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1. Abstract

In clinical studies, during follow-up several kinds of events 
related to disease progression may be observed. In the semi-
competing risks setting, some events, such as death, may prevent 
the observation of disease progression, thus acting as competitors 
for the event of interest. Methods of analysis specific for semi-
competing risks data referring to marginal distribution of the 
non-competing events constitute a recent area of methodological 
research which has received a great impulse in latest years. 
However, in clinical applications the analysis is traditionally 
based on crude cumulative incidences, and inference on marginal 
distributions is seldom considered, even when the principal aim 
concerns the probability of observing disease progression and 
death occurred without progression is a “nuisance”. Aim of this 
work is making a comparative review of semi-parametric marginal 
and sub-distribution methods of analysis, with particular reference 
to marginal regression models based on copulas. More specifically, 
two structures were considered for marginal models: in the first 
one all parameters are time-dependent, while in the second one 
parameters vary with covariates but does not depend on time. 
Applications to breast cancer clinical trial data and to a simulated 
dataset are reported, to show the differences and the similarities 
among marginal and sub-distribution approaches. Results 
highlight that, when the competing event acts during the whole 
follow-up, the marginal approach became essential for the correct 
estimation of marginal incidences and covariate effects. Regression 
methods based on copulas are promising, however there is a need 

of refinements concerning model building strategies, and, of 
standardized software routine for the practical application of these 
methods.

2. Keywords: Semi-competing risks; Dependent censoring; 
Copula models; Time-indexed dependence structure; Net 
incidence; Crude cumulative incidence; Progression-free survival

3. Introduction

In several clinical settings the course of a disease is characterized 
by the occurrence of different unfavorable events during follow-up 
which can be ended with a terminal one (death).  For each patient 
the event history is then recorded by the time to occurrence of each 
event starting from the beginning of the treatment or the disease 
diagnosis until the occurrence of the terminal event or the date of 
the end of the study.

The evaluation of treatment efficacy or the identification of 
prognostic factors are based on events which can be considered 
related to the disease and frequently grouped as a composite end-
point (named usually “disease progression”). The time to disease 
progression is the time elapsed from the beginning of follow-up 
to the occurrence of the first evidence of progression, which is 
clinically interpretable as the first evidence of treatment failure. In 
the case of severe diseases, disease progression is expected to be 
observed for all patients before death, whose cause can be likely 
attributable to disease itself. On the contrary, such a condition 
does not occur for non-severe diseases, where long-follow-up is 
available and a patient can die without disease progression being 



observed. The impact of mortality without disease progression is 
particularly relevant when the age at disease onset is greater than 
50 years: in fact severe comorbidities which are not related to the 
investigated disease become more common with increasing age 
reducing patient’s life expectancy. As an example, this is the case 
of early breast cancer where death without tumour recurrence is 
cited in several studies [6, 40] and in some studies it is analyzed as 
a specific end-point [42]. It is a matter of fact that in most studies 
disease progression is the primary end-point and the occurrence 
of death before disease progression is not an event of interest.  As 
its occurrence prevents the observation of the primary end-point, 
death is considered a competing risk and it is not further investigated 
(several examples of this attitude can be found in breast cancer 
prognostic studies, see [21])  In such cases the statistical analysis 
is focused on the probability of occurrence of disease progression 
before death during follow-up (sub-distribution, indicated usually 
as crude cumulative incidence (CCI): [28]). 

In a different perspective the marginal distribution of time to 
progression is of interest; thus a bivariate distribution of time 
to death and time to progression is of concern.  The clinical 
interpretation of marginal distribution is the probability of disease 
progression in a condition where death cannot censor time to 
progression (i.e. disease progression would be observed for all 
patients). Concerning time to progression and time to death 
only the latter may compete with the first one to be the observed 
event, but no vice versa, and this setting is called “semi-competing 
risks” [14]. In this setting, occurrence of death without disease 
progression causes incomplete data on time to progression, 
therefore preventing the estimation of the bivariate distribution.  
As a consequence, the marginal distribution of time to disease 
cannot be estimated without making assumptions on the bivariate 
distribution.  

