacturer’s instructions. Culturability was determined by plating 100 uL of an appropriate tenfold
serial dilution on WL nutrient agar medium (Sharlau, Sentmenat, Spain) and then incubating the plates for 5-
7 days at 30°C.
The concentrations of hydroxycinnamic acids, namely p-coumaric and ferulic acids, vinyl-phenol, vinyl-
guaiacol, ethyl-phenol and ethyl-guaiacol were determined using a UPLC as described by Valdetara et al.
(2017).
The organic acids, namely tartaric, malic, lactic, citric and acetic acids, were quantified as described by
Fracassetti et al. (2019).
The concentrations of free and total SO, were determined by direct titration with iodine in accordance to the
OIV-MA-AS323-04B method (Compendium OIV, 2009).

2.4. Transcriptomic analysis
A volume of cell culture corresponding to 20 ODggonm units per sample was frozen with liquid nitrogen
immediately after a centrifugation step (adaptors for 50-mL tubes were previously cooled down in order to
maintain RNA integrity) at 28,000 g for 1 min at 4° C (Hettich, ROTINA 380R). All pellets were stored at -
80°C until further use. Samples were collected from triplicate. RNA extractions were carried out using the
Presto Mini RNA Yeast Kit protocol (Geneaid, New Taipei City, Taiwan) following the manufacturer’s
instructions with few modifications, as previously reported in Valdetara et al. (2017). After extraction, RNAs
were quantified by measuring the absorbance at 260 nm in a PowerWave XS2 spectrophotometer (BioTek,
Winooski, Vermont, United States). The integrity of RNA samples was assessed by electrophoresis on 1.2%

agarose-FA gel. The electrophoretic run was carried out at 100 V for 1 hour and then bands were visualized

6



145
146
147
5

17@18
149

10
150
12

151
14

I32
1

153

19
Ad4
21
2455
23

456
25

157
28
A$8
30
359
32
3%0
34

351
37
62
39

4%3
41
464

43
i
46
466
48

4%7
50

168
52
19

5
55
460
57

971
59

i
62
63

64
65

under UV irradiation (Bio-Rad, Berkeley, California). RNAs were maintained at -80°C until samples were
sequenced. Transcriptome analysis were conducted by CNR, Istituto di Biomembrane e Bioenergetica, Bari,
Italy. RNAs were purified and then submitted to NGS-sequencing [NextSeq® 500/550 Mid Output Kit, v2
(150 cycles), FC-404-200111lumina].
2.5. RNA-seq data analysis

First, raw reads obtained from sequencer were submitted to FastQC for quality evaluation, then reads were
mapped to a reference genome of B. bruxellensis (obtained from the strain AWRI1499, Curtin et al., 2012a)
with hisat2 (v2-2.1.0) (Kim et al., 2015) and subsequently quantified using the Cufflinks package (v2.2.1)
(Trapnell et al., 2013). Results obtained from quantification (Cuffquant) were normalized (Cuffnorm) and
tested for differential expression (Cuffdiff), thus obtaining FPKM (Fragments per Kilobase of Million
mapped reads) gene expression and log,fold-change values, respectively. TPM (Transcript Per Million)
values were calculated from FPKM values: the formula for TPM calculation was derived from Pachter
(2011). Genes statistically (FDR-adjusted p-value < 0.05) differentially expressed more than twofold were
used to identify Gene Ontology (GO) categories significantly (Bonferroni corrected p-value < 0.01) enriched.

Gene Ontology enrichment analysis was performed and visualised using http://go.princeton.edu/cgi-

bin/GOTermFinder (Boyle et al., 2004) and REVIGO (Supek et al., 2011) e-tools.

3. Results

In order to evaluate the genetic mechanisms activated by B. bruxellensis to counteract the stress caused by
the addition of SO, during winemaking, an RNA-seq approach was used. The study was conducted on two B.
bruxellensis strains, namely AWRI 1499 and CBS 2499, exposed to a sub-lethal dose of SO, supplied in
oenological conditions. As reported by Avramova et al. (2018) these two strains present a triploid and a
diploid genome, respectively, and they show different sensitivities to SO,. Indeed, AWRI 1499 is more
tolerant than CBS 2499. Briefly, cells in late exponential phase of growth were treated with sodium
metabisulphite and RNA-sequencing was performed on samples collected 5 h after the SO, exposure (T5)
and when sugar consumption resumed (Tr). Samples collected immediately before SO, addition (T0) were
used as the reference condition. Unless otherwise specified, the term “response” is used here for the

