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ABSTRACT 

Time-domain electromagnetic method data are conveniently inverted for smoothly varying 1D models 

of fixed vertical discretization. The vertical smoothness of the obtained models stems from the 

application of Occam type regularization constraints, meant for addressing the ill-posedness of the 

problem. An important side-effect of such regularization, however, is that horizontal layer boundaries 

can no longer be accurately reproduced as the model is required to be smoothly varying. This issue can 

be overcome by inverting for fewer model layers using variable layer thicknesses, but having to decide 

on a particular and constant number of layers for inversion of a large survey can be equally problematic.  

Here, we present a focusing regularization technique for getting the best of both methodologies. It allows 

for accurate reconstruction of resistivity distributions using a fixed vertical discretization, while 

preserving the capability to reproduce horizontal boundaries. The formulation is flexible and can be 

coupled with traditional lateral/spatial smoothness constraints, in order to resolve interfaces in stratified 

soils with no additional hypothesis about the number of layers. The method relies on minimizing the 

number of layers of non-vanishing resistivity gradient, instead of minimizing the norm of the model 

variation itself. This approach ensures model results that are consistent with the measured data while 

favouring, at the same time, horizontal interfaces. The formulation is general and can also be applied in 

the horizontal direction, in order to promote the reconstruction of lateral boundaries such as faults.  

We present the theoretical framework of our regularization methodology and illustrate its capabilities by 

means of both synthetic and field datasets. We further demonstrate how the concept has been integrated 

in our existing Spatially Constrained Inversion (SCI) formalism and show its application to large scale 

time-domain electromagnetic data inversions.   
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1. INTRODUCTION 

Transient electromagnetic (TEM) surveying is a well-established geophysical discipline with 

applications ranging from mineral exploration to groundwater and geological mapping. A main 

characteristic of the method is its ability to collect, especially during airborne surveys, extremely large 

datasets which can be very time consuming to process and invert. Full 3D inversion is possible, but 

typically impractical due to the size of the surveys. The fact that Maxwell’s equations have to be solved 

for each transmitter location makes the rigorous 3D inversion (e.g., Sasaki 2001; Sasaki 2003) 

particularly time consuming. Attempts of fast and effective 2D/3D inversion schemes based on 

approximations have been recently developed and applied to TEM data (Wilson, Raiche and Sugeng 

2006; Guillemoteau, Sailhac and Behaegel 2012). With the advent of powerful and inexpensive parallel 

computers, finite-volume (Haber, Oldenburg and Shekhtman 2007; Yang and Oldenburg 2012), finite-

difference (Newman and Commer 2005), and integral equation (Cox, Wilson and Zhdanov 2010) 

techniques are also becoming increasingly popular and appealing. Up to date, however, 3D inversion is 

still not near routine practice and for many target settings the benefits of current 3D methods over 1D are 

still debatable (Viezzoli et al. 2010).  

Comprehensive TEM inversion codes based on 1D forward modelling typically utilize lateral/spatial 

constraints to regularize the inversion and obtain solutions that are in accordance with the expected 

geological variations (Vallée and Smith 2009; Christensen and Tølbøll 2009; Brodie 2010). This 

approach of inverting for pseudo 2D/3D models, using local 1D models entangled by constraints, has 

proven very effective in modelling quasi-layered structures where 2D/3D effects are not too pronounced 



(Newman, Anderson and Hohmann 1987; Sengpiel and Siemon 2000; Auken et al. 2005). Most 

algorithms falling within this category offer support for two types of modelling: “discrete model” 

inversion that inverts for a limited number of layers with variable layer boundaries, and inversion for 

“smooth models” based on a large number of stacked layers in a fixed vertical discretization. In the latter 

case, the inversion problem is typically highly over-determined, making vertical regularization necessary 

to stabilize the solution (Constable, Parker and Constable 1987). In the former strategy, the inversion can 

operate without any additional (vertical) regularization, due to its much lower number of free model 

parameters. Both approaches have their trade-offs, as the smooth one produces sections where formation 

boundaries are smeared out by regularization, whereas the discrete approach can introduce artefacts in 

case of unexpectedly complex geology. The discrete model technique is also more sensitive to the 

specific choice of starting model and for these reasons both types of inversions are typically utilized as 

tandem complementary solutions.  

Here, we describe and demonstrate a novel algorithm that implements an extension of the pseudo 3D 

formalism Spatially Constrained Inversion (SCI, Viezzoli et al. 2008) and its pseudo 2D special case of 

Laterally Constrained Inversion (LCI, Auken and Christiansen 2004). The extension includes a new 

regularizing term that is not derived from the L2 norm of the spatial gradient of the solution, but rather 

depends on the support of it (Portniaguine and Zhdanov 1999; Zhdanov and Tolstaya 2004; Pagliara and 

Vignoli 2006; Zhdanov, Vignoli and Ueda 2006; Blaschek, Hördt and Kemna 2008; Vignoli, Cassiani 

and Deiana 2012). Specifically, we base our new algorithm on gradient support regularization and refer 

to the full scheme as sharp Spatially Constrained Inversion (sSCI). The introduction of the new 

regularization term promotes solutions that are both compatible with the observed data and at the same 



time features a minimum number of spatial (vertical and/or lateral) model variations. By using this 

technique we essentially eliminate the need for consulting both discrete and smooth inversions.  

