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Abstract

We consider a diffuse interface model which describes the motion of an incompressible isother-
mal mixture of two immiscible fluids. This model consists of the Navier-Stokes equations
coupled with a convective nonlocal Cahn-Hilliard equation. Several results were already
proven by two of the present authors. However, in the two-dimensional case, the unique-
ness of weak solutions was still open. Here we establish such a result even in the case of
degenerate mobility and singular potential. Moreover, we show the weak-strong uniqueness
in the case of viscosity depending on the order parameter, provided that either the mobility
is constant and the potential is regular or the mobility is degenerate and the potential is sin-
gular. In the case of constant viscosity, on account of the uniqueness results we can deduce
the connectedness of the global attractor whose existence was obtained in a previous paper.
The uniqueness technique can be adapted to show the validity of a smoothing property for
the difference of two trajectories which is crucial to establish the existence of an exponential
attractor. The latter is established even in the case of variable viscosity, constant mobility
and regular potential.
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1 Introduction

In a series of recent papers (see [9, 14, 15, 16, 17]) the following nonlinear evolution system has
been analyzed

up — 2div(v(p)Du) + (u - V)u+ Vr = uVo + h(t), (1.1)



div(u) = 0, (1.2)
¢p +u- Vo =div(m(e)Vu),
p=ap—Jxp+ F'(p),

on a bounded domain Q@ C R% d = 2,3, for t > 0. This system describes the evolution
of an isothermal mixture of two incompressible and immiscible fluids through the (relative)
concentration ¢ of one species and the (averaged) velocity field u. Here m denotes the mobility,
1 is the so-called chemical potential, J is a spatial-dependent interaction kernel and J % ¢ stands
for spatial convolution over €2, a is defined as follows a(z) = [, J(x — y)dy, F is a double well
potential, v is the viscosity and h is an external force acting on the mixture. The density is
supposed to be constant and equal to one (i.e., matched densities).

Such a system is the nonlocal version of the well-known Cahn-Hilliard-Navier-Stokes system
which has been the subject of a number of papers (cf., e.g., [1, 2, 7, 8, 18, 19, 20, 33, 35] and
references therein, see also the review [26] for modelling and numerical simulation issues). We
recall that the nonlocal term seems physically more appropriate than its approximation, i.e.,
when in place of ap — J x ¢ there is —Ag. For this issue, we refer the reader to the basic papers
[23, 24, 25] (see also [5, 21, 22, 28, 29]). However, from the mathematical viewpoint, the present
system is more challenging since the regularity of ¢ is lower and so the Korteweg force uVe
acting on the fluid can be less regular than the convective term (u - V)u, even in dimension
two (cf. [9, (3.7)]). Therefore, it is not straightforward to extend some of the results which
holds for the Navier-Stokes equations as well as for the standard Cahn-Hilliard-Navier-Stokes
system. This is particularly meaningful in dimension two. In fact, in dimension three, the only
known results are comparable with the standard ones for the Navier-Stokes equations, namely,
the existence of a global weak solution under various assumptions on m and F' and a generalized
notion of attractor (cf. [9, 14, 15, 17)).

In dimension two, under reasonable assumptions on F' which ensure a suitable regularity of
p, it is possible to prove that there exists a weak solution which satisfies the energy identity.
Therefore, such a solution is strongly continuous in time (see [9]). In addition, taking advantage
of the energy identity, it is also possible to prove the existence of a the global attractor for the
corresponding semiflow (cf. [14, 15, 17]). More recently, in [16], assuming that v and m are
constant and taking a regular potential F', it has been shown the existence of a (unique) strong
solution and that any weak solution which satisfies the energy identity regularizes in finite time.
This entails some smoothness for the global attractor. Also, the convergence of any weak to a
single equilibrium was established through the Lojasiewicz-Simon inequality approach. However,
uniqueness of weak solutions was still an open issue in [9, 14, 15, 17].

The main goal of this paper is to prove the uniqueness of weak solutions when v is constant;
while, when v is non constant, we are able to show the existence of a strong solution and then the
weak-strong uniqueness. [t is interesting to note that in the case of the standard Cahn-Hilliard-
Navier-Stokes system, uniqueness of solutions in two dimensions is known in the case of constant
mobility and regular potential (see, e.g., [7, 18, 33]). However, if the potential is singular (e.g.,
logarithmic), to the best of our knowledge, the only (conditional) uniqueness result was proven
in [1] for constant mobility and nonconstant viscosity.

Uniqueness entails the connectedness of the global attractor. In addition, modifying the
uniqueness argument we can also show the validity of a suitable smoothing property of the
difference of two trajectories (see [11, 12]). This is the basic step to establish the existence of
an exponential attractor. The fractal dimension of the global attractor is thus finite.



As in the previous contributions we take the following boundary and initial conditions

g—’::[), u=0 ondQx (0,T) (1.5)
w(0) =uo, 9(0) =y N (16)

The plan of the paper is the following. In the next section we recall the basic assumptions
and the related existence of a weak solution. Section 3 is devoted to the uniqueness of weak
solutions for constant viscosity. The weak-strong uniqueness is shown in Section 4. The final
Section 5 is concerned with the connectedness of the global attractor and the existence of an
exponential attractor.

2 Functional setup and preliminary results

Let us introduce the classical Hilbert spaces for the Navier-Stokes equations with no-slip bound-
ary condition (see, e.g., [34])

2 d
Gain = (u e Co()7 - diviw) =0} ",

and
Vaio == {u € HY(Q)?: div(u) = 0}.

We set H := L?(Q2), V := H'(), and denote by | - || and (-,-) the norm and the scalar
product, respectively, on both H and Gyg;,,. The notation (-, -) will stand for the duality pairing
between a Banach space X and its dual X’. Vy;, is endowed with the scalar product

(u,v)v,,, = (Vu, Vo) = 2(Du, Dv), Yu, v € Vi,
where D is the symmetric gradient, defined by Du := (Vu + (Vu))/2. The trilinear form b
which appears in the weak formulation of the Navier-Stokes equations is defined as usual

b(u,v,w) = /(u Vv - w, Yu, v, w € Vi,
Q

and the associated bilinear operator B from Vg, x Vg, into Vy, is defined by (B(u,v),w) =
b(u,v,w), for all u,v,w € Vy,,. We recall that we have b(u,w,v) = —b(u,v,w), for all u,v,w €
Viiv, and that the following estimate holds in dimension two

[b(u, 0, w)| < ellul V2 Vul| V2Vl V2Vl V2, Va,v,w € Vi

In particular we have the following standard estimate in 22 which holds for all u € Vy;,,
|B(u,w)|ly, < c||ul|||Vul||. For every f € V' we denote by f the average of f over Q, i.e.,

o div
f:=19Q|7Y(f,1). Here |Q| is the Lebesgue measure of 2. We assume that 9 is smooth enough
(say of class C?).

We also need to introduce the Hilbert spaces

Vo :={veV:v=0}, Vi:={feV':f=0},

and the operator Ay : V. — V') Ay € L(V, V'), defined by

(Anu,v) :== / Vu - Vv Yu,v € V.
Q
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We recall that Ay maps V onto Vj and the restriction By of Ay to Vp maps Vj onto Vj
isomorphically. Further, we denote by B;,l : Vg — Vp the inverse map. As is well known, for
every f € Vy, Bg,l f is the unique solution with zero mean value of the Neumann problem

{ —Au = f, in

gz =0, on 0f).
In addition, we have
(Anu, BY'f) = (f,u),  YueV, YfelVy,
B5'0) = (0.5 ) = | VBR)-V(BRe). VEa eV,

Furthermore, By can be also viewed as an unbounded linear operator on H with domain
D(By) = {v € H*(Q) : 8,v = 0on 9N}. If X is a Banach space and 7 € R, we shall de-
note by L, (7,00; X), 1 < p < oo, the space of functions f € L} ([r,00); X) that are translation
bounded in Lj ([7,00); X), that is,

t+1
- Sup/t 1£(s) 1% ds < os.

We now recall the result on existence of weak solutions and on the validity of the energy
identity and of a dissipative estimate in dimension two for the nonlocal Cahn-Hilliard-Navier-
Stokes system in the case of constant mobility, nonconstant viscosity and regular potential. This
is the main case we shall deal with in this paper.

Let us list the assumptions (see [9]).

(H1) J e WHYRY), J(z)=J(—z), a>0,ae. in Q.

(H2) The mobility m(s) = 1 for all s € R, the viscosity v is locally Lipschitz on R and there
exist v1,v9 > 0 such that v; < v(s) < vy, for all s € R.

(H3) F € 0120’01 (R) and there exists ¢y > 0 such that F”(s)+a(z) > co, for all s € R, a.e. z € Q.

(H4) F € C?(R) and there exist ¢; > 0, c3 > 0 and ¢ > 0 such that F"(s) 4+ a(x) > c1|s]?? — co,
for all s € R, a.e. x € Q.

(H5) There exist ¢3 > 0, ¢4 > 0 and r € (1,2] such that |F'(s)|" < c3|F(s)| + ca, for all s € R.

Remark 1. Assumption J € WH(R?) can be weakened. Indeed, it can be replaced by J €
WL Bs), where Bs := {z € R?: |z| < §} with § := diam(f2), or also by (see, e.g., [5])

333/9(\J(m—y>\+\w<x—y>\)dy<oo.

Remark 2. Since F' is bounded from below, it is easy to see that (H5) implies that F' has
polynomial growth of order 7/, where 1’ € [2,00) is the conjugate index to r. Namely, there exist
c5 > 0 and cg > 0 such that

|F(s)| < csls|” +cs, VseR. (2.1)

Observe that assumption (H5) is fulfilled by a potential of arbitrary polynomial growth. For
example, (H3)—(H5) are satisfied for the case of the well-known double well potential F(s) =

(s —1)2.



The following result follows from [9, Theorem 1, Corollaries 1 and 2].

Theorem 1. Assume that (H1)-(H5) are satisfied. Let ug € Gay, o € H such that F(py) €
LY(Q) and h € L} ([0,00); Vi},.). Then, for every given T > 0, there exists a weak solution [u, ]

loc

to (1.3)—(1.6) such that

uw € L%°(0,T; Gain) N L2(0,T; Vair), @ € L®(0,T; L*T29(Q)) N L*(0,T; V), (2.2)
u € L0, T; V), @ € LY3(0,T; V'), d =3, (2.3)
ug € L*(0,T; V), d=2, (2.4)
0, € L2(0,T;V"), d=2 or d=3andq>1/2, (2.5)

and satisfying the energy inequality

t

£t p0) + [ (AVAADUR +IVl)dr < ECuogo) + [ (b, (26)

0

for every t > 0, where we have set

(). 1) = I+ [ [ To =l t) = ol ) dady + [ o).

If d = 2, then any weak solution satisfies the energy identity

%5(% @) +2lv/v(e)Dull* + | Viull* = (a(t), u), (2.7)

In particular we have u € C([0,00); Gaiv), ¢ € C([0,00); H) and [, F(¢) € C([0,00)). Fur-
thermore, if d = 2 and h € L?b((), o0; Vi), then any weak solution satisfies also the dissipative
estimate

E(u(t), (1)) < E(uo, o)™ + Fmo)|Q] + K, vt >0, (2.8)

where my = (¢y,1) and k, K are two positive constants which are independent of the initial
data, with K depending on Q, v, J, F' and HhHL?b(O,oo;Vd’. )-

Henceforth we shall denote by () a continuous function monotone increasing with respect
to each of its arguments. As a consequence of energy inequality (2.6) it is easy to deduce the
following bound

1wl oo (0,7:G 4i0)NL2(0,75Vs0) + 191 Loo (0,7522 2022 0,13v) + 1F (@)1 Loo (0,121 (02))
< Q(g(uﬂv SDO)a HhHLQ(O,T;Véw))7 (29)

where @ also depends on F, J, v and 2. In all the following sections we take d = 2.

3 Uniqueness of weak solutions (constant viscosity)

Here we prove that the weak solution of the nonlocal Cahn-Hilliard-Navier-Stokes system with
constant viscosity v is unique and we provide a continuous dependence estimate. In Subsection
3.1 we shall first address the case of constant mobility (m = 1) and regular potential F. Never-
theless, we shall see in Subsection 3.2 and Subsection 3.3 that the arguments used for this case
can also be applied to the cases of singular potential and constant or degenerate mobility (see
[15] or [17] for the existence).