comparison between transcriptomes obtained from the cells at T5 and TO (TS5 response) or at Tr and TO (Tr
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response). Five hours was deemed an appropriate time period to analyse the stress response, considering the
slow duplication time of B. bruxellensis before the SO, addition (approx. 18h and 40h in the exponential
phase of growth for AWRI 1499 and CBS 2499 strains, respectively) (Murata et al., 2006; Nardi et al.,
2010). Preliminary data showed that CBS 2499 strain was unable to proliferate at 0.50 mg/L of mSO, in our
conditions and confirmed that 0.55 mg/L mSO, represented the growth/no growth threshold for AWRI 1499
strain (Curtin et al., 2012b). Thus, with the aim to study the adaptive response against SO, stress in both
strains, a concentration of 0.35 mg/L mSO, was applied in our experiments and common Differentially

Expressed Genes (DEGs) between the 2 strains were processed in the GO analysis.

3.1. SO, affected yeast culturability and metabolism, but not VPs production

Cell growth was monitored daily until an ODgggum of 1 £ 0.1 was reached (corresponding to 1.5 + 0.3 x 10’
and 1.2 + 0.3 x 10" CFU/mL for AWRI 1499 and CBS 2499 strains, respectively), and SO, added (Fig. 1).

The strains were inoculated around 10° CFU/mL and the populations increased with one log unit within 160
h. CBS 2499 displayed a biomass increase of about half a log unit within the first 80 h which correlated with
a faster consumption of sugars. The addition of SO, had an immediate impact on the cell culturability of both
strains with a decrease of 2-3 log units measured after 5 hours (T5) with a further decrease of 1-1.5 log units
in the following three days, depending on the strain. Plate counts increased at a constant rate thereafter
ending again at around 10’ CFU/mL. Both strains consumed completely the glucose and almost all the
fructose. However, statistically significant differences (p < 0.05) were detected at strain level in sugar
consumption rate, as illustrated in Fig. 1. Before the SO, pulse, about 0.5 g/ of glucose and 2 g/L of
fructose were still available for AWRI 1499 strain. On the contrary, for the CBS2499 strain, glucose was
almost depleted and fructose concentration resulted in 1 g/L. For both strains, no sugar consumption was
observed during the 5 h after the SO, stress exposure up to approximatively 7 days (from 165 to 330 h) until
cell numbers again reached 10° CFU/mL. With regard to SO,, the total amount remained stable until the end
of the fermentation at a value of 16.4 £ 4.8 mg/L, while the free fraction decreased to about 25% of the

initial concentration, namely 2.1 + 0.9 mg/L.
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The concentrations of ethanol, glycerol, lactic, tartaric, acetic, malic, citric, p-coumaric, ferulic, acids, vinyl-
and ethyl-phenol and guaiacol, in the medium were determined at the same time points where RNA
extraction was performed.

The concentrations of ethanol, glycerol, and lactic and tartaric acids did not show any significant differences
between strains or time points (data not shown). The concentration of acetic acid differed significantly for
both strains only between Ti and TO (Table 1), i.e. before the SO, pulse. Overall, CBS 2499 produced almost
double the amount of acetic acid compared to AWRI 1499 (Table 1). Malic acid and citric acid
concentrations increased significantly during the fermentation process only for CBS 2499 (Table 1). To the
best of our knowledge, B. bruxellensis has never been reported to release malic or citric acids, even in small
amounts. Further investigations are required to clarify this finding.

Despite an expected initial concentration at Ti of 10 mg/L hydroxycinnamic acids (each), 8 mg/L p-coumaric
acid was measured for both strains, while the quantification of ferulic acid revealed a lesser amount of this
acid in the medium, 4.35 = 0.43 and 5.11 = 0.19 mg/L for AWRI 1499 and CBS 2499, respectively (Table
1). Both p-coumaric and ferulic acids decreased during the fermentation; nonetheless, the difference detected
before and after the SO, addition was negligible and not significant, thereby indicating that this decrease was
not correlated to the addition of SO, (Table 1). The two strains were characterized by a different uptake of
hydroxycinnamic acids (Table 1): in the CBS 2499 fermentations, the final amount of these acids was
significantly (p < 0.05) lower than in AWRI 1499 fermentations. As expected, VPs were not detected at
inoculation time (T1). While vinyl-guaiacol was not measured at any time, the other volatile phenols were all
produced during the first part of the experiment (Ti-T0). The higher amount of VPs was produced by strain
CBS 2499, where both vinyl-phenols and ethyl-phenols were approximately six and two folds more abundant

than in AWRI 1499, respectively (Table 1).