 

 

2. METHODOLOGY 

In the framework of Tikhonov regularization theory (Tikhonov and Arsenin 1977), a priori information 

is included in the inversion process and formalized via regularizing terms in the objective functional to 

be minimized. Instead of simply minimizing the distance (usually defined by the L2 norm) between the 

observed and calculated data, the regularized objective functional now includes additional stabilizing 

terms. Hence, the solution minimizing the full objective functional is compatible with both the observed 

data and any assumptions about the investigated physical system being enforced by the stabilizer. 

Incorporating a priori information turns the originally ill-posed problem into a well-posed one, where the 

solution is unique and stable with respect to the data. In particular, we are interested in incorporating the 

assumption that sharp resistivity changes exist between different lithologies in the investigated subsoil, 

while the more popular stabilizers promote different features. By far, the most widely used stabilizers 

are smoothing functionals that constrain the spatial variation of the sought parameter field (Constable et 

al. 1987), which is exactly the kind of regularization employed in the standard SCI algorithm. For SCI, 

the parameters of neighbouring 1D models are entangled by means of such smoothing regularizing terms, 

essentially constraining (and smoothing) the amount of spatial variation in the total model space. The 

SCI scheme further employs vertical regularization on each individual 1D model in the case of inversion 

for smooth models. With the sSCI formalism, our goal is to resolve layer boundaries by the use of 

Minimum Gradient Support (MGS) regularization, instead of inverting for discrete models. We 

investigate the application of MGS along the vertical direction to be able to reconstruct subhorizontal 



interfaces, potentially eliminating the need for discrete inversions that make unwanted assumptions about 

the ground layering. For the horizontal direction, we apply the sSCI approach to effectively resolve  

lateral discontinuities due to e.g. faults or blocky mineral inclusions.  

 

2.1 ALGORITHM: FROM SCI to sSCI 

Spatially and laterally constrained 1D inversion techniques have been successfully applied to many 

different kinds of data including vertical electrical soundings (Auken and Christiansen 2004; Auken et 

al. 2005), seismic surface wave (Wisén and Christiansen 2005), transient electromagnetics (Auken et al. 

2008; Viezzoli et al. 2008), frequency-domain electromagnetics (Monteiro Santos 2004; Brodie and 

Sambridge 2006; Triantafilis and Monteiro Santos 2009), magnetic resonance soundings (Behroozmand 

et al. 2012b) and time domain induced polarization (Fiandaca et al. 2012, Fiandaca et al. 2013). For 

simplicity, we consider the special case of SCI inversion of TEM data. In this case, the vectors in the 

data and in the model space respectively become: 
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In these equations Niai ,,1,   denotes the apparent resistivity data collected along a profile and for 
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where, g  is the nonlinear mapping relating the model to the data space, pR
 
is the roughness operator 

providing the specifics of the regularization, and 
1

β  consists of a diagonal matrix of weights controlling 

the relative importance between the data and the stabilizer. Finally, Qp and Qd are simple weighting 

matrices in the model and data space, respectively. In the data case Qd typically weights the data residuals 

by the inverse of the uncertainty in the data: 
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About the specifics of the introduced properties, in the original LCI/SCI schemes (e.g., Auken and 

Christiansen 2004; Viezzoli et al. 2008),  the roughness matrix Rp is implemented as a linear difference 

operator and the entries of the diagonal β  matrix are all set to unity; in the case of pQ , the entries simply 

specify the different degrees of variability associated with the constraints.  

Having defined the equations of the inversion problem, we minimize the non-linear objective function 

using the Levenberg-Marquart algorithm, providing a solution by iterating over n:  
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where, nG
 
is the Jacobian matrix of the nonlinear mapping g , 
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is a covariance matrix 

specifying the data uncertainties, while 
p

T
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specifies the strength of the regularizing 

constraints, and λ  is simply a Marquart damping parameter that is iteratively updated to stabilize the 

minimization process (Marquart 1963).   

The reason of the SCI smoothness is clear if we rewrite Equation (4) in a more explicit way: 
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In minimizing the stabilizer, the contribution 22)( kkp mR
 
of the k-th term, which will be referred to 

as a “penalization” term, is proportional to the square of the value of the variation of the k-th component 

of m . This linear relationship is illustrated with a straight line in Figure 1, which clearly shows that an 

increase in model parameter variation will always lead to greater penalization in the stabilizer. This 

intrinsic property of the minimum L2 norm methodology essentially prevents reconstruction of blocky 

features, as we will show that this requires an upper limit on the degree of penalization regardless of 

variation magnitude. To overcome this issue, for the sSCI implementation, we use a MGS stabilizer 

weighted by the model variances. The full expression for this stabilizer is shown in Equation (8):  
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and in the following we discuss its properties. 