3.1 Regular potential and constant mobility

The main result is the following.

Theorem 2. Let d =2 and suppose that assumptions (H1)-(H5) are satisfied with v constant.
Let ug € Gaiw, ¢y € H with F(py) € LY(2) and h € L}, ([0,00); V).). Then, the weak solution
[u, @] corresponding to [ug, vy and given by Theorem 1 is unique. Furthermore, let z; := [u;, @]
be two weak solutions corresponding to two initial data zo; == [ugi, po;] and external forces h;,
with uo; € Gaiw, Po; € H such that F(py;) € LY(Y) and h; € L2 ([0,00); V). ). Then the
following continuous dependence estimate holds

lua(t) = wr () + lpa() — &2 ()}
t 1%
+ /0 (Slea(r) =1 (DI + ZI9 (uz(r) = wa(7) I ) dr

< (luz(0) = w1 (0)[I* + ll02(0) — 1 (0)[[3) Ao()
+ |92(0) = 91 (0)[Q(E(201), E(202), 1P| 20 15w, ) 12l L2 0,07, ) ) A (B)
+lh2 = hall72 o yA2(t), (3.1)

for all t € [0,T], where Ag, A1 and Ay are continuous functions which depend on the norms of
the two solutions. The functions Q and A; also depend on F,J,v and €.

Proof. Let us start by rewriting the Korteweg force by making explicit the dependence on ¢.
Indeed, we have

2 2

uV = (ago — J*g0+F'(g0))V<p = V(F(go) —I-a%) - VG% — (Jx@)Vo.

o2

Hence we can write the Navier-Stokes equation with an extra-pressure 7 := 7 — F(¢) + a%

follows

as

2
ut—yAu—l-(u-V)u—&-V%—h:—Va%—(J*gp)VgO:: K(p).

Let us now consider two weak solutions [u;, ;] corresponding to two initial data [ug;, ¢g;] and
two external forces hi, with uo; € Gaiv, 0 € H, F(py;) € L'(Q) and h; € L, ([0, 00); Vi),
i=1,2. Set u:=uy —u; and ¢ := py — ;. Then, the difference [u, ¢| satisfies the system

o =Ap—u-Vo,—uz - Vo, (3.2)

fi=ap—Jxp+F(py) = F'(p),

ug — VAU + (ug - V)ug — (ug - V)ug + V7

Va
—p(py + 902)7 —(J*x©)Vipy — (J 1)V +h, (3.4)

where T := To—71 and h := ha—hy. We multiply (3.4) by v in Gg;,. After standard calculations,
the following terms (cf. (3.4))

1
L = _5 (90(901 —i—ch)Va,u), I, = _((‘]*SO)VSO%U)’ I3 = —((J*Sol)v%u),
can be estimated in this way

I < [(¢(er + 92)Va,u)| < llellllor + @l palVall Lo ull 2

6



< cllelllier + pall ol Vall o lfull 2| Vul |/

IN

€0

Tollell +eller + eall Ll VallZeo el Vel

C v

Tollell + S Vul® + elloy + eoll 14l Vall 2o ull®, (3.5)

< \(@2, VI s p)u)| < ool pal VI * ol [l s

| A

F

< clleall eIV o ol ull /2] 7] /2

< 2ol + VI slpalallul [ Vul

< 2ol + SIVull® + el VIl ol fallul? (3.6)
Iy < \( VI« o), u)| < IVT oyl palllllull s

eIVl el pallellllull (Va2

o
1ol + el VI ez el Vul

VAN VA

IN

Co v
Tollell + S IVull® + el VIl 7 ol allull®. (3.7)

Taking estimates (3.5)—(3.7) into account, it is easy see that from (3.4) we are led to the following
differential inequality

3
D 2 + HVU\\2 —scollel® + aflull? + *HhH%éw, (3-8)

2dt — 10

where the function « is given by
a = ||V (lerllza + le2llza) + el Vuz|?.

Since ¢y,¢p, € L®(0,T;H) N L?(0,T,V) and L>(0,T; H) N L?(0,T,V) < L*0,T; L*(Q)),
thanks to the Gagliardo-Nirenberg inequality, we have oo € L(0,T).
Let us now multiply (3.2) by By'(» — #) (notice that we have @ = By — Pga). We get

S CIBY o =B+ (ap+ Fllor) ~ F(en).0) = (Jp,0) + 10T+ Lo+ s, (39)

where
Li=—(u-Ve,By'(¢—9)), Is=—(u2-Veo,By' (¢ —9)) .
By using assumption (H3), we find

—-1/2 — =
S IBR o =B+ collel” < (T % 6,0 + 00T + s+ I (3.10)

The first term on the right-hand side of (3.10) can be controlled as follows

}(Jw o —2)| + (T 0, 8)|= (BN’ (J o — T ), By > (0 — @) | + |(J * ¢, 9)|

1/2 — €0 __
Hs0||2+CIIB (e =D+ L lell + %, (3.11)

where we have used the fact that HBI/QUH2 (Byu,u) = ||[Vul|?, for all u € D(By) and hence

HB]lV/QuH = ||Vu/||, which also holds, by density, for all u € D(BN/ ) = Vb. The terms I and I
can be estimated in this way

L < |(u-VBR' (¢ = 9),¢1)| < lull 4 VBY (0 = D)llllon s

7



v —-1/2 —
< gIVulP +elleillfal By (e ~ D)1, (3.12)
< |(uz- By (p = 9. 9)| < llellluall e IVBR (0 = Pl s

€0 — _
< sollell® + elluz 21V B (0 P14

Co _ _ — —
< oollell® + elual Ll VBY (¢ = 2V BY (¢ = D)o (3.13)

&

Observe that the H2-norm of ¢ on D(By) is equivalent to the L?-norm of By + ¢ (recall that
¢ := By'(p — ®) € D(By)). Thus we have

IVBy! (¢ = @)l < IBy' (¢ = D)lluz < el (By +1)By' (v = 9)| < cllp — .
Therefore, from (3.13) we get
€o -1/2 _ _
Is < 75 llel® + ellualla | By o -+ 007> (3.14)

Recalling estimate (3.8) and plugging estimates (3.11)—(3.14) into (3.10), we deduce the differ-
ential inequality

1d —1/2 - Co 1%
W(Hurr? + 1By 20 =P)I2) + el + SVl

—1/2 _ _ = 1
< B(Jlull? + 1By (0 = 2)I12) + 7 + 9027 + —1hllF . (3.15)

l\D

where [ is given by
B=a+c(l+llelZa +lluzllza) € L0, T).

If we consider two weak solutions corresponding to the same initial data and to the same external
force, then we have = 0 and h = 0. Therefore, by using Gronwall’s lemma, from (3.15) we get
u=0and ¢ =0 on [0,7] and this proves uniqueness. If the two weak solutions correspond to
different initial data and to different external forces, we have

Q7| < / (IF" ()| + [F'(01)]) < C/Q (IF(p2)| + [F(1)) + ¢
< Q(E(201), E(202); 1 ll 20,7

where we have used (H5) (which implies that |F'(s)| < ¢F(s) + ¢, for all s € R) and (2.9).
Therefore (3.15) can be rewritten as

yo b2l 2y ), VE=0, (3.16)

dzv

—1/2 _ o v
< (Il + 1B5 (0 D7) + Ll + X 7ul?
~1/2 — _
< ﬁ(uurr? FIBR2 (6 ~ D) + [BIQE (o), £zo0), Il 2oy - 20z, )
2
+ 2l (3:17)
By using Gronwall’s lemma once more, we deduce from (3.17) that

lu(®)]® + 1By (0(t) = )II* < (J[u(0)]? + | By"*((0) — #)]12)To(?)
2
+ [P1Q(E(201), £ (202), Ml 20,m:v7, ) ||h2HL2(0,T;VC§w))F1(t)+;FO(t)HhH%Z(O,T;Véw)v (3.18)

d'w



where Ty(t) := eJo B)ds and It fo eJs BT g g By integrating (3.17) between 0 and ¢ and
using (3.18), we find

luI? + 185 (¢ @)wﬂV+LA (Sl + 1Vl dr

< (Ilu(O)[* + I Bx""*(£(0) — 2)|*)Ta(t)
+ [PIQ(E(201), E(202), hllz2o,73v7, s h2ll 20,7, ) T3 (t)

d'w

2
+ ZTohl2 0 vy, (3.19)

for all t € [0, 7], where Da(t) := 1+ [ B(s)To(s)ds and T3(t) := [o B(s)['1(s)ds + T. Finally, by
suitably defining the functions Ag, Aj in terms of I'g, I's and Fg, we deduce (3 1) from (3.19).

3.2 Singular potential and constant mobility

The proof of existence of a weak solution with initial data ug € Gy, and ¢, € L>(Q2) with
F(py) € LY(Q) is given in [15], where also a nonconstant viscosity is considered. We recall that
in this case the assumption [@y| < 1 is needed in order to control the average of the chemical
potential. For the assumptions on the singular potential F' we refer the reader to [15]. We recall,
in particular, the physically relevant case of the so-called logarithmic potential, that is,
O o 0

F(s) = 58 + 5((1 + s)log(1 4+ s) + (1 — s)log(1 — s)), (3.20)
where 0 < 0 < 6., 0 being the absolute temperature and 6. a given critical temperature below
which the phase separation takes place.

It is easy to see that, assuming the viscosity v constant and d = 2, the uniqueness argument
can also be applied to the present case. Indeed, estimates (3.5)-(3.8) obviously still hold. More-
over, considering (3.9) we immediately see that (3.10) still follows from (3.9), since in the case
of singular potential we have

F"(s) + a(z) > co, Vs e (—1,1), co > 0.

In particular, this assumption is ensured by [15, (A6)]. Therefore, uniqueness follows from (3.15)
on account of the fact that in this inequality we have = 0 (and h = 0).

Concerning the proof of the continuous dependence estimate (3.1), we have to be a bit more
careful since estimate (3.16) cannot be applied in the present situation. On the other hand,
recalling [15, Proof of Theorem 1], we have

IF" (i)l 20,7521 (9)) < Q(@Poi» € (204), th‘HLZ(O,T;VC;w))a i=1,2.

By applying these last estimates we see that the term |Q|@ on the right-hand side of (3.15)
can be written in the form @I’y with a function I'y such that

HF4HL2(0,T) < Q(Ua5(201),5(202) Hh1HL2 0,T;V!

d'w

Hh2HL2 0,T; VC;“,))

where 7 € [0,1) is such that [@y;| < n, i = 1,2. Starting now from (3.15) and using Gronwall’s
lemma like in the proof of Theorem 2, we find a continuous dependence estimate of the same
form as (3.1) where now the function @ depends also on 7. We can therefore state the following



Theorem 3. Let d = 2 and suppose that assumptions (A1)-(A8) of [15] are satisfied with v
constant. Let ug € Gain, 0y € L¥(Q) with F(py) € LY (Q), [yl <1 and h € L ([0,00); V...
Then, the weak solution [u, p], corresponding to [ug, py] and given by [15, Theorem 1], is unique.
Furthermore, let z; = [u;,p;] be two weak solutions corresponding to two initial data zo; =
[u0i, o;] and two external forces h;, with up; € Gaiy, Po; € L¥() such that F(py;) € LY(Q),
[@osl < n for some constant n € [0,1) and h; € L} ([0,00); V), i = 1,2. Then estimate (3.1)
holds with Q also depending on n.

3.3 Singular potential and degenerate mobility

This physically relevant case was addressed in [17] from which we recall all the assumptions on
the degenerate mobility m and on the singular potential F' as well as the weak formulation. We
assume that the mobility m is degenerate at +1 and that the double well potential F' is singular
(e.g. logarithmic like) and defined in (—1,1). More precisely, we assume that m € C1([-1,1]),
m > 0, that m(s) = 0 if and only if s = —1 or s = 1, and that there exists ¢y > 0 such that m is
non-increasing in [1 — €, 1] and non-decreasing in [—1, —1 + ¢p]. Furthermore, we suppose that
m and F fulfill the conditions

(A1) F € C?*(—1,1) and mF" € C([-1,1]).

As far as F' is concerned, we assume that it can be written in the following form F =
Fy + F», where the singular component F; and the regular component Fy € C2%([—1,1]) satisfy
the following assumptions.