Although, historically, the main aim of competing risks analysis 
was seen as the estimation of the marginal distributions [8] 
the sub-distribution approach is the most applied one.  From a 
statistical perspective this approach is advantageous because crude 
cumulative incidence can be directly estimated from incomplete 
data and does not require assumptions about the dependence 
structure between time to events. On the contrary, the estimation 
of marginal distribution requires the knowledge of the bivariate 
distribution, which cannot be estimated from incomplete data. A 
wide literature about methodological research on crude incidence 
functions is available. The most diffuse methods in clinical 
applications are: extensions of log-rank test to compare crude 

incidence distributions [18] and semi-parametric regression 
models, which can be considered as extension of Cox model for 
competing risks [13]. These methods are implemented in statistical 
software and tutorials on clinical journals suggest the appropriate 
application and interpretation of results [29]. The clinical 
application of analysis based on marginal distributions is more 
controversial because the interpretation of marginal probability 
seems to be based on strong clinical a priori considerations on 
disease course which cannot be tested. Nevertheless, in some 
clinical papers the probability of being free form disease progression 
is roughly estimated by Kaplan-Meier method, considering time to 
death without progression as censored, under the assumption of 
independence between time to progression and time to death [36]. 
This attitude suggests a potential clinical interest in the marginal 
probability.  Since in several clinical settings independence between 
time to disease progression and time to death cannot be assumed, 
the correct procedures of estimation of marginal probability are 
more complex than the use of Kaplan-Meier curves, as above 
described. 

In the semi-competing risks setting fully non parametric 
methods cannot be applied, and a simple estimation approach 
is based on assumed bivariate structures (copulas) with non-
parametric marginal distributions. Starting from year 2000, several 
methodological papers deal with the use of copula functions in 
estimating the marginal distribution of a non-terminal event 
censored by a terminal one [14,26,30,49]. The structure of copulas 
involves a parameter which is related to the dependence between 
the time to terminal event and the time to non-terminal event. This 
is a further advantage of the model because of the clinical interest 
on this feature. At the best knowledge of the authors, inference 
methods based on copulas for assessing covariates effects on 
marginal distributions have been proposed by regression models 
[4,22,23,33]; some of them by quantile regression [24,25]; and one 
taking into account of clustered data [34]. For sake of simplicity 
we consider proposals of semi-parametric regression models by 
[4,22,23,33]. Although the models we considered are based on the 
Clayton copula, parameter constraints and estimation methods 
differ, thus results depend on the specific method used.  

The aim of the present work is to compare and to discuss data 
analysis of crude cumulative incidence and marginal incidence 
when semi-competing risks are of concern. For each model, 
parameters interpretation will be pointed out allowing the reader 
to have a correct interpretation of results. Moreover, pro and cons 
will be pointed out for the different approaches. To the above 
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ends,  a practical application will be shown using data on a breast 
cancer clinical trial where information about 15 years follow up 
are available. Moreover, to have a deeper insight, simulated data 
were used where the times to non-terminal and terminal events 
compete along the whole follow-up. 

4. Methods

This section is organized as follows: in the first paragraph, the 
functions of interest - i.e. survival functions, cumulative incidences 
and instantaneous rates - for each of the sub-distribution and the 
marginal approaches, will be discussed. In the second paragraph 
the basic properties of copulas will be sketched, in order to provide 
the necessary basis for interpretation of applied regression models. 
In the third one, semi-parametric methods of analysis will be 
reviewed, including the recent proposals cited in the introduction. 
The focus will be on the bivariate context, in which only two events 
are considered. This choice will allow to discuss the topics of 
interest for the purposes of this paper without substantial losses 
of generality. For more details on the statistical methods discussed 
here, readers are referred to the following textbooks: [8,28,38] and 
to the other references provided in the followings. 

4.1. Probabilistic Functions of Interest

The non-terminal and the terminal event will be indicated by the 
letters X and Y, respectively. Let TX and TY be the corresponding 

occurrence times. Let  
be the bivariate survival function of (TX , TY), with 

respective marginal:  and 

. The corresponding hazard 

functions will be indicated by:  and . Let also C be 
the censoring time, which will be assumed to be independent of 
both TX and TY. The information about the first observed event 

among X and Y is “stored” within the variable: ; 

and the functions:  and ; where I(.) 
represents the indicator function. Covariates are indicated by the 
matrix Z with N rows (subjects) and K columns (covariates).

The sub-distribution approach is mainly concerned with assessing 
the probability of occurrence of each event as the first one. In 
this context cumulative probabilities, frequently called Crude 
Cumulative Incidences (CCIs), are expressed through the sub-
distribution functions: 

  .	                          (1)	

	 A distinctive feature of  and  is that they do 
not represent proper distributions. This property is shown by using 
the relationships with the distribution of the first event‘s time T: 

=  +   for each t ≥ 0: as a consequence, for t tending 
to infinity the two functions cannot reach the upper limit of 1. 
Hence the name “sub-distribution”.

Closely related to the sub-distribution functions, sub-hazard 
functions represent the instantaneous rates of the events of 
interest. The definition is given below for the non-terminal event 
(an analogous formula, with term Y in place of X, holds for the 
terminal event) : 

 =	  , .              (2)

This expression represents the instantaneous rate (i.e. the “hazard 
function”) of TX based upon a risk set which includes (see the 
expression on the right side of the conditioning symbol: | ) both 

the subjects withouth no event observed until t (in symbols:  
) and the subjects who have “failed” before t for events other than 

X (in symbols:  ). It must be underlined that this 
interpretation could be realistic in contexts where events other than 
X does not terminate the event-hystory of the subject.  However, 
this is not the case, in general, in competing and semi-competing 
risks settings. In fact, in the present case expression (2) implies that 
among subjects who did not experience the non-terminal event X 
before time t, those who experienced a terminal event, e.g. death, 
would be still considered at risk for X at t. From this considerations 
it follows that the definition of sub-hazard function is not realistic 
when a terminal event (at least one) can modify the “history” of 
subjects within the target population. 

