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Abstract. In this paper we study a semilinear weakly damped wave equation equipped with an

acoustic boundary condition. The problem can be considered as a system consisting of the wave equation

describing the evolution of an unknown function u = u(x, t), x ∈ Ω in the domain coupled with an ordinary

differential equation for an unknown function δ = δ(x, t), x ∈ Γ := ∂Ω on the boundary. A compatibility

condition is also added due to physical reasons. This problem is inspired on a model originally proposed

by J. T. Beale and S. I. Rosencrans in [3]. The goal of the paper is to analyze the global asymptotic

behavior of the solutions. We prove the existence of an absorbing set and of the global attractor in the

energy phase space. Furthermore, the regularity properties of the global attractor are investigated. This

is a difficult issue since standard techniques based on the use of fractional operators cannot be exploited.

We finally prove the existence of an exponential attractor. The analysis is carried out in dependence of

two damping coefficients.

1 Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary Γ. We consider
the following semilinear damped wave equation equipped with an acoustic
boundary condition

utt + ωut −∆u+ u+ f(u) = 0 in Ω× (0,∞)
δtt + νδt + δ = −ut on Γ× (0,∞)
δt = ∂u

∂n
on Γ× (0,∞),

(1.1)
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where ω and ν > 0 are an interior and a surface damping parameter, respec-
tively, and the nonlinearity f ∈ C1(R) fulfills

|f ′(u)| ≤ c1(1 + u2), c1 ≥ 0, (1.2)

lim inf
|u|→∞

f(u)

u
> −1. (1.3)

For some results, in place of (1.2) we shall assume that f ∈ C2(R) satisfies

|f ′′(u)| ≤ c2(1 + |u|), c2 ≥ 0, (1.4)

f ′(u) ≥ −l, l ≥ 0. (1.5)

The physical model described by system (1.1) is that of a gas filling an
open bounded domain Ω whose smooth boundary at each point acts like
a spring reacting to the excess pressure of the gas. System (1.1) describes
the evolution of the velocity potential u of the fluid which undergoes small
perturbations, and of the normal displacement δ of the boundary into the
domain. The model has been considered by J.T. Beale and S. I. Rosencrans in
the pioneering paper [3] as a model for acoustic wave motion of a fluid inter-
acting with a so called locally reacting surface, i.e., a surface whose different
parts do not interact with each other. See also [25].

Unlike the original model, here we have included a nonlinear term f(u)
representing nonlinear effects in the small wave motion of the fluid inside the
domain Ω. Moreover, for simplicity, we set equal to 1 all the coefficients in
the equations, with the only exception of the damping parameters.

Problem (1.1) (with f = −u, i.e., without the nonlinear term and with
ω = 0) has been considered in [3], [4] and in [5] for the exterior domain
case. In these papers well-posedness (cf. [4]) has been established and some
spectral properties of the evolution semigroup generator ([4], [5]) have been
investigated. More recently the interest for acoustic boundary condition has
revived. See, for example, [15], [14], [31] and [26], [7], [8].

Though many well-posedness and spectral results have been proved in
the existing literature concerning wave equations with acoustic boundary
conditions, up to now and to the best of our knowledge, the study of the
asymptotic behavior of the solutions is still lacking. Our goal in the present
paper is to investigate the long time behavior of system (1.1) focusing the at-
tention on global asymptotic properties, such that the existence of a bounded
absorbing set, of the global attractor, of a regular attracting set, as well as
of an exponential attractor.

As far as well-posedness and dissipativity are concerned we shall study
system (1.1) with a further nonlinear term g(δ) in the second equation,
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namely
δtt + νδt + δ + g(δ) = −ut, (1.6)

where g ∈ C1(R) fulfills the following assumptions

|g′(δ)| ≤ c3, c3 ≥ 0, (1.7)

lim inf
|δ|→∞

g(δ)

δ
> −1. (1.8)

This additional term may represent nonlinear effects in the oscillation of the
surface.

The paper is organized as follows. We first conclude this introduction
with some essential notation and technical Gronwall type lemmas that we
shall use in the course of the investigation. In Section 2 we give the well-
posedness result and also a regularity result for the solutions to system (1.1).
Due to the particular dynamic boundary condition, the approach that works
very well is the semigroup approach. System (1.1) is written as an abstract
evolution equation in the energy phase space for a vector unkown whose
four components are the velocity potential in the domain u (and its time
derivative) and the displacement on the boundary δ (and its time derivative).

In light of the well-posednesss result, system (1.1) (or system (1.1)1, (1.6),
(1.1)3), associated with an initial condition, is the generator of a dynamical
system (H, Sω,ν(t)) on the phase space H.

In Section 3 we deduce the dissipativity of the system by proving the
existence of a bounded absorbing set in the energy phase space. A sufficient
condition on the nonlinearities f and g for the uniform decay of the trajec-
tories departing from every bounded subset of H is also obtained.

Section 4 is devoted to the result on the existence of the global attractor
for system (1.1). We wish to obtain this result by means of the same hy-
potheses used for well-posedness (i.e. (1.2) and (1.3)), without using further
assumptions. To this aim, the classical decomposition method does not work
very well. Indeed, it can be seen that this method either requires (1.4), (1.5)
(see Section 5) or the very restrictive assumption |f ′(u)| ≤ c. The reason
is that, due to the dynamic boundary condition, we cannot work here with
fractional powers of some elliptic operator in order to deduce the asymptotic
compactness by means of estimates in more regular Sobolev spaces. There-
fore, a different approach has to be employed and the idea is to use the energy
equation method, originally due to J. M. Ball.

In Section 5 we consider the regularity of the attractor. More precisely,
we show the existence of a regular bounded set which attracts the bounded
subsets of the energy phase space exponentially fast. This is done by em-
ploying a decomposition technique which is essentially due to V. Pata and
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S. Zelik (see [28]). The result of Section 5 is also useful for Section 6 which
is devoted to the construction of an exponential attractor, by means of the
technique devised in [10].
Notation. We denote by (·, ·) and ‖ · ‖ the inner product and the norm on
L2(Ω), respectively. For every s ∈ R, the norm in the Sobolev space Hs(Ω)
will be denoted by ‖ · ‖s. The inner product on L2(Γ) is 〈·, ·〉 and the cor-
responding norm is simply ‖ · ‖L2(Γ). The finite energy phase space of the
solution semigroup is

H := H1(Ω)× L2(Ω)× L2(Γ)× L2(Γ).

We shall also need the Laplace-Beltrami operator −∆Γ on the variety Γ. We
recall that −∆Γ is a positive definite self-adjoint operator in L2(Γ), with
domain D(−∆Γ). The Sobolev spaces Hs(Γ) on the variety Γ, for s ∈ R, can
thus be defined as Hs(Γ) = D((−∆Γ)s/2), endowed with the graph norm

‖v‖2
Hs(Γ) = ‖v‖2

L2(Γ) + ‖(−∆Γ)s/2v‖2
L2(Γ).

The following lemma will be particularly useful to prove the dissipative fea-
ture of the system

Lemma 1. Let X be a Banach space, and Z ⊂ C([0,+∞);X). Let there be
given a functional E : X → R such that

sup
t≥0

E(z(t)) ≥ −m, E(z(0)) ≤M

for some m,M ≥ 0 and for every z ∈ Z. In addition assume that E(z(·)) ∈
C1([0,+∞)) for every z ∈ Z and that the differential inequality

d

dt
E(z(t)) + ε0‖z(t)‖2

X ≤ k

holds for all t ≥ 0 and for some ε0 > 0, k ≥ 0, both independent of z ∈ Z.
Then, for every η > 0 there is t0 = t0(M, η) ≥ 0 such that, for every z ∈ Z

E(z(t)) ≤ sup
ζ∈X

{E(ζ) : ε0‖ζ‖2
X ≤ k + η},

for every t ≥ t0. Furthermore, the time t0 can be expressed by t0 = (M+m)/η.

For the proof see, for instance, [6, Lemma 2.7]. Furthermore, in order to
prove the main result of Section 5, we shall need two suitable versions of
the Gronwall lemma that, though well known, we shall now recall for the
reader’s convenience (for their proof see [9, Lemma 2.1] and [21, Lemma 2.2],
respectively).
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Lemma 2. Let Ψ : [0,+∞) → [0,+∞) be an absolutely continuous function
satisfying

d

dt
Ψ(t) + 2εΨ(t) ≤ h(t)Ψ(t) + k

where ε > 0, k ≥ 0 and
∫ t

s
h(τ)dτ ≤ ε(t− s) +m, for all t ≥ s ≥ 0 and some

m ≥ 0. Then

Ψ(t) ≤ Ψ(0)eme−εt +
kem

ε
,

for all t ≥ 0.

Lemma 3. Let Φ : [0,∞) → [0,∞) be an absolutely continuous function
such that, for some ε > 0

d

dt
Φ(t) + 2εΦ(t) ≤ f(t)Φ(t) + h(t)

for almost every t ∈ [0,∞), where f and h are functions on [0,∞) such that∫ t

s

|f(τ)|dτ ≤ α(1 + (t− s)λ), sup
t≥0

∫ t+1

t

|h(τ)|dτ ≤ β

for some α, β ≥ 0 and λ ∈ [0, 1). Then

Φ(t) ≤ γΦ(0)e−εt +K

for every t ∈ [0,∞), for some γ = γ(f, ε, λ) ≥ 1 and K = K(ε, λ, f, h) ≥ 0.
The constants γ, K can be given by γ = exp{α+α(αλ/ε)λ/(1−λ)−ε(αλ/ε)1/(1−λ)}
and K = γβCε, where Cε = eε/(1− e−ε).

