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ABSTRACT 20 

In many cases, inversion in 2D gives a better description of the subsurface compared to 1D 21 

inversion, but computationally 2D inversion is expensive, and it can be hard to employ for large-scale 22 

surveys. We present an efficient hybrid 2D airborne frequency-domain electromagnetic inversion 23 

algorithm. Our hybrid scheme combines 1D and 2D inversions in a three-stage process, where each step is 24 

progressively more accurate and computationally more expensive than the previous. This results in a 25 

~2x − 6x speedup compared to full 2D inversions, and with only minor changes to the inversion results. 26 

Our inversion structure is based on a regular grid, where each sounding is discretized individually. The 1D 27 

modelling code uses layered models with derivatives derived through the finite difference method, while 28 

our 2D modelling code uses an adaptive finite element mesh, and the adjoint-state method to calculate the 29 

derivatives. By incorporating the inversion grid structure into the 2D finite element mesh, interpolation 30 

between the different meshes becomes trivial. Large surveys are handled by utilizing local meshing to split 31 

large surveys into small sections, which retains the 2D information. The algorithm is heavily optimized, and 32 

parallelized over both frequencies and sections, with a good scalability even on non-uniform memory 33 

architecture systems, on which it is generally hard to achieve a satisfactory scaling. The algorithm has been 34 

tested successfully with various synthetic studies as well as field examples, of which results from two 35 

synthetic studies and a field example are shown.  36 

  37 
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INTRODUCTION 38 

Airborne electromagnetic surveys typically contain thousands of line kilometers of data, and 39 

are routinely flown for mapping of geology, groundwater, saltwater intrusion, etc. Most data are inverted 40 

using 1D model algorithms, which have proven to be robust and computationally fast. However, specific 41 

targets with a high conductivity contrast between undulating bedrock and sediments, or conductive sheet-42 

like mineralizations, need higher dimensionality in the underlying model to be resolved accurately (Wilson 43 

et al. 2012; Doyle et al. 1999; Yang and Oldenburg 2012b). The challenge in moving beyond 1D modeling is 44 

that it is prohibitively computationally expensive to invert for a 2D or a 3D model and this limits the usage 45 

of these inversion algorithms on a routine basis, even for frequency domain-electromagnetic datasets of 46 

just a few discrete frequencies. 47 

Full 3D EM inversion algorithms have existed for more than a decade (Haber et al. 2007b), 48 

and with the concept of moving footprint (Cox et al. 2010), several 3D codes using local meshes have been 49 

presented (Cox et al. 2012; Yang et al. 2014). All these algorithms are capable of handling large surveys, in 50 

time- or frequency-domain, by sectioning the survey into smaller parts using a local meshing approach. 51 

Local meshing means that the survey is split into smaller parts, where each part contains a small subset of 52 

transmitter-receiver pairs, as well as all the models within their footprint domain (Liu and Becker 1990; 53 

Beamish 2003; Reid et al. 2006). Here, the footprint is defined as the area of significant lateral sensitivity of 54 

the survey system, and its size is thus dependent upon both the system itself and the resistivity of the 55 

earth. Reid et al. (2006) showed that, for a frequency domain system, the footprint may be as large as 10 56 

times the flight altitude for low induction numbers. Common survey systems operate either in time-57 

domain, or with multiple frequencies spread across the frequency spectrum, and while these latter systems 58 

usually have one transmitter frequency operating within the low induction approximation, the majority of 59 

their transmitter frequencies operate at higher induction numbers, for which the footprint is much smaller. 60 

From this, we argue that when a survey is flown with a line separation of 200-500 m, the majority of any 61 

crossline information is lost, and the survey results are essentially reduced to only contain inline 62 
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information. Considering this and the inherent computational burden of doing full 3D inversions, it is clear 63 

that there are areas where it is sufficient, and even desirable to operate within a 2D formulation. Several 64 

2D inversion algorithms have been presented over the years: Mitsuhata and Uchida (2002); Wilson et al. 65 

(2006); Li et al. (2016); Key and Ovall (2011) have all developed 2D finite element algorithms, while 66 

Abubakar et al. (2008) uses a finite difference approach, and Yu and Haber (2012) present a finite volume 67 

approach. In general, finite difference approaches are considered the most simple and inaccurate of the 68 

three approaches, but can sometimes be justified due to their superior parallel scaling. The finite element is 69 

the most accurate of the methods, but also the most computationally heavy, and at large the question of 70 

whether the finite element or finite volume is the superior choice remains open (Jahandari et al. 2017).  71 

In this paper, we present a hybrid 1D/2D inversion code for frequency-domain HEM data 72 

designed for inverting field scale surveys on desktop computers. Since an efficient 2D modelling algorithm 73 

is vital to achieve this goal, and since our 2D algorithm has not previously been published, this paper begins 74 

with the construction of our 2D algorithm and the foundation it is built on. The 2D algorithm is based on 75 

the 2.5D formulation by Stoyer and Greenfield (1976), along with field separation into primary and 76 

secondary fields, where the high frequency singularity is handled by the introduction of a finite resistivity of 77 

the air (Mitsuhata 2000). The algorithm has a triangular finite element mesh for the 2D forward and 78 

derivative calculations, and a regular grid for the inversion. When having multiple meshes, interpolation 79 

schemes are needed to map variables between the meshes. In general, interpolation between meshes is a 80 

non-trivial task (Caudillo-Mata et al. 2016), but in our case the task is made trivial, by using the regular grid 81 

as a skeletal structure for building the finite element mesh. Due to limited memory, as well as performance 82 

concerns, we introduce sectioning, which splits large survey lines into smaller sections. Sectioning is only 83 

done when carrying out the 2D forward and derivative calculations, during which we enforce sufficient 84 

overlap, such that vital 2D information is preserved. Based on the overlap size, we show how section sizes 85 

should be chosen in order to reach optimal performance. The algorithm is written in Fortran and utilizes: 86 

OpenMP, Intel MKL libraries, as well as a custom-built block-parallel sparse iterative linear solver. The 87 
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algorithm is part of AarhusInv, which is provided as freeware for non-commercial academic purposes 88 

(Auken et al. 2014). 89 

Following the presentation of our 2D algorithm, we present a hybrid scheme, inspired by the 90 

work presented in Christiansen et al. (2015); Christiansen and Auken (2004). The method starts by 91 

performing 1D forward and inverse calculations, later it switches to 2D forward calculations and 1D 92 

derivatives, and finally it ends with full 2D calculations. The result of this is a code, which produces 2D 93 

results, but with a substantially shorter computational time than traditional 2D algorithms. We 94 

demonstrate these computational benefits using two synthetic models and a field example. Finally, we 95 

discuss the trade-off between computational speed and accuracy, how the algorithm is best parallelized, 96 

and we illustrate the code’s parallel scaling and performance on a multiprocessor system.  97 

METHODOLOGY 98 

The 2.5D forward algorithm is based upon the framework of Stoyer and Greenfield (1976). In 99 

a 2.5D formulation the earth is described in 2D (homogeneous in the cross-section-direction), but the 100 

source is 3D. The source needs to be 3D, in order to describe accurately the sources used in AEM, since 101 

AEM sources do not produce source fields, which are reasonably homogenous in any direction. Our 2.5D 102 

algorithm was originally developed for marine EM measurements (Vöge 2010), but sources in the air have 103 

been added so it can now be used to invert airborne frequency domain EM data (Vöge et al. 2015). For 104 

hybrid inversion we include the 1D algorithm of Auken et al. (2014), which is based on the layered 1D 105 

model solution presented in Ward and Hohmann (1988). 106 

Governing equations  107 

Starting from Maxwell's equations in the frequency domain: 108 

 𝛁 × 𝑬 + 𝑖𝜔𝝁 ∙ 𝑯 = 0, (1) 

  ∇ × 𝑯 − 𝑖𝜔𝜺 ∙ 𝑬 = 𝑱, (2) 
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where 𝑬 and 𝑯 are the electric- and magnetic-fields, 𝑱 is the electric source current, 𝑖 is the 109 

imaginary unit, 𝜔 is the frequency, 𝝁 is the magnetic permeability, and 𝜺 is the complex dielectric 110 

permittivity, with 𝜺 = 𝜺𝟎  − 𝑖
𝜎

𝜔
, where 𝜎 is the conductivity. In order to minimize the forward inaccuracy, 111 

the fields are split into primary and secondary fields: 112 

 𝑬 = 𝑬𝒑 +𝑬𝒔, 𝑯 = 𝑯𝑝 +𝑯𝒔. (3) 