The relationship between sub-distribution and sub-hazard 
functions is given by:

;		        (3)

which is equivalent to:   

   with: .	 (4)

Expressions (3) and (4) are fundamental for the parameters 
interpretation of CCIs regression models: see the following 
paragraphs. 

In contrast to the sub-distribution hazard, the cause-specific (CS) 
hazard represent the instantaneous rate of event times in subjects 
who are event‐free:
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	 .

This definition implies the lack of a direct relationship with the 
sub-distribution function, which may hinder the interpretation 
of covariate effects in CCIs regression models see, e.g., Di Serio 
(1997).  

Concerning the marginal approach, the functions of interest, also 
called net functions, are the marginal survival and the marginal 

hazard function of the non-terminal event:  and . 
In fact, for the terminal event standard univariate methods (e.g.: 
Kaplan-Meyer curves, Cox regression) may be used, because all 
pertinent observations are available. In this framework standard 
relationships between cumulative probabilities and hazard 
functions hold:

. 

We are confident that such expressions are well known to the 
potential readers, so we will avoid to discuss them further. Within 

the semi-competing risks setting   and   represent 
the marginal survival and the marginal instantaneous rate of TX: 
therefore, no “external influence” - that is, no event that could 
influence the occurrence of X or modify the risk set - is accounted 
for. This interpretation intrinsically refers to a hypothetical context 
in which the non-terminal event would not be censored by the 
terminal one, and thus it would be observed for all subjects. This 
could be of interest for researchers who want to investigate, for 
example, the progression of a disease in a population, by removing 
any possible source of nuisance. The clinical meaning of net and 
sub-distribution functions has been widely discussed, for example 
see: [7,19,38].

Theoretical relationships between sub-distribution functions and 
net functions have been thoroughly investigated. The key point 
is that under general conditions net functions are not directly 
estimable from incomplete data, while sub-distribution functions 
are [44]. Exact relationships that allow to bypass this issue are 
available under the assumption of independence between Tx and 

Ty: for example,  it may be shown that . Such 
relationships, however, are not a distinctive feature, because 
they may also hold true for dependent event-times. More in 
general, sub-distribution functions may be used to derive lower 
and upper bounds for the net functions. The most general result 
has been obtained with Peterson’s bounds [35]; however, it is 
recognized that often such bounds are too broad for being useful 

in applications.  Several refinements of Peterson’s bounds have 
been proposed in literature. A detailed discussion of this topic 
is beyond the purposes of this paper, but it is worth mentioning 
that, as a general rule, narrower bounds require more restrictive 
assumptions. In conclusion, relationships between net functions 
and sub-distribution functions may not always be useful for 
making inference on the former ones. To quote Crowder: << it’s 
possible to have a pretty good picture of the >> [sub-distribution 
functions] << without this picture’s telling you much about the >> 
[joint or the marginal distributions] [7].

4.2. Distributional Models Specified Through Copulas 

The theory of copulas provides peculiar models for the multivariate 
distribution of event times, where the joint survival function (n 
is expressed as functions of the respective marginals. Then, a 

general expression for the bivariate survival function is:  = 

; where  is a “grounded” non-

increasing function (a survival copula) with parameter . For more 
theoretical details, see [15]. The most frequently adopted model is 
the Clayton copula [5], whose expression is:

. 	    	 (5)

Like copulas in general,   and  can be specified by 
either parametric or non-parametric functions. In each case, for 

given  and , the value of the parameter  determines 
the particular expression of the bivariate survival function: thus 

 “tunes” the dependence between event times. For example, 
for the Clayton copula it may be shown that, whichever the 
expressions of the marginals, the “independence distribution” 

 is obtained for  → 1. Furthermore, 

as a general result  is linked to correlation coefficients, even 
though explicit formulas are available only for particular copula 
models. For example, for the Clayton copula, the following 
relationship holds with Kendall’s correlation coefficient:  

 = 		  (6)

  thus showing a direct link with the degree of correlation between 
TX and TY. Note that in the expression above, incorrelation (that is, 

τ = 0) is easily obtained for  =1.

In the context of multivariate survival analysis, also including 
the competing and semi-competing risks settings, a large variety 
of copulas provides the means for flexible specification of 
distributional models. In order to obtain additional flexibility, the 
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models previously shown may be extended, by letting the copula 
parameter  depend on time or on covariates and specifying 
regression models for the marginal distributions. These extended 
regression models will be illustrated in the following paragraph.