Within the formalism of the sSCI, we use the model variance k  as a tuneable threshold controlling the 

sharpness of the inversion, while we keep the ε parameter constant. To explain the reasoning behind this, 

we first discuss how we select the value for ε from the plot in  Figure 1 showing the variability of the 

sSCI norm as a function of  the weighted model variation, for different 2  values. When 12  , k  acts 

as a loosely defined threshold: model variations with 1
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model variations above k  can never contribute with a penalization larger than one. Hence, by using an 

MGS stabilizer with 12  , we penalize only the number of variations larger than the threshold, rather 

than the magnitude of the variation itself. Moreover, the use of 12   provides the benefit of obtaining 

similar behaviour for the MGS stabilizer and the L2 norm stabilizer for small values of 
22)( kkp mR  

(Figure 1). This allows for reconstruction of sharp boundary targets while maintaining the effect of 

smoothing regularization for small model parameter variations.  By selecting too small 2  values (in 

Figure 1, 05.02   and 0.02), we basically apply the same, maximum, penalization to every model 

characterized by a variation different from zero. This would result in a very oscillating solution since it 

does not really matter if the variation is large or small as long as it is non-zero.  On the contrary, if a large 

2  value (e.g., 102  ) is used, a penalization nearly proportional to the model variation is applied. And, 

in this case, the regularization will not lead to the desired blocky solution.  

Thus, k  defines the threshold where a model parameter variation is considered large enough to be 

penalized (i.e., it is large enough to contribute to the focusing MGS stabilizer in the Equation (8) and 

Figure 1). In another words, k , and the corresponding cC   entries, define the level of homogeneity in 

each reconstructed sub-volume, and the level of (non-penalized) variability within each different area. 



Basically, by setting k  equal to, for example, 1.04, the MGS stabilizer will count as possible variations 

all the resistivity changes larger that 4%; hence, all the structurs with a variability within 4% will be 

considered homogeneous.    

Concerning the diagonal matrix β , we use only two distinct values for its entries. One value for the 

entries in Equation (8) involving the vertical variation and another for the horizontal components. In 

general, the β  matrix elements control the balance between data misfit and regularization and therefore 

they should be chosen to fit the data to an appropriate degree. For the sSCI, however, the use of two 

distinct values of β  extends its functionality to further control the ratio between horizontal and vertical 

focusing strength. In the following, for the sSCI we set the two β  component values to 15 normalized, 

respectively, for the number of lateral, and vertical constraints per 1D model. We choose these values on 

the basis of a large number of numerical experiments that demonstrate these numbers to be robust and 

not requiring significant adjustments.  In general, by selecting smaller numbers for β  we could obtain 

more blocky solution, but without achieving the desired data misfit. On the other hand, too large β

component values leaded to smoother solutions.  

We now discuss a straight forward way to integrate the novel sSCI regularization into the existing SCI 

minimization scheme. The smoothing functional in Equation (7) uses the L2 norm of the model variation 

mR p and the only difference with the sharp functional in Equation (8) is in the weighting matrix. In the 

former case the weighting matrix is the diagonal matrix of the model variances, whereas in the latter case 

the weighting matrix simply becomes: 
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From this expression, we see that the introduction of the sharp MGS stabilizer has made the weighting 

matrix elements model dependent (Vignoli et al. 2012).  In principle, in the iterative model update 

expression, terms containing the Fréchet derivative of W  with respect of  m  should be included. 

Examples of inversion algorithm based on the minimum support stabilizer and taking into account these 

terms are described in Zhdanov et al. (2006) and Vignoli et al. (2012). However, since we wanted to 

implement a focusing algorithm by introducing the minimum number of modifications with respect to 

the original SCI scheme, we disregard those terms and use instead a re-weighting strategy taking into 

account simply the terms with W . Thus, the variable weighting matrix W  is recomputed on each 

iteration )()(

n

n
mWWW     based on the nm  from the previous iteration, while the contributions of 

the terms accounting for the derivative of  W  are neglected. This simplified approach leads to an 

iterative model update expression for the sSCI that is extremely close to the Equation (6) concerning the 

SCI: 
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In summary, the inversion algorithm for sSCI is the same as for SCI after substituting the (constant) 

roughness operator pR  with the matrix (updated iteration by iteration) )(n

H .  

In principle, neglecting the terms containing the W  derivative could lead to convergence issues in the 

minimization, however, we have not experienced any problems in practice. For the re-weighted 

optimization used here, the convergence rate depends on how accurate the (pseudo-quadratic) 



approximation of the weighting matrix )(n

H  is with respect to the original (non-quadratic) norm 

(Zhdanov 2002). Across all of our numerical experiments, we find that the convergence rate of the SCI 

algorithm remains essentially the same even after adding the sSCI term.  

 

3. SYNTETIC DATA 

We demonstrate the application of the new algorithm by using two synthetic examples. In particular, we 

compare the capabilities of the sSCI in reproducing layer boundaries against the smooth and discrete SCI 

inversions. The goals are to assess whether sSCI can be adopted as a valid alternative to discrete 

inversions and understand the differences between sSCI and traditional smooth SCI. 