So equation 1 and 2 can be written as  113 

(𝛁 × 𝑬𝒑 + 𝑖𝜔𝝁 ∙ 𝑯𝑝) + (𝛁 × 𝑬𝒔 + 𝑖𝜔𝝁 ∙ 𝑯𝑠) = 0, (4) 

(𝛁 × 𝑯𝒑 − 𝑖𝜔𝜺 ∙ 𝑬𝑝) + (𝛁 × 𝑯𝑠 − 𝑖𝜔𝜺 ∙ 𝑬𝒔) = 𝐽. (5) 

We separate the conductivity into a conductivity for the primary field model, 𝝈𝑝,  and secondary field 114 

model, 𝝈𝑠, where 𝝈𝑠 = 𝝈 − 𝝈𝑝. From this we get 𝑖𝜔𝜺 = 𝑖𝜔𝜺𝟎  − (𝝈𝑝 + 𝝈𝑠) = 𝑖𝜔𝜺𝒑  − 𝝈𝑠, , which 115 

allows us to split equation 4 and 5 into separate equation systems for primary field: : 116 

 𝛁 × 𝑬𝒑 + 𝑖𝜔𝝁 ∙ 𝑯𝑝 = 0, (6) 

  𝛁 × 𝑯𝒑 − 𝑖𝜔𝜺𝒑 ∙ 𝑬𝑝 = 𝑱, (7) 

and the secondary field: 117 

 𝛁 × 𝑬𝒔 + 𝑖𝜔𝝁 ∙ 𝑯𝑠 = 0, (8) 

 𝛁 × 𝑯𝑠 − 𝑖𝜔𝜺 ∙ 𝑬𝒔 = 𝝈𝑠 ∙ 𝑬𝑝. (9) 

The primary field is computed analytically, so the inaccuracy of the finite element method 118 

affects only the secondary field, which is several orders of magnitude smaller than the total field. In our 119 

case, we chose the primary field model to be a uniform full-space air model with magnetic point sources 120 

and receivers, which can be easily calculated analytically. Since 𝝈𝑝 is the conductivity of air, we have 𝝈 =121 

𝝈𝑝 and 𝝈𝑠 = 0 in the air layer.  122 
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The Fourier transform is defined with respect to 𝑦 (i.e. the strike direction of the survey) as: 123 

 𝐹̃(𝑥, 𝑘𝑦, 𝑧) = ∫ 𝐹(𝑥, 𝑦, 𝑧)𝑒𝑖𝑘𝑦𝑦𝑑𝑦
+∞

−∞
, (10) 

where 𝑘𝑦 is the wavenumber. A Fourier transformation of the primary field is carried out 124 

numerically, following the approach of Streich et al. (2011). The governing equations of the 2D forward 125 

response emerge by applying the Fourier transform to equation 8 and 9: 126 

 
𝐸̃𝑠𝑥 =

1

𝑘𝑦
2−𝜔2𝜇𝑧𝜀𝑥

(𝑖𝑘𝑦
𝜕𝐸̃𝑠𝑦

𝜕𝑥
− 𝑖𝜔𝜇

𝑧

𝜕𝐻̃𝑠𝑦

𝜕𝑧
−

𝑖𝜔𝜇
𝑧
𝜎
𝑠𝑥
𝐸̃𝑝𝑥), 

(11) 

  
𝐸̃𝑠𝑧 =

1

𝑘𝑦
2−𝜔2𝜇𝑥𝜀𝑧

(𝑖𝑘𝑦
𝜕𝐸̃𝑠𝑦

𝜕𝑧
+ 𝑖𝜔𝜇

𝑥

𝜕𝐻̃𝑠𝑦

𝜕𝑥
−

𝑖𝜔𝜇
𝑥
𝜎
𝑠𝑧
𝐸̃𝑝𝑧), 

(12) 

  
𝐻̃𝑠𝑥 =

1

𝑘𝑦
2−𝜔2𝜇𝑥𝜀𝑧

(𝑖𝜔𝜀𝑧
𝜕𝐸̃𝑠𝑦

𝜕𝑧
+ 𝑖𝑘𝑦

𝜕𝐻̃𝑠𝑦

𝜕𝑥
− 𝑖𝑘𝑦𝜎𝑠𝑧

𝐸̃𝑝𝑧), (13) 

  
𝐻̃𝑠𝑧 =

1

𝑘𝑦
2−𝜔2𝜇𝑧𝜀𝑥

(−𝑖𝜔𝜀𝑥
𝜕𝐸̃𝑠𝑦

𝜕𝑥
+ 𝑖𝑘𝑦

𝜕𝐻̃𝑠𝑦

𝜕𝑧
+

𝑖𝑘𝑦𝜎𝑠𝑥
𝐸̃𝑝𝑥), 

(14) 
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−𝑖𝜔𝜀𝑦𝐸̃𝑠𝑦 +

𝜕

𝜕𝑥
(
𝑖𝜔𝜀𝑥
𝑐𝑧𝑥

𝜕𝐸̃𝑠𝑦

𝜕𝑥
) +

𝜕

𝜕𝑧
(
𝑖𝜔𝜀𝑧
𝑐𝑥𝑧

𝜕𝐸̃𝑠𝑦

𝜕𝑧
) −

𝜕

𝜕𝑥
(
𝑖𝑘𝑦

𝑐𝑧𝑥

𝜕𝐻̃𝑠𝑦

𝜕𝑧
)

+
𝜕

𝜕𝑧
(
𝑖𝑘𝑦

𝑐𝑥𝑧

𝜕𝐻̃𝑠𝑦

𝜕𝑥
)

= −(𝑖𝜔𝜀𝑝𝑦 − 𝑖𝜔𝜀𝑦)𝐸̃𝑝𝑦

+
𝜕

𝜕𝑥
((
𝑖𝜔𝜀𝑝𝑥

𝑐𝑝𝑧𝑥
−
𝑖𝜔𝜀𝑥
𝑐𝑧𝑥

)
𝜕𝐸̃𝑝𝑦

𝜕𝑥
)

+
𝜕

𝜕𝑧
((
𝑖𝜔𝜀𝑝𝑧
𝑐𝑝𝑥𝑧

−
𝑖𝜔𝜀𝑧
𝑐𝑥𝑧

)
𝜕𝐸̃𝑝𝑦

𝜕𝑧
)

−
𝜕

𝜕𝑥
((
𝑖𝑘𝑦

𝑐𝑝𝑧𝑥
−
𝑖𝑘𝑦

𝑐𝑧𝑥
)
𝜕𝐻̃𝑝𝑦

𝜕𝑧
)

+
𝜕

𝜕𝑧
((
𝑖𝑘𝑦

𝑐𝑝𝑥𝑧
−
𝑖𝑘𝑦

𝑐𝑥𝑧
)
𝜕𝐻̃𝑝𝑦

𝜕𝑥
), 

(15) 

and 127 

 
−𝑖𝜔𝜇𝑦𝐻̃𝑠𝑦 +

𝜕

𝜕𝑥
(
𝑖𝜔𝜇𝑥
𝑐𝑥𝑧

𝜕𝐻̃𝑠𝑦

𝜕𝑥
) +

𝜕

𝜕𝑧
(
𝑖𝜔𝜇𝑧
𝑐𝑧𝑥

𝜕𝐻̃𝑠𝑦

𝜕𝑧
) +

𝜕

𝜕𝑥
(
𝑖𝑘𝑦

𝑐𝑥𝑧

𝜕𝐸̃𝑠𝑦

𝜕𝑧
)

−
𝜕

𝜕𝑧
(
𝑖𝑘𝑦

𝑐𝑧𝑥

𝜕𝐸̃𝑠𝑦

𝜕𝑥
)

= −(𝑖𝜔𝜇𝑝𝑦 − 𝑖𝜔𝜇𝑦)𝐻̃𝑝𝑦 +
𝜕

𝜕𝑥
((
𝑖𝜔𝜇𝑝𝑥
𝑐𝑝𝑥𝑧

−
𝑖𝜔𝜇𝑥
𝑐𝑥𝑧

)
𝜕𝐻̃𝑝𝑦

𝜕𝑥
)