(A2) There exist x > 4(a* — a. —bs), where by := minj_; 1) Fy, and o > 0 such that F{'(s) > ,
for all s € (=1, -1+ €] U[1 —€o, 1).

(A3) There exists ¢y > 0 such that F} is non-decreasing in [1 — €p, 1) and non-increasing in
(—1, —1 4+ 60].

(A4) There exists ¢y > 0 such that F”(s) + a(x) > ¢, for all s € (—1,1), a.e. z € Q.

The constants a* and a, in (A2) are given by

a® = sup/ |J(x — y)|dy < o0, ay := inf / J(x —y)dy.
zeQ JQ z€Q Jo

Moreover, we denote by €y a positive constant the value of which may possibly vary from line

to line.

As far as the weak formulation in dimension two is concerned, we point out that, if the
mobility degenerates then the gradient of the chemical potential p is not controlled in some
LP space. For this reason, and also in order to pass to the limit to prove existence of a weak
solution, a suitable reformulation of the definition of weak solution should be introduced in such
a way that p does not appear explicitly (cf. [13], see also [17]).

Definition 1. Let ug € Gy, 0o € H with F(py) € LY(Q), h € L2(0,T;V},) and 0 < T < 400
be given. A couple [u, ] is a weak solution to (1.3)-(1.6) on [0,T] corresponding to [ug, @] if

e u, © satisfy

u € L®(0,T; Gaiv) N L*(0,T; Vi),
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Ug € Lz(oa T; chiv)v
@ € L™(0,T; H)NL*(0,T;V),
¢ € L*(0,T; V'),

and
v € L>=(Qr), lo(z, )| <1 a.e (z,t) € Qr:=Qx (0,T);

o for every ¢ €V, every v € Vg, and for almost any t € (0,T) we have
)+ [ m@F" )V Vit [ m(e)aVe- Vo

+ [ me)eVa= V) V6 = (up, V)
(ug, v) + v(Vu, Vo) + b(u, u,v) = ((ap — J * )V, v) + (h,v);

e the initial conditions u(0) = ug, ¢(0) = ¢y hold.

Recall also that from the regularity properties of the weak solution we have u € Cy, ([0, T; Ggiv)
and ¢ € Cy([0,T]; H). Therefore, the initial conditions u(0) = wup, ¢(0) = ¢, make sense. In
[17, Theorem 2] the existence of a weak solution was established with initial data ug € G
and ¢, € L®(Q) with F(p,) € L () and M (p,) € L1(Q2), where M € C?(—1,1) is defined by
m(s)M"(s) =1 for all s € (—1,1) and M(0) = M'(0) = 0. Furthermore, in [17, Proposition 4]
uniqueness of the weak solution was proven for the convective nonlocal Cahn-Hilliard equation
with degenerate mobility for a given velocity u € L2 ([0, 00); Vi, N L%°(2)?). To this purpose,
the following additional conditions were assumed.

(A5) There exists p € [0,1) such that pF{'(s) + 3 (s) + a(z) > 0, for all s € (—1,1), a.e. Q.
(A6) There exists ap > 0 such that m(s)Fy(s) > ao, for all s € [-1,1].
By combining the proof of [17, Proposition 4] with the arguments of Theorem 2 we can now

prove uniqueness of weak solutions for the nonlocal Cahn-Hilliard-Navier-Stokes system with
singular potential and degenerate mobility. Indeed we have

Theorem 4. Let d =2 and suppose that assumptions (A1)-(A6) are satisfied with v constant.
Let ug € Gain, g € L>®(Q) with F(py) € LY(), M(py) € L*(Q) and h € L2 ([0,00); V].,).

loc
Then, the weak solution to system (1.3)-(1.6) is unique. Moreover, let z; = [u;, @;| be two weak

solutions corresponding to two initial data zo; == [uoi, po;] and external forces h;, with ug; € Ggjyp,
©o; € L(Q) such that F(py;) € LY(Q), M(py;) € LY(Q) and h; € L2, ([0,00); V))..). Then the
following continuous dependence estimate holds

lua(t) = wa (B2 + lea(t) = 1 (B3
+ / (1= paolles(r) = o1 (I + SV (ua(r) = wr (7)) dr

< (|luz(0) = ua ()| + ls95(0) — 1 (0)[3+) Ao(t) + [22(0) — @1 (0)]* As (t)
+ [lh2 — hl”%?(o,T;Véw)AQ(t)a (3.21)

for allt € [0,T], where Ag, A1 and Ao are continuous functions which depend on the norms of
the two solutions. The functions Q and A; also depend on F,J v and €.
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Proof. Arguing as in the first part of the proof of Theorem 2 we can obtain (3.8) that we now
write in the following form

1d 2 4 2 o 1 2 2, 19
5zl *IIV 1" < 7 = pacllell” + allul*+—llAlly, . (3.22)
where the function « is still given by (3.8) and we have set ¢ := @y — @, U := ug — uq,

h := hs — h1. Regarding the estimates for the difference of the nonlocal Cahn-Hilliard, let us
first recall the approach used in the proof of [17, Proposition 4]. Following [25], we introduce

/ m(o)Fl(o)do, / m(o)FY(0)do,  T(s) = /0 " (o)do,

for all s € [~1,1], and see that the assumptions on m and on F' imply that A€ CY([~1,1]) and
0 < ap < Aj(s) < aq for some positive constant a;. The weak formulation of the convective
nonlocal Cahn-Hilliard equation with degenerate mobility can then be rewritten as follows

(1, 0) + (VA(, 9), Vi) = (T(9)Va, Vi) + (m(p)(oVa — VJ % 9), Vi) = (up, Vi), (3.23)

for all ¢ € V, where A(xz,s) := Ay(s) 4+ Aa(s) + a(z)T(s) for all s € [0,T] and almost any z € Q.

Consider now two weak solutions [u1, ], [u2,ps] and take the difference between the two
identities (3.23) corresponding to each solution. Then, choose ¢ = By’ (¢ — @) as test function
in the resulting identity. This yields

S 1B =D + (Al p2) — Al pa)s ) — (Do) ~ T(1))Va, VB (o — 7))

+ ((mlpy) = m(p1))(92Va — VJ * ,), VB (¢ — 7))
+ (m(p1)(9Va— VJ x ), VBy (¢ — §))
= (A(,92) = A5 01),P) + (upr, VBY (9 = ) + (uap, VBY! (0 — 9)). (3.24)

Observe first that, thanks to (A5) and(A6), we have

OsA(z,8) = m(s)(F"(s) +a(z)) > (1 — p)ag, Vs e [-1,1], ae. x€Q,

and also
|A(z, s2) — Az, s1)| < klsa — s1], Vs1,s2 € [-1,1], a.e. x €Q,
where k = [|[mF"| c—11)) + [Imllc=11p)llal e ). Hence we have
(AC,@2) = Al 1), 90) > (1= paoliel?,
and also

_ _ 1 _
(A p2) = A1), ) < KIQIY|lllp < 1= paollpll* + cp”.

Concerning the third, fourth and fifth term on the left-hand side of (3.24), it is easy to see that
they can be estimated by

1 —1/2 _
(1= Paollel” + el By (0 ~ D)1
Finally, the last two terms on the right-hand side of (3.24) can be controlled in this way
|(upy, VB (@ = 8))| < llull el IVBR (¢ = B)ll

12



IN

1% —1/2 —
21Vl + el By (0 - 2%

|(u2, VB! (¢ = 2))| < l[uall 2 llllIVBY (¢ = B)ll e

IN

1 _ _
<gl- p)aollell® + cllua| 74| VBY (¢ — )74
1 _ _ _ _
<g- plaollel® + clluzl|74IVBY (¢ — D) IIVBY' (¢ — @)l
1 2 2 ~1/2 _ _
< g = paollell” + clluzllzalBy (¢ = @)l —
1 ~1/2 _ _
< 0= p)aollol|? + clluzl|tal| By (¢ — )% + 2.

Therefore, using the above estimates, we deduce from (3.24) the following differential inequality

1d _ 3 v ~1/2 _ _
S IBY (0 =PI + 50— paollel® < IVl + IBY (0 - DIP + 7%, (3.25)

where ¢ € L'(0,T) is given by ¢ := c(1+ |¢1]|24 + [|uz||74). Inequalities (3.22) and (3.25) finally
give

—-1/2
1By

d 5 ~1/2 —\ 12 2 Y 2
= (Il + 1832 (0 = D)I?) + (1 = p)aollgl* + S IVl
—1/2 _ _ 2
< 0(Ilul® + 1By (0 = D)I?) + 7 + Z|nliy (3.26)

where 0 = 2(a + ¢) € L*(0,T). Inequality (3.26) has the same form as (3.15) without the term
containing ji. Therefore, arguing as in the proof of Theorem 2 and using the standard Gronwall’s
lemma, we find (3.21). &

4 Weak-strong uniqueness (nonconstant viscosity)

Here we consider system (1.3)-(1.5) in dimension two with constant mobility, regular potential
and nonconstant viscosity v = v(y). In this case we are not able to prove the uniqueness of
weak solutions, due to the poor regularity of ¢ which makes difficult to estimate the difference
of the dissipation term in the Navier-Stokes equations. However, we can prove a weak-strong
uniqueness result. This means that, given a weak solution [uj, ¢;] and a strong solution [ug, 9]
both corresponding to the same initial datum [ug, @] € Gain, X L>(2), then these two solutions
coincide.

Before proving this result, let us first show that a global strong solution exists. Indeed, we
observe that, while the existence of a weak solution with nonconstant viscosity easily follows
easily from the same result for the constant viscosity case (see [9]), this does not occur as far as
strong solutions are concerned. The difficulty essentially lies in the fact that the classical results
for the Navier-Stokes equations in two dimensions with constant viscosity (see, e.g., [34]) cannot
be used as in [16] to exploit the improved regularity for the convective term in the nonlocal
Cahn-Hilliard equation.

The regularity result requires a slightly stronger assumption on the interaction kernel J.
Thus, before stating the main results of this section we recall the definition of admissible kernel
(see [6, Definition 1]).

Definition 2. A kernel J € Wllo’cl(Rz) is admissible if the following conditions are satisfied:

(A1) J e C*R?\ {0});
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(A2) J is radially symmetric, J(x) = J(|z|) and J is non-increasing;
(A3) J"(r) and J'(r)/r are monotone on (0,70) for some ro > 0;
(A4) |D3J(z)| < Cylz|~3 for some Cy > 0.
We recall that the Newtonian and Bessel potentials are admissible. Moreover, we report the

following (cf. [6, Lemma 2]).

Lemma 1. Let J be admissible and v =V J x1). Then, for all p € (1,00), there exists Cp, > 0
such that
IVollp < Cro |9l Le-

We also recall the following proposition for an inhomogeneous Stokes system in non-divergence

form:
—w (z) Au+ V7 = f(x), inQ,
div (u) =0, in €, (4.1)
u =0, on 0f2.

Proposition 1. [36, Proposition 2.1] Let f € L?()* and w € C° (Q), for some 6 € (0,1),
such that 0 < Ay < @ (z) < A1 < 0o for all z € Q. Then any solution [u,7] € H2(Q)* x H' (Q)
of (4.1) satisfies the estimate

lell g2y + 7l 1) < C N2 + 17l z2) s
for some constant C = C(X\g, A1, £, Hw||c(;(§)) > 0.

We first show a result which generalizes [21, Lemma 2.11] for the nonlocal Cahn-Hilliard
equation with convection in two space dimensions.

Lemma 2. Let d = 2 and assume (H1) and (H3). Let u € L®(T',T; G gip) N L2(T',T; Vai,), for
some T >T >0 and let p € L>®°(T",T; L>™ (2)) be a bounded generalized (weak) solution of

atSO = d’iU(C (1"7S07 VQO)) - d“}(u@)7 in 1 X (TlvT)7 (4 2)
c(x, o, Vo) -n=0, onT x (T",T), ’

where ¢ (z,¢, V) := (a (2)+F" (¢))Vo+Vap—VJxp. There exist constants C > 0, a € (0,1),
depending on the L>(T',T; L* (Q))-norm of ¢ and L*(T',T; L* (9)2)-n0rm of u, respectively,
such that

[ (@,t) = 9 (g, )] < Clle —I* + |t = 5|*7%), (43)
for every (z,t),(y,s) € Qrip = [T",T] x Q.
Proof. The proof is inspired by [31, Theorem 3.7] (cf. also [36, Lemma 3.2]) where it was observed
that a Holder continuous estimate holds for a similar parabolic equation with drift term u - Vg

whenever the vector field u is divergent free and belongs to the critical space L* (O, T; L4(Q)).
We begin by assuming that [|¢[| e (rr 1,100 (q)) < R, for some R > 0 and observe that

L®(T", T; Gain) N LA(T', T; Vi) — LYT', T; L* (Q)?).