The considered synthetic models  are representative structures of typical glacial buried valleys. Buried 

valleys are complex structures filled with glacio-lacustric clay, till, meltwater sand and gravel that 

provide classical target structures for hydrogeophysical surveys. The presented models mimic those 

discussed by Jørgensen et al. (2012) and the details of generating the synthetic 3D TEM data using the 

TEMDDD code (Árnason 2008) are the same as discussed by  Auken et al. (2008). Both synthetic models 

are characterized by a 3D resistivity distribution, where the top layer of the model represents soil of 

varying randomly generated resistivity. Located beneath the top layer, we find the actual 2D buried valley 

structures themselves. The synthetic data extracted from the models provide a simulation of a ground-

based TEM instrument, transmitting a 3 A current in a 40 m x 40 m square loop. This data were perturbed 

by noise consisting of: 1) Gaussian 2% contribution, and 2) “background” contribution characterized by 

a 
21t trend with a value of 3 nV/m2 at 1 ms (Auken et al. 2008). Having applied the noise perturbation, 

the synthetic data were processed as any field dataset, resulting in an uneven number of gates per 

sounding and varying error bars. For the inversion itself, a uniform half-space of 50 Ωm was used for the 



starting model, using logarithmically increasing layer thicknesses for the vertical discretization. Spatial 

regularization was applied using constant setting throughout all inversions and applied to the resistivity 

values. For the smooth horizontal regularization, a constraint factor of 1.2 was used for entangling 

resistivities of neighbouring model layers and, for the smooth vertical direction, we used a factor of 2.0. 

As the inversion is performed in logarithmic model space, these values essentially amount to assigning 

a variance of ~20% on the resistivities of horizontally neighbouring layers and a variance of ~100% in 

the vertical direction. For the sSCI, we use the global constant settings presented in the previous section, 

amounting to 04.1k
 
and 12.1m  (here, the k and m indexes are respectively spanning the cC

 

components concerning the horizontal and vertical constraints). Thus, by using these values, the 

regularization essentially considers an area homogenous when the horizontal and vertical variations are 

smaller than 4% and 12%, respectively. 

 

3.1 Model A 

A section of the first discussed synthetic model is shown in Figure 2. It is a relatively simple valley 

(Figure 2a) incised into thick clays (5 Ωm) and filled by sands below the groundwater table (100 Ωm). 

The valley has 26o sloping flanks with the bottom situated at a depth of 150 m. The top layer is 

inhomogeneous with a log-normal resistivity distribution having a mean value of 40 Ωm for the left side 

(clay-till) and 400 Ωm, for the right side (dry sandy quaternary layer). 

Comparing the final inversion model, we find the 16-layer smooth SCI result (Figure 2b) to retrieve 

reasonably well the main features of the true model: the mean resistivity value of the top layer is well 

reconstructed on both sides, the resistivity of the valley is slightly overestimated (especially on the left 

side), while the flanks appear less steep than they actually are due to the presence of a smooth (artificial) 



transition between the (overestimated) high resistivity inside the valley and the conductive clay.  When 

MGS constraints are applied along the vertical direction, while utilizing regular SCI smoothing laterally, 

the quality of the final result somewhat improves (Figure 2c). The resistivity level of the valley fill is 

now slightly better determined and also more homogeneously reproduced (even if the resistivity of the 

left side of the valley is still higher that the true value). The boundary at the interface between the first 

layer and the valley is more precisely retrieved. For example, the artificial horizontal transition at the 

bottom of the first layer, on the right side, introduced by the smooth inversion (Figure 2b)  has been 

almost completely removed by the vertical sharp algorithm (Figure 2c).    

The sSCI using MGS constraints in both the vertical and horizontal direction (Figure 2d) further improves 

the result. Not only the actual locations of the abrupt resistivity changes in the true model are more 

accurately mapped (e.g., the interface between the first layer and the sandy valley along the entire section 

is precisely located), but the true resistivity values are also more correctly recovered. For example, the 

sand homogeneous resistivity is very well inferred almost to the depth of investigation (DOI - 

Christiansen and Auken 2012). Clearly, the MGS algorithm enhances all the “sharp” features in the data, 

including the, so-called,  “pant-leg” effect due to presence of an abrupt, lateral change in conductivity. 

Hence, for example, the vertical boundary in the top layer results in a spurious conductive feature in the 

first few tens of metres in the valley fill. This artefact is present in all the reconstruction in Figure 2, but 

is less fuzzy and more clearly detectable in the sharp reconstructions. 

