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Abstract

Background The diagnosis of indeterminate lesions of the thyroid is a challenge in cytopathology practice. Indeed, up to
30% of cases lack the morphological features needed to provide definitive classification. Molecular tests have been developed
to assist in the diagnosis of these indeterminate cases. The first studies dealing with the preoperative molecular evaluation
of FNA samples focused on the analysis of BRAF"°"’E or on the combined evaluation of two or three genetic alterations.
The sensitivity of molecular testing was then improved through the introduction of gene panels, which became available for
clinical use in the late 2000s.

Two different categories of molecular tests have been developed, the ‘rule-out’ methods, which aim to reduce the avoidable
treatment of benign nodules, and the ‘rule-in’ tests that have the purpose to optimize surgical management. The genetic
evaluation of indeterminate thyroid nodules is predicted to improve patient care, particularly if molecular tests are used
appropriately and with the awareness of their advantages and weaknesses. The main disadvantage of these tests is the cost,
which makes them rarely used in Europe. To overcome this limitation, customized panels have been set up, which are able
to detect the most frequent genetic alterations of thyroid cancer.

Conclusions In the present review, the most recent available versions of commercial molecular tests and of custom, non-
commercial panels are described. Their characteristics and accuracy in the differential diagnosis of indeterminate nodules,
namely Bethesda classes III (Atypical follicular lesion of undetermined significance, AUS/FLUS) and IV (Suspicious for
follicular neoplasm, FN/SFN) are fully analyzed and discussed.

Keywords Indeterminate nodules - AUS/FLUS - FN/SEN - Afirma® - Thyroseq® - BRAF

Introduction definitive diagnosis and are classified as indeterminate [1].

Most of the indeterminate cases are submitted to surgery,

Although fine-needle aspiration (FNA) is the gold-stand-
ard technique for the preurgical diagnosis of thyroid nod-
ules, around 25% of cases lack the features needed for a
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though only the minority of cases (10-40%) will be found
to be malignant [2]. In the last decades, with the aim to
improve the presurgical diagnosis in indeterminate thyroid
nodules, thus reducing the number of unneeded operations,
and the consequent expenses and risks, attention has been
focused on the preoperative molecular characterization
of the nodules. Accordingly, different tests have been
developed taking advantage of the major advancements
in the knowledge of the genetic bases of thyroid cancer
(TC). In this context, the Thyroid Cancer Genome Atlas
[3] recently reported the extensive characterization of the
most prevalent TC, namely papillary thyroid cancer (PTC),
significantly reducing the number of tumors without
known genetic driver. Those findings allowed to reclassify
PTCs into 2 molecular subtypes, identified as BRAF-like
and RAS-like. Genetic alteration associated to BRAF-like
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gene expression profile, such as BRAF'%F mutation and
RET fusions are virtually diagnostic of cancer. On the con-
trary, RAS-like mutations, such as RAS, PTEN, EIFIAX
mutations and PPARG fusions, are associated with either
malign or benign follicular neoplasms [4, 5]. Mutations in
TP53 or in TERT promoter, in particular when associated
with other tumor driver alterations, are frequently found
in clinically aggressive thyroid cancer, including poorly
differentiated and anaplastic thyroid carcinoma [6]. Dif-
ferently, copy number alterations (CNA) and mutations
in mitochondrial DNA are characteristic of Hiirthle cell
carcinoma [7].