3.2. The transcriptomic variation in response to SO, stress is strain-related
Three sample types, untreated cells (T0), cells collected 5 h after the SO, pulse (T5), and cells able to restore
their growth (Tr), were analysed. A PCA analysis was carried out on TPM values and dispersion of the
samples is reported in Fig. 2. The analysis covered almost 73% of the variability in the samples with more

than 47% explained by component 1 and about 26% by component 2. The PCA indicated that a response to
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SO, addition arose in a strain- and time-dependent manner. Strains were clearly differentiated on the basis of
component 1 and samples corresponding to replicate measurements at the same growth condition grouped
together, with a complete separation among groups only at the TO and Tr conditions for both strains. Indeed,
an overlap between groups of replicates at times TO and T5 was detected suggesting that the 5 h exposure
time did not induce a strong modulation of yeast transcriptome unlike that observed at the time of recovery

of the cell growth (Tr).

3.3. B. bruxellensis strategy to counteract SO,: 66 genes drive the global transcriptional response

TS5 and Tr responses were evaluated by comparing transcriptomes from cells collected at the respective time
points versus untreated cells (TO). In general, the two strains expressed a similar number of genes: 4855,
4854 and 4851 in AWRI 1499 strain (A) and 4835, 4834 and 4836 in the CBS 2499 strain (C) at T0, TS5 and
Tr, respectively. The number of genes showing a significant change (corrected p-value < 0.05) in their
expression (DEGs), is reported in Table 2. Considering all the genes identified in the AWRI1499 genome
(4861), 3589 are homologous to S. cerevisiae genes (73.8%). The outcome showed that few genes
significantly changed their expression at TS5, and they were mainly down-regulated. In particular, in the
AWRI 1499 strain a significantly different transcriptome was observed comparing the number of DEGs after
2 h (Varela et al. 2019) and 5 h from the SO, pulse. The DEGs at 2h in Varela and co-authors were 536 in
AWRI 1499 (287 up and 249 down regulated genes) whereas in the present study, genes were mainly down-
regulated (19 up and 149 down expressed genes). On the other hands, at Tr the expression of a higher
number of genes significantly changed. The list of genes that showed significant differences in their
expression (increase or decrease) with the correspondent log,FC values and the annotation to S. cerevisiae
genome, is given as Supplementary material (Table S1), for both strains and times of sampling.

Considering DEGs of the two strains at the two time points, only one gene (AWRI1499 4045) of the
Significantly Up-Regulated Genes (SURGs) was common between the two strains at T5, and it also resulted
as the one with the highest up-regulation (log,FC = 0.89, in AWRI 1499). This gene, homologous to S.
cerevisiae’s CPR3, has been described as a mitochondrial peptidyl-prolyl cis-trans isomerase that catalyses
the cis-trans isomerization of peptide bonds N-terminal to proline residues and has been observed to be
involved in protein refolding after import into mitochondria (Matouschek, et al., 1995). Conversely, the gene

10
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which was the most strongly down-regulated resulted in CBS 2499 strain for AWRI1499 3932 gene (log,FC
= -1.27) that has no homolog in S. cerevisiae. Results revealed no SURGs with |log;FC| > 1 neither for
AWRI1499 nor for CBS2499, and none of the few Significantly Down Regulated Genes (SDRGs) having
[log,FC| > 1 were shared between the strains. Nevertheless, in the AWRI 1499 strain, we confirmed the
down-regulation of S. cerevisiae homologous PCLI, encoding a protein involved in cell cycle progression,
and the absence in the regulation of BhSSUI, recently reported in B. bruxellensis upon 2 h sulphite exposure
(Varela et al., 2019).

In the Tr response, the highest up-regulation (log,FC = 7.05) and the lowest down-regulation (log,FC = -
4.23) were measured in the AWRI 1499 strain, for RCF2 and GAP1 genes, respectively. The two strains had
in common 66 S. cerevisiae homologous SURGs/SDRGs, 57 of which had the same orientation in the
change of expression in both strains, 38 increased and 19 decreased (Fig. 3). Among SURGs with the highest
difference in the level of expression, SSU! can be linked to detoxification processes (and more specifically to
active SO, efflux), HXT13, HXK1, GALI GAL10, GAL7, ADH6, ADH7, YLR345W, FMP37, LSCI, LSC2,
SUC2 and MPH? are related to carbon metabolism, while some of the down-regulated genes (MAKS5, RRPS,
TRM2, UTP20) are linked to RNA processes. The remaining 9 genes (4LD4, ARO10, CYB2, DLDI, FLOI,
HER2, JENI, OXPI1, YLR278C) had decreased expression in the AWRI 1499 strain and increased expression
in the CBS 2499 strain.