 

3.2 Model B 

The second synthetic example consists of a 20 Ωm body embedded  a more conductive half-space, and  

filling the right side base of a paleovalley (Figure 3a) characterized, on the left side, by a 100 Ωm 

resistivity. The top layer now consists of a single mean resistivity value of 40 Ωm for a single log-normal 



resistivity distribution across the whole area. Comparing the inversion results, we again find that the 

standard smooth SCI is fairly successful in recovering the overall picture (Figure 3b). If, instead of 16, 

only 4 layers are used for a laterally smooth SCI, the result in Figure 3c is obtained. A 4-layers 

parameterization has been chosen since the true model is characterized by 4 layers. In this inversion, no 

vertical constraints are connecting the resistivity values within each 1D model and simply the usual 

lateral smoothness is enforced ( 2.1k ). The most evident difference between Figure 3b and Figure 3c 

is in the higher precision of the few-layer inversion in locating the interfaces defining the resistive layers 

and the depth of the resistive valley. Also the flanks of the conductive valley are better resolved since 

the few-layer parameterization contributes to get rid of the smearing effect due to the smooth 

regularization. Similarly to Figure 3b, the bottom of the conductive valley cannot be resolved since it is 

at the upper DOI limit. 

In case of sSCI utilizing vertical and horizontal MGS constraints (Figure 3d), we again find that the 

reconstruction is significantly improved: the location of interfaces is more accurate and the overall 

resistivity levels are better recovered without over-shooting the resistivity of the shallower valley. The 

result in Figure 3d confirms that sSCI inherits, at the same time, the advantages of the multi-layer 

(regularized) inversion and the discrete (few-layer) reconstruction, thus, allowing retrieving the 

resistivity distributions by means of a fixed vertical discretization, while preserving the capability to 

reproduce sharp features. In particular, the two 70 Ωm structures between 30 and 75 m depth are quite 

well retrieved both in terms of boundary location and resistivity value. The flanks of the resistive valley 

are reconstructed to a level comparable to the few-layer inversion quality.  

Clearly, all the regularization schemes we have used are designed to penalize, in different ways, the 

lateral resistivity variation. And, when the sensitivity of the physical method is not high enough, it might 



happen that the contribution from the stabilizing term is predominant. Hence, the information migrates 

from the areas better constrained by the data to the others.  This explains why the bottom of the resistive 

valley embedded in a more conductive medium is hard to be correctly recovered and why, in all 

reconstructions, the valley base appears to be less resistive than in the true model. Of course, like for the 

“pant-leg” effect in Model A, also for the Model B, when the sSCI algorithm is used, the regularization 

artefact are sharper, and so, somewhat more pronounced.     

  

4. FIELD DATA  

As part of the CLIWAT project (Harbo et al. 2011),  airborne TEM data were collected near Tønder  in 

southern Denmark in April 2009 (Figure 4). The aim of the survey was to obtain a better understanding 

of the geological and hydrogeological setting of the area, in particular by mapping buried valleys and 

salt-fresh water interfaces (Jørgensen et al. 2012). The dataset was acquired using the SkyTEM system 

(Sørensen and Auken 2004) operating at an average speed of 43 km/h for a resulting averaged sounding 

every 25-30 m. Processing of the data was done using the methodology of Auken et al. (2009), as 

implemented in the Aarhus Workbench software package (www.aarhusgeophysics.com). 

In order to best assess the differences between sSCI and SCI for actual field data, we show results for 

two very characteristic cross-sections. The first is characterized by sharp lateral and vertical variations 

in the resistivity distribution (probably a fault), and the second is well suited for comparison due to the 

existence of  high quality borehole information close to the geophysical section.  

Figure 5 and Figure 6 show the results of the respective 30-layer SCI and sSCI inversions, all performed 

using the same settings as in the synthetic cases.  

The geology of the area consists mainly of three sedimentary sequences: alternating Miocene sand, silt 

and clay layers overlying Paleocene clay situated at about 300 m depth. The Miocene sequence is found 



below a shallow sheet of coarse glacial meltwater sediments and tills, which occasionally thickens when 

a buried valley is being filled. The inversions of the first cross section are shown in Figure 5. Both 

inversion results achieve the same degree of data fit. In the southern part of the cross section, we find a 

fault located at around 5250 m, providing a very interesting target for comparison. Here, we see that the 

focusing regularization of the sSCI effectively eliminates transition zone effects and provides a sharper 

and much more realistic result. Along the entire section, in the smooth SCI inversion, we can notice two 

thin layers of slightly increased resistivity surrounding the conductive layer (Figure 5a), while these 

layers do not exist in the focusing sSCI inversion (Figure 5b). The sSCI solution of Figure 5b provides 

(with a comparable data misfit) a much simpler picture characterized by a few, very homogeneous, zones 

that are much easier to interpret by a geologist. This prospect is of particular interest when looking 

towards future automated methods for relating geophysical- and hydrological/lithological models 

(http://geofysiksamarbejdet.au.dk/en/hygem/project-description/). 

About the second field data example, as seen in Figure 6, we compare the SCI and sSCI results against 

a borehole located just a few meters from the cross section (Figure 4).  By comparing the inversion results 

to ground truth, it is clear that the sSCI (Figure 6b) is capable of reproducing the actual lithological 

transitions with much higher precision than the smooth SCI. In particular, it is hard to tell from the 

smooth SCI whether there are two distinct layers above the Miocene clay or if this is just a single smeared 

out interface. In the sSCI case, two completely unambiguous layers are revealed, providing an almost 

perfect reconstruction of the interface between the top sand/gravel layer and the underlying clay. For the 

deeper lying layers the sSCI again provides an excellent definition of the Miocene clay between -30 and 

-52m and its transition to a sandier lithology from -52m down to the depth of investigation. As a matter 

of fact, sSCI also appear successful in determining the sharp change to the sand layer situated 

immediately above the depth of investigation (Figure 6b).  



