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Precis 

Using swept-source optical coherence tomography angiography in eyes with geographic atrophy, a 
significant impairment in choriocapillaris flow was found around the atrophic lesions. Choriocapillaris 
alterations may be relevant to the progression of geographic atrophy. 

 

Abstract 

Aims: To evaluate the choriocapillaris (CC) flow alterations around geographic atrophy (GA) in eyes with 

dry age-related macular degeneration (AMD). 

Methods: Using a swept-source optical-coherence tomography angiography (SS-OCTA) device, two 

volume 6 x 6 mm scans were acquired in patients with GA presenting between June and December 2017 

at the Doheny - UCLA Eye Centers. The area of GA was delineated on the en face structural OCT fundus 

images. For each eye, the en-face OCTA slabs at the level of the CC from the two acquisitions were 

averaged and compensated for signal loss using the corresponding structural en-face images. The 

resulting images were binarized and analyzed for the percentage of flow voids in the para-atrophy zone 

(a 500 µm wide ring around the immediate edge of the atrophy) and in the peri-atrophy zone (a 500 µm 

wide ring around the para-atrophy zone edge), the latter considered as a reference in the comparative 

analysis. 

Results: Thirty eyes of 20 patients were enrolled. The percentage of flow voids in the para-atrophy zone 

was 27.23 ± 6.29 %, and was significantly higher than in the surrounding peri-atrophy zone (23.4 ± 6.01 

% ;p- value < 0.001). There was no significant correlation between the flow void percentage in these 

regions and age, visual acuity, extent of the atrophic area, or central choroidal thickness. 
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Conclusions: A significant impairment of the CC flow is present in the zone immediately surrounding the 

GA lesions strengthening the hypothesis that CC alterations may be relevant to the progression of GA.  

 

 

 

 

 

 

 

 

 

 

Introduction 

 

Geographic atrophy (GA) is a late stage manifestation of dry age-related macular degeneration 

(AMD). It is defined as any sharply delineated roughly round or oval area of hypopigmentation or 

depigmentation with increased visibility of the underlying choroidal vessels and of at least 175 µm in 

diameter on 30 or 35 degrees color fundus images1.  
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A more recent optical coherence tomography (OCT) based classification defines GA as complete 

retinal pigment epithelium (RPE) and outer retinal atrophy (cRORA), in the absence of choroidal 

neovascularization (CNV) (present or previous), measuring at least 250 microns in diameter2. 

GA results from the degeneration of photoreceptors, retinal pigment epithelium (RPE), and 

choriocapillaris (CC). Nevertheless, while the RPE and outer retinal degeneration are well visualized 

using OCT, CC disruption is difficult to identify in vivo on structural OCT alone. OCT angiography (OCTA) 

is a recent technique that allows the visualization of the retinal vascular networks in a depth-resolved 

fashion,3 making it possible to visualize the loss of CC flow under the atrophic patches4 in patients with 

GA. Recently Sacconi et al., using a spectral domain (SD)-OCTA device, demonstrated that the CC flow 

impairment can be observed in areas around the atrophic lesions even where the RPE appears to be 

intact5. 

Whether the RPE or the CC disruption occurs first is still a topic of debate,6–11 and the relatively 

poor depth penetration of the SD-OCTA may compromise CC assessment, particularly in the presence of 

overlying deposits or retinal thickening with an intact RPE. Indeed, the 840 nm light wavelength utilized 

by most SD-OCT devices is highly scattered by the RPE, limiting light penetration into the choroid12–14. 

Swept-source OCTA (SS-OCTA) uses a different light to obtain the en-face images of the vascular 

networks. Using a longer wavelength (1050 nm), the SS-OCTA offers a deeper light penetration and 

provides higher quality images of the CC meshwork which may resemble histologic images in heathy 

eyes15. Furthermore the quality of the images may be significantly improved with post-acquisition 

processing methods such as the averaging of multiple images from multiple acquisitions16,17. 

In pathologic eyes, disease features and lesions may further impact the visualization of the CC. 

For example, thick drusenoid deposits can attenuate or scatter the incident light creating a “shadowing” 

effect on the underlying CC. Although this shadowing effect is less pronounced compared with SD-OCT, 
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these alterations may confound quantitative analysis of the underlying CC. Recently Zhang et al. 

developed a simple strategy to compensate this signal loss under drusen combining the en-face 

structural images with the respective angiograms18. 

In this study we used a combination of averaging and signal compensation on images acquired 

with a SS-OCTA, in order to better study the CC flow around the areas of geographic atrophy, where the 

RPE appears to still be preserved. 