4.3. Statistical Models for Evaluating Covariate Effects

For the sub-distribution approach, non-parametric estimates of 
CCIs may be obtained by estimators akin to the Kaplan-Meyer 
estimates in univariate survival analysis [3,18] is usually performed 
for comparing cumulative incidences among two or more sub-
groups. The regression method proposed by [13] is the most 
widespread in applications. The Fine and Gray model is formulated 
in terms of proportional sub-distribution hazards: 

   ;	                               (7)

where  is an unspecified baseline sub-hazard, depending only 

on t, and the effect of Z consists in a multiplication of  for 
a proportionality constant. For each covariate, the magnitude of 
effect is expressed in terms of sub-hazard ratios: for example, for 
a categorical covariate, say Zk, with modalities: z0, z1, …, zM-1; and 
codified with M-1 dummy variables, then: 

HRX(m) =  = ;		  (8)

where βm is the regression coefficient associated to the m-th dummy 
variable. These hazard ratios express the relative variations of the 
sub-hazard between subjects with Zk=zm and Zk=z0 (reference 
category), all the remaining covariates remaining constant.  By 
similar arguments, when Zk is numeric the hazard ratio HRX = 

 quantifies the variation of  the sub-distribution hazard due 
to a one unit increase of Zk., all other covariates remaining constant. 

By using expressions (2) and (3) the model (7) may be equivalently 
expressed in terms of sub-distribution functions:

;

with: . This expression shows that any 
increase (decrease) of the sub-distribution hazard due to covariates 
corresponds to an increase (decrease) in CCIs. However, as pointed 
out, amongst others, by Austin and Fine (Austin and Fine 2017), the 
amount of increase (decrease) is not the same in the two contexts: 
thus, the HR in expression (8) cannot be interpreted as a measure 
of relative incidence. 

In the semi-competing risks setting, observable event times 

are expressed through the variables:  and 

 . In a geometrical perspective, the couples  

( ,  lie in the region  . 

Furthermore, by recalling that  , it may be noticed 

that the net survival  lies outside the “observable region” W 
: this is a distinctive feature that makes estimation of net functions 
a non-standard problem.

In Fine et al’s paper [14], an estimation procedure for marginal 
incidence of non-terminal event  was proposed, which can be 
considered the base for the subsequent regression models. The 
estimation procedure does not require assumptions  about the 

shape of  outside the observable region. The distributional 
model can be defined as follows:

The model corresponds to the Clayton copula (5) in the observable 
region (W), whereas outside such region it corresponds to an 

unspecified survival function: . For estimating the 

net survival , a useful formula is derived by inverting the 
expression of the Clayton copula for tx=ty=t: 

   	             (10)

The function  above is related to the distribution of the first 

event time T:  =  =  = 1- . [14] 

propose a consistent estimator for , obtained by plugging in 

consistent estimators of ,  and  in then above expression. 

Of note, consistent estimators of  and  may be obtained, 

for example, by the Kaplan-Meyer method.  For estimates of  
fulfilling the above requirements, several alternatives are available: 
e.g. those in [14,30].

In subsequent works (Peng and Fine 2007, Hsieh and Huang 
2012, Chen 2012) semi-parametric regression methods have been 
proposed, assuming more general dependence structures than in 
expression (9). In the first two proposals [23,33] the general model 
allows dependence of the copula parameter on event times:  

.      (11)	
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For example, model (9) may be obtained as particular case of this 
expression by letting C( . , . , . ) be the Clayton copula (expression 

(5)), and  = θ. Marginal survival functions are represented 
through transformation models [9]:

  . 	                     (12)	
where g(.) and h(.) are monotone, differentiable and invertible 

functions, and  and  indicating time-dependent effects 
of covariates. For example, by using the complementary log-log 
(cloglog) function, the net survival function for the non-terminal 
event has the following explicit form:

. 	            (13)

According to this expression, the parameters are interpreted 
in terms of log-hazard ratios for the net cumulated hazards of the 
non-terminal event:

HRX(m)(t) =  = ;         (14)

with . Of note, in this approach the 

baseline cumulative hazard (  in expression (13)) is estimated 

at each t along with   and  (the latter one is estimated 
in a limited sub-region: tx=ty=t). Concerning estimation methods, 
Fine et al proposed a procedure based on generalized estimating 
equations, while Hsieh and Huang used a conditional likelihood 
approach. In both proposals, model parameters must be estimated 
separately for each observed event time. This requires the 
extra “working” assumption of independence among estimates 
across time, as in the context of longitudinal data analysis [47]. 
Furthermore, in both the proposals a consistent estimate of 

regression parameter  (expression 12), obtained e.g. with a 
Cox model, must be “plugged in” in the estimating equation or the 
conditional likelihood. This feature is analogous to the method by 

[14] which requires consistent estimates of ,  and  in 
the copula model (expression 10).