Following [30], we let k& € [0,R] and n = n(z,t) € [0,1] be a continuous piecewise-smooth
function which is supported on the space-time cylinders Qy, o+ (p) := By (x0) x (to,to + 7),
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where B, (xg) denotes the ball centered at xo of radius p > 0. As usual for the interior Holder
regularity in (4.3) one takes zp € Q, while zg € 9 for the corresponding boundary estimate
in (4.3) and then exploit a standard compactness argument in which Q may be covered by
a finite number of such balls. We thus multiply the first equation of (4.2) by 77290:, where
cp; = max {0, p — k}, integrate the resulting identity over Qy,: := (to,t) x Q, where T" < t( <
t<tg+7 T, to deduce

/Q don*of dudt + /Q (a(x) + F" (@)Ver -V (n*g) dudt (4.4)
to,t to,t

= / up -V (772@;) dzdt + / l(x,t)-V (772g02r) dzdt,
Qto,t Qto,t

owing to the boundary condition of (4.2) and the fact that u € L?(T’,T; Vg,). Here, we have
set | = —pVa + VJ % ¢ for the sake of simplicity. Also we notice that Vgo,j = Vi only
on the sets where {¢(z,t) >k} while Vo = 0 elsewhere. In addition, if J € W! (R?)
then | € L°(T",T; L™ ()?), since ¢ is bounded and a € W1 (Q) —C (Q). From (4.4) and
assumption (H3), we obtain

1
5 Sup / (nei)? () do + co/ IV (nei)|” dadt (4.5)
te(to,t) JQ ot
1
=) / (neit)” (to) dx + / (¢7)? [ndem| dadt
Q Qto,t
+L (R)/ (901—:)2 WU‘Q dxdt + / up -V (772@;:) dxdt
to,t Qto,t

+ / L(z,t) -V (n*¢)) dadt,
Qo t
for some function L > 0 such that |a (z) + F” (¢)| < L (R). Indeed, we have

Vol YV (Pel) = |V (o) [P = [Val® (o). ae. in Qi

To estimate the fourth term on the right-hand side of (4.5) we use the fact that u € L*(T”, T; L* (Q)?)
is also divergent free, we argue by elementary Holder’s and Young’s inequalities as in the proof
of [36, Lemma 3.2] to find

(4.6)

/ up -V (nch,':) dxdt
Qtg,t

1 c
<7 H77%0Mi2(Qt0,t) + ZO v (7790§)Hi2(Qt0,t) + Co HVW’;H;(QW) ;

where Cy > 0 depends on cq > 0 and the L*(T", T; L* (Q)Q)—norm of u only. For the final term
on the right-hand side of (4.5), we employ Hélder’s and Young’s inequalities again to deduce

/ l(z,t)-V (7724,0:) dxdt / (L(z,t) - Vngin +nl (z,t) - V (ne))) dedt (4.7)
Qto,t Qtg,t

1
< cl/ In|? dadt + 2/ (go,j)2 \Vn|? dadt
Qto,t t

0t
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+ 2V (e[ dad,
Qg ,t

where €] > 0 depends only on ¢y > 0 and the L°(T”,T; L™ (©2)%)-norm of I, and hence on
R > 0. Inserting estimates (4.6)-(4.7) into the right-hand side of (4.5), we infer the existence of
a constant Cy = Cy (Cp, C1) > 0 such that

1
5 sup / (ngpg)Q (t) d:v—{—co/ ‘V (n«pﬁ)ﬁdmdt (4.8)
te(to,t) /O Qi t

< ;/Q (neih)? (to) dx

+02/ (s@;f)znamdxdﬂr/ (wi)Q\W?dde/ n|? dzdt | .
Qtg,t Qtg,t Qtg.t

Arguing in a similar fashion, inequality (4.8) also holds with ¢ replaced by —¢. In particular, such
inequalities imply that the generalized solution ¢ of (4.2) is an element of Ba(Q7 7, R, y,w, 0, »)
in the sense of [30, Chapter II, Section 7 |, for some v = 7 (¢g, R) and w, > > 0 (cf., in particular,
the inequalities in [30, Section V, (1.12)-(1.13)]). Therefore, on account of [30, Chapter V,
Theorem 1.1], the Holder continuity (4.3) of the solution of (4.2) follows in a standard way. This
ends the proof. 1

Corollary 1. Let d = 2. If [u, ] is any weak solution to problem (1.3)—(1.6) in the sense of
Theorem 1 then, for every T > 0, we have

Hﬂﬂchw([T,oo)Xﬁ) < Cf,

for some Cr ~ 777, v > 0, depending only on E(ug,py) and on the other parameters of the
problem.

Proof. The claim follows from the statement of Theorem 1 and the application of Lemma 2 and
[21, Lemma 2.10]. 1

The following result on the existence of a strong solution generalizes [16, Theorem 2] to the
case of nonconstant viscosity.

Theorem 5. Let d = 2 and suppose that (H1)-(H5) are satisfied with either J € W?1(Bs) or
J admissible. Assume that ug € Vg, o € VNCP(Q), for some >0, and h € LZQOC(R+; Gaiv)-
Then, for every T > 0, there exists a solution [u,¢] to (1.3)—(1.6) such that

w € L®(0,T; Vain) N L2(0,T; HX(Q)?), u; € L*(0,T; G i) (4.9)
p, € L(0,T; V)N L*(0,T; H*()) N L™(Q2 x (0,7T)), (4.10)
@, pty € L2(0,T; H). (4.11)

Furthermore, suppose in addition that F € C3(R) and ¢, € H?(Y). Then, system (1.3)-(1.6)
admits a strong solution on [0,T] satisfying (4.9) and

@, € L(0,T; H*(2)), (4.12)
@i,y € L(0,T; HYN L*(0,T; V). (4.13)
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Proof. Step 1. We first need to establish the L>°(0,T"; V')-regularity for p and . The argument
used here differs from the one devised in [16]. Indeed, we cannot easily exploit the regularity u €
L?(0,T; H?) as it happens for the constant viscosity case. Let us consider equation (1.3) whose
generalized (weak) solution also satisfies (4.2). First we recall that ¢ is bounded (see [21, Lemma
2.10], cf. also [16, Theorem 2]) and thus, by Lemma 2, we infer that ¢ € C%/%9 ([0,T] x Q) for
some 0 < § < min {a, 8}. By assumption (H2), v () € C%%% ([0,T] x Q) since v is a (locally)
Lipschitz function on R; moreover, there exists a positive constant vy = va (R) > 0 such that
ve > v(p) > v, almost everywhere in (0,7) x €, owing once again to the boundedness of .
In the same fashion, we define b (x,t, ) = a (z) + F” () and observe that it is measurable and
bounded (i.e., cg < b < by = by (R, ||al|;)) for all (z,t,¢), in light of a € W (Q) — C (Q)
and the fact that F” (p) € C ([0,T] x ). In fact, as a function of (z,t) € Qor, b (-, -, ¢(:,-)) is
also continuous due to the Hélder continuity of ¢. Henceforth we shall denote by R a constant
such that [|¢[| L (ax(0,)) < R

We now test the nonlocal Cahn-Hilliard equation by p, = (a + F"(¢))¢, — J * ¢, in H to
deduce

1d
/@tﬂt‘F/(U'VSD)Ht‘FhﬁHVMHQ
Q Q

1d

= [+ PUoet = (o T e + [ (w Vohut 5 IValE =0 (41)

This identity was considered in [16], but now we cannot use the H2-norm of u to estimate the
convective term (i.e., the third term in the second line of (4.14)). Here we exploit the identity

u- Vo = b—lu-V,u—f—b_lu-(VJ*cp— Vayp) (4.15)
and we find

‘/Q(U-Vgp)’ut‘ = ‘/Q(b_lu~Vu) ut—k/ﬂb_l [u- (VJ % p—Vap)| pu, (4.16)

< gt (lu- Valllpl + llu- (VI %@ = Va) ||l ])
< Queo (B)lpel ([lw - Vil + [lll)

co
< 2l + Quo, s (R) (lulZalValide + 11ul)
€0
el + Qeos (Rl VUl el 1l 172 + Qe (R) [
€0
el + Qeare (R) (I1ull [ Ful?) [ V4

+ Qegua (R) |[ull® + € (I1Bwul? + llul)

IN A

IN

for any € > 0. Furthermore, we have

(e, T * o) < lloellv [l * @ellv < llpellve | Tlwrallell
Co
< ZII%H2 + el Il (4.17)

Inserting (4.16), (4.17) into (4.14), and keeping € > 0 arbitrary, we get the following differential
inequality

d
@HVMP + colleyI® (4.18)
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< Qe (B) (1l IVl IVl + el T s o
+ Qe s (R) Jull” + ¢ (1| Bl + 1)

Moreover, observing that ¢, = —Bnu — u - Vo, we have

1Byal® = lu- Vell?, (4.19)

N | =

2
el =

owing to the basic inequality (a —b)* > (1/2)a® — b%. We can estimate the last term using
(4.15). Thus, recalling (4.16), we obtain

- Vel < 2652 (lu - Vial® + lu- (V] % 0 = Vag) )
< Qeoure B) (Il ul?) [ V1l + Qe o (R) |1
+ e (IBNal? + )

Thus, from (4.18) by virtue of (4.19) we further derive

d Co 1 2
— | Vul?+ = 2+ |B 4.20
10l + 5 (el + 5 15wl (1.20)
< Qeo e (B) (Il IV ulP) IV ll* + el T I3l 17
+ Qeo.s (B) lul* + 2¢ (I Bl + ul®)

for any € > 0. Let us now choose a sufficiently small € < ¢y/8 in order to absorb the L?-norm

of By into the left-hand side and observe that p € L (Q x (0,T)) since ¢ is bounded. Thus,
we find

@ € L*(0,T;V), ¢, € L*(0,T; H)

, (4.21)
p € L0, T; V)N L?(0,T; H* () ,

by means of Gronwall’s inequality (cf. also Lemma 1), using the initial condition ¢, € VNL> ()
(which implies i € V'), the regularity properties of the weak solution given by the first of (2.2)
and by (2.5), and the fact that

coll Vel = Q(R) < [Val* < QR) (VI + 1)
We now control Ve in terms of Vu in LP. In order to do that we take the gradient of u =

ap — J x o + F'(p), multiply it by Vi|Ve|P~2 and integrate the resulting identity on Q. This
gives

/ VeVl Vi = / (a+ F"())| Vol + / (¢Va— V) Vel Vel ™.
Q Q Q

So that, by (H3), we find

N

ol Vel < Vel 1 Vulr + (IVal e + 910 el el Vel !
C
SIVelt, + el Vull, + QUR)(IVal e + V7)),

IN

which yields
IVellzr < e[ Vulr + Q(R). (4.22)
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This estimate implies in particular
pe L' (0,T;WhH (), (4.23)

owing to the second of (4.21). We now control the H?-norm of ¢ (or at least the L2-norm of the

second derivatives 6%@ = aji;fp j) in terms of the H?-norm of y and (4.23). To this aim apply

the second derivative operator 8?]- to (1.4), multiply the resulting identity by 8%@ and integrate
on 2. This entails

| GEndto = [ (a+ Fo)@kP + [ @uadio+ 0,000
+ [ (0ha =00, xR0+ | FU00g000%0.  id =12

From this identity, thanks to (H3), we obtain

collOF el < ellofull® (4.24)
+e(IValie + QR)IVel® + Q(R)0al®
+ (957 * D) I> +Q (R) Vel 4,

and an estimate like this still holds if ||8Z2]g0|| and H@%u” are replaced by ||¢||g2 and ||| g2,
respectively. Thus, recalling (4.21), (4.23), and using the fact that J € W?2!(Bs) or J is
admissible, from (4.24) we easily get

peL?(0,T; H* (). (4.25)

Step 2. We now establish the L>(0,T'; Vy;,) N L2 (0,T; H? (Q)z)—regularity for u. To this
end, let us test the Navier-Stokes equations by u; in Gg;, to deduce the identity

||u,g|]2 + 2/ v(p) (Du : Dug) dx + b(u, u,ug) = (1, uy), (4.26)
Q

where the function [ is given by

o?
l:= —?Va — (J*xp)Ve+ h.