The first studies dealing with the preoperative molecu-
lar evaluation of FNA samples, focused on the analysis
of BRAF VGOOE, which is the most common PTC mutation
[8—46]. However, since many TCs are driven by other muta-
tions, testing for BRAF'9%F alone did not provide sufficiently
high negative predictive value (NPV) to avoid surgery for
nodules negative for this mutation. In the same years, other
Authors proposed the combined evaluation of two or three
genetic alterations, such as BRAF"5®Eand RET fusions [47,
48], or BRAFYE, RET and TRK fusions [49]. The sen-
sitivity of molecular testing was further improved through
the introduction of gene panels, which became available
for clinical use in the late 2000s. In addition to BRAFY0VE,
they tested for several other common genes mutated in TC,
and these typically “rule-in” tests panels were able to iden-
tity as mutated ~70% of cases. The first panel contributed
by Nikiforov et al. in 2011, was a 7-genes molecular test
(ThyroSeq® v0) composed of a panel of mutations (BRAF,
N-, H-, K-RAS) and gene fusions (RET/PTC, PAXS/PPARG).
In this seminal study they prospectively analyzed 247 AUS/
FLUS and 214 FN/SFN nodules with histological follow-
up, reporting a high specificity (97-99%) and a PPV of
88%, but a low sensitivity (57-63%) and a NPV of 86-94%,
associated to a cancer prevalence of 14-27% and a residual
cancer risk of 6-14% in samples with negative result [50].
The advent of the next-generation sequencing technology
promoted the expansion of genotyping panels for thyroid
FNA cytology [51] with novel ThyroSeq® panels testing for
a progressively increasing number of genetic alterations,
with a resulting higher sensitivity [52, 53]. In 2012, a “rule-
out” test was introduced, namely the Afirma® test, which
does not rely on detecting gene mutations but is based on the
analysis of expression changes in 167 genes. The Afirma®
test evaluates the gene expression profiles, reports the result
as either “benign” or “suspicious”, and has a high NPV [54].

Additional approaches for molecular testing include the
analysis of microRNAs (miRNAs) expression. MiRNAs are
small noncoding RNAs implicated in gene regulation and
several miRNAs have been found dysregulated in thyroid
cancer [55-59]. Although different miRNAs have been pro-
posed in different studies, 15 miRNAs could be considered
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as the more accurate to discriminate benign from malign
lesions with a high sensitivity and specificity [60].

Based on the results obtained by these molecular tests in
the preoperative evaluation of thyroid nodules, International
and National guidelines [61, 62] recommend the genetic
evaluation, whenever possible, for the diagnosis of indeter-
minate nodules. The main disadvantage of these tests is the
high cost [63], which makes them rarely used in Europe.
To overcome this limitation, some Authors report data on
more limited, customized “rule-in” panels which are able
to detect the most frequent genetic alterations of TC, even
though with lower sensitivities with respect to the NGS and
gene expression profile large panels.

In the present review, the most recent available versions
of commercial molecular tests are reported. The accuracy of
those test, the pros and cons and their present exploitation
in clinical practice are fully analyzed. The reliability of cus-
tom panels is described, too. To note, all the data reported
refer to indeterminate nodules, namely Bethesda classes I11
(Atypical follicular lesion of undetermined significance,
AUS/FLUS) and IV (Suspicious for follicular neoplasm, FN/
SFN) [1], since the most important indication and appropri-
ateness of these tests is for the differential diagnosis of this
type of nodules.

Methods
Literature search

We performed a PubMed search for studies published
between 2009 and 2019 exploring the performance of “rule-
in” and “rule-out” panels and including more than four genes
and/or miRNAs, exclusively in AUS/FLUS or FN/SFN
cytology. Meanwhile, we checked the references of each
included paper to identify additional relevant publications.

Inclusion criteria for studies

1. Indeterminate thyroid results via fine-needle aspiration
(FNA) that included Bethesda classes AUS/FLUS or
FN/SEN (more than 20 cases).

2. Histopathologic results diagnosis from surgical speci-
mens as gold reference standard for benign or malignant
nodules.

Exclusion criteria for studies

1. Opinions, reviews, commentary, case reports, and insuf-
ficient data.

2. Absence of surgical histopathology results.

Studies written in languages other than English.

4. Studies on pediatric populations.

e
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5. Studies in which Bethesda III and IV categories cannot
be separated from Bethesda classes V.

Commercial tests

Three tests are commercially available in the United States,
based on the analysis of DNA/RNA sequencing data, of
mRNA or microRNA expression profiles, or combination
of these methods: ThyroSeq® v3 (CBLPath, Inc, Rye Brook,
New York, and University of Pittsburgh Medical Center,
Pittsburgh, Pennsylvania), Afirma® (Veracyte, Inc, South

San Francisco, California), and ThyGenX/ThyraMIR (Inter-
pace Diagnostics, Inc, Parsippany, New Jersey). The Roset-
taGX Reveal (Rosetta Genomics, Inc, Philadelphia, Pennsyl-
vania) has been recently removed from the market (Table 1).