+
𝜕

𝜕𝑧
((
𝑖𝜔𝜇𝑝𝑧
𝑐𝑝𝑧𝑥

−
𝑖𝜔𝜇𝑧
𝑐𝑧𝑥

)
𝜕𝐻̃𝑝𝑦

𝜕𝑧
)+

𝜕

𝜕𝑥
((
𝑖𝑘𝑦

𝑐𝑝𝑥𝑧
−
𝑖𝑘𝑦

𝑐𝑥𝑧
)
𝜕𝐸̃𝑝𝑦

𝜕𝑧
)

−
𝜕

𝜕𝑧
((
𝑖𝑘𝑦

𝑐𝑝𝑧𝑥
−
𝑖𝑘𝑦

𝑐𝑧𝑥
)
𝜕𝐸̃𝑝𝑦

𝜕𝑥
), 

(16) 
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where 𝑐𝑖𝑗 = 𝑘𝑦
2 − 𝜔2𝜇

𝑖
𝜀𝑗. Equations 11-14 only need to be evaluated at the receiver 128 

positions, which in our application are in the air. Thus, 𝜎𝑠𝑥 , 𝜎𝑠𝑦 and 𝜎𝑠𝑧, are always zero, so all primary field 129 

terms in equation 11-14 can be ignored.  While the left-hand-sides of equation 15-16 are identical to the 130 

governing equations presented in Mitsuhata (2000) , the right-hand-sides are expressed by 𝐸̃𝑝𝑦 and 𝐻̃𝑝𝑦 131 

instead of  𝐸̃𝑝𝑥, 𝐸̃𝑝𝑦 and  𝐸̃𝑝𝑧. However, a simple arithmetic reformulation of the right-hand-side of 132 

equation 15 using equations 11-14 can show that both forms are equivalent (not shown). Having the same 133 

field components and derivatives on both sides of the equations, allows us to speed-up the assembly of the 134 

linear equation system. 135 

With the governing equations defined in equation 11-16, we use the standard finite element 136 

approach to define a set of local equations for each element. By combining all these using the Galerkin 137 

method (Zienkiewicz et al. 1977) with 2nd order nodal elements and Dirichlet boundary conditions, a global 138 

set of linear equations is found for the secondary electromagnetic fields (See appendix A for more details). 139 

From equation 15-16 a linear system of equations for the secondary field is found: 140 

 𝑨𝒙̃ = 𝒃, (17) 

where 𝑨 is the global symmetric stiffness matrix, 𝒙̃ contains the Fourier transformed 141 

secondary fields 𝐸̃𝑠𝑦 and 𝐻̃𝑠𝑦 at the mesh nodes, and 𝒃 contains the source terms, where each column 142 

represents one source component.  143 

The procedure to solve the system is as follows:  144 

 Assemble the matrix equation resulting from equation 17  145 

 Solve the linear system using a direct LU-decomposition solver and interpolate the 146 

field values at the receiver positions using the same 2nd order shape function (which 147 

has already been used to assemble the finite element system) to find 𝒙̃, which 148 

contains the Fourier transformed secondary field components 𝐸̃𝑠𝑦 and 𝐻̃𝑠𝑦.  149 
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 Insert the solution into equation 11-14 to find the remaining components of the 150 

Fourier transformed fields of 𝐸̃𝑠𝑥, 𝐸̃𝑠𝑧  , 𝐻̃𝑠𝑥 and  𝐻̃𝑠𝑧.  151 

 Interpolate the solution to the receiver positions. 152 

 Apply the inverse Fourier transform in order to obtain the fields E𝑠𝑥, E𝑠𝑦, 𝐸𝑠𝑧 , 𝐻𝑠𝑥 153 

H𝑠𝑦, and  𝐻𝑠𝑧 at the receiver positions in the frequency-domain, which, when all 154 

combined, are referred to as the forward response vector 𝒅.  155 

Given this procedure, the forward response can formally be written as 156 

 𝒅 = 𝓕−𝟏(ℶ(𝒙̃)), (18) 

 

Where 𝓕−𝟏 is the inverse Fourier transform operator and ℶ is the interpolating operator. 157 

This inverse Fourier transform is done numerically by logarithmic spaced 𝑘𝑦-samples, which are splined 158 

together over the relevant 𝑘𝑦-domain. Tests show that five wavenumbers per decade between 10−5 m−1 159 

to 10 m−1 provide sufficiently accurate results. One important point related to the inverse Fourier 160 

transform is that the air conductivity needs to be larger than zero, otherwise a singularity at 𝑘𝑦
2 ≈ 𝜔2𝜇𝜀 is 161 

encountered (Mitsuhata 2000). We found that setting the air conductivity to 𝜎 = 10−6 Sm−1 keeps the air 162 

sufficiently resistive, while avoiding the singularity within a frequency range of 0.4-130 kHz. The 163 

interpolation to the receiver positions is carried out using the shape functions of the finite elements. 164 

Derivative calculation 165 

The 2D derivatives of the forward response with regards to the model parameters, 𝒎, can be 166 

written as: 167 

 𝑑𝒅

𝑑𝒎
=
𝑑(𝓕−𝟏(ℶ(𝒙̃)))

𝑑𝒎
. 

(19) 
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For model parameters related to source/receiver altitude; the derivatives are calculated by a standard 168 

finite difference approach with small perturbations, as done in the 1D case (Auken et al. 2014). For model 169 

parameters related to subsurface resistivities, 𝝆; the derivatives are calculated as follows. 170 

For inversion parameters related to resistivities, both the Fourier transform operator and the interpolation 171 

operator are independent of the inversion parameter, so we can write   172 

 𝑑𝒅

𝑑𝝆
= 𝓕−𝟏 (ℶ (

𝑑𝒙̃

𝑑𝝆
)) 

(20) 

In 2D the derivative of 𝒙̃ is found through the adjoint-state method (McGillivray and 173 

Oldenburg 1990). Equation 17 is differentiated with regards to the model parameters 𝒎: 174 

 𝑑(𝑨𝒙̃)

𝑑𝝆
=
𝑑𝒃

𝑑𝝆
, (21) 

which through the product rule gives the Jacobi elements: 175 

 𝑑𝒙̃

𝑑𝝆
= 𝑨−1 (

𝑑𝒃

𝑑𝝆
−
𝑑𝑨

𝑑𝝆
𝒙̃). (22) 

 

Since only the coefficients of the governing equations are depended on the resistivity, 
𝑑𝑨

𝑑𝝆
 can 176 

be analytically calculated and assembled. The term 
𝑑𝒃

𝑑𝝆
 is zero, because all sources are in the air, and thus 177 

are not affected by any of the inverted resistivity cells. As each inversion cell usually contains only a small 178 

number of finite elements, 
𝑑𝑨

𝑑𝝆
 is extremely sparse and

𝑑𝑨

𝑑𝝆
𝒙̃ can be calculated efficiently, and the result can 179 

still be considered sparse. To calculate 𝑨−1, however, would be far too expensive. Instead, we use the fact 180 

that only the field derivatives at the receiver position are of interest, and thus replacing 𝑨−1 with 𝝀𝑇, where 181 

𝝀𝑇 contains all rows of 𝑨−1 that correspond to those column in 
𝑑𝒙̃

𝑑𝝆
 which are necessary to calculate the field 182 

values at the receiver positions:  183 
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𝑑𝒙̃𝑟𝑒𝑐

𝑑𝝆
= 𝝀𝑇 (

𝑑𝒃

𝑑𝝆
−
𝑑𝑨

𝑑𝝆
𝒙̃). (23) 

 

Because  𝑨 is symmetric, 𝝀 can be calculated by solving 𝑨𝝀 = 𝑰𝑟𝑒𝑐 , with 𝑰𝑟𝑒𝑐 being 184 

constructed from those columns of the identity matrix necessary to calculate the field values at the 185 

receivers. Thus, the same direct LU-decomposition used for the regular forward solutions can be used here. 186 