Considering the response at the strain level, in the AWRI 1499 strain, 5 of the SURGs at TS5 were still up-
regulated at Tr, with 1 (AWRI1499 3589) having a log,FC slightly above the set threshold of 1. This gene is
homologous with the YBRO96W open reading frame of S. cerevisiae, which has been described as a protein
of unknown function which localizes at the endoplasmic reticulum level (Huh et al., 2003). Regarding the
SDRGs, out of the 149 genes (Table 2, Table S1), 38 were still down-regulated at Tr, with 9 of these having
a logyFC below -1. Three genes were down-regulated more than 2-fold at T5, the last two remained
significantly down-regulated at Tr, but not as strongly, while one gene did not have significantly decreased
expression. In the CBS 2499 strain, only 1 of the two SURGs at T5 was differentially expressed still in the
Tr response, while 3 out of 7 SDRGs maintained the significant down-regulation (Table 2, Table S1).
Extreme changes in gene expression were in both strains measured at the Tr response and up- and down-
regulated genes did not correspond among the two strains. In the AWRI 1499 strain, the gene with the

11
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highest increase was the homolog of the S. cerevisiae RCF2 gene, which codes for a cytochrome ¢ oxidase
subunit. This gene changed its expression more than 132-fold. On the other hand, the gene with the largest
decrease in expression was the homolog of the S. cerevisiae GAPI gene, encoding a general amino acid
permease. In the CBS 2499 strain, the gene with the highest increase in expression was the homolog of the S.
cerevisiae ACHI gene, which codes for an acetyl CoA hydrolase. The gene with the largest decrease in

expression was the homolog of the S. cerevisiae OPT2 gene, encoding an oligopeptide transporter.

3.4. The general response of B. bruxellensis species against SO, from the GO analysis perspective
In order to obtain an overview of the general response associated to SO, stress adaptation in B. bruxellensis
at the level of biological processes, cellular components and molecular functions involved, SURGs and
SDRGs shared by the two strains at the Tr response (Fig. 3) were analysed according to their Gene Ontology
(GO) annotation (Table 3, Fig. S2). Thirty-one significantly (p-value < 0.01) enriched biological processes in
the SURGs set were found. Carbon metabolism was one of the most represented processes, together with
representative GO term superclusters corresponding to monocarboxylic acid, acyl-CoA, cofactor, and sulfur
compound metabolism. For the SDRGs, the only significantly enriched biological process was
transmembrane transport. From the cellular component ontology, 4 terms were significantly (p-value < 0.01)
enriched in the set of SURGs. Among them, the significance of the mitochondrial pyruvate dehydrogenase
complex was noteworthily higher (p-value = 1.46e-06) than in the other (0.0045 and 0.00338). No terms
from the cellular component ontology were significantly enriched. The analysis of the molecular function
ontology revealed 9 significantly enriched terms in the SURGs set, corresponding to the representative
superclusters of pyruvate dehydrogenase and carbohydrate kinase activities, and the catalytic and succinate-
CoA ligase (ADP forming) activities. Six terms were significantly enriched in the SDRGs set, all

corresponding to transporter activities.