 

5. CONCLUSIONS  

In this paper we have developed and applied an extension of the regularization used in the Spatially 

Constrained Inversion scheme (SCI). The new sharp SCI algorithm (sSCI) implements a Minimum 

Gradient Support (MGS) stabilizer as a simple extension of the existing SCI scheme, i.e. essentially 

adding just a new model-vector dependent contribution to the regularization term. The new focusing 

stabilizer allows for the reconstruction of abrupt horizontal variations without turning to discrete 

inversions for variable layer boundaries, while at the same time offering also support for improved 

reconstruction of horizontal interfaces. The application of the new methodology significantly extends the 

applicability of the local 1D formulation of the SCI, as the sSCI now supports transitions between 

different quasi layered sub-settings and provides improved support for mapping of discrete structures. 

The improved algorithm is very easy to be implemented and is proven to be effective on both synthetic 

and field TEM data sets. In the synthetic examples we show how the sSCI compares to the traditional 

smooth and discrete SCI; the synthetic examples clearly demonstrate the sSCI superior capability to 

resolve abrupt resistivity changes. In the case of actual field data, sSCI produces results that are much 

more geologically plausible, more homogeneous and also retrieves more accurately the lithological 

information obtained from a borehole. 

Overall, we draw the conclusion that, in quasi-layered settings, it is beneficial to employ a custom 

regularization scheme, such as sSCI, instead of simply utilizing one of the more widely known smoothing 

stabilizers. Specifically, the sSCI provides the benefit of making no assumptions about a fixed number 

of layers in the ground, which is otherwise needed in order to resolve sharp resistivity variations by 

inverting for models of variable layer boundaries. Another intriguing feature of the sSCI approach is its 

ability to produce a quasi 3D model made up from subdomains of (quasi-)homogeneous resistivity. This 



capability could prove highly valuable for applications requiring models of minimum detail, e.g. 

automated geological interpretation schemes or integration with hydrological models.  

The novel focusing algorithm is independent on the specific spatial derivative operator used. Thus, it can 

be coupled with no additional modifications to sophisticated pR
 
implementations. This might be useful, 

for example, anytime the subsurface stratification does not follow the surface; in these cases, a derivative 

implementation that is taking into account, not simply the contributions from model parameters at the 

same depth, but also contributions along  the “diagonal” directions could prevent the layers to be 

incorrectly forced to follow the surface.     

Concerning future applications, we have implemented the formalism in a general and flexible way, that 

makes it very easy to apply the methodology to other data types. In fact, the presented sSCI scheme could 

be useful for any problem utilizing a 1D forward model for the purpose of resolving sharp variations in 

either the horizontal or vertical direction. Examples of this could be: 1) the inversion of seismic surface 

wave data, anytime the dispersion curves are extracted via techniques preserving information about rapid 

lateral transition (Vignoli and Cassiani 2010; Vignoli et al. 2011), and 2) application to the case of 

adjacent magnetic resonance soundings (Behroozmand et al.  2012a). 
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Figure 2: Model A. a) True model. b) SCI result (smooth constraints both in vertical and horizontal 

direction). c) Vertical sSCI (laterally smooth and vertically sharp constraints). d) sSCI (sharp constraints 

both in vertical and horizontal direction). e) Data misfit: green, blue and red lines, show, respectively, 

the residuals for the SCI, vertical sSCI, and multidirectional sSCI. The white-shaded area represents the 

depth of investigation (DOI). Vertical exaggeration = 1.6x.  
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Figure 3: Model B. a) True model. b) SCI result (smooth constraints both in vertical and horizontal 

direction). c) Discrete SCI (laterally smooth with a few-layer parameterization). d) sSCI (sharp 

constraints both in vertical and horizontal direction). e) Data misfit: green, blue and red lines, show, 

respectively, the residuals for the multilayer SCI, few-layer SCI, and multilayer sSCI. The white-shaded 

area represents the DOI. Vertical exaggeration = 1.6x.  
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Figure 4: Map of the mean resistivity between  -70  and -80 m elevation of the survey area located near 

the border of Germany and Denmark. The sounding locations are shown in black (sounding characterized 

by capacitive/galvanic couplings and/or not optimal acquisition parameters have been removed). The 

two considered survey portions are inside the dash rectangles: in violet the section in Figure 5, in red the 

one in Figure 6.  The blue cross marks the location of the borehole used for comparison in Figure 6.   
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Figure 5: Southern cross section. a) SCI. b) sSCI. c) Data misfit at each sounding location; the green and 

red lines represent the misfit of the SCI and the sSCI, respectively. The white-shaded area represents the 

DOI. Vertical exaggeration = 3.4x.  
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Figure 6: Northern cross section. a) SCI and b) sSCI resistivity results compared against the available 

borehole. c) Data misfit at each sounding location; the green and red lines represent the misfit of the SCI 

and the sSCI, respectively. The white-shaded area represents the DOI. Vertical exaggeration = 1.9x.  