The matrix multiplication in equation 21 then results in 
𝑑𝒙̃𝑟𝑒𝑐

𝑑𝝆
 , which is a dense matrix, however, with rather 187 

small dimensions, where the number of rows is equal to the number of sources, and the number of 188 

columns is equal to 12 times the number of receivers (6 nodes per finite element with 2 field components 189 

each). The derivatives at the receiver positions are then calculated from 
𝑑𝒙̃

𝑑𝝆
 using the second order shape 190 

function as interpolator, and the derivative of the forward response are calculated by the interpolated 191 

derivatives given in equation 20 . 192 

Meshing 193 

The 2D modelling is performed on a triangular finite element mesh as shown in Figure 1 (b), 194 

while the inversion operates on a regular grid, as seen in Figure 1 (a). The column spacing of the inversion 195 

grid is determined by the sounding distance, the row spacing by the model layers, and the layer thickness is 196 

chosen to be logarithmically increasing, which reflects the decreasing sensitivity of HEM systems with 197 

depth. Separating the meshes of forward calculations and inversion has some clear computational benefits, 198 

as the inversion grid is much coarser than the 2D forward mesh. This decreases the size of the inversion 199 

problem, while maintaining the accuracy of the forward modelling. 200 

Interpolation between the inversion grid and the forward mesh is avoided by using the 201 

inversion grid as a skeletal structure for the forward mesh (Figure 1). By incorporating the inversion grid 202 

into the forward mesh, it is guaranteed that each finite element is fully residing in just one inversion cell, 203 

which aligns the forward modelling mesh nodes and edges with the inversion grid. 204 
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The mesh density for the forward mesh is adjusted according to the key parameters like 205 

frequency and source/receiver height. The highest mesh density is needed near the surface below the 206 

sources, where the primary field is strongest. Here, the mesh density is selected as a function of the source 207 

height and, thus, of the strength of the primary field. For very low altitudes of 1m and below, a maximum 208 

edge length of 0.2 m is required. For altitudes of 20 m and above, 5 m edge length is sufficient. At deeper 209 

locations and at larger horizontal offsets from the source, the mesh density can be reduced without losing 210 

accuracy. The mesh density is interpolated between the surface/zero offset mesh density, defined by the 211 

altitude, and a background mesh density of 50m for larger depths and offsets. This interpolation is done by 212 

a 2D Gaussian function, with the 2D distance from the closest source/receiver as parameter and a 213 

frequency dependent standard deviation. Standard deviations in z direction are logarithmically interpolated 214 

between 200 m at 10−2 Hz and 20 m at 106 Hz.  Test showed, that the mesh density along the surface 215 

could not be coarsened as quickly, so the standard deviation in x direction is logarithmically interpolated 216 

between 800 m at 10−2 Hz and 80 m at 106 Hz. Additionally, the mesh density is increased near the 217 

receivers, in order to calculate the spatial derivatives in equations (11) and (12) accurately. 218 

The mesh of the 2D forward model is appended with large absorbing boundary domains that 219 

extend 10 km in each direction. As the mesh density is coarsening quickly in these boundary domains, the 220 

computational overhead is not very high, but tests showed that 10 km boundary domains allow the field to 221 

attenuate enough, so that the validity of the Dirichlet boundary conditions is assured.  222 

Sectioning 223 

Even for relatively small surveys, it is computationally inefficient to create and store a 224 

sufficiently fine finite element mesh and do 2D calculations on all soundings at once. Because of this, it is 225 

imperative to split large surveys into smaller sections. Sectioning, or local meshing as it is also often called 226 

in the literature, can be accomplished in several different ways. Our sectioning method is somewhat similar 227 

to the method used in Yang and Oldenburg (2012a). Their method involves a global mesh, and a local mesh 228 
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for each sounding. While the forward problem is handled on the local meshes, the inversion is made by 229 

subsampling the global mesh. In our case the local meshes contain multiple soundings, since that is more 230 

efficient, and is used for both the 2D forward and derivative calculations. In order for these sections to 231 

retain the 2D information of the survey, they need to overlap as shown in Figure 2. Thus, each section, 𝐿, 232 

consists of a core section, 𝑙, and one or two overlapping regions, ∆𝑙. Continuity between different sections 233 

are ensured by using sufficient overlap between different sections, and by placing lateral constraints on all 234 

soundings irregardless of section boundaries. The size of the overlap and sections will be addressed later. 235 

Forward modelling validation 236 

The 2D finite element forward response was validated against the 1D code of Auken et al. 237 

(2014) for a range of frequencies relevant for HEM (0.4-130 kHz) across different half spaces with 238 

resistivities of: 10 Ωm, 100 Ωm, and 1000 Ωm. A halfspace comparison between 1D and 2D is shown in 239 

Figure 3. The mesh density is selected such that the resulting responses deviate less than 5 % from the 1D 240 

responses within the frequency range. The inaccuracy of the 1D response is estimated to be between 0.1–241 

0.3 % and is insignificant in this context. Note that the deviation between 1D and 2D responses is not just a 242 

single number, but instead a range, because of variations in the mesh density between soundings near the 243 

edge of the mesh and those near the center. The overall coarseness surrounding a sounding near the 244 

center of a section is will be slightly lower than the overall coarseness surrounding a sounding near the 245 

edge of a section. This is reflected in Figure 3 (b), where the deviation from 1D is shown for a 300 m long 246 

section with 30 soundings equally spaced over the section. The flight height of the system is 30 m and the 247 

halfspace resistivity is set to 100 Ωm. Similar accuracies are obtained from halfspace resistivities at 10 Ωm 248 

and 1000 Ωm, but for brevity we only show one representative example. In this case, the inaccuracy is 249 

generally less than 2%, while reaching as high as 5% for frequencies beyond the range shown here. 250 

 251 
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Inversion algorithm 252 

Our inversion technique utilizes linearized minimization, following the Levenberg-Marquardt 253 

adaptive scheme (Menke 1989). The following is a brief review of our inversion algorithm, see Auken and 254 

Christiansen (2004); Auken et al. (2014) for the full details. 255 

The minimized objective function is given as: 256 

 𝑞 = 𝑞𝑜𝑏𝑠 + 𝑞𝑝𝑟𝑖𝑜𝑟 + 𝑞𝑟𝑒𝑔, (24) 

with 𝑞𝑜𝑏𝑠 being the observed data (secondary field) misfit, 𝑞𝑝𝑟𝑖𝑜𝑟  being the prior constraint 257 

misfit, and 𝑞𝑟𝑒𝑔 being the regularization misfit. Smooth regularizations are used both laterally and 258 

vertically. To determine the misfit, we use a standard least-square solution (L2-norm). With this, the n’th 259 

iterative update of the model vector 𝒎 is given as: 260 

 
𝒎𝑛+1 = 𝒎𝑛 + (𝑮̂𝑛

𝑇
𝑪̂𝑛
−1
𝑮̂𝑛 + 𝜆𝑛𝑰)

−1

∙ (𝑮̂𝑛
𝑇
𝑪̂𝑛
−1
𝛿𝒅̂𝑛) 

(25) 

where 𝑰 is the identity matrix, 𝜆 is the damping parameter (Marquardt 1963), 𝛿𝒅̂ is the 261 

extended perturbed data vector, 𝑮̂ is the extended Jacobian, and 𝑪̂ is the extended covariance matrix, 262 

where the extensions comes from the inclusion of prior information and regularization: 263 

 
𝛿𝒅̂ = [

𝒅 − 𝒅𝑜𝑏𝑠
𝒎−𝒎𝑝𝑟𝑖𝑜𝑟

−𝑹𝒎

] 
(26) 

  
𝑮̂ = [

𝑮

𝑷

𝑹

] 
(27) 

  

𝑪̂ = [

𝑪𝑜𝑏𝑠 0 0

0 𝑪𝑝𝑟𝑖𝑜𝑟 0

0 0 𝑪𝑟𝑒𝑔

] 

(28) 
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where, 𝒅 is the forward response (see above), 𝒅𝑜𝑏𝑠 is the observed data, 𝒎 is the model 264 

parameters, 𝒎𝑝𝑟𝑖𝑜𝑟 is the a priori model parameters, 𝑹 is the roughness matrix, which binds neighboring 265 

models/model-parameters together, 𝑮 is the Jacobian (see above), 𝑷 is a matrix containing the a priori 266 

information, 𝑪𝑜𝑏𝑠 is the covariance of the observed data, 𝑪𝑝𝑟𝑖𝑜𝑟  is the covariance of the a priori 267 

information, and  𝑪𝑟𝑒𝑔 is the covariance stemming from the roughness matrix.  268 