3.5. GO analysis at strain level
A strain specific analysis of the enriched biological processes, cellular components and molecular functions
was carried out on SURGs and SDRGs involved in the SO, adaptive response at Tr. The results are presented
in an aggregate as tree maps in Fig. S2. Fifty significantly (p-value < 0.01) enriched biological processes in
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the SURGs set of AWRI 1499 strain were found, with cellular carbohydrate metabolism, generation of
precursor metabolites and energy, glucose import and pyridine-containing compound metabolism being the
main representatives. On the other hand, organic hydroxy-compound metabolism was the principal
biological process resulting from the analysis of the SURGs of CBS 2499 strain, which in total returned 28
significantly enriched processes. Considering the SDRGs, there were 31 and 7 significantly enriched
processes in the AWRI 1499 and CBS 2499 strains, respectively. In the AWRI 1499 strain, the anion
transmembrane transport emerged, together with the ribosomal small subunit biogenesis, the RNA 5’end-
processing, and the oxidation-reduction process. On the other hand, results in the CBS2499 strain mainly
indicated the involvement of genes from the supercluster of monocarboxylic acid metabolism; this latter term
was also found among the processes enriched by SURGs, but different genes were involved. The cellular
localization GO analysis of SURGs of AWRI 1499 strain detected 8 significantly enriched cellular
components, while 4 were significant based on the analysis of SURGs in the CBS 2499 strain. In addition,
SDRGs defined 14 and 2 significantly enriched cellular localization terms in AWRI 1499 and CBS 2499
strains, respectively. Among the enriched terms resulting from the AWRI 1499 strain analysis based on
SURGs we identified superclusters of peroxisome and cytoplasm. Based on AWRI 1499 SDRGs, these are
annotated to significantly enriched cellular localization terms pre-ribosome, nucleolus, the integral
component of plasma membrane, the cell part and periphery, and the membrane-enclosed lumen. The
enrichment analysis of SURGs and SDRGs derived from the CBS 2499 strain resulted in a single strain-
specific cellular localization term, namely the nucleotide-excision repair complex supercluster, which was
found based on the SDRGs. In the AWRI 1499 strain, the significantly enriched molecular functions based
on SURGs and SDRGs displayed 6 and 21 terms, respectively. Molecular functions of the genes with
increased expression level include carbohydrate binding, while among the enriched functions of the genes
with decreased expression level the snoRNA and cofactor binding are notable, together with the
oxidoreductase activity. In the CBS2499 strain, 9 terms were significantly enriched based on SURGs, while
8 such terms resulted from the analysis based on the SDRGs. The former group includes oxidoreductase
activity and the cofactor binding, while the latter includes oxidoreductase and catalytic activity, and ion

binding.
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4. Discussion

The exposure of cells to suboptimal growth conditions or any environmental condition that negatively affects
parameters such as cell viability or fitness can be considered a stress. Nonetheless, different kinds of stresses,
defined as mild, chronic or acute stresses, occur. Cell responses depend on the organism, its physiological
state and the environment in which the stress arises. Responses are usually defined by two components: a
generic or environmental response, common to various types of stresses, and a specific adaptive response,
characteristic of particular stress factors. Both general and stress-specific responses are generated as the
consequence of mechanisms acting over a series of time scales; post-translational effects provide immediate
responses, while regulation of gene expression is essential for the slower, long-term adaptation and recovery
phases (de Nadal et al., 2011).

Our data showed an arrest in the growth of both analysed strains, characterised by a different genetic
background (triploid and diploid), and a decrease in their cell culturability resulting from the exposure to the
stress-inducing factor investigated in this study. However, strains recovered their growth at 80 h following
the SO, pulse thereby demonstrating the capability to adapt to the stress applied. This result differs from that
observed in the study of Varela et al. (2019) in which the AWRI 1499 strain (triploid) showed a culturable
population at 48 h following the SO, pulse whereas the AWRI 1613 strain showed a culturability below the
limit of detection (<10 CFU/mL) after 24 h following the SO, pulse and did not recover further. The
discrepancy between the two studies could be the result of similar, but not identical, experimental conditions.
No statistical variations were recorded regarding lactic and tartaric acids, as well as glycerol and ethanol
concentrations during the experiment. Conversely, the observed statistical difference on acetic acid
concentration at TS vs TO confirms that this compound is produced during yeast growth. Moreover, its
release in the medium is not affected by the SO, stress, since no differences in the amount were detected
after the SO, pulse. Considering sugar utilization, the differences highlighted in the results between the two
strains at the different time points indicate that the usage of sugars undergoes a strain-specific consumption
dynamic.

Regarding the release of VPs they were not produced after the SO, pulse, in disagreement to what was
observed by Serpaggi et al. (2012) who reported the cells can produce 4-ethyl-phenol, although in a lower
amount than control cells, entering in a SO,-induced VBNC state. The last observation suggests that a
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VBNC state is not triggered by the SO, treatment under the investigated experimental conditions. Moreover,
Serpaggi et al. (2012) defined the VBNC state as being characterised by a reduced glycolytic flux coupled
with changes in redox homeostatis/protein turnover-related processes. Considering that at T5 cells did not
undergo any significant change in the expression of genes, we could speculate that the SO, addition led to
death of “sensitive cells” and that, the remaining “resistant cells” were able to adapt themselves to new
environmental conditions. Besides being genetically identical, cells can exhibit different phenotypes:
diversity in the phenotypical behaviour, defined “phenotypical heterogeneity”, could be the determinant for
the cell adaptation to changing environments, this conferring a significant competitive advantage to more
heterogeneous isolates exposed to stressful conditions (Hewitt et al., 2016; Holland et al., 2014). However,
more investigations are required to confirm this hypothesis.