2 Well-posedness

The existence of the solution semigroup S(t) for the initial value problem
associated with (1.1) has been proved in [4] for the linear case f = 0. The
same proof, which relies on the use of the semigroup method by writing
(1.1) in the form of an abstract semilinear evolution equation in H, can be
obviously adapted also for the present case with f different from zero.

The initial value problem for (1.1) can be naturally formulated in the
finite energy Hilbert space H endowed with the norm

‖w‖2
H = ‖w1‖2

1 + ‖w2‖2 + ‖w3‖2
L2(Γ) + ‖w4‖2

L2(Γ)

for every w := (w1, w2, w3, w4) ∈ H. Actually, it is easy to see that the (linear)
energy of a solution w = (u, ut, δ, δt) to (1.1) is

Ew(t) =
1

2
‖w(t)‖2

H
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and the (nonlinear) energy is

Ew(t) = Ew(t) +

∫
Ω

F (u) +

∫
Γ

G(δ),

where F (s) =
∫ s

o
f(σ)dσ and G(s) =

∫ s

0
g(σ)dσ, which formally satisfies the

energy equation
dEw

dt
= −ω‖ut‖2 − ν‖δt‖2

L2(Γ). (2.1)

Now, according to [4], we introduce the linear unbouded operator A : D(A) ⊂
H → H defined by

D(A) = {w = (w1, w2, w3, w4) ∈ H : ∆w1 ∈ L2(Ω), w2 ∈ H1(Ω), ∂nw1 = w4}

Aw := (w2,−ωw2 + ∆w1 − w1, w4,−(w2 + w3 + νw4))

for every w = (w1, w2, w3, w4) ∈ H. The condition ∂nw1 = w4 is interpreted
in the weak sense to mean∫

Ω

(∆w1)ϕ+∇w1 · ∇ϕ =

∫
Γ

w4ϕ,

for every ϕ ∈ H1(Ω). Furthermore, we introduce the nonlinear function F :
H → H defined by

F(w) = (0,−f(w1), 0,−g(w3)),

for every w ∈ H. The initial value problem for system (1.1)1, (1.6), (1.1)3

can therefore be put in the form{
wt = Aw + F(w)
w(0) = w0

(2.2)

where w = (u, ut, δ, δt) and w0 = (u0, u1, δ0, δ1) ∈ H. In order to consider
strong solutions we also introduce the following (second order) phase space

H1 = {w = (w1, w2, w3, w4) ∈ H2(Ω)×H1(Ω)×H1/2(Γ)×H1/2(Γ) : ∂nw1 = w4}

which is Hilbert with the associated norm

‖w‖2
H1

= ‖w1‖2
2 + ‖w2‖2

1 + ‖w3‖2
H1/2(Γ) + ‖w4‖2

H1/2(Γ).

Due to the smoothness of the boundary Γ it easy to check that

H1 = D(A) ∩ Z
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where Z is the subspace

Z = {w = (w1, w2, w3, w4) ∈ H : w3, w4 ∈ H1/2(Γ)}.

It can be seen (cf. [4, Theorem 2.1]) that A is the generator of a strongly
continuous contraction semigroup {eAt}t≥0 of bounded linear operators onH,
and F is a locally Lipschitz map on H. We recall the notion of weak solution
to (2.2).

Definition 1. Let w0 ∈ H. We say that w ∈ C0([0,∞);H) is a weak solution
to (2.2) if it satisfies

w(t) = eAtw0 +

∫ t

0

eA(t−s)F(w(s))ds,

for all t ≥ 0.

Denoting by A∗ the adjoint of A, It can be proved (see [2]) that a map
w ∈ C0([0,∞);H) is a weak solution to (2.2) if and and only if for each
z ∈ D(A∗) the function (w(·), z)H is absolutely continuous on [0, T ], for each
T > 0, and satisfies

d

dt
(w(t), z)H = (w(t), A∗z)H + (F(w(t)), z)H, for a.e. t ∈ [0,∞)

and the initial condition w(0) = w0. We now can state the main theorem of
this section.

Theorem 1. Let (1.2), (1.3), (1.7), (1.8) hold and assume that w0 ∈ H.
Then, there exists a unique weak solution w ∈ C0([0,∞);H) to (2.2). For
each weak solution Ew(·) ∈ C1([0,∞)) and the energy equation (2.1) holds.
Furthermore, if w01 and w02 are two sets of data in H and w1, w2 the cor-
responding solutions on [0,∞), there exists θ > 0, depending only on the
H-norms of the data and independent of ω, ν, such that

‖w2(t)− w1(t)‖H ≤ eθt‖w02 − w01‖H, (2.3)

for all t ≥ 0. Assuming, in addition, that f fulfills (1.4), that g = 0, and that
w0 ∈ H1, the corresponding weak solution satisfies the regularity property

w ∈ C1([0,∞);H) ∩ C0([0,∞);H1) (2.4)

and is called ”strong” solution.
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Proof. We give a sketch of the proof. The fact that D(A) is dense in H has
been shown in [4, Theorem 2.1], and one can use the same argument as in [4,
Theorem 2.1] to prove that A is also closed, dissipative, i.e., (Aw,w)H ≤ 0,
for every w ∈ D(A), and such that R(I − A) = H. By the Lumer-Phillips
Theorem we therefore conclude that A is the generator of a C0 contraction
semigroup in H.

Due to (1.2) and (1.7) we have that F : H → H is locally Lipschitz
and so, for every w0 ∈ H there exists tmax = tmax(w0) ∈ (0,∞] such that
(2.2) admits a unique maximally defined weak solution w ∈ C0([0, tmax);H).
To show that tmax = ∞ one can use the energy identity (2.1) which can be
derived by adapting the argument used by J. M. Ball in [1, Theorem 3.6].

Integrating (2.1) between 0 and t,

‖w(t)‖2
H + 2

∫
Ω

F (u) + 2

∫
Γ

G(δ) +

∫ t

0

(ω‖ut‖2 + ν‖δt‖2
L2(Γ))dτ

= ‖w0‖2
H + 2

∫
Ω

F (u0) + 2

∫
Γ

G(δ0), (2.5)

for every t ∈ [0, tmax). By (1.3) and (1.8) there exist µ0, µ1 ∈ (0, 1] such that

2

∫
Ω

F (u) ≥ −(1− µ0)‖u‖2
1 − c4 (2.6)

and

2

∫
Γ

G(δ) ≥ −(1− µ1)‖δ‖2
L2(Γ) − c5. (2.7)

Plugging (2.6), (2.7) into (2.5) and using also assumptions (1.2) and (1.7),
one immediately gets

‖w(t)‖H ≤ C(‖w0‖H),

for every t ∈ [0, tmax), and this implies that tmax = ∞. Furthermore, we
have that, for every R > 0, there exists a positive constant C = C(R),
independent of ω and ν, such that, whenever ‖w0‖H ≤ R, the corresponding
solution fulfills

‖w(t)‖H ≤ C, (2.8)

for all t ≥ 0. For the continuous dependence estimate (2.3), setting w̃ :=
w2 − w1 and w̃0 = w02 − w01, we easily get

1

2

d

dt
‖w̃‖2

H + ω‖ũt‖2 + ν‖δ̃t‖2
L2(Γ)

= (f(u1)− f(u2), ũt) + 〈g(δ1)− g(δ2), δ̃t〉. (2.9)
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By (1.2)
|(f(u1)− f(u2), ũt)| ≤ C(R)‖ũ‖1‖ũt‖ (2.10)

where R > 0 is such that ‖w0i‖H ≤ R, for i = 1, 2, and the second term on

the right hand side of (2.9) can be obviously estimated by c2‖δ̃‖L2(Γ)‖δ̃t‖L2(Γ),
due to (1.7). Hence, (2.3) follows immediately from (2.9) and (2.10), by using
the standard Gronwall lemma.

Finally, for the regularity result in the case g = 0 we can reason in the
spirit of [4, Lemma 2.3]. We give the main points for the convenience of the
reader.

Due to assumption (1.4) on f and to the fact that g = 0, the map F :
D(A) → D(A) is locally Lipschitz continuous. Hence (see, i.e., [33, Theorem
2.5.6.]), if w0 ∈ H1 (which implies w0 ∈ D(A)), the corresponding weak
solution w fulfills

w ∈ C1([0,∞);H) ∩ C0([0,∞);D(A)). (2.11)

Consider now the following initial value problem in X := H1/2(Γ)×H1/2(Γ){
zt = Bz + y
z(0) = (δ0, δ1)

T (2.12)

where z(t) = (z3(t), z4(t))
T and

B :=

[
0 1
−1 −ν

]
, y(t) :=

[
0

−ut(t)

]
(2.13)

ut being the second component of the solution w. Therefore y ∈ C0([0,∞);X),
as a consequence of (2.11). As B ∈ L(X) (hence B is the generator of a uni-
formly continuous C0 semigroup on X) and z(0) ∈ X, we have that problem
(2.12) admits a unique solution z ∈ C1([0,∞);X). By comparision with prob-
lem (2.2) (the two equations in (2.12) are equivalent to the second equation
in (2.2)) and by uniqueness, we deduce that z3(t) = δ(t) and z4(t) = δt(t),
for every t ≥ 0. This, together with (2.11), implies (2.4).

Theorem 1 and the fact that the system is autonomous lead immediately
to the following.