Calculating the iterative model update as shown in equation 25, requires solving a large 269 

linear system. In 1D, this system is sparse, but in 2D the linear system is in principle dense. However, in 270 

practice it can be assumed sparse if only the part with most sensitivity is considered (this will be covered in 271 

more detail later). Nevertheless, the 2D linear system will always be considerably less sparse than the 1D 272 

case. Solving large sparse linear systems is non-trivial and the optimal approach is dependent on the system 273 

being solved. Our current approach to solving the linear system in the 1D case is thoroughly described in 274 

Kirkegaard and Auken (2015), and starts with a reverse Cuthill-Mckee reordering algorithm (Cuthill and 275 

McKee 1969), which is used on the ordering of the initial soundings. This results in the matrix being created 276 

in such a way that all vital non-zero elements lie relatively close to the diagonal, while retaining the 277 

sounding structure in the matrix. The actual matrix is solved in parallel using an iterative sparse solver, 278 

which uses CG propagation (Hestenes and Stiefel 1952; Saad 2003), along with a preconditioner, which 279 

depends on the dimensionality of the inversion problem. For the 1D inversion problem our method of 280 

choice is a block-parallelized version of an incomplete LU factorization with a dual dropping strategy (Saad 281 

1994). However, due to the increased bandwidth of the sparse matrix in the 2D case, consistent 282 

convergence is not obtained when applying the LU decomposition as a preconditioner. Direct solvers work 283 

well for small surveys (up to around 5,000 soundings), but for larger surveys direct solvers become 284 

inefficient due to memory consumption as well as factorization time. Neither scale linearly with the size of 285 

the survey. Instead, we have found that applying the symmetric-Gauss-Seidel (SGS) preconditioner leads to 286 

stable convergence when doing 2D inversions. Furthermore, if applied in cases where the linear system is 287 
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sufficiently diagonally dominant, the SGS preconditioner is even more efficient than the incomplete LU 288 

factorization, and can lead to a significant speedup in 1D inversions. 289 

Optimizing section sizes 290 

Previously, we discussed the need for dividing large surveys into smaller sections due to 291 

memory concerns. However, even if memory had not been an issue it still proves computationally 292 

advantageous to split a survey into smaller sections. The reason for this is that for unstructured meshes, 293 

the computational time scales quadratically with the number of elements as the number of elements 294 

becomes large. On the other hand, there is also a size-independent initialization cost associated with each 295 

section that needs to be considered. This cost comes from setting up the mesh padding, establishing the 296 

equations, spawning the parallel thread pool, and other similar tasks. Even more importantly, it also needs 297 

to be assured that each section overlaps its neighboring section by a fixed amount, in order to retain the 2D 298 

information from the survey. 299 

Analysis of our parallel algorithm has led to the identification of an optimal section size. One 300 

that is defined by the initial computational cost, the quadratic computational scaling with section size, as 301 

well as the overlap size. In order to find this optimal section size, performance tests for the RESOLVE 302 

system (shown in Table 1) were conducted. The experiments were performed over a sweep of section sizes, 303 

and the results for both forward and derivative computations can be seen in Figure 4 (a). 304 

As seen in Figure 4 (a), the computational times present a global minimum, different for 305 

forward and derivative calculations. The reason why the derivative calculation favors smaller section sizes 306 

than the forward calculation is due to the heavier computational burden associated with derivative 307 

calculations. This increased computational burden makes the initialization cost less significant and thus 308 

naturally shifts the optimal section size for derivative calculation towards smaller sizes. With the results 309 

presented in Figure 4 (a), the optimal section size as a function of the overlap is determined as shown in 310 

Figure 4 (b). The optimal section size is determined by using the data in Figure 4 (a). By subtracting two 311 
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times the desired overlap from the section sizes given in Figure 4 (a), and interpolating the remaining 312 

positive core section sizes, an estimate of the computational time for a given section size with a given 313 

overlap region can be determined (not shown). In order to find the optimal section size, the section sizes 314 

that fall within 5 % of the fastest time for a given overlap are used and shown in Figure 4 (b). Note that, 315 

once again, the optimal section sizes are different for forward and derivative calculations. One caveat to 316 

this is that the results in Figure 4 (b) change depending on the 2D finite element mesh density, which 317 

changes slightly between different surveys and systems. Therefore, Figure 4 (b) should not be considered 318 

the absolute truth, but rather serve as a guide for picking a sensible section size based on overlap size. 319 

2D Jacobian and sensitivity analysis 320 

As mentioned earlier, the structure of the 2D Jacobian is a dense matrix. However, due to 321 

the decay in sensitivity as a function of distance, a threshold can be defined, where anything that falls 322 

below this threshold is assumed negligible. Thus, in practice our Jacobian matrix can still be considered 323 

sparse even in 2D, even though it has considerably wider non-zero bands around the diagonal than in the 324 

1D case. Our 2D Jacobian matrix resulting from the inversion grid is shown in equation 29-30 . Where 325 

equation 29 shows our 2D Jacobian in block form, where each column/row refers to a single sounding. Note 326 

that the 1D Jacobian structure is identical to the one for the 2D Jacobian, but in the 1D case all the off-327 

diagonal blocks shown in equation 29 would be zero. equation 30 shows the structure of a single Jacobian 328 

block element, which contains a number of elements equal to the number of perturbable model 329 

parameters for this particular model (altitude, and resistivities) times the number of data points for the 330 

corresponding sounding.  331 
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𝑮 =

(
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(29) 

Illustrates our 2D Jacobian in block-matrix form, where the number of off-diagonal bands is 332 

equal to the number of surrounding soundings above the sensitivity threshold (here, only the nearest 333 

neighbor is above the threshold). Each entry in the Jacobian block matrix is a dense matrix block, which is 334 

given as:  335 

 

𝜕𝑫𝑗

𝜕𝑴𝑘
=

(

 
 
 
 
 
 
 
 
 

𝜕𝑑𝑗,1

𝜕𝑚𝑘,1

𝜕𝑑𝑗,1

𝜕𝑚𝑘,2

𝜕𝑑𝑗,1

𝜕𝑚𝑘,3
⋯

𝜕𝑑𝑗,1

𝜕𝑚𝑘,𝑁𝑚𝑘
𝜕𝑑𝑗,2

𝜕𝑚𝑘,1

𝜕𝑑𝑗,2

𝜕𝑚𝑘,2

𝜕𝑑𝑗,2

𝜕𝑚𝑘,3
⋯

𝜕𝑑𝑗,2

𝜕𝑚𝑘,𝑁𝑚𝑘
𝜕𝑑𝑗,3

𝜕𝑚𝑘,1

𝜕𝑑𝑗,3

𝜕𝑚𝑘,2

𝜕𝑑𝑗,3
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⋯

𝜕𝑑𝑗,3

𝜕𝑚𝑘,𝑁𝑚𝑘
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⋯
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where 𝑗 and 𝑘  represent the individual sounding indices, and 𝑫𝑗 contains 𝑁𝑑𝑗 forward 336 

responses associated with the 𝑗’th sounding. While 𝑴𝑘 contains 𝑁𝑚𝑘 model parameters associated with 337 

sounding 𝑘. 338 

Accurately determining the resulting sensitivity range is important, not just when building 339 

the Jacobian, but also when optimizing section size. This is due to the obvious connection between the 340 

sensitivity threshold distance, and the required overlap distance between adjacent sections. To determine 341 
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the sensitivity threshold, we follow the convention of Liu and Becker (1990) and define a significant 342 

sensitivity range as the distance at which 90% of the full sensitivity is contained. Following this approach, a 343 

sensitivity analysis was performed for the coils shown in Table 1, for altitudes ranging between 20-50m. 344 

Figure 5 (a) demonstrates the cumulated sensitivity as a function of distance for a 0.4 kHz signal originating 345 

at an altitude of 30 m, while Figure 5 (b,c) show the correlation between depth and footprint size for a 0.4 346 

kHz signal and a 1.8 kHz signal. Based on the sensitivity analysis as well as performance concerns, we decide 347 

to use an overlap of 150 m. While this is less than the footprint size for the real part of the 0.4 kHz signal, 348 

more than 75 % of the sensitivity for a 100 Ωm halfspace is retained, and if considering total sensitivity over 349 

all frequencies then the total loss of sensitivity is around 7 %, which we deem an acceptable loss. Based on 350 