ThyrosSeq v3

The ThyroSeq® v3 Genomic Classifier (GC), released for
clinical use in 2018, is the enhanced version of the previous
Thyroseq® v2 [52]. The main advantages of the new ver-
sion of this “rule-in”” method are the larger number of genes
mutation hotspots and gene fusions analyzed, the analysis

Table 1 Characteristics of the most recent available versions of commercial molecular tests

ThyroSeq® v3 Afirma® GSC ThyGeNEXT/ThyroMIR®  RosettaGX Reveal ™
Methodology NGS mRNA gene expression NGS/microRNA expression microRNA expression
Substrate 1-2 drops from first FNA 2 dedicated FNA passes 1 dedicated FNA pass Routinely stained direct
pass (if adequate cellular- smears
ity) or 1 dedicated cell
pass
Mutations/fusions 112 genes (12,135 vari- BRAF mutations/RET-- 10 genes (42 variants)/28 None
ants)/ > 120 fusions PTCI1, RET-PTC3 fusions
fusions
Gene expression 19 genes 1115 genes None None
microRNA expression None None 10 mRNA 24 mRNA
CNA 10 chromosomal regions LOH None None
Assessment of thyroid fol-  Yes Yes Yes Yes
licular cell content
Marker for parathyroid Yes Yes Yes No
Marker for MTC Yes Yes Yes No
Data analysis Local or centralized Centralized Local Local
Price ($) 4056 (v2) 6400 (GEC) 1675 (ThyGeNEXT) 4000 3700
(ThyroMIR)
Validation studies Steward et al. (2019) [65] Patel et al. (2018) [91] Labourier et al. (2015) [99] Lithwick-Yanai et al. (2017)
[102]
Bethesda III-IV (n) 154-93 114-76 58-51 150
Prevalence of cancer III-1V  23-35 25-22 32 21
(%)
Sensitivity I-IV (%) 91-97 93-88 94-82 74
Specificity HI-IV (%) 85-75 71-64 80-91 74
NPV HI-1V (%) 97-98 97-95 97-91 92
PPV LI-1V (%) 64-68 51-42 68-82 43
Hiirthle cell lesions (num- 49 26 na na
ber)
Prevalence of cancer (%) 20 35 na na
Sensitivity (%) 100 90 na na
Specificity (%) 67 59
NPV (%) 100 91
PPV (%) 43 53

*This test is not yet available

CNA Copy Number Alterations, NGS Next-Generation Sequencing, GSC Genomic Sequencing Classifier, GEC Gene Expression Classifier,
LOH Loss Of Heterozygosity; References into brackets; MTC medullary thyroid cancer, NPV negative predictive value, PPV positive predictive

value, na not available
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of DNA copy number alterations (CNA), and an improved
accuracy for the detection of oncocytic (Hiirthle cell) tumors
[64]. ThyroSeq® v3 is based on a targeted next-generation
sequencing of DNA and RNA to analyze 112 genes pro-
viding information on more than 12.000 hotspot mutations
and more than 120 fusions, gene expression alterations in
19 genes, and CNAs in 10 genomic regions. Quality con-
trol steps include gene expression analysis for markers to
determine adequate thyroid follicular cell content, as well as
markers to detect medullary thyroid carcinoma and non-thy-
roidal tissues (e.g., parathyroid tissue, metastatic carcinoma)
(Table 1). The genomic classifier that the test uses is based
on a score from O to 2 points for each genetic alteration,
proportional to its association with cancer. GC scores of 0
or | are considered negative for malignancy (with the latter
reported as “currently negative” to indicate nodules with
low-risk mutations for which active surveillance and repeat
FNA could be considered), while GC scores > 2 are consid-
ered positive results. Among nodules with positive results,
ThyroSeq® v3 provides further information on preoperative
risk stratification based on the type of detected alterations
and on their allelic frequency.

The test performance was validated in a multi-institu-
tional, prospective, blinded study [65]. In that study, 257
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nodules with indeterminate cytology were analyzed and
resected tissue samples were obtained for histopathologi-
cal diagnosis. ThyroSeq® v3 showed 94% sensitivity, 82%
specificity, 97% NPV and 66% PPV among 247 Bethesda
III/TV cases with a prevalence of malignancy of 28%. The
new version of the test demonstrated an improved sen-
sitivity, but lower specificity and PPV compared to the
previous version (ThyroSeq® v2; 93% and 83%, respec-
tively) [52]. ThyroSeq® v3 has been shown to be extremely
useful in the identification of Hurthle cell carcinomas
(NPV: 100%), while only 43% of adenomas were correctly
classified.