Corollary 1. In the hypotheses (1.2), (1.3), (1.7) and (1.8), system (1.1)1,
(1.6), (1.1)3 with the initial condition w(0) = w0 ∈ H generates a strongly
continuous semigroup S(t) = Sω,ν(t) on the phase space H.
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3 Dissipativity

In this section we show the existence of a bounded absorbing set B0 ⊂ H for
system (1.1)1, (1.6), (1.1)3. The analysis is carried out in dependence of the
damping coefficients ω and ν.

We point out that, though the calculations we perform in this and in the
subsequent sections are formal, the estimates (and also all the differential
identities) can be justified by means of an appropriate regularization pro-
cedure which relies on the semigroup theory and on the regularity result of
Section 2 (see [13]).

Here is the result we want to prove.

Theorem 2. Let (1.2), (1.3), (1.7), (1.8) hold. Then, there exists R0 > 0
with the following property: for every R > 0, there exists t0 = t0(R,ω, ν) such
that, for every w0 ∈ H with ‖w0‖H ≤ R, we have

‖S(t)w0‖H ≤ R0,

for every t ≥ t0.

Proof. We set ξ = ut + εu, ζ = δt + εδ, where ε > 0 is to be fixed later, and
we multiply in L2(Ω) the first equation of system (1.1) by ξ and in L2(Γ) the
second equation by ζ. Adding the resulting equations we get

1

2

d

dt

{
‖u‖2

1 + ‖ξ‖2 + ‖δ‖2
L2(Γ) + ‖ζ‖2

L2(Γ)

+2ε〈u, δ〉+ 2

∫
Ω

F (u) + 2

∫
Γ

G(δ)
}

+ε‖u‖2
1 + (ω − ε)‖ξ‖2 − ε(ω − ε)(u, ξ)

+ε‖δ‖2
L2(Γ) + (ν − ε)‖ζ‖2

L2(Γ) − ε(ν − ε)〈δ, ζ〉
+ε(f(u), u) + ε〈g(δ), δ〉 = 2ε〈u, ζ〉 − 2ε2〈u, δ〉. (3.1)

Henceforth in this section ci, k1, k2, εi and α will be some positive (or noneg-
ative) constants whose value will be specified in Remark 2. We now have

−ε(ω − ε)(u, ξ) ≥ −εµ0

4
‖u‖2

1 −
εω2

µ0

‖ξ‖2 (3.2)

−ε(ν − ε)〈δ, ζ〉 ≥ −εµ1

2
‖δ‖2

L2(Γ) −
εν2

2µ1

‖ζ‖2
L2(Γ) (3.3)

ε(f(u), u) ≥ −ε(1− µo)‖u‖2
1 − εc6 (3.4)

ε〈g(δ), δ〉 ≥ −ε(1− µ1)‖δ‖2
L2(Γ) − εc7 (3.5)

2ε〈u, ζ〉 ≤ εµ0

4
‖u‖2

1 +
4εc2t
µ0

‖ζ‖2
L2(Γ) (3.6)

−2ε2〈u, δ〉 ≤ ε2‖δ‖2
L2(Γ) + ε2c2t‖u‖2

1, (3.7)
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where µ0 and µ1 are the same as in (2.6) and (2.7), respectively, and ct is
the constant in the trace inequality ‖v‖L2(Γ) ≤ ct‖v‖1, for every v ∈ H1(Ω).
Plugging (3.2)-(3.7) into (3.1) we get

1

2

d

dt

{
‖u‖2

1 + ‖ξ‖2 + ‖δ‖2
L2(Γ) + ‖ζ‖2

L2(Γ)

+2ε〈u, δ〉+ 2

∫
Ω

F (u) + 2

∫
Γ

G(δ)
}

+
ε

2
(µ0 − 2c2t ε)‖u‖2

1 +
(
ω − ε

(
1 +

ω2

µ0

))
‖ξ‖2

+
ε

2
(µ1 − 2ε)‖δ‖2

L2(Γ) +
(
ν − ε

(
1 +

4c2t
µ0

+
ν2

2µ1

))
‖ζ‖2

L2(Γ)

≤ ε(c6 + c7). (3.8)

Let us now define the functional

E(w) := ‖u‖2
1 + ‖v‖2 + ‖δ‖2

L2(Γ) + ‖η‖2
L2(Γ)

+2ε〈u, δ〉+ 2

∫
Ω

F (u) + 2

∫
Γ

G(δ) (3.9)

for every w = (u, v, δ, η) ∈ H. It is easy to see that, by taking ε ∈ (0, ε1],
where ε1 > 0 is obviously independent of ω, ν, we have

k1‖w‖2
H − c8 ≤ E(w) ≤ k2‖w‖H(1 + ‖w‖3

H), (3.10)

for every w ∈ H, where k1, k2 are two positive constants independent of ω,
ν, and c8 = c4 + c5. If we now introduce

K(s) := s/(1 + s2),

we see that, choosing 0 < ε ≤ min{ε2, 1
2α
K(ω), 1

2α
K(ν)}, where ε2 > 0 is

independent of ω, ν, we have

d

dt
E(w) +

ε

2
µ0‖u‖2

1 + ω‖ξ‖2 +
ε

2
µ1‖δ‖2

L2(Γ) + ν‖ζ‖2
L2(Γ) ≤ ε(c6 + c7). (3.11)

Furthermore, for ε ∈ (0, 1/2]

‖u‖2
1 + ‖ξ‖2 + ‖δ‖2

L2(Γ) + ‖ζ‖2
L2(Γ) ≥

1

2
‖w‖2

H. (3.12)

In order to highlight the dependence on ω, ν in this section (see also Section
5) we introduce

J(ω, ν) := min
{
ε1, ε2,

1

2
,
ω

2µ∗
,
ν

2µ∗
,
K(ω)

2α
,
K(ν)

2α

}
,
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where µ∗ = 1
4
min{µ0, µ1}. Therefore, by taking ε = J(ω, ν), from (3.11) and

(3.12) we are led to

d

dt
E(w(t)) + µ∗J(ω, ν)‖w(t)‖2

H ≤ (c6 + c7)J(ω, ν). (3.13)

The theorem now follows by applying Lemma 1. Indeed, let us fix R > 0 and
a set of initial data w0 ∈ H such that ‖w0‖H ≤ R. By (3.10) we have the
bound

E(w(0)) ≤ k2R(1 +R3).

From Lemma 1, we deduce that there exists a time t0 = t0(R,ω, ν) > 0 such
that

E(S(t)w0) ≤ sup{E(z) : z ∈ H, µ∗J(ω, ν)‖z‖2
H ≤ 2(c6 + c7)J(ω, ν)},

(3.14)
for every t ≥ t0 and for every w0 ∈ H with ‖w0‖H ≤ R. Hence, on account of
(3.10) we conclude that there exists R0 > 0, independent of ω, ν, such that

‖S(t)w0‖H ≤ R0,

for every t ≥ t0 and every w0 ∈ H such that ‖w0‖H ≤ R. The ball

B0 = {z ∈ H : ‖z‖H ≤ R0} (3.15)

is therefore a bounded absorbing set for the semigroup. Moreover, the time
t0(R,ω, ν) can be expressed by t0(R,ω, ν) = (k2R(1+R3)+c8)/(c6+c7)J(ω, ν).

Remark 1. We observe that the radius of the absorbing set R0 does not
depend on the damping coefficients ω, ν. Nevertheless, the time t0 needed
to stabilize the system not only depends increasingly on R, as expected, but
depends also on ω and ν. In particular we point out that, for fixed R > 0,
we have t0 →∞ both for ω or ν → 0 and for ω or ν →∞.

Physically, the ω, ν-dependence of t0 is obvious in the former case, as in
this case the dissipation is reduced to zero. On the other hand, in the latter
case, a very large damping has the effect of freezing the system, since the
damping acts only on the velocities ut, δt, and this prevents the squeezing of
the components u, δ.

Remark 2. We can express the constants in the proof of Theorem 2 and
the radius of the absorbing set in terms of the parameters of the problem.
Firstly, given ai ≥ 0, i = 1, 2, 3, let us denote by γ = γ(a1, a2, a3) a non-
negative constant such that a1t

4 + a2t
2 + a3t ≤ γ(t + t4), for every t ≥ 0.

12



Hence, from (1.2) we have |F (s)| ≤ c̃1(|s|+ s4), for every s ∈ R, where c̃1 =
γ(c1/2, c1/2, |f(0)|). Furthermore, from (1.7) we have |G(s)| ≤ c̃2(|s| + s2),
where c̃2 = max{c2/2, |g(0)|}. For the constants µ0, c4 in (2.6) and µ1, c5 in
(2.7) we can assume (see [12, Remark 2])

µ0 = min{(1− λ0)/2, 1}, c4 = |Ω|C4,

and
µ1 = min{(1− λ1)/2, 1}, c5 = |Γ|2C5,

where

λ0 = − lim inf
|s|→+∞

f(s)/s ∈ R ∪ {−∞}, C4 = −2 min
|r|≤ρ0

F (r),

with ρ0 ≥ 0 such that rf(r) ≥ −max{(λ0 +1)/2, 0}r2 for every |r| ≥ ρ0, and

λ1 = − lim inf
|s|→+∞

g(s)/s ∈ R ∪ {−∞}, C5 = −2 min
|r|≤ρ1

G(r),

with ρ1 ≥ 0 such that rg(r) ≥ −max{(λ1 +1)/2, 0}r2 for every |r| ≥ ρ1. The
constants c6, c7 in (3.4), (3.5) can be given by

c6 = |Ω|max{C6, 0}, c7 = |Γ|2 max{C7, 0},

where C6 = −min|r|≤ρ0 rf(r) and C7 = −min|r|≤ρ1 rg(r). The constant α
(see the definition of the function J(ω, ν) in the proof of Theorem 2) is given
by

α = max{µ−1
0 , 1 + 4c2tµ

−1
0 , (2µ1)

−1},

and for ε1, ε2 we can take the values ε1 = min{3µ∗/(1 + ct), 1/2}, ε2 =
min{4−1c−2

t µ0, 4
−1µ1}. Finally, k1, k2 in (3.10) can be expressed by

k1 = µ∗, k2 = γ(2(c̃1|Ω|1/2 + c̃2|Γ|1/2
2 ), 8 + 2c̃2 + c2t , 2c̃1c

4
e),

where ce is the constant in the Sobolev embedding inequality ‖v‖L4(Ω) ≤
ce‖v‖1 for every v ∈ H1(Ω) (we can assume ce = 2

√
2‖P‖, P : H1(Ω) →

H1(R3) being a linear bounded extension operator). Therefore, by means
of (3.14) and (3.10), we can provide an estimate for the radius R0 of the
absorbing set

R2
0 =

k2

k1

(
2
c6 + c7
µ∗

)1/2(
1 +

(
2
c6 + c7
µ∗

)3/2)
+
c8
k1

.