Figure 4 (b) we use a section size of 750 m for forward calculations, and 550 m for derivative calculations.  351 

1D/2D Hybrid inversion scheme 352 

The conceptual idea behind the hybrid inversion scheme is to use computationally 353 

inexpensive approximate forward and derivative computations in the first inversion steps where accuracy is 354 

of little importance. As the iterations start to converge, one can then gradually switch to higher accuracy 355 

computations that are more expensive. Within such a scheme, the overall computational time can be 356 

greatly reduced without sacrificing the quality of the final model. Such a scheme can be constructed in 357 

several ways; Christiansen et al. (2015) have created a hybrid scheme using increasingly accurate 1D 358 

modelling responses, and a similar approach could be envisioned in 2D by using a coarse mesh in the early 359 

iterations and a more refined mesh in the later stages, as is done in Haber et al. (2007a). However, we 360 

believe that our hybrid scheme is computationally superior to such a scheme, since 1D modelling is so 361 

computationally inexpensive compared to 2D modelling, and the number of full 2D iterations utilized in our 362 

scheme is quite low as will be demonstrated later. Our hybrid scheme is a 3-stage scheme with: 363 

1. 1D forward and derivative calculations 364 

2. 2D forward, 1D derivative calculations 365 
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3. 2D forward and 2D derivative calculations 366 

Each stage is executed with a fixed number of iterations. By running the hybrid scheme over 367 

a large number of synthetic models, we have empirically found that the optimal number of iterations are 368 

four in the first stage, and eight in the second stage. The third stage runs until the algorithm converges. 369 

The inversion is said to have converged if the relative misfit change is less than 1% between 370 

two iteration steps. If convergence is reached in stage 1 or 2, then the inversion is advanced to the next 371 

stage and the process continues. 372 

RESULTS AND DISCUSSION 373 

Synthetic model 374 

The 2D hybrid inversion algorithm is demonstrated on two synthetic models. A system 375 

resembling the RESOLVE system with the parameters shown in Table 1 is modelled. In both examples, the 376 

inversion is started from a 100 Ωm halfspace with a model discretization of 20 layers where the thickness of 377 

each layer increases logarithmically from 3 m – 10 m. Horizontal smoothing constraints are employed with 378 

a covariance factor of 1.6 and vertical smoothing with a factor of 3.0. There are 51 equidistant soundings 379 

distributed over a 500 m long line. All data have a uniform 5 % uncertainty.   380 

Figure 6 shows the results of an inversion of a conductive lens. Figure 6 (a) Illustrates the 381 

true model, which consists of a 50 Ωm lens in a 500 Ωm halfspace, Figure 6 (b) shows a 1D inversion, Figure 382 

6 (c) shows a hybrid inversion, and Figure 6 (d) shows a full 2D inversion. The 1D inversion mostly manages 383 

to recover the conductive lens at the correct depth, but strong pant legs are produced. The 1D inversion is 384 

shown with both a 1D and 2D residual curve. Both residual curves use the model arrived at through the 1D 385 

inversion, but the 1D residual evaluates the 1D forward responses, while the 2D residual is relative to 2D 386 

forward responses. Variation between the two residuals can therefore be regarded as an indicator of areas 387 

where 1D modeling is insufficient. Both the hybrid and the full 2D inversion reproduce the lens as good as 388 

can be expected from an AEM measurement, without any pant legs effect and with a good determination 389 
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of the lens boundaries, and a misfit well below 1, which in our synthetic model without noise is a good 390 

thing. The speedup gained by utilizing the hybrid inversion was 2.7x compared to the 2D inversion, and will 391 

be discussed in detail in the Performance subsection. 392 

Figure 7 shows the results of an inversion of a sharp horizontal conductivity contrast. Figure 393 

7 (a) Illustrates the true model, where the left side is 10 Ωm and the right side is 200 Ωm, Figure 7 (b) shows 394 

a 1D inversion, Figure 7 (c) shows a hybrid inversion, and Figure 7 (d) shows a full 2D inversion. In this case, 395 

the 1D inversion creates a rather wide region around the conductivity contrast where the conductivities are 396 

smeared and there are clearly visible pant legs. Once again, both 1D and 2D residuals are shown. The full 397 

2D inversion demonstrates a better determination of the vertical boundary and while smearing is still 398 

observed, the affected region is significantly smaller. The hybrid model again converges to a model, which 399 

is significantly better than the 1D model, as noticed both by the size of the smearing region as well as the 400 

residual, which is only slightly higher than for the 2D inversions. The differences between the 2D and the 401 

hybrid model are likely a result of the 1D model doing a poor job of accurately modelling the sharp 402 

conductivity contrast, combined with model equivalences, as evidenced the similarity of the hybrid/2D 403 

residual. The speedup gained by utilizing the hybrid inversion was 6.6x compared to the 2D inversion, and 404 

will be discussed in detail in the Performance subsection.  405 

Field example 406 

As a final test, the 2D algorithm is used on a field example collected by a RESOLVE system 407 

owned by the German Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). The field data was 408 

collected on a small island named Langeoog, where the target is a mapping of the freshwater/saltwater 409 

boundary (Siemon et al. 2015). Langeoog comprises three geological features: the base is formed from 410 

glaciofluvial sediments, from the Pleistocene age. These sediments contain Lauenburg clay, which lies at a 411 

depth of 15-35 m below sea level, with a typical thickness of a few meters. Overlaying the Pleistocene layer 412 

is a Holocene marine deposit consisting of primarily silt, which lies at 10-20 m depth below sea level. The 413 
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top-layer consist of dunes and beach sand. For more information about the geology of Langeoog, see 414 

Costabel et al. (2017).  415 

The field data profile is 1400 m long and consists of 144 soundings. Inversion results are 416 

shown in Figure 8. Figure 9 (a) Shows a 1D inversion, Figure 9 (b) shows a hybrid inversion, while Figure 9 417 

(c) shows a 2D inversion. Overall, the three different inversions show very consistent results, though there 418 

are notable differences in the top layers of the soundings at a distance of ~1 km. While the models deviate 419 

in this area, the data residual for the 2D and hybrid code are only negligibly lower than for the 1D inversion. 420 

Upon a closer look at the fit of each individual transmitter frequency, it is revealed that there is excellent 421 

correspondence between measured data and modelled response for all coils except coil 3. Coil #3 is off by 422 

several standard deviations in the high residual area at a distance of 1 km. Figure 9 shows an example of 423 

this for sounding 112, which is marked in Figure 8 by a vertical red line. The speedup gained by utilizing the 424 

hybrid inversion was 6x compared to the 2D inversion, and will be discussed in detail in the Performance 425 

subsection. 426 

Parallelization and scalability 427 

Since the introduction of commodity multicore CPUs in 2005, parallelization has become 428 

increasingly important. While computational speed continues to grow exponentially, it has become a non-429 

trivial issue to fully harness this power. Algorithms often have to be specifically tailored to enable optimal 430 

parallelization, and with the shift away from uniform memory access (UMA) systems, and towards non-431 

uniform memory access (NUMA) systems architecture, this becomes an even harder problem. The 432 

architectures are illustrated in Figure 10. The consequences of having a NUMA system is that data 433 

placement becomes paramount. If data is not placed in the local memory associated with the processor 434 

working on it, it will need to be accessed over the interconnect by the processor. Not only does this add 435 

significant latency, but the interconnect also has limited bandwidth and becomes saturated much before 436 

the direct channels to local memory. For this reason, good scaling on the NUMA system is harder to achieve 437 
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in general than on uniform memory access (UMA) systems, and if not done carefully can actually lead to 438 

decreased performance, unlike for UMA systems (Dong et al. 2010). 439 

The 2D FEM problem can be parallelized in several ways, but to get the best possible 440 

scalability for large surveys, we chose to put our parallelization across the sections. In other words, multiple 441 

sections are computed in parallel. This requires more memory than putting the parallelization over the 442 

wavenumbers, however with the sectioning used, the memory requirement during the 2D modelling is less 443 

than 1 GB per thread utilized (not shown), and thus the total memory requirement is inconsequential on 444 

modern hardware. While parallelization over the sections require more memory than other approaches it 445 

also gives the best scalability for large surveys, because there is practically no inter-communication 446 

between the different threads. Section parallelization provides good largescale scaling, but it does not 447 

provide much benefit for small-scale problems. In order to remedy this, an additional parallelization over 448 

the frequencies of each section was implemented using OpenMP’s collapse directive. By parallelizing over 449 

both sectioning and frequency, good scaling can be achieved for surveys of all sizes. Figure 11 shows the 450 

parallel scalability of the code. It can be seen that the scaling is almost linear for low numbers of threads, 451 

whereas linear scalability is lost for higher numbers of threads due to memory bandwidth limitations.  452 