Notice that, due to the assumption on the external force h and to the regularity of ¢, we have
1 € L*(0,T; L*(Q)?). From (4.26) we obtain

1 d 1
gl + % [ o@IDUP + o) < 510°+ [ 1DuPs (g @20

Observe that

| [ 1D/ o] < Il Il IDal

< QR) [l Dullllell 172
< 8llullFe + Qs(R) | Dull |l 1. (4.28)

Furthermore, we have

1
[b(u, u, )| < ZHutH2 + flu- Vul®
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< el + 2lull 2 [ Vull7a

< el + el [Vl [ Vulllll g

e el Y

<l + dllullZ + es (llull*[[Vul?) [ Vul® (4.29)

Plugging (4.28) and (4.29) into (4.27), we get

1 2 d 2
- < D
Hlul+ % [ vopul
1
< I 4+ 280l + s (a9 )?) | D
+ Qs(R)IDull [l (4.30)

for any 0 > 0 that will be fixed later.

It remains to absorb the term 25||ul|%,, into the left-hand side of inequality (4.30). This can
be done essentially by controlling it with 26 ||u||* plus some lower-order (bounded) perturbation.
To achieve this we first rewrite the Navier-Stokes equations as an inhomogeneous elliptic system
in divergence form, namely,

—div(2v(p)Du) + Vr =h, inQx (0,7),
)

div (u) =0, in Q x (0,7), (4.31)
u =0, on 092 x (0,7,
where B
h:=puVe+h(t) — (u-V)u— u. (4.32)

Since ¢ is bounded on £ x (0,7) (and therefore, v (¢) is bounded by (H3)), by the application
of Lax-Milgram lemma, we can infer that every solution [u, 7] € Vg, x L? (Q) to (4.31) such
that ™ = 0 satisfies the bound N

[Dull + =]l < ClAllvr, (4.33)

for some C' > 0 which depends on 2 and R > 0 only. On the other hand, we can also rewrite
(4.31) as an inhomogeneous elliptic system in non-divergence form, that is,

~

—v(p)Au+Vr=h, inQx(0,7),
div (u) =0, in Q% (0,7), (4.34)
u=0, on 00 x (0,7,

where o
h:=h+ 2V (¢) Ve - Du.

We can then apply Proposition 1 to (4.34) since v () € C%/%° ([0, 7] x Q). Thus we obtain the
bound (cf. also (4.33))

il gz + el g2 < € (11B11+ llell) < € (1B + 1Rl ) (4.35)
<C (IRl + V- Dull)
where C' = C (v1,v2, R, T,) > 0. Recalling (4.32), we deduce

[ull g2 < Cllul] + C (Al + [Ju - Vull + [0V el + [V - Dul) (4.36)
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< Clluell + € (Il + lull o 1V ull 1 + lall oo 9011+ 1960 0 1Dl 2)
< Clugll +C (1Bl + llull /2 | Dull ] 13 )
+C (= IVl + 19l g |1 Dul ull )
< C flugl) + Ce (1] + (ull [ 72} | D]
Ce (Il IVl + 9613 ) 11Dul + 2¢ full .,

for any € > 0. Thus, for € € (0, %) we can absorb the small term on the left-hand side and infer

lullze < Clluel® + € (IRI2 + el 1V 1) (4.37)
2 2 4 2
+0 (Il IVull + [Vellts) 1Dul
We can now insert the bound (4.37) into (4.30), take § > 0 small enough and obtain the
differential inequality

a

dt
2 2 2 2

< C (012 + 1812 + lle 1011

+C R (JlPIVul® + [ Fellfa + led?) | Dull®

1
v()|Dul® + g\lutH2 (4.38)

From (4.38), on account of (H2) and of the improved regularity for [¢, u] given by (4.21) and
(4.23), by means of Gronwall’s inequality, we obtain

u € L*(0,T; Vai) N L2(0,T; HX(Q)?), us € L*(0,T; Ggiy). (4.39)

Moreover, owing to (4.35), we have m € L? (O, T;H* (Q)) With these regularity properties for
u at disposal we can now argue exactly as in the second step of the proof of [16, Theorem 2| by
differentiating (1.3) with respect to time, multiplying the resulting identity by p, in H and using
the assumptions F' € C3(R) and ¢, € H2(Q) (this last assumption ensures that ¢,(0) € H, see
Lemma 1) to deduce

@, € L0, T; H) N L*(0,T,V). (4.40)

Furthermore, using (1.3), we find

IV ullze < el Vull? Vb (4.41)
< || VulPP |l

<l VPP Apl2 + [|u) P3P

< QR llpollv. luoll) (I I*=2/7 + [[u- V| =27 + 1)

< QR lleollv lluoll) (el 2% + l[ull 1o PVl 17 + 1).

Here we have used the fact that the H?—norm of y is equivalent to the L?— norm of (By + I)
(cf. (1.5)) and we have taken into account the improved regularity for u given by the third of
(4.21). By combining (4.21) with (4.41) we therefore get
2)/2
I¥¢llzr < QR Ipollv lluoll) (o /7 + llull F 7% + 1) (4.42)
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_ _9)2 -
< Q(R, llpollv luol) (el =27 + [[ull =220 || Vul ' =27 4 1).
Thanks to this property, on account of (4.39);, (4.40) and (4.41)-(4.42), we have
o € L0, T; WHP(Q)). (4.43)

Finally, by comparison in (1.3) (cf. [16]) we also get u € L>(0,T; H*(Q2)). This fact, thanks to
(4.24) and using once more the regularity assumption on J, implies

@ € L™ (0,T; H*()). (4.44)

Step 3. We shall briefly explain the details of the approximation schemes which can be used
to derive the estimates in Steps 1 and 2. Regarding estimates (4.21), (4.23), (4.25), it suf-
fices to employ the usual Faedo-Galerkin truncation method as in [9, Theorem 1] since u €
L>®(0,T; Ggir,) N L% (0,T; Vg, ) is a weak solution to (1.1)-(1.2). Weak solutions are also enough
to deduce (4.3). To deduce the higher-order estimate for u € L (0,T; V) in Step 2, we can
no longer exploit the usual Galerkin scheme in a standard fashion but we need to rely on a dif-
ferent scheme. We first mollify the Navier-Stokes equation in the following fashion: recall that
o € L>®(0,T;V)N L? (O,T; H? (Q)) is such that ¢ € C9/2 ([O,T] oy (ﬁ)) as provided by the
Step 1 and that 95 is of class C2. Let ¢ = E¢p, where E : WP () — W?2P (]RQ) is an extension
operator for any p € [1,00). Then set @, = 1, *p where 77, € C*° (R?) is the usual Friedrich mol-
lifier such that n, > 0 and [, n.dz = 1. Defining ¢, = Rp,, where R : WP (R?) — WP (Q) is
the restriction operator, it is clear that . (z,-) is of class C*° in a neighborhood of 2. Moreover
¢, satisfies, for any k € {0,1,2} and p € [1,00), the bounds

1= Ollwrw < Clle Ollwrs s 1oz @llwesir < Crpelle (Ollwrs

and @ (t) — ¢ (t) strongly in W*P? (Q) for almost any t € (0,T) (see, e.g., [10, Chapter V]). We
also have

p. € L™ (0,T; H2 (Q)) N ¢/ <[0,T] You (ﬁ)) . (4.45)

We now consider the following mollified version of the original Navier-Stokes equations
up — 2div(v(e,)Du) + (u- V)u+ Vi = uVe + h(t), (4.46)
div (ues) =0 (4.47)

in 2 x (0,7 with initial condition u|;—¢ = ug and no-slip boundary condition. Here y and ¢ are
as regular as specified in Step 1. Let us observe that (4.45) together with standard interpolation
results in Sobolev spaces imply that ¢, € BUC ([0,T]; W1 (Q)) for any ¢ > 2 (ie., ¢, is
bounded and uniformly continuous with values in W14(Q) with lecll Bucorwra < Ce, for
some C: — oo as € — 0T). Thus, thanks to a result contained in the proof of [1, Theorem 8],
we can find a sufficiently small time 7. < T, a function u. such that

ue € H' (0,T2; Gain) N L2(0,T; H2 (2)*) N L™= (0, Te; Vi) (4.48)

and the associated pressure 7. € L? (0,7.; H' (Q) /R) such that u. is a strong solution to (4.46)-
(4.47), provided that ug € Vg, and h € L} (Ry; Gai) and uVe € L2 (Ry; L2 (Q)?) (for the
latter see Step 1). The regularity (4.48) is enough to perform all the estimates of Step 2 on the
fluid velocity rigorously. In particular, estimates (4.37)-(4.38) entail that u. can be extended to
any interval (0,7"), for any given 7' > 0. Moreover, u. is bounded in the spaces (4.48) uniformly

with respect to & (and 7. is bounded in L? (0, T; H' (Q)) uniformly with respect to €). Thus,
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usual compactness arguments allows to pass to the limit as ¢ — 0 in (4.46)-(4.47), owing to the
strong convergence ¢, (t) — ¢ (t) in V for almost any ¢ € (0,7"). This gives a strong solution
4 to the same problem solved by the weak solution found in Step 1. Then uniqueness applied
to the NS equations with given viscosity implies that v = 4. We can now perform estimates
(4.40)-(4.42) to show that ¢ satisfies (4.43) and (4.44). This ends the proof. i

We can now state the weak-strong uniqueness result for the nonconstant viscosity case.

Theorem 6. Let d = 2 and assume that (H1)-(H5) are satisfied. Let ug € Gapn, o € L>(2)
and let [u1, p;] be a weak solution and [ug, 5] a strong solution satisfying (4.9) and (4.10) both
corresponding to [ug, py] and to the same external force h € L*(0,T; V), ). Then ui = uz and
Y1 = P2-

Proof. Taking the difference between the variational formulation of (1.1) and (1.3) written for
each solution and setting u := ug — u1, @ = @9 — @1, we get

(ur, v) + 2(((9) — v(01)) Dug, Dv) + 2(v (1) Du, Dv) + b(ug, ug, v) — b(ur, u1,v)
- %(‘P(% +92)Va,v) = ((J x 9)Vipy,v) = ((J % 91) Vi, v), (4.49)
<§0t7 ¢> + (VM, Vi/J) = _(U . VQOQ, ﬂ))—(ul . V(p7 1/})7 (450)

for all v € Vy,, and ¢ € V, where p = g — iy = ap — J * o + F'(¢y) — F'(¢1). Let us choose
v =wu and ¥ = ¢ as test functions in (4.49) and (4.50), respectively, and add the resulting
identities. Notice that the contribution from the second term on the right-hand side of (4.50)
vanishes due to the incompressibility condition. Hence, we get

5 55 (1l + 16l + 2((v(ip2) — vlip1)) Detz, D) +2(vlip1) Dty Du) + o 1 )

+ (Vi, Vo) = I + Io + I3 + 1, (4.51)

where I1, I, I3 are given again by

1
I = _5(90(@1 +eo)Vau), I=—((J+9)Veyu), Iy=—((J*¢)Ve,u),
while I is given by
Iy = —(U : VSO2790)

Let us first estimate the terms in (4.51) coming from the Navier-Stokes equations. Due to
assumption (H2) we have

2|((v(2) = v(¢1))Duz, Du)| < Cllgllps ]| Dual| 2| Vul|
1/2 1/2
< Clle )2l 1 Duz |2 Dus |7 17l
4!
< L 1Vul® + ClVusllluzllz=llel* + ClIVusllusll e llell Vel

4! €o
< L IVul® + LIVel® + CO+ [ Vua PlluzlF) o], (4.52)

2(v(py)Du, Du) > v1||[Vul]?,

where henceforth in this proof C' will denote a constant which depends on ||¢g|| e, and on |lug]|.
Indeed, recall that, since g € L>(£2), then we have |¢;]| Lo x(0,7)) < Ci = Ci(llgollLee, [luoll),
fori=1,2.
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The term in the trilinear form is standard
V1
b, ur, w)] < ellull [Vull[Vur| < S 1Vul® + el Vua [*ull?,
while the terms I7, I, Is can now be estimated more easily in this way

