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ORIGINAL ARTICLE
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Abstract

Context: Fitzroya cupressoides (Molina) I. M. Johnst. and Austrocedrus chilensis (D. Don) Pic.Serm.
& Bizzarri are two Chilean Cupressaceae that are naturally resistant to biodegradation.
Secondary metabolites from these species display a variety of biological activities.
Objective: To evaluate the antiproliferative activity of two lignans, a diterpene and a flavonol
isolated from A. chilensis and F. cupressoides, to elucidate their cytological effects on P3X murine
myeloma cells.
Materials and methods: The antiproliferative activity of yatein, isotaxiresinol, ferruginol, and
isorhamnetin was evaluated in vitro using the MTT assay. The effect of yatein at the cellular
level, due to its high antiproliferative activity was evaluated. P3X cells treated for 24 h with 12.5
and 25 mg/mL of yatein were also examined at the cytological level using immunofluorescence
and scanning and transmission electron microscopy.
Results: Yatein, a lignan isolated from A. chilensis, potentially inhibited P3X murine myeloma cell
proliferation, resulting in approximately 75% cell death in response to a 25mg/mL treatment
with the lignan. P3X cells lost membrane integrity at the nuclear and cytoplasmic levels,
including organelles, in response to yatein treatment (12.5 mg/mL), and we observed changes in
the cytoplasmic organization and distribution of microtubules. The other compounds tested
had low activity.
Discussion and conclusions: Yatein is a lignan precursor of podophyllotoxin, a key agent in
anticancer drugs. Due to its structural similarities to podophyllotoxin, yatein could have similar
cytoplasmic target(s), such as the microtubular apparatus. These findings suggest that yatein
may be of potential pharmacological interest and warrants further investigation in human
cell lines.

Keywords

Anticancer, cytotoxicity, diterpene, lignans,
microtubules, MTT, P3X, secondary
metabolites

History

Received 17 October 2013
Revised 5 April 2014
Accepted 25 April 2014
Published online 24 November 2014

Introduction

Austrocedrus chilensis (D.Don) Pic.Serm. & Bizzarri and

Fitzroya cupressoides (Molina) I. M. Johnst are species

belonging to the Cupressaceae, and are endemic to the southern

portion of South America, naturally being found only in Chile

and Argentina. The wood from these plants is renowned for its

durability and resistance to biological degradation (Donoso,

1993; Rodrı́guez, 2003). There is evidence that the quality of

the wood results from the presence of a particular class of

secondary metabolite (Donoso et al., 2008).

Throughout history, secondary metabolites have provided

a rich source of molecules that have biological properties,

particularly as anticancer agents with different chemical

structures and varied bioactivity (Liu et al., 2009). To date,

some of the most important studied metabolites are

podophyllotoxin and its hemisynthetic derivatives (etoposide,

teniposide, and etoposide phosphate), which are particularly

interesting due to their ability to inhibit tumor cell prolifer-

ation, making them useful in chemotherapy for the treatment

of lung cancer (Ayres & Loik, 1990; Gordaliza et al., 2006;

Yang et al., 2007).

Previous studies in our laboratory on the secondary

metabolites present in extracts of Austrocedrus chilensis and

Fitzroya cupressoides led to the isolation and chemical

characterization of diterpenes and lignans, their major
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constituents (Bittner et al., 1997; Donoso et al., 2008;

Flores et al., 2001). It is well established that lignans and

diterpenes play a role in the defense mechanisms of plants

and that they are biologically active, showing antibiotic,

antifungal, antiviral, immune stabilizing, antiasthmatic, anti-

oxidant, antineoplastic, gastroprotective, and cytotoxic prop-

erties (Adlercreutz, 1995; Ayres & Loik, 1990; Banskota

et al., 2003; Charlton, 1998; Chen & Thompson, 2003; Chen

et al., 2011; Donoso et al., 2008; Donoso-Fierro et al., 2009;

Raffaelli et al., 2002; Theoduloz et al., 2011). Therefore,

studies that examine their biological characteristics are very

important, because they may be useful for pharmaceutical

applications.

The present study evaluated the antiproliferative activity

of two lignans, a diterpene and a flavonol isolated from

A. chilensis and F. cupressoides, to elucidate their cytological

effects on P3X murine myeloma cells in vitro using

immunofluorescence techniques and scanning and transmis-

sion electron microscopy.

Materials and methods

Chemicals and reagents

All solvents and chemicals were purchased from Sigma-

Aldrich (St. Louis, MO); Dulbecco’s modification of

Minimum Essential Medium (DMEM), fetal bovine serum

(FBS), penicillin, streptomycin, and L-glutamine were

purchased from Lonza Verviers SPRL (Verviers, Belgium).

The anti-a-tubulin antibody was purchased from GE

Healthcare (Buckingamshire, UK), and fluorescein

isothiocyanate conjugated anti-mouse IgG secondary

antibody and ProLong� Gold antifade reagent with 40,6-

diamidino-2-phenylindole dihydrochloride (DAPI) were

obtained from Molecular Probes (Eugene, OR).