0 200 300 400 500 600 700 800 900

Profile coordinate [m]

100

D
a
ta

 R
e
s
id

u
a
ls

0

1

0

E
le

v
a
ti

o
n

  
[m

]

-50

-100

-150

-125

-75

-25

E
le

v
a
ti

o
n

  
[m

]

-50

-100

-150

-125

-75

-25

0

2

Borehole legend

sand gravel moraine

clay

meltwater

clay
Miocine

sand

Miocine

clay

4

13

40

126

400

4

13

40

126

400

Ωm

a

b

c

South NorthSouth North Ωm

400

126

40

13

4

400

126

40

13

4

0

-25

-50

-75

-100

-125

-150

E
le

v
a

ti
o

n
 [

m
]

0

-25

-50

-75

-100

-125

-150

E
le

v
a

ti
o

n
 [

m
]

0 100 200 300 400 500 600 700 800 900
Profile coordinates [m]

moraine

clay

meltwater

clay
Miocine

sand

Miocine

clay

sand gravel

D
a

ta
 R

e
s

id
u

a
ls

1

0

2

Borehole legend



Reference List 

 

1. Árnason K. 2008. A short Manual for the program TEMDDD. The National Energy Authority of 

Iceland, Reykjavík, Iceland. 

2. Auken E. and Christiansen A.V. 2004. Layered and laterally constrained 2D inversion of resistivity 

data. Geophysics 69, 752-761. 

3. Auken E., Christiansen A.V., Jacobsen B.H., Foged N., and Sørensen K.I. 2005. Piecewise 1D 

Laterally Constrained Inversion of resistivity data. Geophysical Prospecting 53, 497-506. 

4. Auken E., Christiansen A.V., Jacobsen L., and Sørensen K.I. 2008. A resolution study of buried valleys 

using laterally constrained inversion of TEM data. Journal of Applied Geophysics 65, 10-20. 

5. Auken E., Christiansen A.V., Westergaard J.A., Kirkegaard C., Foged N., and Viezzoli A. 2009. An 

integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM 

system. Exploration Geophysics 40, 184-192. 

6. Behroozmand A.A., Auken E., Fiandaca G., and Christiansen A.V. 2012a. Improvement in MRS 

parameter estimation by joint and laterally constrained inversion of MRS and TEM data. Geophysics 

74, WB191-WB200. 

7. Behroozmand A.A., Auken E., Fiandaca G., and Christiansen A.V., and Christensen N.B. 2012b.  

Efficient full decay inversion of MRS data with a stretched-exponential approximation of the inline 

image 𝑇2
∗ distribution. Geophysical Journal International 190, 900-912. 

8. Blaschek R., Hördt A., and Kemna A. 2008. A new sensitivity-controlled focusing regularization 

scheme for the inversion of induced polarization data based on the minimum gradient support. 

Geophysics 73, F45-F54. 



9. Brodie R. 2010. Holistic Inversion of Airborne Electromagnetic Data. PhD thesis, The Australian 

National University, Canberra, Australia. 

10. Brodie R. and Sambridge M. 2006. A holistic approach to inversion of frequency-domain airborne 

EM data. Geophysics 71, G301-G312. 

11. Christensen N.B. and Tølbøll R.J. 2009. A lateral model parameter correlation procedure for one-

dimensional inverse modelling. Geophysical Prospecting 57, 919-929. 

12. Christiansen A.V. and Auken E. 2012. A global measure for depth of investigation. Geophysics 77, 

WB171-WB177. 

13. Constable S.C., Parker R.L., and Constable C.G. 1987. Occam's inversion: A practical algorithm for 

generating smooth models from electromagnetic sounding data. Geophysics 52, 289-300. 

14. Cox L.H., Wilson G.A., and Zhdanov M.S. 2010. 3D inversion of airborne electromagnetic data using 

a moving footprint. Exploration Geophysics 41, 250-259. 

15. Fiandaca G., Auken E., Gazoty A., and Christiansen A.V.  2012. Time-domain induced polarization: 

Full-decay forward modeling and 1D laterally constrained inversion of Cole-Cole parameters. 

Geophysics 77, E213-E225. 

16. Fiandaca G., Ramm J., Binley A., Gazoty A., Christiansen A.V., and Auken E.  2013. Resolving 

spectral information from time domain induced polarization data through 2-D inversion. 

Geophysical Journal International, 192, 631-646.  

17. Guillemoteau J., Sailhac P., and Behaegel M. 2012. Fast approximate 2D inversion of airborne TEM 

data: Born approximation and empirical approach. Geophys. 77, WB89-WB97. 

18. Haber E., Oldenburg D.W., and Shekhtman R. 2007. Inversion of time domain three-dimensional 

electromagnetic data. Geophysical Journal International 171, 550-564. 