The analysis of results arising from the study of a shorter (T5) and a longer-time (Tr) exposure response to
SO, in B. bruxellensis evidenced that in both strains the outcome in terms of number of statistically
differentially expressed genes is considerably smaller at T5 in comparison to Tr. Results obtained showed
that only a low number of genes are differentially expressed at TS5, with only a few genes changing their
expression more than two-folds. Moreover, in the case of the AWRI 1499 strain, the difference observed in
the modulation of the transcriptome in Varela and co-authors (2019) could derive by the different growth
conditions applied in the two studies, mainly fermentation strategy and sampling time (i.e. 2 h - Varela et al.
and 5 h - this study). On the other hand, at Tr, genes that were found significantly differentially expressed
were around a thousand, with approximately 10% having a log, fold-change greater than |1, thus displaying
a stronger effect.

The transcriptomic analysis of B. bruxellensis in the presence of SO, reveals that the cells reacted against the
stress factor by activating a specific adaptive and a general response simultaneously (Fig. 4). The former
could be identified as the sulphite detoxification mechanism, where the main gene involved in sulphite
removal from cells in S. cerevisiae is SSUI. This gene encodes a plasma membrane sulphite pump that can
determine the sensitivity/resistance to the toxic action of sulfur compounds at strain level (Avram and
Bakalinsky, 1997; Divol et al., 2006, 2012; Nardi et al., 2010; Nadai et al., 2016). Ssulp is part of the major
facilitator superfamily involved in efflux of toxic compounds, specifically mediating efflux of the free form
of sulphite (Park and Bakalinsky, 2000). Nardi and collaborators, in 2010, provided evidence that sulphite is
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the main regulator of SSU/ expression. The present study confirms that this protein exerts a strong
detoxification role in B. bruxellensis cells as observed by other researchers (Valera et al., 2019; Capozzi et
al., 2016; Godoy et al., 2016; Nadai et al., 2016). AWRI1499 0080, homologous of SSUI, is highly
expressed at Tr, resulting in increases of more than 4 and 47 times in CBS 2499 and AWRI 1499,
respectively. At the strain level, this reflects the higher SO, resistance of AWRI 1499 strain. In this strain,
recently Varela et al. (2019) demonstrated that the presence of two copies of the most efficient SSUI
haplotype, which are also preferentially expressed, conferring in this way its greater sulphite tolerance.

A more general response related to the SO, stress applied in this study includes genes related to sugar alcohol
(polyols) metabolism, oxidative stress and, structural compounds (Fig. 4). MDR members (medium-chain
dehydrogenase/reductase (MDR) family) are basic metabolic enzymes acting on alcohols or aldehydes
(Riveros-Rosas et al., 2003), and thus these enzymes may have roles in detoxifying alcohols and related
compounds, protecting against environmental stresses such as osmotic shock, reduced or elevated
temperatures, or oxidative stress (Nordling et al., 2002). ADH6 and ADH7, involved in the conversion of
longer chain aldehydes and alcohols together with BDH1I, the gene encoding for NAD-dependent (R,R)-
butanediol dehydrogenase (Gonzalez et al., 2000), were found up-regulated in response to vanillin stress
(Ishida et al., 2016; Nguyen et al., 2015) in S. cerevisiae, and their homologues were found overexpressed in
both B. bruxellensis strains.

The overexpression of genes related to oxidative stress, such as PST2 and CLDI, was also detected; indeed,
the fact that SO, exposure triggers an oxidative stress has been already reported (Vigentini et al., 2013;
Capozzi et al., 2016). PST2 is an oxidative stress-induced gene (Morano et al., 2012) encoding a flavodoxin-
like protein and CLDI, the gene with the highest expression in CBS2499, encodes a mitochondrial
cardiolipin-specific phospholipase that was observed to undergo up-regulation as a result of exposure to
hydrogen peroxide and thus important for the decrease of the oxidative stress effects (Lou et al., 2018).
Genes related to fatty acids metabolism, like ACHI, FOX2 and SPS19, and then possibly involved in the
regulation of membrane permeability, were also found up-regulated as already observed in other studies
(Beltran et al., 2006; Nadai et al., 2016; Zhu et al., 2013). In particular, Achlp acts as a CoA-transferase by

catalyzing the transfer of CoA from succinyl-CoA to acetate. A role in detoxifying mitochondria from
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acetate has been reported in S. cerevisiae (Fleck and Bock, 2009). This role can be more important in CBS
2499 than in AWRI 1499, due to the higher acetate production of the former strain.