In [4] the dependence structure is determined by choosing a specific 
copula, e.g. Clayton, but the copula parameter (here indicated by: 

) depends on covariates:

	   	            (15)

This model could be useful, for example, when the target population 
may be divided in two or more strata with heterogeneous 
characteristics. Marginal distributions are specified through 

transformation models for counting process theory [48]: 

  .                (16)

where RX and RY represent the event-history before time t, and 
Gx, GY are non-negative, strictly increasing and continuously 
differentiable. Here regression parameters – i.e.: βX and βY – do not 
vary with time.  As previously discussed, transformation models 
allow to specify several distinct models for the survival function. 
Proportional hazard models are included as a particular case, 
allowing the interpretation of estimates in terms of net hazard 
ratios, as in expression (14). The method of estimation is Non-
Parametric Maximum Likelihood (NPML), thus estimates are step 
functions, like in the methods previously discussed. However, in 
the NPML method a full Likelihood function is defined, which 
includes all model parameters, thus allowing to estimate them 
jointly.

5. Application   

5.1. Plan of Analysis for Breast Cancer Data 

Data were collected from 567 women with small, non-metastatic 
primary breast cancer who were recruited in a randomized 
controlled clinical trial at the National Cancer Institute in Milan 
between 1985 and 1989, submitted to surgery and subsequently 
followed for a period of 15 years [46]. Surgery was either 
quadrantectomy (QUAD) or quadrantectomy plus radiotherapy 
(QUART); complete information about this trial can be found in the 
reference above. For illustrative purposes, we report the application 
of the methods so far discussed, with the aim of evaluating and 
comparing the incidence of the first among several types of cancer 
related event of women in QUAD and QUART groups. The cancer-
related events were: recurrence of breast tumour, omolateral or 
contralateral breast carcinoma, primary tumours in other site 
and regional or distant metastases. Overall, such events can be 
considered as manifestations of tumour progression: therefore, for 
the purposes of the present work they were grouped in a composite 
event. i.e., tumour progression. The terminal event was death. 

Statistical methods described in the previous chapter have been 
applied. Differences of cancer progression incidence between the 
two experimental arms (QUAD, QUART) were assessed mainly by 
regression models. To such end, type of surgery was considered 
as categorical covariate and included in regression models by a 
dummy variable, with QUAD as reference category. Furthermore, 
for specifying transformation models, we used the cloglog link 
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(expression (12)) and the identity link (expression (16)), so that 
to have proportional hazard type expressions for the marginals. 
Results of regression models were reported in terms of estimates 
of regression parameters and net hazard ratios (expression (14)), 
estimates of copula parameters, and estimates of net cumulative 

incidences of cancer progression: ; where  
is the marginal survival included in the model in expressions 
(11) and (12), or in the model in expressions (15) and (16). The 
goodness of fit of the models in expression (9) and in expressions 
(11) and (12) was evaluated by a graphical procedure specific for 
these models [33]. In this procedure, the estimates of the survival 

function for the first event (  ) derived from the fitted model 
are plotted against other estimates obtained by semi-parametric 
methods. In the figure, points eventually distant from the diagonal 
highlight disagreement between the two estimates, and, therefore, 
potential lack of fit of the copula model. An empirical check of 
the proportional marginal hazards was performed by plotting the 

estimates of log(-log( )) obtained for model (9) versus log(t), 
separately for QUAD and QUART groups. The analyses were 
performed using R release 3.5.0 (R core group 2018) and Knime 
Analytic Platform version 3.6.0 [2], except for estimation of the 
Chen model (expressions (15) and (16)), which was performed 
using Matlab release 2019a [43].

5.2. Simulated Data 

Data were generated for a sample size of 2000 observations, divided 
in two subgroups, say, group A and B. The distributional model was 

a bivariate Clayton copula with =3 (corresponding to Kendall’s τ 
equal to 0.5). For the non-terminal event (say, cancer progression) 
we assumed an exponential marginal distribution with parameter 
1/3, and a regression parameter β=2 in order to specify a higher 
instantaneous rate of events in group B than in group A. For the 
terminal event (say, death not related to cancer) we assumed an 
exponential marginal distribution with parameter 1/3 and a 
regression parameter β=1.5 (as before, specifying higher incidence 
in group B). This model represents a scenario in which the 
competing effect of terminal events acts within the whole follow-
up. CCIs were estimated by the Fine and Gray model. Marginal 
distributions were estimated by the method of Hsieh and Huang.