13



Remark 3. (Uniform decay of the trajectories). A further application of
Lemma 1 allows us to deduce a sufficient condition which ensures the decay
in H of the trajectories, uniformly from every bounded subset B ⊂ H (cf. [12,
Remark 3]). Indeed, by applying Lemma 1 with η > 0 left arbitrary (instead
of fixing it equal to (c6 + c7)J(ω, ν)), we deduce at once the desired sufficient
condition, i.e. c6 + c7 = c8 = 0, and, on account of Remark 2 as well, we can
state the following

Proposition 1. Let (1.2), (1.3), (1.7), (1.8) hold. In addition, suppose that
the following conditions

min
|r|≤ρ0

rf(r) ≥ 0, min
|r|≤ρ1

rg(r) ≥ 0,

|Ω| min
|r|≤ρ0

F (r) + |Γ|2 min
|r|≤ρ1

G(r) = 0 (3.16)

be satisfied, with ρ0, ρ1 ≥ 0 as in Remark 2. Then, for every R > 0 we have

‖S(t)w0‖H → 0 as t→ +∞,

uniformly for ‖w0‖H ≤ R. In particular, assumptions (3.16) hold if sf(s) ≥ 0
and sg(s) ≥ 0, for every s ∈ R.

We conclude this section with an important corollary, concerning the
uniform control of the dissipation integral, that we shall use in the following.

Corollary 2. For every R > 0, there exists a positive constant Λ = Λ(R)
independent of ω, ν, such that, whenever ‖w0‖H ≤ R, there holds∫ ∞

0

(ω‖ut(τ)‖2 + ν‖δt(τ)‖2
L2(Γ))dτ ≤ Λ.

4 The global attractor

In this section we deduce the existence of the global attractor A = Aω,ν for
system (1.1). Our goal is to deduce the existence of A under the assumptions
(1.2), (1.3) for the nonlinearity f . Unfortunately, the classical decomposi-
tion method, frequently used to prove asymptotic compactness in hyperbolic
equations, seems problematic when only (1.2), (1.3) hold. Indeed this method
usually requires stronger assumptions (e.g., like (1.4) and (1.5), see Section
5). The problem is due to the dynamic boundary conditions we have which
prevent the possibility of using fractional power operators in order to obtain
estimates in Sobolev spaces of higher order.
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The method we use to obtain the existence ofA under the weaker assump-
tions (1.2), (1.3) relies on the use of an appropriate energy type equation.
The idea to take advantage of energy equations to prove the existence of
global attractors for weakly dissipative semigroup has been considered by J.
M. Ball (see [1]), and has later been successfully employed by other authors
in situations where the use of the decomposition method seems out of reach
(see, for instance, [24], [1], and also [17], [30], [18], [23], [29], [19]).

Theorem 3. Let (1.2), (1.3) hold. Then, (1.1) possesses a unique global
attractor A = Aω,ν in the energy phase space H.

Theorem 3 is an immediate consequence of the existence of a bounded
absorbing set, proved in Section 3, and of the asymptotic compactness of the
semigroup, which we shall now prove by applying Ball’s method.

In order to prove the asymptotic compactness, we first need to establish
the following lemma, which concerns with the weak continuity property of
the semigroup.

Lemma 4. The operators S(t) are weakly continuous on H, for all t ≥ 0,
i.e.

w0n ⇀ w0, in H ⇒ S(t)w0n ⇀ S(t)w0, in H.

Proof. The lemma is essentially proved in [1, Theorem 3.6]. Actually, the
proof in [1, Theorem 3.6] applies to the solution of an abstract evolution
equation in the form (2.2), with the assumptions (fulfilled in our case) that
A is a (generic) generator of a strongly continuous semigroup eAt of bounded
linear operators on H, and F is a sequentially weakly continuous map from
H to H.

We are now in a position to prove the asymptotic compactness of S(t)

Proposition 2. The semigroup S(t) is asymptotically compact.

Proof. Let w0n = (u0n, u1n, δ0n, δ1n) be a bounded sequence inH and tn →∞.
We have to show that the sequence

w(n)(tn) = S(tn)w0n = (u(n)(tn), u
(n)
t (tn), δ(n)(tn), δ

(n)
t (tn))

is precompact in H.
Let us first consider the third and fourth components of the solution. By

explicitly integrating the second equation in (1.1) written for the family of
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trajectories w(n), we obtain (it is not restrictive to consider the case ν = 1)

δ(n)(tn) = δ0ne
−tn/2 cos

(√3

2
tn

)
+

1√
3
(δ0n + 2δ1n)e−tn/2 sin

(√3

2
tn

)
+k(tn)u0n −

∫ tn

0

k′(tn − τ)u(n)(τ)dτ, (4.1)

where the kernel k is given by k(s) = (2/
√

3)e−s/2 sin(s
√

3/2).
Now, the first three terms on the right hand side of (4.1) obviously con-

verge strongly to zero in L2(Γ). As far as the last term is concerned, we
have ∥∥∥∫ tn

0

k′(tn − τ)u(n)(τ)dτ
∥∥∥

1
≤ c

∫ tn

0

e−(tn−τ)/2‖u(n)(τ)‖1dτ

≤ 2cM(1− e−tn/2) ≤ 2cM, (4.2)

for every n ∈ N, where we have used the fact that ‖u(n)(t)‖1 ≤ M , for all
t ≥ 0 and for all n ∈ N, as a consequence of the existence of a bounded
absorbing set B0, the constant M depending on the radius R0 of B0.

By means of the compactness of the trace operator from H1(Ω) to L2(Γ),
we thus deduce the precompactness in L2(Γ) of the last term on the right
hand side of (4.1), which yields the precompactness in L2(Γ) of the sequence

δ(n)(tn). The same argument obviously applies to the sequence δ
(n)
t (tn) as

well.
In order to prove the asymptotic compactness of the first two components

of the solution, we introduce the following auxiliary functional

I(w) =
1

2
‖u‖2

1 +
1

2
‖ut‖2 +

ω

2
(u, ut)

+

∫
Ω

F (u)− 〈u, δt〉 −
1

2
‖u‖2

L2(Γ). (4.3)

An easy calculation shows that I(w(·)) satisfies

dI

dt
+ ωI +

ω

2
‖u‖2

L2(Γ) = 〈u, δ +
(
ν − ω

2

)
δt〉+H(u), (4.4)

where

H(u) = ω

∫
Ω

(F (u)− 1

2
f(u)u). (4.5)

Now, since {S(tn)w0n} is bounded in H (due to the existence of a bounded
absorbing set B0), we have, for a subsequence

S(tn)w0n ⇀ w∗, in H. (4.6)
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Similarly, for every T ∈ N, the sequence {S(tn − T )w0n} has a weakly con-
verging subsequence and, by means of a diagonalization procedure, we obtain
a further subsequence (which we do not relabel) such that, for every T ∈ N,

S(tn − T )w0n ⇀ wT , in H, (4.7)

with wT ∈ B0, for every T ∈ N (assuming that B0 is the closed ball given by
(3.15)). By Lemma 4, from (4.6), (4.7) we get S(T )wT = w∗.

We now multiply by eωt and integrate (4.4), written for each solution with
initial data given by S(tn − T )w0n. We get

I(S(tn)w0n) +
ω

2

∫ T

0

e−ω(T−s)‖ũ(n)(s)‖2
L2(Γ)ds = e−ωT I(S(tn − T )w0n)

+

∫ T

0

e−ω(T−s)〈ũ(n)(s), δ̃(n)(s) +
(
ν − ω

2

)
δ̃
(n)
t (s)〉ds

+

∫ T

0

e−ω(T−s)H(ũ(n)(s))ds, (4.8)

where we have set

w̃(n)(t) = (ũ(n)(t), ũ
(n)
t (t), δ̃(n)(t), δ̃

(n)
t (t)) = S(t+ tn − T )w0n.

Now, observe that, for every t ≥ 0, we have w̃(n)(t) ⇀ S(t)wT inH, which im-
plies ũ(n)(t) ⇀ u(t) inH1(Ω), where we have set S(t)wT = (u(t), ut(t), δ(t), δt(t)).
Hence

ũ(n)(t) → u(t), strongly in L2(Γ),

for every t ≥ 0. This fact, together with the weak convergences

δ̃(n)(t) ⇀ δ(t), δ̃
(n)
t (t) ⇀ δt(t), in L2(Γ),

for every t ≥ 0, allows to use the dominated convergence theorem in the
second term on the right hand side of (4.8) to deduce that this term converges
to ∫ T

0

e−ω(T−s)〈u(s), δ(s) +
(
ν − ω

2

)
δt(s)〉ds.