Post-validations studies are available only for the
ThyroSeq® v2 [52, 53, 66-70], and confirmed high NPV
(94.5%, 95% CI1 92.1-96.8%), but reported lower sensitiv-
ity (87.9%, 95% CI 82.9-92.9), specificity (71.2%, 95%
CI 67.1-75.2%) and PPV (51.2%, 95% CI 45.4-57.1%)
in comparison to the validation studies (Fig. 1 and Sup-
plemental Table 1). Moreover, considering a pre-test prob-
ability of 25.6, a positive post-test probability of 54.3%,
and a negative post-test probability of 5.5% were reached.
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Fig. 1 Forest plots for sensitivity, specificity, Positive and Negative Predictive Values (PPV, NPV) for Thyroseq® v2. The first Author and the

year of publication are indicated
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Afirma® gene expression classifier (GEC)
and genomic sequencing classifier (GSC)

The Afirma® Gene Expression Classifier (GEC, Veracyte) is
a microarray-based test that uses a proprietary algorithm to
predict benign lesions (“rule-out” method). The algorithm
involves 2 steps. The first step screens for the expression
of 25 genes to identify rare neoplasms such as medullary
thyroid carcinoma (MTC). Only not excluded samples pro-
ceed to the second step, which evaluates the expression pro-
file of further 142 genes to classify indeterminate thyroid
nodules into either benign (GEC-B) or suspicious (GEC-
S) categories. The test was validated in a multicenter, pro-
spective, blinded study [54] involving 210 nodules of the
two indeterminate categories Bethesda III, IV, with a pre-
test malignancy rate of 24 and 25%, respectively. Authors
showed high sensitivity (87%), but modest specificity (53%);
the NPV and PPV were 95 and 94% and 38 and 37% in the
two indeterminate categories, respectively. Differently, in
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one post-validation study a high frequency of false negative
results was recorded [71]. It is worth noting that the inter-
pretation of the above mentioned results requires caution
because of the small fraction of GEC-B nodules addressed
to surgery in the clinical practice. Moreover, benign
Hiirthle cell nodules, which represents a large proportion
of Bethesda III/IV categories, are frequently falsely clas-
sified as GEC-S [72-75]. Meta-analysis of all the available
studies using Afirma® and with available histological diag-
nosis [66, 71-90], showed a pooled sensitivity (95.7%, 95%
CI 94.1-97.2%), specificity (16.4%, 95% CI 14.2-18.3%),
PPV (37.6%, 95% C1 35.3-39.9%) and NPV (87.7%, 95% CI
83.4-91.9%) of the test (Fig. 2 and Supplemental Table 2).
Considering a pre-test probability of 34.5, a positive post-
test probability of 37.6%, and a negative post-test probability
of 12.3% were reached.

To overcome the modest specificity and PPV of GEC, the
Afirma BRAF test was introduced, which assays the expres-

sion profile together with BRAF"**Emutation [34]. However,

Specificity

Alexander 14 4 l—oz—l—l
Harrell and B}_mstonllj _'_;_h
astra 14
Mclver 14 4+———t—r
Celik 15 e
Brauner 13 +——=&—1t |
[

{
—p
Yang 16 ————+——
Wi 16 - .
—— '

—_—
[l

Marti 151 e B S

Q

Pooled spe: 16.3 (14.2-18.3)— P!

72: 60.8, df: 20 (p<0.001)
P=67.1% .

NPV

Alexander

Harrell and Bimston
Lastra

Mclver

[ b
%

-¢---Ft--

[ |

Brauner 1

._.
L e s o
1

.0

ctecnchtaaite

. Mam 1
.\oure}dmelg E
ang 16 1
Wi 164

Chaudary 16 1
Sacks 16 1

i Baca ]/
Kav-Rivest 17 1
Harrisonl7 4
Hang 171
Al-Quravsht 171
Walts2018 4
Angell19 4
Tug 10+

g
g s g O
o a.
i
N

*

]
R’ 2 ettt 4

@ S0

i

t

72:28.1,df: 19 (p=0.08) T T T 1
2
I°=32.4% 10 60 80 100 120

Fig.2 Forest plots for sensitivity, specificity, Positive and Negative Predictive Values (PPV, NPV) for Afirma® Gene Expression Classifier