Regarding amino acid metabolism, some genes could be identified, albeit differently regulated. DIP5
(dicarboxylic amino acid permease) and LEUS, encoding a mitochondrial inner membrane protein involved
in CoA transport to the mitochondrial matrix (Prohl et al., 2001) were found to be upregulated. Alteration of
amino acid metabolism has previously been reported as one of the principal effects of the response to
sulphite exposure in B. bruxellensis (Vigentini et al, 2013). On the contrary, GCV2, codifying a glycine
decarboxylase and GAPI, a general amino acids permease, were both down-regulated.

Regarding down regulated expression, the only biological process significantly affected in both strains was
transmembrane transport (Fig. 4). Other genes referred to RNA processes also underwent a down-regulation,
according to other studies where in response to different stresses the same trend of expression was observed
for ribosomal biogenesis and assembly genes (Soontorngun, 2017; Yu et al., 2010).

A discussion is required for genes related to carbon metabolism. Upregulation of genes belonging to this
category has been found after SO, treatment (Capozzi et al. 2016; Varela et al. 2019). In our study several
genes resulted in significant up-regulation at the Tr response in both strains. Among them, HXKI was
identified among genes related to different stress responses in S. cerevisiae (Beltran et al., 2006; Bereketoglu
et al., 2017; Causton et al., 2001; Murata et al., 2006; Zhu et al., 2013), and particularly up-regulated in
stationary phase of growth (Gasch et al., 2000). Furthermore, SUC2, GALI10 and YDRI109C were found up-
regulated by Capozzi et al. (2016). NTHI was previously detected as over-expressed in response to different
stresses (Zahringer et al., 1997). Nevertheless, we should consider that the low concentration of available
sugars approaching Tr could have also contributed to trigger glucose/(carbon) de-repression, other than the
adaptation to SO,-related stress. In this situation, genes related to sugar transport and assimilation (HX713,
GAL1/7/10, HXK1, YLR345W, YDRI109C) could increase their expression. The HXT13 gene is, in both
strains, up-regulated more than 15-fold. Tiukova et al. (2013) also related its expression in B. bruxellensis
under conditions of oxygen limitation, similar to those of our cultivations. Moreover, in S. cerevisiae, it has
been described as a putative transmembrane polyol transporter that can uptake mannitol and sorbitol and

supports growth (Jordan et al., 2016), being induced by non-fermentable carbon sources and at low glucose
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concentrations (Greatrix and van Vuuren, 2006). SORI, highly up-regulated in this study, is reported to be
induced in sorbitol or xylose containing media (Sarthy et al., 1994; Toivari et al., 2004).

Other genes that control the utilization of alternative carbon sources as well as genes related to the pyruvate
dehydrogenase complex/carrier (PDAI, PDBI, PDX1, FMP37 and LATI) were also up-regulated, suggesting
that the yeast was prepared to assimilate all the available carbon sources. Interestingly, the gene encoding the
transcriptional regulator CATS, that has been observed important in S. cerevisiae for the growth on non-
fermentable carbon sources such as glycerol and ethanol (Mojardin et al., 2018) was found overexpressed in
both strains.

The negative impact of VPs on wine sensory is well-known due to their detrimental effect caused by the
appearance of leather, horse sweat, medicinal, barnyard and bacon, defined as Brett-character (Chatonnet et
al. 1992). Stress conditions, i.e. high concentrations of ethanol and SO,, and low pH and poor availability of
nutrients, can limit the release of VPs but not completely prevent it due to the ability of B. bruxellensis to
grow and survive in extreme environments (Steensels et al., 2015). Before the SO, pulse, increased
concentrations of both ethyl-phenol and ethyl-guaiacol were found. Both strains released higher level of
ethyl-guaiacol in comparison to ethyl-phenol. This results is in accordance to Valdetara et al. (2017) who
investigated the volatile phenols produced by CBS 2499 strain. In particular, the amount of VPs was more
than 2-fold higher for CBS 2499, further indicating the strain-dependent release of VPs. After the SO, pulse,
at Tr, ethyl-phenol was significantly higher only for the AWRI 1499 strain. Genetically this could be due to
its triploid state (Curtin et al., 2012), and physiologically the residual content of both sugars still present at
the cell recovery may have favoured the release of ethyl-phenol as recently reported by Smith and Divol
(2018).