Similarly, the second term on the left hand side of (4.8) converges to

ω

2

∫ T

0

e−ω(T−s)‖u(s)‖2
L2(Γ)ds,

while the last term on the right hand side converges to∫ T

0

e−ω(T−s)H(u(s))ds
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by virtue of the sequential weak continuity of the map H : H1(Ω) → R,
which can be easily proved by using (1.2) (see [1, Theorem 3.6]).

Hence, from (4.8) we obtain

lim sup
n→∞

I(S(tn)w0n) +
ω

2

∫ T

0

e−ω(T−s)‖u(s)‖2
L2(Γ)ds

≤ Ce−ωT +

∫ T

0

e−ω(T−s)〈u(s), δ(s) +
(
ν − ω

2

)
δt(s)〉ds

+

∫ T

0

e−ω(T−s)H(u(s))ds, (4.9)

for every T ∈ N. On the other hand, by integrating (4.4) written for the
solution with initial data wT , we have

I(w∗) +
ω

2

∫ T

0

e−ω(T−s)‖u(s)‖2
L2(Γ)ds

= e−ωT I(wT ) +

∫ T

0

e−ω(T−s)〈u(s), δ(s) +
(
ν − ω

2

)
δt(s)〉ds

+

∫ T

0

e−ω(T−s)H(u(s))ds, (4.10)

for every T ∈ N. From (4.9) and (4.10) we find

lim sup
n→∞

I(S(tn)w0n) ≤ Ce−ωT + I(w∗), (4.11)

and by letting T →∞, we see that lim supn→∞ I(S(tn)w0n) ≤ I(w∗). But, by
the weak lower semicontinuity of the norm, it is easy to see that, up to a sub-
sequence, we have lim infn→∞ I(S(tn)won) ≥ I(w∗). Therefore I(S(tn)w0n) →
I(w∗), and hence

‖u(n)(tn)‖2
1 + ‖u(n)

t (tn)‖2 → ‖w∗1‖2
1 + ‖w∗2‖2,

where w∗ = (w∗1, w
∗
2, w

∗
3, w

∗
4). This fact, together with the weak convergence

(4.6), yields u(n)(tn) → w∗1 in H1(Ω) strongly and u
(n)
t (tn) → w∗2 in L2(Ω)

strongly. Thus, the first two components of the solution as well are asymp-
totically compact, and the proof is now complete.

5 Regular attracting sets

In order to prove the existence of a regular attracting set, which provides
the regularity of the attractor and will also be useful for the construction of
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an exponential attractor, we shall use a quite effective decomposition of the
solution, that has already been exploited in [28] and in other papers (see [16],
[20] and [32]).

This approach is particularly suitable for our problem, where fractional
operators cannot be used, and requires, in addition, some more restrictive
assumptions on the nonlinearity, i.e., (1.4) and (1.5).

In the following c ≥ 0 will stand for a generic constant, that may vary
even within the same equation, depending on the radius R0 of the absorbing
set B0, but independent of ω, ν. Moreover cω,ν and bω,ν will stand for some
constants depending on R0, ω and ν.

Theorem 4. Let (1.2)-(1.5) hold. Then, there exists a subset B1 = B1(ω, ν) ⊂
H1 closed and bounded in H1 such that

distH(S(t)B0,B1) ≤ cω,νe
−cJ(ω,ν)t, (5.1)

for every t ≥ 0.

By virtue of the minimality property of the global attractor, we immedi-
ately have the following.

Corollary 3. Under the assumptions (1.2)-(1.5), the global attractor A of
the semigroup on H associated with (1.1) is contained and bounded in H1.

In order to prove Theorem 4, we consider the initial data w0 ∈ B0 and
we decompose the solution w into the sum w = wd + wc, where wd =
(ud, ud

t , δ
d, δd

t ) and wc = (uc, uc
t , δ

c, δc
t ) are the solutions to the following prob-

lems;
ud

tt + ωud
t −∆ud + ud + ψ(u)− ψ(uc) = 0 in Ω× (0,∞)

δd
tt + νδd

t + δd = −ud
t on Γ× (0,∞)

δd
t = ∂ud

∂n
on Γ× (0,∞)

wd(0) = w0 in Ω

(5.2)

and 
uc

tt + ωuc
t −∆uc + uc + ψ(uc) = θu in Ω× (0,∞)

δc
tt + νδc

t + δc = −uc
t on Γ× (0,∞)

δc
t = ∂uc

∂n
on Γ× (0,∞)

wc(0) = 0 in Ω;

(5.3)

here we have set
ψ(s) := f(s) + θs

with θ ≥ l in order to have ψ′(s) ≥ 0, by (1.5).
In the next lemmas we denote by k = kω,ν a positive constant depending

on ω, ν, and R0, having the form kω,ν = c/(ωJ(ω, ν)).
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Lemma 5. We have
‖wc(t)‖H ≤ kω,ν , (5.4)

for every t ≥ 0 and every w0 ∈ B0.

Proof. We can argue as in the proof of Theorem 2. Indeed, we can rewrite
(3.1) for system (5.3), replacing F (u) with Ψ(uc) :=

∫ uc

0
ψ(s)ds and adding

on the right hand side the additional term θ(u, ξc) ≤ ω
2
‖ξc‖2 + c

ω
‖u‖2

1 ≤
ω
2
‖ξc‖2 + c

ω
, by (2.8). We are finally led to

d

dt
E(wc(t)) + cJ(ω, ν)‖wc(t)‖2

H ≤ cJ(ω, ν) +
c

ω
.

Now, by means of Lemma 1, we easily get ‖wc(t)‖H ≤ c/(ωJ(ω, ν)), for all
t ≥ t0 := c/J(ω, ν). On the other hand, by multiplying in L2(Ω) the first
equation in (5.3) by uc

t , in L2(Γ) the second by δc
t and adding the resulting

equations together, we have

1

2

d

dt

{
‖wc(t)‖2

H + 2

∫
Ω

Ψ(uc)
}

+ ω‖uc
t‖2 + ν‖δc

t‖2
L2(Γ)

= θ(u, uc
t) ≤

ω

2
‖uc

t‖2 +
c

ω
. (5.5)

Integrating (5.5) between 0 and t ∈ [0, t0], we are led to ‖wc(t)‖H ≤ c
√
t0/ω =

c/
√
ωJ(ω, ν), for all t ∈ [0, t0]. We thus get (5.4), with the constant kω,ν in

the form written above.

Lemma 6. For every ε > 0 there exists mε > 0, depending also on ω and ν,
such that, for every 0 ≤ s ≤ t and every w0 ∈ B0, we have∫ t

s

(‖ut(τ)‖2 + ‖uc
t(τ)‖2)dτ ≤ ε

2
(t− s) +mε. (5.6)

Proof. From (5.5), on account of Lemma 5, we can write

1

2

d

dt

{
‖wc(t)‖2

H + 2

∫
Ω

Ψ(uc)− 2θ(u, uc)
}

+ ω‖uc
t‖2 + ν‖δc

t‖2
L2(Γ)

= −θ(ut, u
c) ≤ ω

ε

2
+
ck2

ωε
‖ut‖2. (5.7)

Setting

Λ := ‖wc‖2
H + 2

∫
Ω

Ψ(uc)− 2θ(u, uc),

we easily see that |Λ(t)| ≤ ck4, for all t ≥ 0, by Lemma 5, (2.8) and (1.2).
Now, by integrating (5.7) between s and t and by using Corollary 2, we
get (5.6). The constant mε can be expressed, as a function of ω and ν, by
mε = ck2/(εω3) + ck4/ω.
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We now prove

Lemma 7. We have

‖wd(t)‖H ≤ cω,νe
−cJ(ω,ν)t, (5.8)

for every t ≥ 0 and every w0 ∈ B0.