(GEC). The first Author and the year of publication are indicated
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the investigation of BRAF mutation did not increase the PPV,
mostly due to the low prevalence of classical variants of
PTC in Bethesda III and IV nodules. Recently, the next-
generation Afirma® Genomic Sequencing Classifier (GSC)
has been developed to analyze the expression profile of 1115
genes, with RNA-Seq methodology, and including the pos-
sibility to detect single nucleotide variants, fusions, and
copy number variations in the coding region of the genome
[91]. The GSC includes several quality control steps, such as
the screening for the expression profile of parathyroid cells
and the assessment of follicular cell content. The GSC can
detect mitochondrial transcripts, and CNAs for the analysis
of Hiirthle cell lesions (Hiirthle classifier), too. The GSC
was validated on the same cohort used for the first gen-
eration Afirma® GEC, showing increased specificity (from
53 to 68%) and PPV (from 38 to 47%) while maintaining
high sensitivity and NPV (Table 1). Furthermore, the GSC
showed a highest specificity and PPV in Hiirthle cell ade-
nomas compared to GEC. Independent reports comparing
the performance of GSC with that of GEC confirmed these
results [76, 92-94]. A broader test panel (Xpression Atlas)
was developed to detect additional alterations, involved
in thyroid neoplasms (761 variants in 346 genes and 130
fusions) [95]. Of note, in both GSC and Xpression Atlas,
mutations in the not transcribed portion of the genome, such
as in the TERT promoter, are not included. Xpression Atlas
was intended for Bethesda III/I'V nodules with a GSC suspi-
cious (GSC-S) result. However, the impact of the addition of
novel variants on improving the risk stratification of thyroid
nodules remains to be established.

The Afirma® GEC was developed to reduce the morbid-
ity and the cost of repeated FNAC and/or of unnecessary
thyroid surgery, but contrasting results have been obtained
in different settings regarding its actual impact. Indeed, it
has been reported that after the availability of this test the
number of indeterminate cytologies has increased without a
significant reduction of surgical procedures [66, 75, 77, 78,
96, 97], and the cost-effectiveness of the test in the clinical
practice has been questioned [8]. On the other hand, in hypo-
thetical modeling, molecular test resulted considerably more
cost-effective than diagnostic lobectomy, being ThyroSeq®
v3 more cost-effective than GSC [98].

ThyGeNEXT/ThyraMIR®

ThyGeNEXT® is a targeted next-generation sequencing test
developed by Interpace Diagnostics that evaluates mutations
in 10 genes (BRAF, H-, K-, and N-RAS, TERT, ALK, GNAS,
RET, PTEN, and PIK3CA) and 38 different gene fusions
(involving ALK, BRAF, NTRK-1, -2, and -3, PPARG, RET,
and THADA).

To increase the sensitivity and NPV of the genotyp-
ing panel, Interpace Diagnostic pairs this test with a

@ Springer

complementary miRNA expression classifier called
ThyraMIR®. Samples for which no mutations or gene
fusions are detected by the targeted sequencing test, undergo
further risk stratification with ThyraMIR® which is based on
the expression pattern of 10 miRNAs (miR-29b-1-5p, miR-
31-5p, miR-138-1-3p, miR-139-5p, miR-146b-5p, miR-155,
miR-204-5p, miR-222-3p, miR-375, miR-551b-3p).

The miRNA classifiers were developed using miRNA
expression data determined by RT-qPCR on a case—control
training set consisted of 240 surgical specimens [99].

The test includes expression analysis for transcripts to
confirm the thyroid follicular cell content and detect sam-
pling of parathyroid tissue and markers associated with
medullary thyroid carcinoma (miR-375 and RET mutations)
(Table 1).

The combined test was clinically validated using and
earlier version of the NGS-based test called ThyGenX®,
which analyzes 7 genes (BRAF, H-, K-, and N-RAS genes)
and 3 gene fusions (PAX8-PPARG, RET-PTCI1, and RET-
PTC3), together with ThyraMIR®. Among 109 Bethesda
III/IV cases with a 32% prevalence of cancer, ThyGenX/
ThyraMIR® together demonstrated 89% sensitivity, 85%
specificity, 94% NPV, 74% PPV, and a 61% benign call rate.