 

Methods 

 

In this prospective study, we acquired SS-OCTA images of consecutive patients with GA who 

were evaluated at the Doheny-UCLA Eye Centers by one physician (SRS) between June and December 

2017. Eligible patients had GA in at least one eye without evidence of any other pathology involving the 

macula. Eyes with non-visually significant vitreoretinal interface disease, such as a subtle epiretinal 

membrane only visible by OCT, were not excluded. Myopia greater than 6 diopters and presence of 

significant media opacities which could impact the quality of the OCT images were exclusion criteria for 

this study. 

The study was performed in accordance with the Health Insurance Portability and Accountability 

Act and adhered to the principles of the Declaration of Helsinki. All patients signed a written informant 

consent to participate in this observational study. The informed consent and research was approved by 

the institutional review board (IRB) of the University of California – Los Angeles (UCLA).  

All patients underwent a complete ophthalmic examination, including best-corrected visual 

acuity (BCVA) using Early Treatment Diabetic Retinopathy Study (ETDRS) charts, slit lamp biomicroscopy, 

tonometry and SS-OCTA. 
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Central choroidal thickness (CCT) was assessed by manually measuring at foveal center from 

Bruch’s membrane to the sclera-choroidal border. To ensure the repeatability of the method, the 

measurements were repeated twice by two independent operators. 

Imaging 

 

Patients underwent SS-OCTA imaging with the PLEX Elite 9000 device (Carl Zeiss Meditec Inc., 

Dublin, CA, USA) which uses a swept laser source with a central wavelength of 1050 nm (1000–1100 nm 

full bandwidth) and operates at 100,000 A-scans per second. This instrument employs a full-width at 

half-maximum (FWHM) axial resolution of approximately 5 μm in tissue, and a lateral resolution at the 

retinal surface estimated at approximately 14 μm. OCTA imaging of the macula was performed using a 

scan pattern with a 6 X 6 mm area (500 A-scans x 500 B-scans) centered on the fovea. Each eye was 

repeatedly imaged with pupil dilation to obtain two OCTA volume scan sets with sufficient image quality 

(signal strength index (SSI)>7) that fulfilled the acceptance criteria of the Doheny Image Reading Center 

(DIRC), as previously reported.17,19  

A fully-automated retinal layer segmentation algorithm was applied to the three-dimensional 

structural OCT data, in order to segment the CC slab as defined previously (10 μm thick starting 31 μm 

below the RPE reference).20 This segmentation was then applied to OCTA flow intensity data to obtain 

vascular images. Maximum projection analyses of the flow intensity were performed to generate the en-

face images of the CC plexus (1024x1024 pixels). Before exporting all angiograms, projection artifact 

removal was performed using the automated algorithm of the instrument software21,22. 

 

Post-acquisition image processing 
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To compensate for CC signal attenuation resulting from the RPE and pathologic alterations at 

RPE/BM complex level (e.g. basal laminar deposits) , a previously described method was applied 18. 

Briefly, for each eye, the CC layer was first segmented from the structural OCT and the associated flow 

slab was then identified from the angiogram. An inverse transformation was applied to the en-face 

structural CC image to enhance the attenuated signal under drusen, where a Gaussian smoothing filter ( 

3 X 3 pixel kernel) was used to minimize speckle noise. Then, a multiplication between the en-face CC 

flow image and the smoothed, inverted CC structural image was performed. By this approach, the 

shadowing effect under drusenoid depoists was compensated while the signal in unaffected regions 

remained unchanged (Figure 1). 

For each eye, the resulting compensated CC en-face images generated from 2 different OCTA 

cube scan sets were stacked to create a 2-frame video and were registered before multiple image 

averaging. A central square area of 819x819 pixels was cropped for registration and averaging. 

Registration was first performed on the 2-frame video based on the superficial capillary plexus en-face 

images, as previously reported.17 This same transformation was then applied to the CC layer, as 

described in detail in a previous publication.23 After registration, the 2 frames of the CC were 

compounded into a single image by projecting the average intensity (Figure 1).  

 

Quantitative image analysis 

The resultant averaged CC en-face image was exported and analyzed using ImageJ software 

version 1.50 (National Institutes of Health, Bethesda, MD; available at 

http://rsb.info.nih.gov/ij/index.html)24 and binarized for quantitative image analysis of the signal voids. 

The Phansalkar method (radius, 15 pixels) was used to binarize the images, as previously 
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described.20,23,25 These images were then processed with the ‘Analyze Particles’ command, in order to 

count the flow voids as a percentage of the area analyzed.  