I < lollller + @l pa I Val| oo [[ul] 4

Vi
< S IVul® +cliedlie + lealza) el

Iy < lalla IVl el 2o

Vi
< L IVul® + cligallallel,

1%
Ig<—1

< 219u)? + el Ballol

Regarding the terms coming from the nonlocal Cahn-Hilliard equation we have

(Vi, V) = ((a+ F" (1)) Ve, Vo) + (¢Va — VJ * ¢, Vo)
+ ((F”<SO2) - Fl/(‘Pl))VS%a V‘P)a (4-53)

and the last term on the right-hand side of this identity can be estimated as

|(F"(pg) = F"(¢1))Ve2, Vo) | < |F"(02) — F" (1) |24l Vol | Vel
< CllollalVeallzalVell < Cllell + eIVl Vol Ll Vel

o
< ZHW)HQ + O+ [[Verlrallel.
Hence, by means of assumption (H3), we get

C
(Vi Vi) > ol Vol|* = 2V I || ol Vool - ZOHVSOHZ — O+ Veul i)l

<
> S Vell* = CO+ [Vealza)llel™

Finally, the last term in (4.51) coming from the nonlocal Cahn-Hilliard equation can be controlled
as follows

Vi
Iy < [lull s Vsl zallell < HlIVull® + el Vool 7a ol (4.54)

By plugging estimates (4.52)—(4.54) into (4.51) we are led to the following differential in-

equality
1d

57
where the function II is given by

V1 co
Jul + [[l?) + 3WUII2 + ZHWPHQ < T(flufl + [lell?), (4.55)

I = (1 + [[Vual* luzl| 2 + IVurl? + o1 7a + loalFa + [V allFa + [1Veall7a),

and due to the regularity properties of the weak solution [uj,¢;] and of the strong solution
[ug, 5] we have II € L1(0,T). Weak-strong uniqueness follows by applying Gronwall’s lemma
to (4.55). In addition, a continuous dependence estimate in L?(Q2)? can also be deduced by
considering two solutions with different initial data and external forces. I
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If the potential is singular and the mobility is constant, the weak-strong uniqueness does not
seem to be easy to prove. However, if the mobility is degenerate, thanks to the particular weak
formulation of the convective nonlocal Cahn-Hilliard (cf. (3.23)), the weak-strong uniqueness
can be proven as stated in the next theorem. In order to do that, we just need to strengthen
(A1) slightly, namely,

(A7) mF" € CY([-1,1)).

We point out that in the case of singular potential, degenerate mobility and constant (or
nonconstant) viscosity, existence of strong solutions in 2D for the nonlocal Cahn-Hilliard-Navier-
Stokes system has not been proven yet. This result, which actually can be established, will be
presented in a forthcoming paper.

Theorem 7. Let d = 2 and suppose that assumptions (A1)-(A7) and (H2) are satisfied. Let
ug € Gaiv, o € L®() with F(py) € LY(Q), M(py) € L1 () and let [u1,p,] be a weak solution
and [ua, ps| a strong solution to (1.1)—(1.6) satisfying (4.9) and (4.11) both corresponding to
[ug, o] and to the same external force h € L*(0,T; V). ). Then ui = us and ¢ = py.

Proof. Let us write the variational formulation of (1.1)—(1.2) and (3.23) for each solution and
take the difference, setting u := us —u1, ¢ := 5 — 1. Then we choose v = u as test function in
the first identity (4.49) and ¥/ = ¢ as test function in the second. Concerning the first identity,
we can argue exactly as in the proof of Theorem 6 and get

5 Sl +2(((p2) — v(0)) Dus, Du) + 2(v(sp1) D, D) + bla ),

=1L+ 1)+ Is. (456)

Then, by similarly estimating the terms in (4.56), we find

el < (1 —
S Sl + 2Vl < 11— paoll Vel
+ C+[[Vusl*[luzllfzz + kel Zs + kel Zollel® + ClIVun | ull*. (4.57)

As far as the identity resulting from the difference in the Cahn-Hilliard is concerned, if we set
b(z,s) := OsA(x,s) = m(s)(F"(s) + a(z)), Vs € [-1,1], a.e. z€Q,

this identity reads as follows

%%IIwHQ + (b(, 1)V, Vo) + ((0(-, 2) = b(-, 1)) Vi, Vo)

+ ((m(p2) = m(p1))(waVa = VI % ,), Vo)

+ (m(e1)(9Va — VJ % ¢), Vo)

= (ugs, Vop). (4.58)
Observe now that, thanks to assumptions (A5), (A6) and (A7), we have b(x,s) > (1 — p)ap
and |b(z, s2) — b(x, s1)| < K'|sg — s1], for all s,s1,s2 € [—1,1] and for almost every x € 2. Here
K= [[(mEF") lo=1,1) + M/ le=1,1 lallze (). Let us now estimate the terms in (4.58), taking
the bounds |¢;| < 1, i = 1,2, into account. The second and third term on the left-hand side can
be estimated in the following way

(b(, 1)V, Vo) > (1 — p)ao|| Ve,
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(B, 02) — b+, 01))Vipa, Vio) < K| @ll 1| Vol 4 | Vo]
1/2
< dllel V2ol IVl Lall Vel

1
< 33(1 — p)ao|| Vel + cllellllelvIVell7a

1
< 15— Mol Vel + (1 + [ Veaa I 7a) Il

Furthermore, it is immediate to see that the last two terms on the left-hand side of (4.58) can
be controlled in this way

1
cllelllVell < 751 = paollVel* + ellel

and, finally, the term on the right-hand side can be controlled by

1
clulllVell < 75 = paolVell* + cllul.

From (4.58), using the estimates above, we are therefore led to the following differential inequality

Ld
2dt
Thus, from (4.57) and (4.59) we deduce

3
lell” + (1 = pao| Vell* < e(1+ [IVealza) el + cllul* (4.59)

1d V1 1

5 7 el + lell®) + S 1Vull® + 5 (1 = p)aoll Vel < ([lull® + ll¢ll?), (4.60)
where v € L'(0,7) has the same form as given at the end of the proof of Theorem 6. We
conclude again by applying Gronwall’s lemma to (4.60). Moreover, a continuous dependence
estimate in L2(Q)? can be deduced in the present situation as well by considering two solutions
with different data. 1

5 Global and exponential attractors

In this section we prove two results concerning the asymptotic behavior of the dynamical sys-
tem generated by (1.3)—(1.5) in dimension two. The first result is related to the property of
connectedness of the global attractor whose existence was established in [14] for nonconstant
viscosity, constant mobility and regular potential. The second result is the existence of an ex-
ponential attractor. This will be proven in details when mobility and viscosity are constant and
the potential is regular. This kind of result relies on a regularization argument devised in [16]
and on an abstract theorem (see [12]) which generalizes a well known result on the existence of
exponential attractors in Banach spaces (cf. [11]). A similar argument will be carried out in the
nonconstant viscosity case albeit we will work with strong solutions.

Let us define the dynamical system in the autonomous case. Take d = 2 and h € Vj, . Then,
as a consequence of Theorem 2, we have that for every fixed n > 0 system (1.3)—(1.5) generates
a semigroup {5, (t)}+>o of closed operators (see [32]) on the metric space X, given by

Xﬂ = de X yn, (51)

where
Yy i={p € H:F(p) € L"), || <n}.
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It is convenient to endow the space &} with the following metric

o0 1) = e =il + e =l + | [ Ploa) = [ Pl Vo= b € 2 i = 1.2
Notice that this metric is slightly different from the one which is naturally associated to the
energy & (the difference is in the exponent in the third term, see [14]).

A first noteworthy consequence of the uniqueness result for weak solutions is the following

Theorem 8. Let d =2 and let (H1)-(H5) be satisfied with v constant. Assume also that that
h € V. . Then, the global attractor in X, for the semigroup Sy(t) is connected.

Proof. The conclusion follows immediately by applying [4, Corollary 4.3]. Indeed, the space &
is (arcwise) connected, thanks to the fact that F' is a quadratic perturbation of a convex function.
Moreover, we have the strong time continuity of each trajectory z = [u, ¢] from [0,00) to the
metric space A), (see Theorem 1). Thus Kneser’s property is satisfied thanks to uniqueness.

Remark 3. Theorem 8 also holds in the case of constant (or degenerate) mobility and singular
potential on account of Theorem 3 and [15, Proposition 4] (or Theorem 4 and [17, Proposition
3]). The argument is similar.

The second result is the existence of an exponential attractor. We first recall its definition.

Definition 3. A compact set M, C &, is an exponential attractor for the dynamical system
(X5, Sy(t)) if the following properties are satisfied

(i) positive invariance: Sy (t)M, C M, for all t > 0;
(it) finite dimensionality: dimp(M,, &) < oo,

(iii) exponential attraction: 3 Q : RT — RY increasing and x > 0 such that, for all R > 0 and
for all B C X, with sup.cp px, (2,0) < R there holds

distx, (Sy(t)B,My) < Q(R)e™", vt > 0.

Theorem 9. Let d = 2. Assume that (H1)-(H5) are satisfied with v constant. Then the
dynamical system (X, Sy(t)) possesses an exponential attractor M, which is bounded in Vg, x
WP(Q), 2 < p < .

The proof of Theorem 9 is based on four lemmas. These lemmas allow us to apply the
abstract result in [12]. For their proof we shall need the following regularization result which is
an easy consequence of [16, Theorem 2 and Proposition 1] and has an independent interest. In
the statement and proof of this result we shall denote by I'; = I'; (5 (20), 7]) a positive constant
depending on a positive time 7, on the energy £(z() of the initial datum zq := [ug, @] of a weak
solution, and on 7, where n > 0 is such that || < n (I'; may of course depend also on h, F, J,
v and Q). The value of I"; may change even on the same line.

Proposition 2. Let d = 2 and h € L?(0,00; Ggy). Assume that (H1)-(H5) are satisfied with
v constant, and suppose F' € C3(R). Let ug € Gaip, ¢y € H with F(py) € LY(Q) and let [u, ¢)]
be the weak solution on (0,00) to system (1.3)—(1.6) corresponding to [ug, py]. Then, for every
7 > 0 there exists I'; > 0 such that we have

u € L(1,00; Vi) N L%b(T, o0; HQ(Q)Q), up € L%b(T, o0; Gdiv)y (5.2)
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p € L¥(r,000WHP(Q)),  2<p<oo, ¢ €LX(r, 00 H) N L (,00,V),  (5.3)

with norms controlled by I'y. In addition, for every initial data zo := [ug, ] € Gaiv X H
with F(py) € LY(Q) and [py| < n, there exists a constant A = A(n) > 0 depending only on n
(and on F, J, v and Q) and a time t* = t*(E(29)) > 0 starting from which the weak solution
corresponding to zy reqularizes, that is,

t+1
IVu@ + lle@)llwrr ) +/t lu(s)Fr2qyeds < Aln),  VE>t". (5-4)

Remark 4. Notice that, differently from [16, Theorem 2], in Proposition 2 we do not require
any further regularity assumption on J in addition to (H1).

Proof. Recalling the proof of [21, Lemma 2.10] and the dissipative estimate (2.8), observe first
that, if zg € A}, then for every 7 > 0 there exists I'; = I'; (5(20), 77) such that

lo()lpooy <Try  VE>T. (5.5)

This implies that [[x4(t)||pec(@) < Iz for all ¢ > 7, and hence that the Korteweg term uVy €
L?(7,T; L*(Q)?). By Lemma 2, there also holds

sup ||90HC<5/2,5([15¢+1]><§) <I;,Vit>rT. (56)
t>1

We can now repeat exactly the same argument in the proof of [16, Theorem 2], by writing the
same estimates which now hold starting from a positive time, say for ¢ > 7/2 > 0. We recall
that these estimates are obtained by multiplying the nonlocal Cahn-Hilliard by p, in H and then
by differentiating the nonlocal Cahn-Hilliard with respect to time and multiplying the resulting
identity bu u,;. By doing so we are led to a differential inequality of the following form

S1og(1+ [ (a4 PU@)GE) STool) +lal?), sz, (5.7

where o = I'7 (1 + [lul|%2 + [|u]|*)and we have o € L*(7/2,T), for all T > 7/2. At this point
we argue a bit differently from the proof of [16, Theorem 2]. Indeed, here we want to avoid
the L?-norm of ¢, in 7/2 which would require the initial condition ¢(7/2) € H?(Q2) and in
addition would force us to make some further regularity assumptions on the kernel J (like, e.g.,
J € W2L(R?) or J admissible) in order to have ¢,(7/2) € H. Therefore, we multiply (5.7) by
(s — 7/2) and integrate with respect to s between 7/2 and ¢t € (7/2,T). We get

(t — %) log (1 +/ (a+ F”(‘P))@?) < /T log (1 +/ (a+ F”(@))@?)ds
@ /2 Q
+1, (T — %) (loll L2 (r o) + H(pt||%2(7/27T;H))
< Telledl Lo jomom + T (T - g) (ol + Neeliz@omm), V€ (7/2,T).