Banizs et al. 2019 [100] reported the establishment of an
additional level to the two-level miRNA classifier described
by Labourier et al. [99]. The Authors showed that this
miRNA sub-classification offers the opportunity to support
non-surgical management in patients with weak or no driver
mutations for low levels microRNA status while supporting
the need diagnostic lobectomy for high microRNA status.

Additional post validation studies are certainly needed to
better determine the accuracy of ThyGeNEXT/ThyroMIR®.

Rosetta GX reveal™

The Rosetta GX Reveal™ Thyroid Classifier (Rosetta
Genomics Philadelphia, PA) was a validated test to meas-
ure the expression pattern of 24 miRNAs, found to be up- or
down-regulated in PTC, directly on RNA extracted from
stained FNA smears prepared for initial cytological evalu-
ation [101]. The advantage of the methodology was that it
obviated the need to perform an additional collection of
material for molecular testing after the fine needle aspira-
tion, since miRNAs were analyzed from the same sample
used for cytological examination. The test is no longer com-
mercially available. The test used algorithms to classify
indeterminate thyroid nodules into benign, suspicious for
malignancy or positive for medullary carcinoma. Markers
associated with thyroid epithelial cells were also included
(Table 1).

The test was developed using a training set of 375
FNAB smears and was validated using a blinded mul-
ticenter retrospective cohort of 189 cytologically
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indeterminate cases, including 150 Bethesda ITII-IV cases,
with their corresponding surgical specimens [102]. Con-
sidering classes III and IV, this validation study revealed
74% sensitivity and specificity, 43% PPV and 92% NPV,
with a malignancy rate of 21%. Of note, since no Hiirthle
carcinomas were included the validation study, the perfor-
mance of Rosetta GX Reveal™ in detecting these tumors
was not determined.

Walts et al. 2018 retrospectively compared the per-
formance of the Afirma® GEC with that of Rosetta GX
Reveal™ in a cohort of 80 Bethesda III-IV thyroid
FNAs with surgical follow-up and a rate of malignancy
of 20-23% [79]. Rosetta GX Reveal™ demonstrated a
higher specificity compared to GEC (60.3% vs 9.5%) but a
lower sensitivity (78% vs 94%). Interestingly, Rosetta GX
Reveal™ outperformed GEC in the cohort of NIFTP and
of Hiirthle lesions. A retrospective study was performed
in 2018 on a small cohort of 9 Bethesda III-IV thyroid
FNAs with a prevalence of cancer of 30%, comparing the
Rosetta GX Reveal™ and the ThyGenX/ThyraMIR® com-
bination tests [103]. The 2 tests had similar sensitivities
and NPV (85 vs 89%, and 100% for both), while Rosetta
GX™ showed a higher specificity (86 vs 71%) and higher
PPV (75 vs 60%).
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Non-commercial tests

Although the clinical relevance of the above described
commercial tests has been widely recognized, their high
cost has prevented their extensive diffusion, particularly
in European Countries. As a consequence, “home-made”,
customized molecular tests have been developed, many
of them never reported in the literature, mainly testing by
PCR and direct sequencing BRAF"5%E, RAS point muta-
tions and RET, TRK and PPARG fusions (Fig. 3 and Sup-
plemental Table 3).

The first non-commercial panels reported in the lit-
erature were based on the analysis of the 7 most frequent
genetic alterations in DTC, such as the first Nikiforov’s
panel (BRAFY9%E and BRAFX®Y'E, RAS mutations at
codons 12, 13, and 61, PAX8/PPARG, RET/PTC and
TRK fusions). This panel was tested on 2 series obtaining
sensitivities of 60-100%, specificities and PPV of 100%,
NPVs of 92-100 in Bethesda III category, with a preva-
lence of malignancy of 14-17% and sensitivities of 77%,
specificities and PPV of 100%, NPVs of 79% in Bethesda
IV category, with a prevalence of malignancy of 52% [104,
105]. In the same year, Cantara and co-Authors screened
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Fig. 3 Forest plots for sensitivity, specificity, Positive and Negative Predictive Values (PPV, NPV) for non-commercial 5- and 7-genes panels.