Proof. We multiply (5.2)1 in L2(Ω) by ξd := ud
t + εud and (5.2)2 in L2(Γ) by

ζd := δd
t + εδd, where ε > 0 shall be fixed later. By also taking into account

(5.2)3, we find the following equality

1

2

d

dt

{
‖ud‖2

1 + ‖ξd‖2 + ‖δd‖2
L2(Γ) + ‖ζd‖2

L2(Γ) + 2ε〈ud, δd〉

+2(ψ(u)− ψ(uc), ud)− (ψ′(u)ud, ud)
}

+ ε‖ud‖2
1 + (ω − ε)‖ξd‖2

−ε(ω − ε)(ud, ξd) + ε‖δd‖2
L2(Γ) + (ν − ε)‖ζd‖2

L2(Γ) − ε(ν − ε)〈δd, ζd〉
+ε(ψ(u)− ψ(uc), ud) = 2ε〈ud, ζd〉 − 2ε2〈ud, δd〉

+((ψ′(u)− ψ′(uc))uc
t , u

d)− 1

2
(ψ′′(u)ut, (u

d)2). (5.9)

We now have

|(ψ′(u)ud, ud)| ≤ c(1 + ‖u‖2
1)‖ud‖1‖ud‖

≤ c‖ud‖1‖ud‖ ≤ 1

2
‖ud‖2

1 + c‖ud‖2

and hence, by means of assumption (1.5), we have

2(ψ(u)− ψ(uc), ud)− (ψ′(u)ud, ud) ≥ 2(θ − l)‖ud‖2 − 1

2
‖ud‖2

1 − c‖ud‖2

≥ −1

2
‖ud‖2

1 (5.10)

provided θ is chosen large enough (θ ≥ l + c/2). We now set (we omit the
indication of the time t on the right)

Φ(t) := ‖ud‖2
1 + ‖ξd‖2 + ‖δd‖2

L2(Γ) + ‖ζd‖2
L2(Γ) + 2ε〈ud, δd〉

+2(ψ(u)− ψ(uc), ud)− (ψ′(u)ud, ud) (5.11)

and, on account of (5.10) and of the trace inequality ‖ud‖L2(Γ) ≤ c‖ud‖1,
it is easy to check that, provided ε ∈ (0, ε′1], where ε′1 is small enough and
independent of ω, ν, we have

Φ(t) ≥ 1

4
‖wd(t)‖2

H, (5.12)
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for every t ≥ 0 and every w0 ∈ B0. On the other hand, by using Lemma 5,
we have

2|(ψ(u)− ψ(uc), ud)| ≤ c(1 + ‖u‖2
1 + ‖uc‖2

1)‖ud‖2
1 ≤ ck2‖ud‖2

1,

where the constant k = kω,ν is the same as in Lemma 5. Furthermore

|(ψ′(u)ud, ud)| ≤ c(1 + ‖u‖2
1)‖ud‖2

1 ≤ c‖ud‖2
1.

Hence, it is also easy to check that

Φ(t) ≤ ck2‖wd(t)‖2
H, (5.13)

for every t ≥ 0 and every w0 ∈ B0. Let us now rewrite (5.9) in terms of the
functional Φ,

dΦ

dt
+ εΦ + ε‖ud‖2

1 + (2ω − 3ε)‖ξd‖2

+ε‖δd‖2
L2(Γ) + (2ν − 3ε)‖ζd‖2

L2(Γ) − 2ε(ω − ε)(ud, ξd)

−2ε(ν − ε)〈δd, ζd〉 − 2ε2〈ud, δd〉+ ε(ψ′(u)ud, ud)

= 4ε〈ud, ζd〉 − 4ε2〈ud, δd〉+ 2((ψ′(u)− ψ′(uc))uc
t , u

d)

−(ψ′′(u)ut, (u
d)2). (5.14)

We now have

−2ε(ω − ε)(ud, ξd) ≥ − ε
8
‖ud‖2

1 − εω2c‖ξd‖2, (5.15)

−2ε(ν − ε)〈δd, ζd〉 ≥ − ε
2
‖δd‖2

L2(Γ) − 2εν2‖ζd‖2
L2(Γ), (5.16)

−2ε2〈ud, δd〉 ≤ − ε
8
‖ud‖2

1 − cε3‖δd‖2
L2(Γ), (5.17)

4ε〈ud, ζd〉 ≤ ε

8
‖ud‖2

1 + cε‖ζd‖2
L2(Γ), (5.18)

−4ε2〈ud, δd〉 ≤ ε

8
‖ud‖2

1 + cε3‖δd‖2
L2(Γ). (5.19)

Furthermore, by means of (5.12) we have (assuming ε ≤ ε′1)

2|((ψ′(u)− ψ′(uc))uc
t , u

d)| ≤ c(1 + ‖u‖1 + ‖uc‖1)‖uc
t‖‖ud‖2

1

≤ ck‖uc
t‖‖ud‖2

1 ≤
ε

8
‖ud‖2

1 +
ck2

ε
‖uc

t‖2‖ud‖2
1

≤ ε

8
‖ud‖2

1 +
ck2

ε
‖uc

t‖2Φ, (5.20)
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and also

|(ψ′′(u)ut, (u
d)2)| ≤ c(1 + ‖u‖1)‖ud‖2

1‖ut‖
≤ c‖ut‖‖ud‖2

1 ≤
ε

8
‖ud‖2

1 +
c

ε
‖ut‖2‖ud‖2

1

≤ ε

8
‖ud‖2 +

c

ε
‖ut‖2Φ. (5.21)

Hence, plugging (5.15)-(5.21) into (5.14) and choosing ε ≤ min{ε′1, ε′2, K(ω),
K(ν)} = cJ(ω, ν), where ε′2 is independent of ω and ν, we get

dΦ

dt
+ εΦ +

ε

4
‖ud‖2

1 + ω‖ξd‖2 +
ε

4
‖δd‖2

L2(Γ) + ν‖ζd‖2
L2(Γ)

≤ ck2

ε
(‖uc

t‖2 + ‖ut‖2)Φ. (5.22)

Now, choosing ε = cJ(ω, ν) in (5.22), by means of Lemma 6, Lemma 2
and (5.12), (5.13), we finally get (5.8) with cω,ν having the form cω,ν =
ckω,ν exp{ck6

ω,ν/(ω
3J3(ω, ν))}.

Lemma 8. We have
‖wc(t)‖H1 ≤ bω,ν ,

for every t ≥ 0 and every w0 ∈ B0.

Proof. We differentiate (5.3)1 with respect to time and, setting vc := uc
t , we

obtain
vc

tt + ωvc
t −∆vc + vc + ψ′(uc)vc = θut. (5.23)

Then, we multiply (5.23) in L2(Ω) by vc
t + εvc, where ε > 0 is to be deter-

mined later. By taking into account (5.3)2 and (5.3)3, after some calculations
we are led to the following differential identity

d

dt

{
‖vc‖2

1 + ‖vc
t‖2 + ‖vc‖2

L2(Γ) + εω‖vc‖2 + 2〈νδc
t + δc, vc〉

+2ε(vc, vc
t ) + (ψ′(uc)vc, vc)

}
+ 2ε‖vc‖2

1 + 2(ω − ε)‖vc
t‖2

+2(ε+ ν)‖vc‖2
L2(Γ) + 2ε〈νδc

t + δc, vc〉+ 2(ν2 − 1)〈δc
t , v

c〉
+2ν〈δc, vc〉+ 2ε(ψ′(uc)vc, vc) = (ψ′′(uc)uc

t , (v
c)2)

+2θ(ut, v
c
t ) + 2εθ(ut, u

c
t). (5.24)

We now introduce the functional

Λ1 := ‖vc‖2
1 + ‖vc

t‖2 + ‖vc‖2
L2(Γ) + εω‖vc‖2 + 2〈νδc

t + δc, vc〉
+2ε(vc, vc

t ) + (ψ′(uc)vc, vc) (5.25)
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and observe that, by choosing ε ∈ (0, ε′3], with ε′3 small enough and indepen-
dent of ω and ν, we have

Λ1 ≥
1

2
(‖vc‖2

1 + ‖vc
t‖2 + ‖vc‖2

L2(Γ))− 2(ν + 1)2k2. (5.26)

Furthermore, by means of (1.2) we also have

Λ1 ≤ (1+ck2+εc)‖vc‖2
1+(1+εc)‖vc

t‖2+(1+εω)‖vc‖2
L2(Γ)+2(ν+1)k‖vc‖L2(Γ).

(5.27)
In terms of functional Λ1, the differential identity (5.24) can be written in
the form

dΛ1

dt
+ εΛ1 + ε‖vc‖2

1 + (2ω − 3ε)‖vc
t‖2 + (2ν + ε)‖vc‖2

L2(Γ)

−ωε2‖vc‖2 − 2ε2(vc, vc
t ) + 2(ν2 − 1)〈vc, δc

t 〉+ 2ν〈vc, δc〉
+ε(ψ′(uc)vc, vc) = (ψ′′(uc)uc

t , (v
c)2)

+2θ(ut, v
c
t ) + 2εθ(ut, u

c
t). (5.28)

We now have

−2ε2(vc, vc
t ) ≥ −ε2ω‖vc‖2

1 −
ε2

ω
‖vc

t‖2, (5.29)

2ν〈vc, δc〉 ≥ − ε
2
‖vc‖2

L2(Γ) −
2ν2k2

ε
, (5.30)

2(ν2 − 1)〈vc, δc
t 〉 ≥ − ε

2
‖vc‖2

L2(Γ) −
2(ν2 − 1)2k2

ε
, (5.31)

where we have exploited the control ‖δc(t)‖L2(Γ) ≤ k (by Lemma 5). Further-
more

2θ(ut, v
c
t ) + 2εθ(ut, u

c
t) ≤ c‖vc

t‖+ εck

≤ ω‖vc
t‖2 +

c

ω
+ εck, (5.32)

and, by (5.26)

(ψ′′(uc)uc
t , (v

c)2) ≤ c(1 + ‖uc‖1)‖uc
t‖‖vc‖2

1

≤ ck‖uc
t‖‖vc‖2

1 ≤ ck‖uc
t‖Λ1 + ck3(ν + 1)2‖uc

t‖. (5.33)

Plugging (5.29)- (5.33) into (5.28) and by taking ε small enough (i.e. 0 < ε ≤
min{ε′3, c/ω, cω}), we get the following differential inequality

dΛ1

dt
+ εΛ1 ≤ ck‖uc

t‖Λ1 + ck3(ν + 1)2‖uc
t‖+ b1 (5.34)
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where the constant b1 has the form b1 = 2(ν2−1)2k2/ε+2ν2k2/ε+c/ω+ εck.
Henceforth in this proof we denote by bi a nonnegative constant depending
on R0, ω and ν. We now have, by means of Corollary 2 and Lemma 7∫ +∞