The quantitative analysis was performed over two concentric 500-μm-wide rings around the GA 

lesion edge (following the contour of the GA lesion) to assess the CC surrounding the atrophy (Figure 2).  

The 500 μm cut-off was arbitrarily chosen, in accordance with a previous published study 5. The 

inner ring was defined as the para-atrophy zone, while the outer ring was defined as the peri-atrophy 

zone. The peri-atrophy zone was used as a reference to assess the para-atrophic CC. 

To isolate the GA region we used the OCT fundus image as previously described26. This image is 

the en face reconstruction of the sum of all the signals coming from each of the A-scans acquired27. GA 

appears as a bright area on the image due to the increased penetration of light into the choroid caused 

by the overlying RPE and outer retina atrophy27,28. The borders of the GA region were manually 

segmented and verified using the corresponding structural B-scans to ensure the integrity of the RPE 

outside the selection. 

To obtain the para-atrophy zone, we used the “Distance Map” ImageJ function on the selected 

GA region. The “Distance Map” function automatically delineates a border 500 μm displaced from the 

atrophy edge, exactly following the contour of the GA border. Furthermore, in case of multifocal lesions 

the “Distance Map” function on the “binarized” image allows us to delimit those areas within 500 μm of 

the edge of all the atrophy lesions in the image (without any size limit), by excluding areas occupied by 

adjacent lesions . The peri-atrophy zone was determined by applying the same method; specifically, the 

“distance map” function was used to delineate a border displaced 500 microns from the para-atrophy 

zone edge.  

As CC flow voids are believed to show a regional dependence (even in normal eyes) with greater 

flow voids centrally compared with more peripheral regions of the macula, we performed an additional 
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layer of analysis to exclude this potential confounder. Specifically, for each case, we also selected and 

analyzed two 500x500 µm square regions in the para- and peri-atrophy zones which were equidistant 

from the foveal center. The first square was drawn in the peri-atrophy zone at the innermost point of its 

inner boundary. The second square had to satisfy the following conditions: (1) location in the para-

atrophy zone; (2) the difference between the distances of the centers of mass of the two squares from 

the fovea should not be more than 10 pixels (Figure 3).  If these conditions were not satisfied, the 

subject was excluded from this additional analysis. If more than one square could satisfy these 

conditions, the closest in distance to the first square was chosen for the analysis.  

The entire procedure was repeated by two experienced reading center OCT graders (MN and 

WF) in order to investigate the repeatability of all measurements. All values were then averaged for use 

in the subsequent statistical analysis. 

Statistics 

Statistical analyses were performed using SPSS Statistics version 20 (IBM, Armonk, NY). 

Intraclass correlation coefficients (ICC) were calculated for atrophy area, CCT and flow voids 

measurements. A Wilcoxon signed ranked test was performed to test the difference in percentage of 

flow voids in the para-atrophy zone versus the peri-atrophy zone. Generalized estimating equations 

(GEE) were used to compare the means and test the associations between percentage of flow voids and 

age, BCVA, CCT and atrophy dimension. 

 

Results 
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Thirty eyes of 20 patients (6 males, mean age: 85.19 ± 9.25 years) were enrolled in the study. 

The fellow eyes of 10 patients were excluded for intermediate AMD in 3 eyes, CNV in 5 eyes and the 

inability to acquire scans of sufficient quality scans in 2 eyes (due to poor fixation). 

Mean BCVA was 0.51 ± 0.31 logarithm of the minimum angle of resolution (LogMAR) (median: 

0.5 logMAR; range 0 – 1) and the mean CCT was 221.16 ± 161.22 µm (median: 193.5 µm; range: 48 – 

767). 

The mean area of the GA lesion was 7.86 ± 6.06 mm2 (median 6.32 mm2; range: 0.63 - 21.33 

mm2).  

The percentage of flow voids in the entire para-atrophy zone was 27.23 ± 6.29 % and 

significantly greater than the surrounding entire peri-atrophy zone, where it was 23.4 ± 6.01 % (p value = 

0.008). 

The additional, comparative analysis of the equidistant 500x500µm para-atrophy and peri-

atrophy squares could be performed in all 30 eyes. The result of this analysis also demonstrated that a 

significantly higher percentage of flow voids in the para-atrophy zone (29.6±7.88 %) compared to the 

peri-atrophy zone (22.8±5.86 %) with a p value <0.001. 

GEE analysis found no significant correlations were found between the percentage of flow voids 

in each zone and various other parameters including age, BCVA, extent of the atrophic area, and CCT. 