The first Author and the year of publication are indicated

@ Springer

Journal : Large 40618 Article No : 1164 Pages : 14

MS Code : 1164

Dispatch : 17-12-2019 |

372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393



394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

Journal of Endocrinological Investigation

the same molecular alterations in 41 indeterminate lesions
with a sensitivity and a PPV of 86%, a specificity and NPV
of 97% and a risk of malignancy of 17% [106], whereas
Beaudenon-Huibregtse et al. found both a lower sensitivity
(36/67%) and a NPV (56/86%) in a series of 41 indetermi-
nate cases analyzed by means of the same 7-genes panel,
with a risk of malignancy of 50 and 32% in the III and IV
categories, respectively [107].

In 2017, there were reported the results obtained in a
large German cohort of 254 indeterminate cases analyzed
for BRAF and RAS mutations and PAX8/PPARG and RET/
PTC rearrangements, by pyrosequencing and quantitative
PCR, respectively, on air-dried FNA smears [108, 109]. In
the AUS/FLUS category they found sensitivity and NPP
(58% and 90%, respectively), comparable to those reported
by Nikiforov, but a lower specificity (82%) and PPV (41%),
with a risk of malignancy of 15%. In the FN/SFN category,
the specificity (91%) was similar to that previously reported
[104, 107], but the sensitivity was lower (27%), with a risk
of malignancy of 17%. The detection of RAS/PAX8/PPARG
genetic alterations in histologically benign nodules could
have affected the specificity in all indeterminate categories,
while the low sensitivity in the FN/SFN category was prob-
ably due to a very low mutation prevalence in follicular thy-
roid cancers and in follicular variant PTCs.

Bongiovanni et al. [110], after sampling by laser capture
microdissection, applied the 7-gene panel prospectively and
retrospectively on 23 FN/SFN, with a malignancy rate of
57%, showing sensitivity and PPV of 67% and specificity
and NPV of 92%.

Fig.4 The pooled sensitivi-
ties, specificities, Positive and
Negative Predictive Values
(PPV, NPV) for commercial and

Censi et al. [111] analyzed H-,K-, and N-RAS, TERT pro-
moter and BRAF gene mutations (5-gene panel) in a series
of 199 consecutive indeterminate nodules with a sensitivity,
specificity, PPV, NPV and risk of malignancy of 50, 78, 37,
84%, and 22% in the AUS/FLUS category, and of 39, 85,
79, 50%, and 58% in the FN/SNF category, respectively. The
frequent detection of RAS mutation in benign samples, the
lack of rearrangement analysis and the introduction of the
new NIFTP histopathologic nomenclature may have played
a part in the low PPV obtained in this study.

The same 5-gene panel was more recently interrogated on
54 indeterminate nodules showing lower sensitivity (44%)
and NPV (67%), but higher specificity and PPV (93 and
85%) [112].

Overall, the pooled sensitivity, specificity, PPV and NPV
of the 7-genes molecular test on Bethesda III/IV nodules was
61.3% (95% CI 54.3-68.2%), 95.2% (95% CI 93.7-96.7%),
76.5% (95% C1 69.7-83.2%) and 90.6% (95% CI 88.6-92.7),
respectively. Considering a pre-test probability of 20.3, a
positive post-test probability of 76.5%, and a negative post-
test probability of 9.4% were reached.

The pooled sensitivity of the 5-gene panel was 46.8%,
(95% CI 36.7-56.9%), specificity 86.3% (95% CI 81-91.6%),
PPV 66.7% (95% CI1 55.3-78%) and NPV 73.5% (95% CI
67.3-79.8). Considering a pre-test probability of 36.9, a
positive post-test probability of 66.7%, and a negative post-
test probability of 26.4% were reached.

As expected, the 5 and 7 gene non-commercial panels are
less sensitive, but more specific of the commercial Afirma®
and Thyroseq® tests (Fig. 4).
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Several non-commercial panels for indeterminate cytolo-
gies have been also developed based on the analysis of dif-
ferent miRNAs, being miR-146 the only one tested in all
series (Supplemental Table 3) [50, 80, 104—116].

Shen et al. [113] identified and validated a set of four
miRNAs (miR-146b, -221, -187 and -30d) in 30 AUS sam-
ples, obtaining a sensitivity of 63.6%, specificity of 78.9%,
PPV of 64%, and NPV of 79%, with a prevalence of malig-
nancy of 37%.