0

‖uc
t(τ)‖2dτ ≤ 2

∫ +∞

0

(‖ut(τ)‖2 + ‖ud
t (τ)‖2)dτ ≤ b2, (5.35)

where b2 = c(ω−1 + c2ω,νJ(ω, ν)−1). Therefore

ck

∫ t

s

‖uc
t(τ)‖dτ ≤ b3(t− s)1/2,

with b3 = ckb
1/2
2 . Since we also have∫ t+1

t

(ck3(ν + 1)2‖uc
t‖+ b1)dτ ≤ b4, (5.36)

with b4 = ck3(ν+1)2b
1/2
2 + b1, we are thus in the hypotheses of Lemma 3 and

so we conclude that
Λ1(t) ≤ γΛ1(0)e

−εt/2 +K,

for all t ≥ 0. The constants γ and K can be expressed in terms of ω, ν (see
Lemma 3). On the other hand, from (5.27) and (5.3)1, Λ1(0) ≤ b5 and from
(5.26) we get the bound

‖uc
t(t)‖1 + ‖uc

tt(t)‖ ≤ b6. (5.37)

Equation (5.3)1 finally yields the control ‖∆uc(t)‖ ≤ b7.
We now multiply equation (5.3)2 by (−∆Γ)1/2(δc

t +εδ
c) in L2(Γ), where ε >

0 is to be determined later. After some calculations we obtain the following
identity

1

2

d

dt

{
(1 + εν)‖(−∆Γ)1/4δc‖2

L2(Γ) + ‖(−∆Γ)1/4δc
t‖2

L2(Γ) + ‖(−∆Γ)1/4uc‖2
L2(Γ)

+2ε〈(−∆Γ)1/4δc
t , (−∆Γ)1/4δc〉+ 2〈(−∆Γ)1/4uc, (−∆Γ)1/4δc

t 〉

+2ε〈(−∆Γ)1/4uc, (−∆Γ)1/4δc〉
}

+ ε‖(−∆Γ)1/4δc‖2
L2(Γ)

+(ν − ε)‖(−∆Γ)1/4δc
t‖2

L2(Γ) = −〈(−∆Γ)1/4uc, (−∆Γ)1/4δc〉
−(ν − ε)〈(−∆Γ)1/4uc, (−∆Γ)1/4δc

t 〉. (5.38)

We now introduce the functional

Λ2 := (1 + εν)‖(−∆Γ)1/4δc‖2
L2(Γ) + ‖(−∆Γ)1/4δc

t‖2
L2(Γ) + ‖(−∆Γ)1/4uc‖2

L2(Γ)

+2ε〈(−∆Γ)1/4δc
t , (−∆Γ)1/4δc〉+ 2〈(−∆Γ)1/4uc, (−∆Γ)1/4δc

t 〉
+2ε〈(−∆Γ)1/4uc, (−∆Γ)1/4δc〉. (5.39)
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By means of the trace theorem (see [22, Theorem 9.4, Chapter 1]), we have

‖(−∆Γ)1/4uc‖L2(Γ) ≤ ‖uc‖H1/2(Γ) ≤ c‖uc‖1 ≤ ck,

and therefore it is easy to prove that, for ε ∈ (0, 1/4], the functional Λ2

satisfies the inequality

1

4
(‖(−∆Γ)1/4δc‖2

L2(Γ) + ‖(−∆Γ)1/4δc
t‖2

L2(Γ))− ck2 ≤ Λ2

≤ (2 + ν)(‖(−∆Γ)1/4δc‖2
L2(Γ) + ‖(−∆Γ)1/4δc

t‖2
L2(Γ)) + ck2. (5.40)

From identity (5.38) we obtain

dΛ2

dt
+ 2ε‖(−∆Γ)1/4δc‖2

L2(Γ) + 2(ν − ε)‖(−∆Γ)1/4δc
t‖2

L2(Γ)

≤ (‖(−∆Γ)1/4δc‖L2(Γ) + ν‖(−∆Γ)1/4δc
t‖L2(Γ))‖(−∆Γ)1/4uc‖L2(Γ)

≤ ε(‖(−∆Γ)1/4δc‖2
L2(Γ) + ‖(−∆Γ)1/4δc

t‖2
L2(Γ)) +

ck2

ε
. (5.41)

Therefore, by taking 0 < ε ≤ ε0(ν) := min{1/4, ν/2}, from (5.41) we get

dΛ2

dt
+ ε(‖(−∆Γ)1/4δc‖2

L2(Γ) + ‖(−∆Γ)1/4δc
t‖2

L2(Γ)) ≤
ck2

ε
,

and, by using (5.40), we are led to the following differential inequality

dΛ2

dt
+ ε′0(ν)Λ2 ≤ b8, (5.42)

where ε′0(ν) = ε0(ν)/(2 + ν) and b8 = cε0(ν)k
2/(2 + ν) + ck2/ε0(ν). The

standard Gronwall lemma and (5.40) finally give (notice that Λ2(0) = 0)

‖δc(t)‖H1/2(Γ) + ‖δc
t (t)‖H1/2(Γ) ≤ b9 (5.43)

We now observe that, by virtue of anH2-elliptic regularity estimate (obtained
by combination of Theorem 2.5.1 and 2.5.3 in [22]), we can write

‖uc‖2 ≤ c(‖∆uc‖+ ‖uc‖1 + ‖∂nu
c‖H1/2(Γ))

≤ c(‖∆uc‖+ ‖uc‖1 + ‖δc
t‖H1/2(Γ)) ≤ b10. (5.44)

The thesis finally follows from (5.44), (5.37) and (5.43).

Proof of Theorem 4. Let us take B1(ω, ν) = {w ∈ H1 : ‖w‖H1 ≤ bω,ν}, with
bω,ν as in Lemma 8. The thesis is then an immediate consequence of Lemma
7 and of Lemma 8 (the constant cω,ν in (5.1) being the same as in (5.8)).
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Remark 4. We have not written explicitly the dependence of the radius bω,ν

of B1 on ω and ν, since its expression would turn out rather cumbersome.
Nevertheless, by using the (continuous) ω, ν-dependence of the constants bi
in the proof of Lemma 8, and also by means of Lemma 3, one would see that,
for ω0 and ν0 > 0 fixed arbitrary, we have bω,ν → +∞ as (ω, ν) → (ω0, 0),
or as (ω, ν) → (0, ν0), or as |ω|+ |ν| → +∞. This implies the existence of a
couple (ω∗, ν∗) where the radius of the regular attracting set B1(ω, ν) attains
its minimum.

6 Exponential attractors

We conclude the paper with the section containing a result on the existence
of an exponential attractor, namely, of a compact set M = Mω,ν ⊂ H,
positively invariant for S(t), of finite fractal dimension, and satisfying the
following exponential attraction property:

There exists an increasing function J : [0,+∞) → [0,+∞) and κ > 0
such that, for every R > 0 and for every set B ⊂ H with supw0∈B ‖w0‖0 ≤ R
there holds

distH(S(t)B,M) ≤ J(R)e−κt, (6.1)

for all t > 0.

Theorem 5. Let (1.2)-(1.5) hold. Then the semigroup S(t) on H associated
with (1.1) possesses an exponential attractor M = Mω,ν.

For the proof of Theorem 5 we make use of the abstract result on the
existence of an exponential attractor due to Efendiev, Miranville, Zelik [10].
In order to follow this approach it is firstly useful to construct a bounded
absorbing set in H1. This is done in the following lemma.

Lemma 9. Let (1.2)-(1.5) hold. Then, there exist constants K1, K2 > 0,
with K1 = K1(‖w0‖H1 , ‖w0‖H) and K2 = K2(‖w0‖H) depending increasingly
and continuously on ‖w0‖H1 and ‖w0‖H, respectively (and also on ω, ν), and
there exists ε̂ > 0 (depending on ω, ν in the form ε̂ ∼ J(ω, ν)) such that

‖w(t)‖H1 ≤ K1e
−bεt +K2, (6.2)

for all t ≥ 0.

Corollary 4. The ball in H1 given by B(1)
0 := {w ∈ H1 : ‖w‖H1 ≤ 2K2(R0)}

is a bounded absorbing set in H1 for the semigroup S(t) : H1 → H1.

Remark 5. It can be proved that, under assumptions (1.2)-(1.4), S(t) is also
a strongly continuous semigroup on the phase space H1.
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Proof of Lemma 9. We can argue exactly as in the proof of Lemma 8 applied
to system (1.1) written in the form (5.3) (with w in place of wc, θ = l and
an initial condition w(0) = w0 ∈ H1).

We again get the differential inequalities (5.34) and (5.42) for the func-
tionals Λ1 and Λ2, respectively. The only difference is that now we have
Λ1(0) ≤ Cω,ν(‖w0‖H1 , ‖w0‖H) and Λ2(0) ≤ Cω,ν(‖w0‖H1 , ‖w0‖H).

By using the Gronwall lemmas and the elliptic regularity estimate in H2,
as in the proof of Lemma 8, we deduce (6.2).

In the previous section we proved the existence of a bounded subset B1 of
H1 which attracts the bounded subsets of H exponentially fast (Theorem 4).
Due to the existence of a bounded absorbing set in H1, it is easy to see that,
up to possibly enlarging B1, there is a time t1 ≥ 0 such that S(t)B1 ⊂ B1,
for all t ≥ t1.

We now appeal to the following abstract result [10] (see also [27]).