Another key concept, when doing parallelization is affinity. That is how the parallel threads 453 

are bound to the various cores in the system. If thread affinity is not employed it can severely affect 454 

performance, especially on NUMA systems. Without affinity, the calculations of a thread are never confined 455 

to a single core, but rather executed in small portions executed on random cores of the system. This can 456 

have dramatic consequences since memory locality cannot be assured and data kept in cache is constantly 457 

lost. Figure 11 demonstrates two different affinity schemes, which are commonly employed: compact 458 

affinity and scattered affinity. When using compact affinity, thread spawning tends to cluster together on a 459 

NUMA node until all processors on the NUMA are engaged, whereas scattered affinity tends to spread out 460 

the thread spawning across all NUMA nodes. The two different affinity modes can have a significantly 461 
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different performance depending on the problem to which they are employed. Because of the low level of 462 

intercommunication between the parallel threads, a practically identical scaling for the two affinities can be 463 

seen in Figure 11.  464 

As a final comment to scaling, it should be mentioned that due to the way we do sectioning 465 

and inversion, our code has a linear scaling in compute time as a function of survey size (not shown here).  466 

Performance 467 

Our 2D code is capable of inverting surveys of virtually any size, due to the scalability 468 

introduced by sectioning. Thus far, the code has been successfully tested on a 100-line km survey with 469 

10000 soundings. For such a survey, the code performs a full 2D forward and derivative calculation in ~5 470 

hours on a NUMA system with two Intel Xeon E5-2650 v3 CPUs, each with 10 cores.  471 

The total inversion time for the 100-line km survey can be seen in Table 2. Both the hybrid 472 

and 2D inversion reach comparable misfits, but the hybrid scheme does so 2.3 times faster than the 2D. 473 

Though the performance numbers presented are representative, it should be mentioned that the number 474 

of iterations needed to reach convergence can vary quite heavily between different surveys. Obviously, this 475 

also makes inversion times vary quite heavily. Roughly speaking a pure 2D inversion can usually be done in 476 

around 10-20 iterations, while a hybrid inversion requires 14-20 iterations. Note that the number of 477 

iterations and hence inversion time, depends heavily on the stopping criteria, which we have chosen to be 478 

a relative misfit change of less than 1%.   479 

In the examples shown previously, the speedup gained from utilizing the hybrid scheme was 480 

2.7x for the synthetic conductive lens, 6.6x for the horizontal conductivity contrast, 6x for the small field 481 

example, and 2.3x for a 100-line km.  These are all very significant speedups, and they are generally 482 

generated without notably worsening the resulting model. The reason why the speedups vary largely 483 

depends on the number of iterations spent in stage 3 of the hybrid scheme, if only a few iterations are 484 
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spent then the speedup is high in general, whereas if more than a few iterations are spent in stage 3, the 485 

speedup will generally be in the low end. 486 

CONCLUSION 487 

We have presented an algorithm for hybrid 2D frequency domain forward modelling and 488 

inversions. The 2D forward and derivative calculations are done on a triangular finite element mesh using 489 

sectioning, while inversions are done on a regular grid. The finite element mesh is created with the 490 

inversion grid as the foundation, which makes interpolation between the meshes significantly easier. By 491 

using sectioning and a regular grid for inversion, the code is able to handle large-scale inversions, which are 492 

otherwise often problematic for higher dimensional inversion codes.  We have demonstrated how section 493 

sizes should be chosen to optimize computational times, and shown how forward and derivative 494 

calculations are optimally performed using different section sizes. Our parallelization goal was to achieve 495 

maximum speed; hence, the code is parallelized over both frequencies and sections. This gives the code 496 

high efficiency for both large and small surveys, as well as excellent scaling properties even on non-uniform 497 

memory architectures. Though focus was on computational speed, the memory consumption is less than 498 

1GB per thread, and thus memory consumption for this algorithm was deemed inconsequential. 499 

Furthermore, we presented a hybrid 1D/2D scheme, which boosts the computational speed of 2D 500 

inversions by ~2− 6𝑥, without significantly reducing the accuracy. The concept of combining lower- and 501 

higher-dimensional algorithms in a hybrid scheme to significantly increase computational speed, is a largely 502 

unused optimization within the scientific community. We have demonstrated our algorithm with two 503 

successful synthetic examples and a field example. 504 
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APPENDIX A 508 

In order to recast the governing equations 15-16 into a system of linear equations, the finite 509 

element method is employed. In this regard, we substitute 𝐸̃𝑠𝑦 and 𝐻̃𝑠𝑦 by interpolated fields combined 510 

with second order shape functions: 511 

𝐸̃𝑠𝑦(𝑥, 𝑧) = ∑ 𝑁𝑖(𝑥, 𝑧)𝐸̃𝑠𝑦,𝑖
𝑛
𝑖=1 , 𝐻̃𝑠𝑦(𝑥, 𝑧) = ∑ 𝑁𝑖(𝑥, 𝑧)𝐻̃𝑠𝑦,𝑖

𝑛
𝑖=1  ,  512 

where 𝑛 is the number of nodes attached to one element. Replacing 𝐸̃𝑠𝑦 and  𝐻̃𝑠𝑦 in this way 513 

leads to an approximation of the Maxwell equations, which bear a residual. We use the weighted residual 514 

procedure to minimize the residual averaged over the area of each grid cell. As our procedure applies to 515 

both equation 15 and 16 in the same way, we will only focus on equation 15. The weighting function for the 516 

residual is the same as the interpolation function, i.e. 𝑁𝑖(𝑥, 𝑧), and integration of both sides of the equation 517 

and applying the rule for integration by parts combined with Gauss’ Theorem leads us to: 518 