Plant material

Austrocedrus chilensis (247 m.a.s.l. 41�550S–71�520W) and

Fitzroya cupressoides (314 m.a.s.l. 41�570S–71�520W) were

collected in February 2009, by Dr. Donoso-Fierro in the

Patagonia North X Region, Province of Llanquihue,

Cochamó, Llanada Grande, Chile. Dr. Roberto Rodrı́guez,

a specialist from the Department of Botany at the Universidad

de Concepción, identified the plant samples, which were then

deposited in the Herbarium of the Universidad de Concepción

(CONC.) under the following collection numbers: CONC

169166 (Austrocedrus chilensis) and CONC 169169 (Fitzroya

cupressoides).

Extraction and identification

The extraction procedure followed that reported by Donoso

et al. (2008). Briefly, 800 g of heartwood samples from

F. cupressoides and A. chilensis was manually separated and

subsequently chipped and extracted three-times with n-hexane

to remove fats. Then, the heartwood of F. cupressoides and

A. chilensis was extracted with methanol and methanol/H2O

(80:20), respectively. Heartwood extracts were suspended in

distilled H2O, and then extracted three times with the same

volumes of ethyl acetate. The extracts from each species were

filtrates, and they were concentrated under a vacuum at 40 �C.

Austrocedrus chilensis and F. cupressoides extracts (30 g)

were subjected to column chromatography using silica gel 60.

Extensive gradient elution was then employed using n-hexane,

n-hexane-ethyl acetate, and ethyl acetate-methanol. The

purity of each fraction was determined by thin layer

chromatography using silica gel 60 F254 (TLC) and fractions

with the same TLC profile pattern were pooled and further

purified by rechromatography to yield pure compounds.

The structural identification of the yatein and isotaxir-

esinol (lignans), ferruginol (diterpene), and isorhamnetin

(O-methylated flavonol), was performed using spectroscopic

methods, including UV, GC-MS, 1H-NMR, and 13C-NMR

and the structures were compared with previously reported

data (Cao et al., 2009; Hendrawati et al., 2011; King et al.,

1952; Ulubelen et al., 1994). Specifically, to analyze the pure

compounds, 2–3 mg of each purified fraction was dissolved in

500 mL of deuterated chloroform (CDCl3) and transferred

to an NMR tube. The samples were analyzed and recorded

using a Varian 400 NMR spectrometer operating at 250 MHz

for 1H and 13C nuclei. The chemical shift in � (ppm) was

assigned with a reference to the signal from the residual

protons in the deuterated solvent and TMS was used as an

internal standard. The mass spectra were determined using a

5972 series Hewlett Packard mass spectrometer (Agilent

Technologies, Santa Clara, CA). GC/MS analyses (MS

detection at 70 eV) were performed under the following

conditions: column, HP-5, 30 m� 0.25 mm� 0.25 mm; tem-

perature, 100 �C isothermal for 5 min, with 10� increments per

minute up to 275 �C (held constant for 20 min); split injection,

100:1; injector temperature, 275 �C; detector temperature,

300 �C; and carrier gas, helium.

Murine myeloma cell culture

The murine myeloma P3X63-Ag8.653 cell line, which is

derived from Balb/c mice, is a well-known cell model that is

widely used by labs worldwide to produce monoclonal

antibodies and for assays and biological studies. Due to

their relative ease of handling and culturing, these cells

currently serve as a cell model for preliminary work in our

lab. This myeloma cell line was propagated and maintained in

DMEM supplemented with 10% FBS, penicillin/strepto-

mycin, and glutamine (2 mM) in a humidified incubator

with an atmosphere of 5% CO2 and 90% humidity at 37 �C.

For each treatment, 100 000 cells/well were seeded into a

24-well culture plate containing 1 mL of complete DMEM per

well and cells were incubated for 20 h in the absence (control)

or presence of the compounds.

Pure compounds were added to obtain final concentra-

tions of 12.5 and 25 mg/mL. Data were calculated as a

percentage of control, and all experiments were performed in

replicates of 24.

Cell proliferation assay (MTT test)

The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-

lium bromide] system is commonly used to assess the activity

of living cells through mitochondrial dehydrogenases

(Mosmann, 1983). After 24 h of treatment with the com-

pounds, 100 mL from each of the 24 wells was transferred to

96 well/plates. About 10 mL of MTT solution was added to
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each well, and the cells were incubated for 4 h at 37 �C. The

blue MTT-formazan product was solubilized by the addition

of 100mL DMSO and the absorbance was measured at 595 nm

using a NOVOstar microplate reader (BMG Labtechnologies,

Offenburg, Germany). Antiproliferative activity was

expressed as the percentage of viable cells relative to

untreated cells (control). The results for each experimental

condition represent the mean of 24 replicate wells.

Immunofluorescence microscopy

Among the compounds tested, yatein was selected for

evaluation of its effect at the cellular level, due to its high

antiproliferative activity. The microtubular component of the

murine myeloma cell cytoskeleton was investigated as a

possible target of yatein. Untreated P3X cells (control) and

P3X cells treated for 24 h with 12.5 and 25 mg/mL yatein were

seeded in 75 mL flasks (approximately 3 000 000 cells/flask

in 30 mL of DMEM). Samples were collected by centrifuga-

tion at 1000 rpm, supernatants were discarded, and the pellets

were re-suspended in 100 mM phosphate-buffered saline

(PBS), pH 7.4.