5.3. Results for Breast Cancer Data 

During a follow-up period of 15 years, cancer related events 
occurred to 123 women over 273 in the QUAD experimental arm, 
and to 99 over 294 in QUART. In QUAD, 67 women deceased, 57 
of which after having experienced cancer related events, and 10 

without previous cancer events. In QUART 60 women deceased, 
53 with and 7 without previous cancer events, respectively. The 
first “conventional” approach was to consider cancer progression 
as first observed event. Non-parametric estimates of the respective 
CCIs are reported in (Figure 1). It may be seen that the CCIs for 
the QUART group (surgery plus radiotherapy) are lower at each 
time with respect to the QUAD group. The result of the Gray test: 
p=0.0018; indicates a significant difference of CCIs between the 
two groups. Furthermore, both the curves increase less steadily 
after about seven years from surgery, and become flat at about ten 
and eleven years, respectively for QUAD and QUART, as very few 
(n=4) cancer-related events were observed in the later follow-up 
period.  The estimated sub-hazard ratio of cancer progression from 
the Fine-Gray model is 0.66 (95% C.I.:  0.51-0.86), indicating a 
lower hazard in QUART as compared to QUAD (reference category 
in the regression model).  

Concerning the net incidences, we first considered the Clayton 
copula model (9). The model was fitted separately for QUAD and 

QUART groups. Estimates of the copula parameter  are 6.2 and 
13.0 for QUAD and QUART respectively. Since this parameter is 
unbounded on the right, it seems more convenient to consider the 
corresponding values of Kendall’s tau (expression (7)), which are 
0.72 and 0.86 respectively.  Such values suggest a high correlation 
between time to progression and time to death, in particular for 
the QUART group. It must be recalled that the Clayton copula is 
assumed only in the “observable region” (see expression 9): thus 
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Figure 1: estimated CCIs of cancer related events with respective 95% 
Confidence Intervals 
Solid lines: estimates, dashed lines: lower and upper 95% C.I.s. Black: QUAD; grey: 
QUART.



the estimates above cannot be interpreted as global correlations 
between event times. However, such estimates suggest strong 
dependence, and, consequently, inappropriate use of Kaplan-
Meyer methods for estimation of net incidences.  

In (Figure 2A) there are reported the estimates of the net cumulative 
incidence of cancer progression, together with the estimated 
CCIs previously shown. Net incidences are higher in the QUAD 
group. Within the figure evident differences between net and CCI 
estimates emerge only at later follow-up times, that is, after about 
ten years. In fact, before ten years’ times to death are preceded by 
times to progression in the majority of cases, while after this period 
few cancer progressions are observed and causes of mortality are 
those expected to act in the same cohort population. Thus, CCI 
curves become flat, while, on the contrary, net incidence estimates 
increase. In the empirical check of proportional hazards for the 
two treatment groups (Figure 2B) no evidence emerged against the 
proportional hazards assumption. Finally, it is worth of note that 
no evidence of lack of fit of model (9) was shown in the diagnostic 
plot (Figure 2C). 

The model specified by expressions (11) ad (12) was fitted by the 
Hsieh-Huang estimation method. We recall that for this model both 
regression and copula parameters vary with time, and estimates 
are calculated separately for each time. Estimates of regression and 
copula parameters and baseline cumulative hazard are reported in 
(Figure 3). First, we note that estimates of the cumulative hazard 
in the baseline group (Figure 3C) show a substantial decrease in 
later follow-up times. This is not admissible for a cumulated hazard 
function, which by definition is non-decreasing. In this case this 
may be happened because parameters are estimated separately 
without monotonicity constraints. However, in the current case 
only 4 cancer progressions were observed in the later follow-up 
(against 17 deaths), thus the above issue cannot be attributed to 
the performances of the estimation procedure, but, instead, to a 
low number of observed events. For this reason, in the subsequent 
analysis will consider only results related to times earlier than 
eleven years. 

Considering times up to eleven years from surgery, the estimates 

of the copula parameter  vary from to 8.28 and 8.41 (Figure 
3A), suggesting no practical relevance against a standard model 

with constant , for the data under examination. Estimates of the 
regression parameter β(t) range from -1.69 to -0.12 (Figure 3B) 
corresponding to net HRs from 0.18 to 0.89. These results suggest 
lower incidence of cancer progression in the QUART group as 
compared to QUAD. However, at times earlier than about two 

years some estimates appear to be less stable than those obtained 
at subsequent times. This could be attributed to the low number of 
observed events: specifically, 9 deaths occurred before two years 
(1 before one year). Finally, the Peng and Fine diagnostic plot 
(Figure 3D) suggests a lack for the data in the QUAD group for the 
predictions in the range 0.4 to 0.6, corresponding to times close to 
11 years (maximum time considered).