19. Harbo M.S., Pedersen J., Johnsen R., and Petersen K. 2011. Groundwater in a Future Climate. 



20. Jørgensen F., Scheer W., Thomson S., Sonnenborg T.O., Hinsby K., Wiederhold H., Schamper C., 

Burschil T., Roth.B., Kirsch R., and Auken E. 2012. Transboundary geophysical mapping of 

geological elements and salinity distribution critical for the assessment of future sea water intrusion 

in response to sea level rise. Hydrology and Earth System Sciences 16, 1845-1862. 

21. Marquart D. 1963. An Algorithm for Least Squares Estimation of Nonlinear Parameters. SIAM, 

Journal of Applied Mathematics 11, 431-441. 

22. Monteiro Santos F.A. 2004. 1-D laterally constrained inversion of EM34 profiling data. Journal of 

Applied Geophysics 56, 123-134. 

23. Newman G. and Commer M. 2005. New advances in three dimensional transient electromagnetic 

inversion. Geophysical Journal International 160, 5-32. 

24. Newman G.A., Anderson W.L., and Hohmann G.W. 1987. Interpretation of transient electromagnetic 

soundings over three-dimensional structures for the central-loop configuration. Geophysical Journal 

Of The Royal Astronomical Society 89, 889-914. 

25. Pagliara G. and Vignoli G. 2006. Focusing inversion techniques applied to electrical resistance 

tomography in an experimental tank. International Association for Mathematical Geology XI 

International Congress Processing. 

26. Portniaguine O. and Zhdanov M.S. 1999. Focusing geophysical inversion images. Geophysics 64, 

874-887. 

27. Sasaki Y. 2001. Full 3-D inversion of electromagnetic data on PC. Journal of Applied Geophysics 

46, 45-54. 

28. Sasaki Y.N.H. 2003. Topographic effects in frequency-domain helicopterborne electromagnetics. 

Exploration Geophysics 34, 24-28. 



29. Sengpiel K.P. and Siemon B. 2000. Advanced inversion methods for airborne electromagnetic 

exploration. Geophysics 65, 1983-1992. 

30. Sørensen K.I. and Auken E. 2004. SkyTEM - A new high-resolution helicopter transient 

electromagnetic system. Exploration Geophysics 35, 191-199. 

31. Tikhonov A.N. and Arsenin Y.V. 1977. Solution of ill-posed problems. Winston & Sons. ISBN 0-

470-99124-0. 

32. Triantafilis J. and Monteiro Santos F.A. 2009. 2-dimensional soil and vadose zone representation 

using an EM38 and EM34 and a laterally constrained inversion model. Australian Journal of Soil 

Research 47, 809-820. 

33. Vallée M.A. and Smith R.S. 2009. Inversion of airborne time-domain electromagnetic data to a 1D 

structure using lateral constraints. Near Surface Geophysics 7, 63-71. 

34. Viezzoli A., Christiansen A.V., Auken E., and Sørensen K.I. 2008. Quasi-3D modeling of airborne 

TEM data by Spatially Constrained Inversion. Geophysics 73, F105-F113. 

35. Viezzoli A., Munday T., Auken E., and Christiansen A.V. 2010. Accurate quasi 3D versus practical 

full 3D inversion of AEM data - the Bookpurnong case study. Preview 149, 23-31. 

36. Vignoli G. and Cassiani G. 2010. Identification of lateral discontinuities via multi-offset phase 

analysis of surface wave data. Geophysical Prospecting 58, 389-413. 

37. Vignoli G., Cassiani G., and Deiana R. 2012. Focused inversion of vertical radar profile (VRP) 

traveltime data. Geophysics 77, H9-H18. 

38. Vignoli G., Strobbia C., Cassiani G., and Vermeer P. 2011. Statistical multi-offset phase analysis 

(sMOPA) for surface wave processing in laterally varying media. Geophysics 76, U1-U11. 

39. Wilson G.A., Raiche A., and Sugeng F. 2006. 2.5D inversion of airborne electromagnetic data. 

Exploration Geophysics 37, 363-371. 



40. Wisén R. and Christiansen A.V. 2005. Laterally and Mutually Constrained Inversion of Surface Wave 

Seismic Data and Resistivity Data. Journal of Environmental & Engineering Geophysics 10, 251-

262. 

41. Yang D. and Oldenburg D.W. 2012. Three-dimensional inversion of airborne time-domain 

electromagnetic data with applications to a porphyry deposit. Geophysics 77, B23-B34. 

42. Zhdanov M.S. 2002. Geophysical inverse theory and regularization problems. Elsevier. ISBN-10: 0-

444-51089-3. 

43. Zhdanov M.S. and Tolstaya E. 2004. Minimum support nonlinear parametrization in the solution of 

a 3D magnetotelluric inverse problem. Inverse Problems 20, 937-952. 

44. Zhdanov M.S., Vignoli G., and Ueda T. 2006. Sharp boundary inversion in crosswell traveltime 

tomography. Journal of Geophysics and Engineering 3, 122-134. 

 