 

Repeatability assessment 

GA area measurements obtained from manual delineation of the atrophy lesion between 

graders had an ICC of 0.997 (95% confidence interval (CI) 0.95-0.99). CCT measurements had an ICC of 

0.939 (95% CI 0.869-0.972). The calculation of the flow voids percentage in the peri-atrophy and para-
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atrophy zone had an ICC of 0.912 (95% CI 0.895-0.927) for the entire zones and 0.897 (95% CI 0.875-

0.923) for the 500x500 µm squares.  

Discussion 

In this study we investigated the CC around the GA using SS-OCTA and with compensation 

analysis to mitigate the impact of signal attenuation caused by disease-related alterations at the level of 

the outer retina/RPE/BM complex. The image of the CC provided by current OCTA instruments shows a 

granular appearance with small bright regions interspersed with small dark regions. The known 

anatomic structure of the choriocapillaris does not appear to explain these dark areas, hence they are 

probably the result of a relative decreases in local flow signal below the threshold of detection. As such, 

these small areas are called flow voids20,21. The analysis of these presumed CC flow voids has been 

evaluated in many posterior segment diseases and has been inferred to reflect CC impairment relevant 

to disease pathophysiology19,25,29–33.  

 Our findings of a greater extent of flow voids in the CC immediately surrounding the GA lesion 

compared with more remote regions would appear to support the hypothesis that CC loss may precede 

overt RPE degeneration since the CC appears to be significantly impaired even in regions where the RPE 

layer appears to be intact structurally. 

Our OCTA findings are consistent with previous histologic studies. Biesemeier et al. examined 

four post-mortem GA eyes using a combination of light and electron microscopy and observed that CC 

loss occurred in regions underlying intact retina and RPE, and concluded that CC breakdown precedes 

RPE degeneration in AMD. 
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Whereas histologic studies provide a direct visualization of the vascular structure, OCTA findings 

provide insight into CC blood flow;  with the absence of OCTA signal indicating the absence of blood flow 

above the threshold of detection rather than a complete absence of blood flow.6  

Kvanta et al. reported that CC flow was reduced outside GA lesions extending beyond the GA 

margin in a qualitative evaluation of CC using SD-OCTA11. As previously mentioned, the current 

commercially available SD-OCT machines using a ~840 nm wavelength may be confounded by signal loss 

which can impact assessment of the CC in the setting of pathology such as drusen. Furthermore, SD-OCT 

systems are affected by a signal roll-off that further degrades the signal with depth. Longer wavelength 

SS-OCT systems are less affected by RPE attenuation and do not suffer from as steep a signal roll-off, 

making long wavelength SS-OCT ideal for CC imaging. 

Recently Moult et al. performed a qualitative analysis of the CC in eyes with nascent geographic 

atrophy and drusen-associated geographic atrophy using SS-OCTA, and demonstrated CC flow 

impairment not only under the area of the lesions, but also throughout the imaged field7. 

Our study is the first, however, to report quantitative data on the CC around GA using a SS-OCTA 

approach with further enhancement of image quality using a combination of averaging and signal loss 

compensation. In particular we focused our analysis on the para-atrophy region in order to test our 

hypothesis that a higher level of impairment would be present in the immediate vicinity of the lesion 

border where the RPE was still structurally intact. It should be noted, however, that a structurally intact 

RPE on OCT does not mean a normally functioning RPE.  

Sacconi et al. attempted to further clarify this point by comparing the CC flow under the regions 

surrounding the GA which were rated as hyperautofluorescent on fundus autofluorescence (FAF) 

images, and compared them to isoautofluorescent regions. While CC flow impairment was present in 

both regions, it was significantly greater in the hyperautofluorescent areas which are thought be regions 
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of significant RPE impairment. Based on these findings they hypothesized that the first injury in GA 

occurs at the level of the CC.  

Despite this finding, we would argue that it is still difficult to exclude the possibility that a 

combination of both RPE and CC flow impairment are relevant to the initiation of the atrophic process. 

For example, the earliest dysfunction of the RPE may still be undetectable using traditional FAF. Thus, it 

is still possible that RPE dysfunction could be the primary step in GA development and progression with 

secondary alterations to the underlying CC (e.g. due to loss of VEGF production by a dysfunctional RPE), 

leading ultimately to RPE loss and further progression of GA. 8,10.  

Given the important purported role of the CC in the development of GA, this uncertainty hinders 

our understanding of disease pathophysiology and progression. The development of new tools to probe 

RPE function and health (e.g. fluorescence lifetime imaging ophthalmoscopy) and prospective 

longitudinal studies investigating the correlation between CC flow impairment and GA progression, may  

provide additional insights into this question. 