In conclusion, according to the sulfur resistance of the two strains the transcriptomic response observed
showed that the activated detoxification processes can be considered as the principal specific adaptive
response to counteract the SO, presence. However, nonspecific mechanisms can be exploited by cells to
assist the SO, tolerance behaviour.

Considering the climate change that is leading to the production of less acidic wine (Mozell and Thachn,
2014), the effectiveness of SO, can result further be limited as lower mSO, can be dissolved in wine for an
equal level of total SO, due to a higher pH. In this case, as our study demonstrated, a sub-population of
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adapted cells can resist the stressful environment resulting, in presence of some residual sugars, in the
appearance of the Brett character. Thus, the general trend to produce low sulphite wines could determine in
future an increase in the occurrence of volatile phenols in the final products due to the selection of more and

more resistant B. bruxellensis strains.
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Figure captions:

Figure 1

Sugar (glucose and fructose) consumption over time for AWRI 1499 (light green) and CBS 2499 (dark blue).
Continuous and dashed lines represent glucose and fructose fermentative trend, respectively. Dotted lines
were used to represent culturablity results [Log;o (CFU/mL)]. Different letters (bold characters refer to
glucose curves and standard characters refer to fructose consumption) correspond to significant differences
(p <0.05) across the sampling times. Average curves of the triplicate data. RNA-Seq sampling times: TO0, red
circle; TS5, orange circle; Tf, light violet circles.

Figure 2

Principal Component Analysis (PCA) of the samples (TPM values) in the first two principal component
space. Sample coding includes both the strain (A=AWRI 1499, C=CBS 2499), collection time point (TO =
untreated cells, collected immediately before the SO, addition, TS5 = samples collected 5h after the SO, pulse,
Tr = cells collected at the recovery phase of growth) and replicates (_1, 2, 3). Lines grouping the different
time point are coloured differently, based on the strain (AWRI 1499 is light green, CBS 2499 is blue); within
the same strain, different times of collection are represented by different hatching (lines grouping all time
points are dotted lines, TO are continuous lines, T5 are dotted-dashed lines and Tr are dashed lines). All the
lines have been drawn to make the visualisation easier.

Figure 3

Bar-diagram representing the log,FC value of common homologous SURGs (38)/SDRGs (19) in the
response for cells collected at the recovery phase of growth (Tr) respect to TO. SURGs and SDRGs are listed
in alphabetical order. Green bars: B. bruxellensis AWRI 1499. Blue bars: B. bruxellensis CBS 2499.

Figure 4

Map of the adaptive molecular mechanisms exploited by B. bruxellensis to assist the SO, tolerance. Colours
of the squares indicates the main UP (yellow/orange) or DOWN (blue/light blue) regulated metabolisms or

processes and genes.
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750  Table 2
751  Number of genes with a significant log,FC value (corrected p-value <0.05). The number of DEGs with a
752 [log,FC| >1 is reported in brackets. For the Tr-TO comparison, the number of genes having a correspondent

7$3 homolog in the reference S. cerevisiae genome, is shown. (n.d. = not detected)

9 T5-15-TO Tr-vs-TO
10 AWRI1499-identifiers S. cerevisiae homolog

11 UP DOWN UP DOWN UP DOWN
AWRI1499 19(nd) 149 (3) 571 (170) 573 (138) 448(126) 425(96)
14 CBS2499 2 (n.d.) 7(1) 536 (107) 549 (85) 387(81) 388(52)
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Figure 3 Click here to access/download;Figure;Figure 3.tif
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Figure S2

PROCESSES UP - AWRI 1499

PROCESSES UP — CBS 2499




PROCESSES UP — GENERAL RESPONSE — AWRI1499 and CBS2499




PROCESSES DOWN — AWRI 1499

PROCESSES DOWN — CBS 2499




PROCESSES DOWN — GENERAL RESPONSE — AWRI 1499 and CBS 2499




COMPONENT UP — AWRI 1499

COMPONENT UP — CBS 2499




COMPONENT UP — GENERAL RESPONSE - AWRI 1499 and CBS 2499




COMPONENT DOWN — AWRI 1499

COMPONENT DOWN - CBS 2499




COMPONENT DOWN - GENERAL RESPONSE — AWRI1499 and CBS 2499




FUNCTION UP - AWRI1499

FUNCTION UP - CBS 2499




FUNCTION UP - GENERAL RESPONSE — AWRI 1499 and CBS 2499




FUNCTION - DOWN - AWRI1499

transmembrane
transporter
activity

FUNCTION - DOWN - CBS 2499




FUNCTION - DOWN - GENERAL RESPONSE — AWRI 1499 and CBS 2499