Finally, we consider results from the fitting of the model in 
expressions (15) and (16), estimated with the Chen method. In 

particular, this model has distinct copula parameters  for 
QUAD and QUART groups, but no time varying parameters: 

 and β(t). For avoiding potential problems in the 
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Figure 2: estimation of the semi-parametric model with a standard Clayton copula 
(expression (9))
Panel A: estimated net cumulated incidences for QUAD and QUART groups (sol-
id lines). Dashed lines: estimates of CCIs for the two groups. Black: QUAD; grey: 
QUART. 
Panel B: check of the proportional hazards assumption; 
Panel C: goodness of fit for QUAD (black dots) and QUART (grey dots). The diag-
onal dashed line represents “perfect fit”.



convergence of the estimation algorithm, we considered a restricted 
follow-up period, up to eleven years from surgery.  Estimates of 

 are 5.3 (95% C.I.:  3.9-6.8) and 10.4 (95% C.I.: 8.8-12.0) for 
QUAD and QUART respectively, corresponding to estimates of 
Kendall’s  τ of 0.73 (95% C.I.:  0.66-0.79) and 0.84 (95% C.I.:  0.66-
0.79), respectively. These estimates are close to the ones shown in 
the first part of this paragraph, by applying model (9) separately 
for QUAD and QUART groups. The estimate of the regression 
parameter β comparing the incidence of cancer progression 
between QUART and QUAD groups is -0.36 (95% C.I.:  -0.18 to 
-0.54), corresponding to a net HR of 0.70 (95% C.I.:  0.58 to 0.84). 
In Figure 4 the estimates of the net incidences are reported along 
with the estimates obtained for the previously considered models. 
It may be seen that such estimates are higher than the estimates 
obtained under model (9): that is, the model with a Clayton copula 

with constant . A better agreement between the two estimates 
could be expected, because the current model is rather similar 
to model (9).  However, it should be considered that, in practice, 
estimation of the current model is cumbersome, because of the 
high number of parameters included in the likelihood function: 
312 parameters in this application. In fact, the likelihood function 

includes, along with the parameters:  and β, one parameter 
for each observed time to event. In conclusion, we are not able 
to guarantee that the reported estimates correspond to a global 
maximum of the likelihood function. A deeper examination of 
local and global maxima of a high-dimensional likelihood function 
could even more cumbersome, and however this task is beyond the 
purposes of this paper. Furthermore, a procedure for goodness of 
fit evaluation, similar to the one previously applied, is not defined 
for the current model. 

5.4. Results for Simulated Data 

In these “artificial” data, groups A and B include 998 and 1002 
observations respectively. The number of cancer progressions 
was 189 and 713 respectively for groups A and B. In group A 
286 deaths were recorded, 193 of which without previous cancer 
related events. Group B includes 785 recorded deaths, 203 of which 
without previous cancer related events. These frequencies are 
higher than those reported in the previous analysis, thus showing a 
higher “competitiveness” of the terminal event. 

For what concerns CCIs, the estimate of regression coefficient β 
was 1.83, corresponding to a HR of 6.21. For the extended copula 
model (expressions (11) and (12)) estimates of the copula parameter 

 range from 1.12 to 4.37, while estimates of the regression 
parameter β(t) range from 1.12 to 4.37, corresponding to net HRs 
from 5.46 to 17.62. In figure 5 there are reported estimates of CCIs 
and of the marginal incidences of cancer progression, for groups A 
and B. It may be seen that in each group CCI estimates are lower 
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Figure 3: estimation of the semi-parametric model with extended time-varying cop-
ula (expressions (11) and (12)), 
Panel A: estimates of the copula parameter ; B: estimated regression pa-
rameters β(t); C: estimated baseline cumulative hazard H0(t); D: goodness of fit for 
QUAD (black dots) and QUART (gray dots) groups. The diagonal dashed line rep-
resents “perfect fit”.

Figure 4. estimated cumulative incidences from the semi-parametric model with 
extended copula (expressions (15) and (16)), 
Panel A: estimates for QUAD group; B: estimates for QUART group. Black solid 
lines: estimates for the extended copula model; grey solid lines: estimates for model 
(9); black dots: estimates for the extended time-varying copula model (expressions 
(15) and (16)).



with respect to estimates of the net incidences. This pattern was not 
observed in the previous analysis, where a differences between CCI 
and net estimates emerged only in the later follow-up.