From this inequality, on account of the fact that we have ||yl 12(; 27,y < T'» (this was shown
in the first step of the proof of [16, Theorem 2], before (5.7)) we deduce that

¢, € L=(7, T H). (5.8)
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This bound, together with the following estimate (cf. proof of [16, Theorem 2])
IVallzr ST-(1+ [l 727), 2 <p <o,

yield
¢ € L= (1, T; WhHP (). (5.9)

Finally, arguing as in the proof of [16, Proposition 1] by applying the uniform Gronwall’s
lemma, and taking (5.8), (5.9) (together with the bounds for w on (7,7T)) into account, we get
(5.2), (5.3) and (5.4), respectively. I

For the statements and proofs of the following lemmas we shall denote by C; a positive
constant depending on a positive time 7, on the energies &(zp1), £(z02) of the initial data
201, 202 € Xy of two weak solutions, and on 7, where n > 0 is such that ||, [@ga] < n (of
course, C; will generally depend also on h, F', J, v and Q). The value of C; may change even
within the same line. Furthermore, we shall always set v := ug — uy, ¢ = @9 — @;.

Lemma 3. Letd = 2. Assume that (H1)-(H5) are satisfied with v constant and that F € C3(R).
Let ug; € Gaiw, po; € H with F(py;) € LY () and [u;, ;] be the corresponding weak solutions,
1 =1,2. Then, for every T > 0 there exists C- > 0 such that we have

t

(19 (uas) = ()2 + LUV (2a(5) = 1()) 1) ds

< et (lua(r) — (D)2 + o) — r (D)), VE>T. (5:10)

lua () = us (D1 + llpa(t) — @1 ()] +/
Proof. Let us multiply (3.2) by ¢ in L2(Q). We get

Ld

S Sl = —(u- Vi, 0) — (VI V) (5.11)

Taking the gradient of i, on account of (3.3) we have

(Vi V¢) = [ (a+ F' (o) IVl + (¢Va = VT 5. V)

T ((F"(a) — F"(92)Vien V) > I Vol — cllll V4]

~IF"(2) — P/ (o0l Va0Vl = LIVl el — Co el Vsl sl V]
DIl ~ il - - (el + eIVl ) Vsl |Vl

co
> Z\IV@II2 — Cr(1+ Vol s + Vel 14) lloll>-

v

Observe that o
(Vi, Vo) > ZIIVSOII2 — Cr(1+ [ Veall7a) llell*. (5.12)

Furthermore, we have
v
(- Voo, )| < llullLal Vol s llgll < ZIVull* + el VipsllZLalloll*. (5.13)

Therefore, plugging (5.12) and (5.13) into (5.11), we get

1d

co v
5 el + LIVl < O (14 [9llLa) el + %[Vl
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Adding this last differential inequality to (3.8), we obtain

1d v co
5%(\\16\!2 +lell?) + ZHVUH2 + ZHW?HQ <A@ ([lul® + llell?), (5.14)

where
A(t) == alt) + Cr (1 + [V |14).

Then, thanks to Proposition 2, for every 7 > 0 there exists C; > 0 (always depending on 7, 7
and on the energies £(201), £(202)) such that the following bounds for the solutions z; = [u;, ;]
corresponding to [ug;, ¢g;] hold

HuiHL"O(T,oo;de) + ||SO7,'”L°°(T,OO;W1’IJ(Q)) < CT7 (5'15)
HULt Lee(1,00;H) < C—,—, (516)

L3, (7,00;Gdin) + H%‘,t

Thus we have v(t) < C, for all t > 7 and by applying the standard Gronwall lemma to (5.14)
written for ¢t > 7 we get

a1 + le@)I* < (lu(]* + lo@l?)e™*, vt (5.17)

By integrating (5.14) between 7 and ¢ and using (5.17) we get (5.10).

Lemma 4. Let the assumptions of Lemma 3 be satisfied. Let ug; € Gaiv, po; € H with F(pg;) €
LY() and [u;, ;] be the corresponding weak solutions, i = 1,2. Then, for every 7 > 0 there
exists Cr > 0 such that we have

2
\qu(t)—u1<t)l\2+H%(t)—sol(t)||2+\/QF(%(w) —/QF(%(t))‘
< Cr(Jluz(r) = ua (D) + lloa(7) = @1 (7)|2)e "

+Cr /: (luz(s) = ur()* + llwa(s) — @1 (s)?)ds, V= (5.18)
Proof. By using the Poincaré inequality for u and the Poincaré-Wirtinger inequality for ¢, i.e.,
Ml < [Val?, e =2l* < call Vel (5.19)

from (5.14) we have

C0|Q|—2

d 9 2 . VAl 2 €O 2 2 2
— — — < 27(t
g lull® + 1el%) + =5l + 5 lel® < 290 (el + llel) + 5%

which yields
d
—lll® + 1l l®) + E(llul® + llel®) < C(llull® + ll¢ll?), (5.20)

where k := min(\1v, ¢g/cq)/2 and C' is a positive constant such that 2v(t) 4 cy/2cq < C; for all
t > 7. By using Gronwall’s lemma we immediately see from (5.20) that |lu?+||¢]|? is controlled
by the right-hand side of (5.18). Furthermore, we also have

(/QF%@)) —/QF(%(t))\ <Clle@)ll, vt

Hence, the proof of (5.18) is complete. I
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Lemma 5. Let the assumptions of Lemma 3 be satisfied. Let ug; € Gy, po; € H with F(py;) €
LY () and [u;, ;] be the corresponding weak solutions, i = 1,2. Then, for every 7 > 0 there
exists Cr > 0 such that

(g, — u17t||%2(ﬂt%‘/éw) + o — T2(r:D(B))
< Cre“ ! (Jlua(r) = (D> + lpa(7) =1 (D), VE> 7. (5.21)

Proof. Consider the variational formulation of (3.2) and (3.3), namely,
(b, ¥) = =(VIL, Vi) = (u- Vo, ) — (u2 - Voo, 0b), VeV, (5.22)
and take ¢» € D(By). Then, for every 7 > 0 we see that there exists C; > 0 such that
((Vie, V)| = (i, By)| < elllé oy < Crllelllvlipeyy, vtz (5.23)
Moreover, we have

|(u- Ve, ) = |(u- Vb, 1) < e[ Vullllorlllldlipsyy < ClIVulllldlinsy

where in this case it is enough to use the dissipative estimate (2.8) and therefore the constant
C' does not depend on 7 but depends on h, £(zp1) and 1 only. Concerning the last term on the
right-hand side of (5.22) we have

|(uz - Vo, )| = |(uz - Vi, 0)| < e[ Vualllell[¢lpsy) < Crllellidlpsyy, — VE=7. (5.24)
Plugging (5.23)—(5.24) into (5.22), we get
leelpyy < Cr(llell + IVaull), vt > T (5.25)
Therefore, taking also (5.10) into account, we have
ot c2r p(Bayy < Cre“ (lul)l + (D), VE= 7 (5.26)

In order to obtain an estimate for ug; — w1 let us consider the difference of the Navier-Stokes
equations written for two weak solutions in the variational formulation, i.e.,

(ug,v) = —v(Vu, Vo) — b(ug, ug,v) + b(u1, ui,v)

1
- 5 (VQSO(Sol + ()02)’ U) - ((J * ‘P)Vspza U) - ((J * WZ)VQ)Oa U)v Vv € Vdi'u' (527)
Thanks to (5.15) the last three terms on the right-hand side can be easily estimated as follows

*\(Vw (01 +92),v)| < cllVallz=llellllor + @all=llv] < Crlielllvliva,

[((F )V y,0) | = [(VI ) g,0) | < el VTl llellllzll = llvll < Crllellllvliva,
[((F % 02)Vep,0) | = [(VT * o), 0)| < el VTl lleallellelllivl < Crllelllvliv,

for all ¢ > 7. Furthermore, the trilinear form can be controlled as follows:

|b(ug, ug,v) — b(u, u1,v)| = [b(ue, u,v) + b(u, ui,v)|
< ce(IVurll + [Vu|) [Vul[Voll < CoIVull Vo], VE>7.
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Combining the last four estimates with (5.27) we obtain
lully, < C(I9ull +llgl), ¥,
Thus, recalling (5.10), we deduce

luell 2z vy, ) < Cre (lu( + lle(Dll), Ve (5.28)

Finally, (5.26) and (5.28) yield (5.21).

Lemma 6. Let the assumptions of Lemma 3 be satisfied. Let uog; € Gy, vo; € H with F(p;) €
LY(Q) i =1,2. Then, for every T > 0 and every T > 0 there exists C..r > 0 depending also on
T such that

P2, (Sn(t2) 202, Sy(t1)201) < Cr 1 (pa, (Sy(T) 202, Sy (7)201) + [t2 — ta]/?), (5.29)
for all ty,ty € [T, 7 + T, where zo; = [ugi, pg;], i = 1,2.
Proof. Setting S, (t)z0; := [ui(t), p;(t)], i = 1,2, we have
Px, (Sy(t2)zo1, Sy(t1)zo1)

= ljst2) = wr(t0)] + lea(t2) = 2l +| [ Plor) = [ Flea(e)

Y2 4111 ol poe (ry00sm) [t2 — t1] + Crlly 41l Lo (00 [t2 — ti

< Crplta —ta|V?, Vi, te € [, 7+ T, (5.30)

< ”ul,tHLQ(tl,tQ;Gdiu)|t2 - t1|

where we have used (5.16). Furthermore we have

P, (Sy(t2)zo2, Sy(t2)z01)

= lua(t2) = ()] + lpatte) = 21 e2)l +| [ Floatta)) = [ Flortea)

< Cre T (lug(r) — ur (7) | + llpa(r) = o1 (D) < Crirpa, (Sn(7) 202, () 201). (5.31)
From (5.30) and (5.31) we get (5.29). 1

We now recall the following abstract result on the existence of exponential attractors [12,
Proposition 3.1]. This result, together with the lemmas above, will be used to prove Theorem
9.

Proposition 3. Let H be a metric space (with metric py) and let V,Vy be two Banach spaces
such that the embedding V1 — V is compact. Let B be a bounded subset of H and let S : B — B
be a map such that

p3; (Swoz, Swor) < vpy(woz, wor) + K| Twoz — Tworlly, Vwor, wo2 € B, (5.32)
where v € (0, %), K >0and T :B — Vi is a globally Lipschitz continuous map, i.e.,
| Twoz — Tworllv, < Lpy(woz, wor), Vwor, woz € B, (5.33)

for some L > 0. Then, there exists a (discrete) exponential attractor Mg C B for the (time
discrete) semigroup {S™}n—=0.12,... on B (with the topology of H induced on B).
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Proof of Theorem 9. Let By be a bounded absorbing set in &;,. The existence of such a bounded
absorbing set has been proven in [14]. Indeed, it is immediate to check that the argument of
[14, Proposition 4] still applies with our choice for the metric py, . Let to = to(Bo) > 0 be a
time such that S, (t)By C By for all t > ty. Due to (5.4) we can fix t* = t*(By) > to such that
Sp(t)Bo C Bzp(0,A(n)) for all ¢ > t*, where Bzp(0,A(n)) is the closed ball in ZP with radius

A(n) and A(n) a positive constant which depends only on 7. The (complete) metric space Z% is
given by

ZP = Vai x {p e WHP(Q) : [g] <}, (5.34)
endowed with the metric
dzp(22,21) = [|[Vuz = Vur| + [log — o1llwreq),  Vzii=[ui, 9] € 2,  i=12

Note that the terms in the integrals of F'(¢;), F(¢,) are omitted in the metric since, for p > 2,
we have the embedding W1P(Q) < C(9Q).
Let us now set

Then, B; is bounded in Z} and positively invariant for S, (¢). It is easy to see that it is also

absorbing in X,,. Indeed, if B is a bounded subset of &, and tg = to(B) is such that .S, (t9) B C By,

then we have S, (t)B C Ur>¢+Sy(T+10)B C Ur>¢= Sy (1) By =: By, for all t > to+t*. Furthermore,

we set B := 5, (1)By. Then, B C Bzy (0,A(n)) is positively invariant and still absorbing in A;,.
By choosing 7 = 1 in Lemma 4, then (5.18) can be written as follows

P2, (Sy(t)z02, Sy(t)z01) < Cre™2py (Sy(1)202, Sy(1)z01)
+ G118y () 202 — Sy(Dzo1ll 2 Gy, YE=1, Vo1, 202 € A, (5.35)
where C1 > 0 depends only on &(z01), £(202) and 1. From (5.35) we therefore get
Px, (Sy(t = L)wog, Syt — L)wor) < Cle_kt/sz,, (woz2, wor)
+ C11Sy(-)woz2 — Sy()worll £2(0,t—1:Guse x H)» vt > 1, Vw1, wo2 € B. (5.36)

Observe that, since wo; = S(1)z0i, with zo; € By, i = 1,2, and By is bounded in Z, then C;
does not depend on wg1, woe.