Flow voids in CC are thought to demonstrate a regional dependence even in normal eyes, with a 

higher number of flow voids in central portions of the macula compared to more peripheral regions 

(personal communication, Phil Rosenfeld). This phenomenon is even more remarkable in older subjects 

(> 50 years old).  Thus, studies comparing CC flow voids within regions of interest in the macula5, may be 

confounded by this normal topographical variation in the density of flow voids. To address this potential 

, we performed an additional analysis comparing the CC within our regions of interest (para-atrophic 

and peri-atrophic zones) which were equidistant from the foveal center. We were able to identify such 

equidistant regions because of irregular and multifocal configurations of our GA lesions. This additional 

analysis confirmed the apparent higher impairment of CC flow in the region immediately surrounding 

the GA lesion. 
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Our study is not without limitations including its cross-sectional nature and small sample size. In 

addition, as were not able to perform variable inter-scan time analysis (VISTA) we could not distinguish 

among various levels of severity of CC impairment. Even if such an analysis was employed, however, we 

would still be limited by the range of flows detectable by current OCTA technology.  Also, In our cohort, 

we included all subjects with GA and did not exclude cases with a pachychoroid GA phenotype34. In a 

post-hoc review, we could identify 3 subjects (3 eyes) who met criteria for pachychoroid GA, but this 

small number was insufficient to allow a subanalysis of this cohort. We do not believe, however, that 

these few pachychoroid GA cases influences the main study finding, and the absence of a correlation 

between the flow voids and the CCT in this cohort would appear to support this contention. Finally, we 

used only OCT to detect and outline the borders of the GA lesion. While we now have consensus 

definitions for OCT on atrophy2, and measurement of atrophy by OCT are well-correlated with 

measurements from FAF35,36, FAF and OCT may not be measuring the exact same thing.  Even though 

FAF has been considered the gold standard to identify the areas of atrophy, en-face OCT has been 

shown to be a valuable tool for detecting the lesions (even for earlier lesions such as nascent GA)26,37,38 

and for following their progression39.  

Our study also has many strengths including its prospective design and the use of SS-OCTA. In 

addition, we used a signal compensation method as well as image averaging to further enhance image 

quality and reduce the potentially confounding impact of signal attenuation on OCTA-derived CC 

measurements. Moreover, we developed a method to cope with the irregular border and multifocal 

nature of GA lesions to more precisely study the status of the surrounding CC. Finally, we addressed the 

potential confounding effect of regional variations in CC flow voids by comparing regions equidistant 

from the foveal center. 
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In summary, our study confirms that significant flow impairment of the CC may be present in 

regions surrounding GA lesions, further highlighting the relevance of the CC to the pathophysiology of 

GA. Future larger longitudinal studies will be required in order to determine whether the severity of 

these surrounding regions of CC flow impairment are predictive of GA progression.  
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Figure Legends 

 

Figure 1. Images derived from two different acquisitions (A and B) underwent an identical post-acquisition quality enhancement 

strategy by signal compensation and averaging, in order to obtain the final high quality image of the choriocapillaris flow (C). 

For each acquisition a 10 µm thick slab between 31 and 41 µm under the RPE reference was segmented to extract an en-face 

image of the choriocapillaris from the angiogram (D) and the structural OCT (E). After being inverted and blurred (G), the 

structure image was multiplied with the angiogram (D) in order to compensate the angiogram for regions of signal loss (e.g. 

under drusen). The resultant compensated angiogram images (F) were then registered and averaged to obtain the final 

Choriocapillaris en-face angiogram (C). 

Figure 2. The OCT fundus image (A) was used for the manual delineation of the geographic atrophy (GA) area. The 

compensated, averaged choriocapillaris angiogram (B) was binarized and analyzed for percentage of flow voids in two 

concentric 500 µm wide areas around the GA (C and D). The inner ring was defined as the para-atrophy zone (C), while the 

outer ring was defined as the peri-atrophy zone (D). 

Figure 3. The OCT fundus image (A) was used for the manual delineation of the geographic atrophy (GA) area while the 

averaged angiogram of the superficial vascular complex (B) was used as a reference to identify the foveal center. In the 

compensated, averaged choriocapillaris angiogram (C) a 500x500 µm square area (#) was drawn at the innermost point of the 

outer boundary of the para-atrophy zone;  all possible positions for drawing a similar square equidistant from the fovea were 

considered within the peri-atrophy zone (*). Among these positions, the square which was most similar in distance to the foveal 

center as the peri-foveal square was selected for comparative analysis (D). 
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