Santos et al. [114] developed a new molecular classifier
test (mir-THYpe) that analyzes the expression profiles of
11 miRNAs (let-7a, miR-103, miR-125a-5p, let-7b, miR-
145, RNU48, miR-146b, miR-152, miR-155, miR-200b, and
miR-181b) obtained from the same FNA cytology smear
slides used to classify the thyroid nodule as indeterminate.
In the validation set, the mir-THYpe test reached 100-83%
sensitivity, 82-79% specificity, 25-38% PPV, 100-97%
NPP, 5-13% cancer prevalence in Bethesda III and I'V nod-
ules, respectively. Mazeh et al. analyzed the expression of
6 miRNAs (miR-21, -31,-146b, -187, -221 and -222) in 11
indeterminate FNA samples, and found a sensitivity of 89%,
specificity of 100%, PPV of 100% NPV of 66 [115], and a
prevalence of malignancy of 63%.

Aside from these panels which analyzed the expression of
miRNAs in FNA cytologies, some Authors investigated the
use of circulating miRNA, which would represent a simpler
and less invasive procedure [117-120]. In particular, Pilli
et al. [120] analyzed the expression of two miRNA (mi-95,
-190) in the serum of 72 Bethesda III and IV FNAC with
an available histological diagnosis, reaching a sensitivity of
71.9%, a specificity of 85%, PPV 79.3% and NNP 79.1%,
with a prevalence of malignancy of 44%. Despite these
promising results, the analysis of miRNAs in the serum
poses some concerns, such as the low level of miRNAs
and technical problems associated with the analysis of such
samples.

Molecular testing of NIFTP

Noninvasive follicular thyroid neoplasm with papillary-like
nuclear features (NIFTP) is an encapsulated or clearly delim-
ited, noninvasive neoplasm with a follicular growth pattern
and nuclear features of PTC. This entity has been established
in 2016 after the revision of the outcome of 108 patients
with noninvasive follicular variant PTC not treated by radio-
active iodine by a working group of thyroid experts [121].
After a follow-up of at least 10 years there was no recurrence
recorded, and this peculiar entity was then re-classified as
non-malignant. This reclassification aims to avoid over-
treatment of patients with an indolent lesion. NIFTPs are
associated with “RAS-like” mutations (RAS, BRAF K60IE
mutations, PAXS8/PPARG, THADA fusions) [122], and share

gene expression profile with encapsulated follicular-variant
PTC, minimally invasive follicular carcinoma and follicular
adenoma [80]. Since all the commercial tests described here
were developed prior to the nomenclature change, NIFTPs
were classified as malignant in the validation sets. Accord-
ingly, in both the validations studies and in the “real-world”
clinical settings 95% and 80% of NIFTP were classified as
suspicious/malignant by GEC or ThyroSeq® v2, respec-
tively (Supplemental Tables 1 and 2). The reclassification
of NIFTP as a benign neoplasm would likely affect the pre-
dictive value of these tests.

Conclusions

The diagnosis of indeterminate lesions of the thyroid is a
challenge in cytopathology practice. Indeed, up to 30% of
cases lack the morphological features needed to provide
definitive classification. The molecular characterization of
thyroid nodules has become more easy and exhaustive since
the advent, in the last 10 years, of NGS and Gene Expres-
sion technologies which have provided better stratification
of patients. Two different categories of molecular tests have
been developed, the ‘rule-out” methods, which aim reduce
the avoidable treatment of benign nodules, and the ‘rule-in’
tests that have the purpose to optimize surgical management
(total thyroidectomy or loboisthmectomy). Although each
test has different advantages and limitations in the evalua-
tion of indeterminate FNA samples, they are progressively
increasing their performance levels and are predicted to
become an integral part of the thyroid nodule evaluation,
especially if their cost will be reduced. Finally, it should
be highlighted that the genetic characterization of a thyroid
nodule has a positive impact not only in the initial treat-
ment but potentially in the follow-up of patients, too. Indeed,
some molecular markers, including the most studied BRAF
and TERT promoter mutations, have been shown to harbor
a prognostic value and their evaluation is predicted to be of
help in the stratification of patients into distinct risk groups
and in a better assessment of their outcome.

Moreover, in the era of targeted therapies, knowing the
molecular signature of the tumor is crucial for the selec-
tion of the most appropriate antineoplastic compound.
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