Choosing 7 = 1 also in Lemma 3 and in Lemma 5, and combining (5.10) with (5.21) we can
write

15 (-)z02 = Sn () 201721 45175 1) + 106S0(-)202 = 06y () 201l 721 v

w*xD(BN)")
< Clecltp%(n (Sn(l)ZOQ, Sn(l)Z(]l), vt > 1, VZOl, 202 € Xn. (537)
Thus we find
15 (Ywoz = Sy(YworllF 20 1,5 x 1) + 10680 (Jwoz = 8eSy(YworllF 2o —1v7 < ()Y
< Clecltpgz,, (wo2, wo1), vt > 1, Vwor, wo2 € B, (5.38)

where, as pointed out above, the constant C; does not depend on wp; and wqs.
Let us now introduce the following spaces

H = Xn :Gdiv Xyn
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Vi = L*(0,T; Vaip x V) N HY(0,T; Vg, x D(By)')
V= L*0,T;Ggin x H),

with T > 0 fixed such that C’lefk(T“)/2 < 1/2, where C; and k are the same constants that
appear in the first term on the right-hand side of (5.36). Notice that, due to the Aubin-Lions
lemma, V; is compactly embedded into V.

Then, take S := S5, (T) and define a map 7 : B — V; in the following way: for every wo € B
we set Twy := w = Sy(-)wp, i.e., w € V; is the (strong) solution corresponding to the initial
datum wyg.

It is now easy to see that choosing the spaces H,V,V;, the set B, and the maps S, T as
above, then the conditions of Proposition 3 are satisfied. Indeed, (5.32) and (5.33) follow from
(5.18) and (5.38), respectively, both written for ¢t = T + 1.

Therefore, Proposition 3 entails the existence of a (discrete) exponential attractor ./\/lﬁl] CcB
for the (time discrete) semigroup {S"}n=0,1,2,.. on B (with the topology of # induced on B).
Since B is absorbing in H, then the basin of attraction of Mg is the whole phase space H.

In order to prove the existence of the exponential attractor M, for (X, S,(t)) with con-
tinuous time we observe first that (5.29) written with 7 = 1 (the time T is chosen as above)
yields

P, (Sy(t2 — Dwoz, Sy(ts — Dwor) < Cl,T(PX,, (wo2, wo1) + |t2 — tﬂl/z)a

for all wo1, we2 € B and for all ¢1,t2 € [1,1 4 T]. Hence

P2, (Sn(t" ) woz, Syt )wor) < Crr(px, (woz, wor) + [¢7 = ¢/[1/?),

for all wo1, w2 € B and for all t”,¢" € [0,T]. Therefore, the map [¢,2] — S,(t)z is uniformly
Holder continuous (with exponent 1/2) on [0,7] x B, where B is endowed with the H—metric.
Therefore, the exponential attractor M,, for the continuous time case can be obtained by the
classical expression
My = U Sn(t)/\/lﬁ,
t€[0,T

and this concludes the proof of the theorem.

We conclude by proving the existence of exponential attractors when the viscosity v depends
on ¢, that is, v is locally Lipschitz on R and there exist 1 > 0 such that

v(s) > vy, Vs € R. (5.39)

In view of Theorems 5 and 6 we can define a dynamical system by using strong solutions.
Indeed, taking d = 2 and h € Gy, we have that for every fixed n > 0 system (1.3)—(1.5)
generates a semigroup {Z,(t)}+>0 of closed operators on the metric space ;) given by

Ky = Vaiw x {v € H*(Q) : [7] < n}
endowed with the (weaker) metric
o(z2,21) = llug — |l + lo2 — @1ll,  Vai == [us, 0] € Ky, i =1,2.
We are now ready to state and prove the following.

Theorem 10. Assume (H1), (H3)-(H5) and (5.39). Consider either J € W(Bs) or J admis-
sible. The dynamical system (ICy, Z,(t)) possesses an exponential attractor &, which is bounded
in Vg x H% (Q) such that the following properties are satisfied:
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e positive invariance: Zy(t)E, C &, for allt > 0;
e finite dimensionality: dimp (&, Gaiw x H) < 00;

e cxponential attraction: 3 Q : RT™ — R increasing and k > 0 such that, for all R > 0 and
for all B C K,, with sup,cpp(2,0) < R there holds

distic,(Zy(t)B, &) < Q(R)e™", vt > 0.

Proof. Step 1. We will briefly show that a dissipative estimate like (5.4) still holds for the strong
solution of (1.3)—(1.5) under the assumptions of the theorem. More precisely, the following
estimate holds

t+1
IVa(®)] + () 120y + / () 2 eds < O(m), Wt > (5.40)

for some positive constant © independent of the initial data and time, and some time ¢4 > 0
which depends only £(2¢). In order to get this estimate, first we recall estimate (2.8) by Theorem
1 which also holds for nonconstant viscosity. The proof of (5.40) follows immediately from the
proof of Theorem 5. Indeed, we observe preliminarily that (5.5), (5.6) and (5.8) already hold
uniformly with respect to time and initial data in the nonconstant case, i.e., there exists a time
ty > 0, depending only on £(2), such that

@ € L™ (ty,00; L= () N V)N W (ty, 00; H) (5.41)
and

Sup lllesras (genxa) < O0)- (5.42)

In particular, this regularity allows us to obtain that uniformly

2

).

This can be done by arguing exactly in the same fashion as in the derivation of estimates
(4.18)-(4.21), with the exception that the constant R > 0 is such that

€ L (ty,00; L () NV), 1 € L*(ty,o0; (L* (Q))

esssup [[¢ ()]l < R.
t€(ty,00)

Then, we can employ the same procedure as in the proof of Theorem 5 (with a function @ =
Q@ (R) > 0 which is now independent of the initial data, by (5.41)-(5.42)) to deduce by virtue of
the uniform Gronwall lemma (see [34, Chapter III, Lemma 1.1]) that

u € L™ (ty,00; Vigin) N L2(ty,00; HX(Q)?),  uz € L (ty,00; Gain), (5.43)

for some t, > 1 depending only on tx. Finally, arguing exactly as in the proof of Theorem 5 we
deduce p € L™ (t*, oo H 2(Q)) uniformly with respect to time and the data. Note that estimate
(5.40) entails the existence of a bounded absorbing set By C KC;, for the semigroup Z,(t).

Step 2. As in the proof of Theorem 9, it will be sufficient to construct the exponential
attractor for the restriction of Z,(t) on this set By. Thus, it suffices to verify the validity of
Lemmas 4 and 5 for the difference u = ua — u1, p = ¢y — p;, where (u;, ;) is a (given) strong
solution and i = 1, 2. The first one is an immediate consequence of estimate (4.55) (see the proof
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of Theorem 6) and the application of Poincaré-type inequalities (5.19) (see the proof of Lemma
4). Indeed, in the nonconstant case we have

lu)I* + o)

< C(lu(m)I? + lle(r)1?) e + C/ (lus)I? + lle(s)*)ds, V=, (5.44)

for some constant C' = C; > 0, where (u; (7),¢; (7)) € Ba for each i = 1,2. For the second one,
we observe that in order to estimate u; := ug ¢ — u1 ¢, we have

(ur, v) = =(v (p2) Vu, Vo) = (v (1) = v (p2)) Vur, Vo)
— b(UQ, ug, U) + b(ul, ui, U)

— 5 (Vagles +92),0) — (75 9)Va,0) — (T @2)Vi0),  (5.49)

for all v € W = (H?** (Q))2 N Vigin and some € > 0 (such that the embedding H?T¢ C W
holds). While all the terms on the right-hand side of (5.45), with the exception of the first two,
can be word by word estimated exactly as in the proof of Lemma 5, we notice that assumption
(5.39) and the essential L>°-bound on ¢ yield

(v (p2) Vu, Vo) | < Cf[Vul[ [ Vo], (5.46)
(v (1) = v (92)) Vur, Vo) | < Ol [[Vur | [vll g2 -

Thus, we easily get
lutlly < C(IVull +[lell), vtz (5.47)

which together with (4.55) and (5.25) yields the following estimate

e (8) 2agr-evny + 1011 B2 aspginyy < CeC (@I + lp(DI2), Ve=7.  (5.48)

Estimates (5.44) and (5.48) convey that a certain smoothing property holds for the difference of
any two strong solutions associated with any two given initial data in Bs.

Step 3. It is now not difficult to finish the proof of the theorem, using the abstract scheme
of Proposition 3 by arguing in a similar fashion as in the proof of Theorem 9. The differences
are quite minor and so we leave them to the interested reader. i

Remark 5. On account of [16, Proofs of Proposition 1 and Lemma 3] and (4.37), using uniform
Gronwall’s lemma (see [34, Chapter III, Lemma 1.1]), it is possible to show that any weak
solution becomes a strong solution in finite time. We remind that this property is based on
the validity of the energy identity (2.7). Indeed, estimate (5.40) ensures that, given a weak
trajectory z starting from zg € A&, (cf. (5.1)), there exists a time t* = t*(zp) > 0 such that
z(t) € Bi(A(n)) for all t > t*, where By (A(n)) is the closed ball in the space Vg, x H?(f)
with radius A(n) and constraint [@| < 7. Let us briefly mention some consequences of this
property. First, the global attractor of the generalized semiflow on A}, generated by the problem
with nonconstant viscosity (see [14]) is bounded in Vi, x H?(2). Therefore we can show the
validity of a smoothing property (cf. (5.44) and (5.48)) on the global attractor and deduce
that it has finite fractal dimension. Moreover, the regularizing effect also allows us to prove the
precompactness of (weak) trajectories (see [16, Lemma 3]). This is an essential ingredient to
establish the convergence of a weak solution to a single equilibrium which can be done along the
lines of [16, Section 5.
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6 Conclusions

Uniqueness of a weak solution was proven for the nonlocal Cahn-Hilliard-Navier-Stokes in two
dimensions with constant viscosity. This result holds either for a regular or a singular potential
and also for singular potentials and degenerate mobility. Uniqueness of weak solutions seems
out of reach if viscosity in the Navier-Stokes equations depends on ¢. Therefore we established
first the existence of a strong solution, a nontrivial result in itself. Then we show weak-strong
uniqueness. This was done by assuming constant mobility and regular potential. In the case
of constant viscosity and singular potential, the existence of a strong solution seems difficult to
obtain. However, this can be achieved when the mobility is degenerate, provided some natural
assumptions are satisfied (though we gave no proof here). On account of this, weak-strong
uniqueness can also be demonstrated for nonconstant viscosity, degenerate mobility and singular
potential. In the last section we investigated the global longtime behavior of the corresponding
dynamical system. Uniqueness of weak solutions allowed us to prove the connectedness of the
global attractor whose existence was obtained elsewhere. Then we established the existence of an
exponential attractors for weak solutions (constant mobility and regular potential). Finally, in
the case of variable viscosity, we showed that an exponential attractor can be still constructed by
using strong solutions. These last two results essentially depend on the continuous dependence
estimates which entail uniqueness.
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