Lemma 10. Assume that there exists a time t∗ ≥ t1 such that

(i) the map (t, z) 7→ S(t)z : [t∗, 2t∗] × B1 → B1 is Lipschitz continuous
when B1 is endowed with the topology inherited from H;

(ii) the map S(t∗) : B1 → B1 admits a decomposition of the form

S(t∗) = Sd + Sc, Sd : B1 → H, Sc : B1 → H1

where Sd and Sc satisfy the conditions

‖Sd(w2)− Sd(w1)‖H ≤ γ∗‖w2 − w1‖H,

‖Sc(w2)− Sc(w1)‖H1 ≤ Γ∗‖w2 − w1‖H,

for every w1, w2 ∈ B1 and for some γ∗ ∈ (0, 1/2) and Γ∗ ≥ 0.

Then there exists a compact set M ⊂ B1, positively invariant for S(t) and
of finite fractal dimension in H, such that

distH(S(t)B1,M) ≤Me−λ0t (6.3)

for some λ0 > 0 and M ≥ 0, for all t > 0.

In the following lemmas we check the assumptions of Lemma 10.

Lemma 11. Assumption (i) of Lemma 10 holds true.
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Proof. We first observe that we have

‖wt(t)‖H ≤ cω,ν , (6.4)

for every w0 ∈ B1 and every t ≥ 0. Indeed, by differentiating the first equation
of system (1.1), we can argue as in the first part of the proof of Lemma 8 thus
yielding a control of the form (5.37) (with u instead of uc). Furthermore, by
noting that we obviously have ‖δtt‖L2(Γ) ≤ ν‖δt‖L2(Γ) + ‖δ‖L2(Γ) + ct‖ut‖1 ≤
cω,ν , we get (6.4). Now, let w1, w2 ∈ B1 and t1, t2 ∈ [t∗, 2t∗]. We write

‖S(t2)w2 − S(t1)w1‖H ≤ ‖S(t2)w2 − S(t2)w1‖H + ‖S(t2)w1 − S(t1)w1‖H.

Then, by using the continuous dependence estimate (2.3) and (6.4), we con-
clude the proof.

Lemma 12. Assumption (ii) of Lemma 10 holds true.

Proof. We take w01, w02 ∈ B1 and consider the corresponding trajectories,
namely w1 = (u1, u1

t , δ
1, δ1

t ) and w2 = (u2, u2
t , δ

2, δ2
t ).

Setting w := w2 − w1 and w0 := w02 − w01, we decompose w as w =

wd +wc =: (ud, ud
t , δ

d
, δ

d

t ) + (uc, uc
t , δ

c
, δ

c

t), where le components of wd and wc

solve, respectively 
ud

tt + ωud
t −∆ud + ud = 0

δ
d

tt + νδ
d

t + δ
d

= −ud
t

δ
d

t = ∂nu
d

wd(0) = w0

(6.5)

and 
uc

tt + ωuc
t −∆uc + uc = f(u1)− f(u2)

δ
c

tt + νδ
c

t + δ
c
= −uc

t

δ
c

t = ∂nu
c

wc(0) = 0.

(6.6)

System (6.5) is linear and it is not difficult to show, by means of standard
arguments (see the proof of Lemma 7), that the corresponding solution fulfills

‖wd(t)‖H ≤ c‖w0‖He−cJ(ω,ν)t, (6.7)

for all t ≥ 0, and for some c independent of ω, ν. Hence, if we fix t∗ ≥
(cJ)−1 log(4c), we fulfill the first part of assumption (ii) of Lemma 10.
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Furthermore, by multiplying (6.6)1 in L2(Ω) by −∆uc
t we obtain

1

2

d

dt

{
‖∆uc‖2 + ‖∇uc‖2 + ‖∇uc

t‖2 + ‖uc‖2
L2(Γ) + ‖uc

t‖2
L2(Γ)

+2〈νδc

t + δ
c
, uc

t〉
}

+ ω‖∇uc
t‖2 + (ω + ν)‖uc

t‖2
L2(Γ)

= −〈(ν2 + ων − 1)δ
c

t + (ω + ν)δ
c
, uc

t〉 − 〈νδ
c

t + δ
c
, uc〉

+((f ′(u1)− f ′(u2))∇u1,∇uc
t)− (f ′(u2)∇u,∇uc

t)

+〈f(u1)− f(u2), νδ
c

t + δ
c
+ uc

t〉. (6.8)

Now, due to the continuous dependence estimate (2.3) and to (6.7), we have

‖δc‖L2(Γ) ≤ ‖δ‖L2(Γ) + ‖δd‖L2(Γ) ≤ cω,ν(t
∗)‖w0‖H , for all t ∈ [0, t∗], and a

similar estimate holds for ‖δc

t‖L2(Γ), ‖uc‖1 and ‖uc
t‖ .

Therefore, for all t ∈ [0, t∗] we have

|〈(ν2 + ων − 1)δ
c

t + (ω + ν)δ
c
, uc

t〉| ≤ cω,ν(t
∗)‖w0‖H‖uc

t‖1

≤ ω

8
‖∇uc

t‖2 + cω,ν(t
∗)‖w0‖2

H, (6.9)

|〈νδc

t + δ
c
, uc〉| ≤ cω,ν(t

∗)‖w0‖2
H. (6.10)

Furthermore, by (1.7) and Lemma 9, for all t ∈ [0, t∗] we have

|((f ′(u1)− f ′(u2))∇u1,∇uc
t)| ≤ c(1 + ‖u1‖1 + ‖u2‖1)‖u‖1‖u1‖2‖∇uc

t‖
≤ cω,ν(t

∗)‖w0‖H‖∇uc
t‖ ≤

ω

8
‖∇uc

t‖2 + cω,ν(t
∗)‖w0‖2

H, (6.11)

|(f ′(u2)∇u,∇uc
t)| ≤ c(1 + ‖u2‖2

2)‖∇u‖‖∇uc
t‖ ≤ cω,ν(t

∗)‖w0‖H‖∇uc
t‖

≤ ω

8
‖∇uc

t‖2 + cω,ν(t
∗)‖w0‖2

H, (6.12)

|〈f(u1)− f(u2), νδ
c

t + δ
c
+ uc

t〉|
≤ cω,ν(t

∗)(1 + ‖u1‖2
C0(Γ) + ‖u2‖2

C0(Γ))‖u‖L2(Γ)(‖w0‖H + ‖uc
t‖1)

≤ ω

8
‖∇uc

t‖2 + cω,ν(t
∗)‖w0‖2

H, (6.13)

where in (6.12) and (6.13) we have also used the continuous embedding
H2(Ω) ↪→ C0(Ω). Plugging (6.9)-(6.13) into (6.8), we obtain

d

dt

{
‖∆uc‖2 + ‖∇uc‖2 + ‖∇uc

t‖2 + ‖uc‖2
L2(Γ) + ‖uc

t‖2
L2(Γ)

+2〈νδc

t + δ
c
, uc

t〉
}
≤ cω,ν(t

∗)‖w0‖2
H. (6.14)

By integrating (6.14) between 0 and t∗ we are led to the following estimate

‖∆uc(t∗)‖+ ‖∇uc
t(t

∗)‖ ≤ cω,ν(t
∗)‖w0‖H. (6.15)
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Let us now consider the second equation in (6.6). By multiplying it in L2(Γ)
by (−∆Γ)1/2δ

c

t we get

1

2

d

dt

{
‖(−∆Γ)1/4δ

c‖2
L2(Γ) + ‖(−∆Γ)1/4δ

c

t‖2
L2(Γ) + ‖(−∆Γ)1/4uc‖2

L2(Γ)

+2〈(−∆Γ)1/4uc, (−∆Γ)1/4δ
c

t〉
}

+ ν‖(−∆Γ)1/4δ
c

t‖2
L2(Γ)

= −ν〈(−∆Γ)1/4uc, (−∆Γ)1/4δ
c

t〉 − 〈(−∆Γ)1/4uc, (−∆Γ)1/4δ
c〉

≤ cν(‖(−∆Γ)1/4δ
c

t‖L2(Γ) + ‖(−∆Γ)1/4δ
c‖L2(Γ))‖(−∆Γ)1/4uc‖L2(Γ)

≤ cω,ν(t
∗)(‖(−∆Γ)1/4δ

c

t‖L2(Γ) + ‖(−∆Γ)1/4δ
c‖L2(Γ))‖w0‖H, (6.16)

where, in the last inequality, we have made use of the estimate

‖(−∆Γ)1/4uc‖L2(Γ) ≤ ‖uc‖H1/2(Γ) ≤ ‖uc‖1 ≤ cω,ν(t
∗)‖w0‖H,

for every t ∈ [0, t∗]. From (6.16), by means of the Young inequality and of
the standard Gronwall lemma, it is not difficult to deduce the control

‖δc
(t∗)‖H1/2(Γ) + ‖δc

t(t
∗)‖H1/2(Γ) ≤ cω,ν(t

∗)‖w0‖H. (6.17)

Now, from (6.15), (6.17), and the H2−elliptic regularity estimate (see (5.44))
we immediately get

‖wc(t∗)‖H1 ≤ cω,ν‖w0‖H.

The proof is then completed.

Proof of Theorem 5. By combining Lemma 10, Lemma 11 and Lemma 12,
we deduce the existence of a compact invariant subset Mω,ν ⊂ B1 ⊂ H1 such
that (6.3) holds (with M and λ0 depending on ω, ν).

In order to show that Mω,ν is an exponential attractor it remains to
prove that the basin of attraction of Mω,ν is the whole phase space H. This
can be easily accomplished by means of (5.1), (6.3), (2.3) and by appealing
to the transitivity property of the exponential attraction (see [11, Theorem
5.1]).
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