6. Discussion and Conclusions

The presence of competing risks is a common issue in several 
clinical studies in which treatment failure can be due to different 
causes. Researchers are interested in the kind of event occurring 
as the first one, because of the possibility to investigate disease 
dynamics and to plan therapeutic strategies potentially preventing 
treatment failures. In this context, crude cumulative incidence of 
the different events is the best choice for the study aims.  When 
the end-point is disease progression, the incidence of this event 
before death (for any cause) may be not of primary interest. This 
is the case of non-severe diseases with long follow-up available, or 
of diseases that can never be considered “cured”: in such cases it 
could be preferable to estimate the incidence of disease progression 
under “removing” the effect of death without progression, that is, 
the marginal incidence. In this context, the approaches based on 
the bivariate distribution of time to death and time to progression 
are intuitive, and copulas with non-parametric-marginal 
distributions are the most flexible choice. Among several copula 
structures, the Clayton one is the most frequently considered 
because of its simplicity and its useful properties, among which, 
the direct link with gamma frailty models [32]. Frailty models 
have been proposed for semi-competing risks [12,17] nevertheless, 
despite the link between frailties and copulas, the two models are 
not interchangeable, as the parameters of the two models have a 

different interpretation [16]. In particular, regression models based 
on copulas are expressed in terms of net hazard, thus inference 
results can be extended to the marginal distribution but this is not 
possible for the parameters of frailty regression models. Frequently 
adopted methods for semi-competing risks data are those based on 
multi-state models [27,31,39]. These models have the advantage to 
be verifiable from incomplete data. Furthermore, information on 
transition intensities (from the beginning of treatment to disease 
progression or to death and from disease progression to death) are 
useful to investigate disease dynamics. However multi-state model 
coefficients are not directly linked to the marginal distribution. 
The variety of the above mentioned approaches has guaranteed the 
presence of a rich array of possibilities for methodological research, 
which has been “translated” into efforts in the development of 
methods of statistical analysis of semi-competing risks data. This 
work focuses only on specific topics: therefore, the references 
provided here are far from being a comprehensive review of 
literature.

Regression models based on Clayton copulas have been considered 
in the present study: an extended time-varying copula model 
[23,33] and an extended model with copula parameter constant 
with time [4]: the first includes a time dependent association 
parameter and time dependent regression coefficients for 
covariates, and the second has a simpler model structure (no time 
dependent effects). Issues were encountered with the algorithms 
for estimating model parameters. For the first model there are 
two estimation approaches; we found more easy to implement the 
approach described by Hsieh and Huang, which requires to find 
the maximum of a conditional likelihood function, separately for 
each time to event. For the second model, the author kindly shared 
a Matlab script, but, because of the large number of parameters 
included in the likelihood function, we actually cannot guarantee 
the optimal performance of the estimation procedure on our data. 
Moreover, the first model was more flexible, but in cases of lack 
of evidence of time dependent effect it is not possible to estimate 
a model with simplified structure using the same estimation 
approach.   

For the breast cancer dataset, estimates of the crude cumulative 
incidence of disease progression until ten years from surgery were 
similar to those of marginal incidence. This results are explained 
by the fact that in this period the majority of deaths occurred after 
disease progression:  thus, being disease progression occurred as 
the first event, crude cumulative incidence is in practice not distinct 
from marginal incidence. After the eleventh year, with an increased 
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Figure 5. Analysis of simulated data
Solid lines: net incidences; dots: CCIs. Black:  group B; grey: group A



occurrence of death as first event, differences emerged between the 
two incidences. However, estimates were unstable because of the 
low number of events in the late follow-up.  In order to prevent 
those readers who have not a deep knowledge of competing risks 
topics, from concluding that the two procedures always provide 
the same results (anyway, marginal and sub-distributions refer to 
distinct concepts) we showed the analysis of a simulated dataset 
where both time to progression and time to death occur in the 
whole follow-up. In this case the difference between estimates of 
net and crude incidences can be appreciated.      

Nevertheless, data analysis presented in clinical journals are usually 
based on crude cumulative incidences and/or multi-state models, 
even when the marginal probability of disease progression is of 
concern. The application of methods for the analysis of marginal 
distributions on clinical data are performed only by the respective 
authors or by “statistical followers” who appreciate the method.  To 
our knowledge this is not attributable to lack of interest by clinical 
researchers in marginal distribution but, instead, to other causes, 
mainly to the novelty of proposed methods and, partly related 
to the previous one, to the lack of optimised software routines. 
Again, we underline that semi-competing risks constitute an 
appealing novel research area: thus, at the present time a standard, 
consolidated and widespread strategy of statistical analysis is far 
beyond being available to researchers. Nonetheless, the relevance 
of specific methods targeted on marginal distributions has been 
discussed by other authors, recently by [20,45] in the field of 
ageing research. In conclusion, we hope that this paper may be 
useful to stimulate biostatisticians to consider approaches based 
on marginal regression models when disease progression is of 
concern, supporting the relevant information for the clinical 
aims in spite of simplest solutions based on sub-distributions. 
These solutions, do not target the study outcomes when marginal 
incidences are of concern, and, as shown in this paper, could 
be misleading. At the same time, we hope to stimulate software 
developers to implement procedures for marginal regression in 
the most widespread statistical software, so that to provide easily 
available tools to researchers who are interested to apply and/or 
assess the performances of these approaches.
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