−𝑖𝜔𝜀𝑦 ∫ 𝑁𝑇𝑁𝑑Ω
Ω

𝐸̃𝑠𝑦 +
𝑖𝜔𝜀𝑥

𝑐𝑧𝑥
[∮ 𝑁𝑇

𝜕𝑁

𝜕𝑥
𝑑𝛤

𝛤
+ ∫

𝜕𝑁

𝜕𝑥

𝑇 𝜕𝑁

𝜕𝑥
𝑑Ω

Ω
]  𝐸̃𝑠𝑦 + 𝑖𝜔

𝜀𝑧

𝑐𝑥𝑧
[∮ 𝑁𝑇

𝜕𝑁

𝜕𝑧
𝑑𝛤

𝛤
+519 

∫
𝜕𝑁

𝜕𝑧

𝑇 𝜕𝑁

𝜕𝑧
𝑑Ω

Ω
] 𝐸̃𝑠𝑦 −

𝑖𝑘𝑦

𝑐𝑧𝑥
[∮ 𝑁𝑇

𝜕𝑁

𝜕𝑥
𝑑𝛤

𝛤
+ ∫

𝜕𝑁

𝜕𝑥

𝑇 𝜕𝑁

𝜕𝑧
𝑑Ω 

Ω
] 𝐻̃𝑠𝑦 +

𝑖𝑘𝑦

𝑐𝑥𝑧
[∮ 𝑁𝑇

𝜕𝑁

𝜕𝑥
𝑑𝛤

𝛤
+ ∫

𝜕𝑁

𝜕𝑧

𝑇 𝜕𝑁

𝜕𝑥
𝑑Ω

Ω
]  𝐻̃𝑠𝑦 =520 

−(𝑖𝜔𝜀𝑝𝑦 − 𝑖𝜔𝜀𝑦  ) ∫ 𝑁𝑇𝑁𝑑Ω
Ω

𝐸̃𝑝𝑦 + (
𝑖𝜔𝜀𝑝𝑥

𝑐𝑝𝑧𝑥
−
𝑖𝜔𝜀𝑥

𝑐𝑧𝑥
) [∮ 𝑁𝑇

𝜕𝑁

𝜕𝑥
𝑑𝛤

𝛤
+ ∫

𝜕𝑁

𝜕𝑥

𝑇 𝜕𝑁

𝜕𝑥
𝑑Ω

Ω
]  𝐸̃𝑝𝑦 +521 

(
𝑖𝜔𝜀𝑝𝑧

𝑐𝑝𝑥𝑧
−
𝑖𝜔𝜀𝑧

𝑐𝑥𝑧
) [∮ 𝑁𝑇

𝜕𝑁

𝜕𝑧
𝑑𝛤

𝛤
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𝜕𝑁

𝜕𝑧

𝑇 𝜕𝑁

𝜕𝑧
𝑑Ω

Ω
]  𝐸̃𝑝𝑦 − (

𝑖𝑘𝑦

𝑐𝑝𝑧𝑥
−
𝑖𝑘𝑦

𝑐𝑧𝑥
) [∮ 𝑁𝑇

𝜕𝑁

𝜕𝑥
𝑑𝛤

𝛤
+ ∫

𝜕𝑁

𝜕𝑥

𝑇 𝜕𝑁

𝜕𝑧
𝑑Ω 

Ω
] 𝐻̃𝑝𝑦 +522 

(
𝑖𝑘𝑦

𝑐𝑝𝑥𝑧
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𝑑Ω

Ω
]  𝐻̃𝑝𝑦 ,    523 

where Ω is the area of the respective element and Γ the element's boundary. Within the 524 

model domain the integrals of connected elements cancel each other out and at the model domain 525 

boundary, we assume Dirichlet boundary conditions, i.e. 𝐸̃𝑠𝑦 = 𝐻̃𝑠𝑦 = 0, hence the boundary integrals can 526 

be ignored. This finally results in the following system of linear equations: 527 
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−𝑖𝜔𝜀𝑦 ∫ 𝑁𝑇𝑁𝑑Ω
Ω

𝐸̃𝑠𝑦 +
𝑖𝜔𝜀𝑥
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∫

𝜕𝑁
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Ω
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.    531 

By creating and combining this system of equations and its counterpart resulting from 532 

equation 16, the desired linear system of equations is found:  533 

 𝑨𝒙̃ = 𝒃,  

where 𝑨 is the global symmetric stiffness matrix, 𝒙̃ contains the Fourier transformed EM-534 

fields, and 𝒃 contains the source terms. 535 

 536 

 537 
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Figure 1 Inversion grid and forward mesh for a small section of a HEM survey.  

Transmitters are indicated by a brown circle, receivers by a blue circle. (a) Shows the inversion 

grid. In the inversion grid, the column width is determined by the sounding distance, while 

the column depth is reflecting the thickness of the model layers. (b) Shows the resulting 

forward modelling finite element mesh. Note how the inversion grid is still present in the 
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forward modelling mesh, since this is used as the skeletal structure for building the finite 

element mesh.  

 631 

 

 

Figure 2 Sectioning of survey lines. Each section, 𝐿, consists of a core section, 𝑙, and 

overlap regions, ∆𝑙 . Sections at the end of a survey line only have one overlap region, while 

all other sections have two overlap regions. The dots on top of the ground surface indicate 

the individual soundings.  
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Figure 3 1D and 2D forward responses and deviations, on a 100 Ωm halfspace at an 

instrument altitude of 30 m, as a function of frequency (a) Shows an example of a 1D and 2D 

forward response for just a single sounding. (b) Shows the relative deviations between 2D 

and 1D forward response. The deviation is expressed as a range, because the accuracy of the 

2D responses varies between soundings near the edge and near the center due to mesh 

variations. The 2D responses are from a 300 m section with 30 equally spaced soundings. 

Deviations at all frequencies and all positions are below 2%. 

 633 

 

 

Figure 4 (a) Time required for an iteration of forward and derivative calculations for 

the RESOLVE system presented in Table 1 using a 10 m sounding separation, as a function of 

section size. For small section sizes the initialization cost becomes dominant and visible as a 

sharp increase in iteration time per m, while for large section sizes the quadratic scaling of 

the finite elements becomes dominant, and is visible as a linear rise in iteration time per 

meter (it appears linear in the figure, because time is normalized with section size, hence 
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time is given in seconds per meter). The range bars indicate variability in computational time 

between various repetitions, and indicate 1 standard deviation. (b) Shows optimal section 

sizes as a function of the overlap, where the range bars represent section sizes that are 

within 5% of the optimal compute time.  

 634 

 

 

Figure 5 Sensitivity analysis for a frequency domain system at an altitude of 30 m. (a) 

Cumulated sensitivity as a function of distance for a 0.4 kHz signal, on a 100 Ωm halfspace at 

a depth of 50-60 m, with the horizontal dashed line indicating the footprint size at 90% 

threshold. The two circles indicate the distances where the 0.4 kHz signal reaches the 

threshold for the real and imaginary response. (b,c) Correlation between footprint size and 

depth for a 0.4 kHz signal and a 1.8 kHz signal, on a 30 Ωm, 100 Ωm, and 300 Ωm halfspace. 

On (b) the two circles from (a) are also plotted.  
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Figure 6 Inversion results for a synthetic conductive lens. (a) True model, which 

consists of a 50 Ωm lens in a 500 Ωm halfspace. (b) 1D inversion, where the blue line is the 

1D data residual, and the red line is the 2D data residual. (c) Hybrid inversion, where the 

number of iterations are given in each hybrid stage separately. (d) 2D inversion. For all 

inversions, the number of iterations until convergence is written inside the residual box. 

Note that the data residuals are normalized by the standard deviation. 
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Figure 7 Inversion results for a horizontal conductivity contrast.  (a) Illustrates the true 

model; the left side has a resistivity of 10 Ωm, while the right side has a resistivity of 200 

Ωm. (b) Shows the result from a 1D inversion, where the blue line is the 1D data residual, 

and the red line is the 2D data residual. (c) Shows the result from a hybrid inversion. (d) 

Shows the result from a 2D inversion. The number of iterations until convergence is written 

inside the residual box. Note that the data residuals are normalized by the standard 

deviation. 
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Figure 8 Inversion results from a survey in northern Germany (Siemon et al. 2015). (a) Shows a 1D 
inversion, where the blue line is the 1D data residual, and the red line is the 2D data 
residual. (b) Shows a hybrid inversion, where the number of iterations are provided for each 
separate stage. (c) Shows a 2D inversion. The number of iterations until convergence is 
written inside the residual box. The vertical red line at the top of the figures around 1.1 km 
is sounding 112, which is shown in Figure 9. Note that the data residuals are normalized by 
the standard deviation. 
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Figure 9 Example of a 2D sounding curve for the inversion results shown in Figure 8 (c). The sounding 
curve is marked in Figure 8 by a vertical red line at the top of the figures, around 1.1 km 
distance. The coil # configuration can be found in Table 1. 
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Figure 10 UMA and NUMA system architectures. P represents physical cores, while M 

represents memory. (a) an UMA system; here there is only one memory bank, and all the 

cores have the same bandwidth connection to the memory. (b) a two-node NUMA system, 

which essentially consists of two connected UMA systems. Thus, each NUMA node has a 

number of cores attached to a memory bank, and the different memory banks are then 

connected together by a relatively small bandwidth. 
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Figure 11 Parallel scaling of the code. The data are generated on a NUMA system with 

two Intel Xeon E5-2650 v3 CPUs, each with 10 cores. The threads are bound to specific 

logical processors, following either a compact affinity approach or a scattering affinity 

approach. 
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 Coil 
# Orientation Frequency (kHz) Separation (m) 

1 Z 0.395 7.9 

2 Z 1.822 7.9 

3 X 5.4 9.06 

4 Z 8.199 7.9 

5 Z 38.76 7.9 

6 Z 128.76 7.9 
 

Table 1 Acquisition parameters mimicking a RESOLVE system used in our 

computational cost analysis simulation. The flight altitude is 30 m and the 

uncertainty on the data is 5%.  
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100 line km 

Iterations Runtime (hours) 

1D 15 0.1 h 

Hybrid 4+8+5 
36 s+4.9 h+26.0 h 

= 31 h  

2D 15 71 h 

 

Table 2 Runtime and iteration number for an inversion of a 100-line km survey 

conducted with the RESOLVE system. For the hybrid system, the iteration numbers and 

runtimes are given for each of the 3 stages. 
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