Cell suspensions were placed on poly-L-lysine coated

coverslips and incubated at room temperature for 60 min.

Excess cell suspension was aspirated and the coverslips

were rinsed briefly with PBS. Cell-coated coverslips were

immersed in ice-cold methanol:acetone (1:1), incubated at

�20 �C for 10 min and air-dried.

After two washes in PBS, each coverslip was placed on a

drop of blocking buffer (1% bovine serum albumin in PBS)

for 30 min at 37 �C to block non-specific binding sites,

followed by two washes with PBS. To remove the blocking

buffer, each coverslip was held on its edge using forceps, and

the blocking buffer was drained onto a sheet of paper. Then,

samples were incubated with a primary monoclonal antibody

against a-tubulin (diluted 1:400 in blocking buffer) for 1 h at

room temperature, using a 60 mL drop of antibody solution for

each coverslip. After rinsing three-times in PBS, coverslips

were dried and incubated with a fluorescein isothiocyanate

conjugated anti-mouse IgG secondary antibody (diluted 1:100

in blocking buffer). To rule out non-specific staining, control

samples were prepared without the primary antibody. After

three washes in PBS, nuclei were stained by mounting

coverslips on the slides using a drop of ProLong� Gold

antifade reagent containing DAPI. The images were captured

using a computer-assisted image analysis system that includes

an Axiophot Microscope equipped with a color video camera

(AxioCam MRC, Watertown, MA) and the AxioVision

software package (Zeiss, Watertown, MA).

Scanning and transmission electron microscopy

P3X control cells and P3X cells treated for 24 h with 12.5 and

25 mg/mL yatein were processed for electron microscopy.

Approximately 3 000 000 P3X cells were seeded in 30 mL

of DMEM in 75 mL flasks. Cells were collected in tubes and

centrifuged. The supernatants were discarded, and the pellets

were fixed with 4% paraformaldehyde and 5% glutaraldehyde

(pH 7.2) in 0.1 M cacodylate buffer for 1 h at 4 �C
(Karnovsky, 1965). After rinsing overnight in the same

buffer, samples were post-fixed in 1% osmium tetroxide in

cacodylate buffer for 1 h at 4 �C. After two washings in

the same buffer, samples were dehydrated in a series of

graded ethanol.

For scanning electron microscopy (SEM), cells were dried

according to the critical point method, using CO2 in a Balzers

Union CPD 020, sputter-coated with gold in a Balzers MED

010 unit, and observed with a JEOL JSM 5 200 electron

microscope (JOEL Inc, Peabody, MA).

For transmission electron microscopy (TEM), samples

were fixed and dehydrated as described above and embedded

in an Epon mixture resin. Thin sections (50–70 nm) were cut

with Reichert Ultracut and LKB Nova ultramicrotomes using

a diamond knife, collected on copper grids, stained with

uranyl acetate and lead citrate, and observed on a JEOL 1200

EX II electron microscope.

Statistical analysis

Significant differences between the control group and each

experimental group were determined using one-way analysis

of variance (ANOVA). Differences were considered signifi-

cant at the 5% probability level.

Results

Antiproliferative activity

MTT assays were used to test the cytotoxic effects of yatein,

isotaxiresinol, ferruginol, and isorhamnetin on P3X cells.

Yatein exhibited potent cytotoxicity, inducing 75% cell death

at 25 mg/mL after 24 h of treatment (Figure 1). Furthermore,

yatein was toxic toward P3X cells in a dose-dependent

manner. In contrast, isotaxiresinol, isorhamnetin, and ferru-

ginol did not significantly affect P3X cell proliferation

(ANOVA: p50.001, Figure 1).

Figure 1. Antiproliferative activity of ferruginol, isorhamnetin, isotax-
iresinol, and yatein toward murine myeloma cells. Cells were treated
with 12.5 and 25mg/mL of compounds for 24 h. Pure compounds were
solubilized in methanol and added at final concentrations of 12.5 and
25 mg/mL in DMEM. MeOH, methanol treated cells; Ctrl, untreated
cells; *Significantly different from control cells (p50.001, one-way
ANOVA). Cell viability was determined using MTT assays and
expressed as the mean ± SD of 24 replies.
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Immunofluorescence

To evaluate the effect of yatein at the cytological level, we

performed immunofluorescence staining using a monoclonal

antibody against a-tubulin. In control cells (untreated cells,

Figure 2A), microtubule organizing centers (MTOCs, arrows)

were visible as bright spots within the cytoplasm, whereas

microtubules were widely distributed in the cytoplasm. DAPI

staining demonstrated that the nucleus was localized in a

defined zone in the cytoplasm (Figure 2B). P3X murine

myeloma cells treated with low concentrations (12.5mg/mL)

of yatein were affected at the microtubular level, as

demonstrated by the disappearance of MTOCs and changes

in the organization and distribution of microtubules

(Figure 2C). In addition, diffuse cytoplasmic fluorescence

was observed, likely due to the presence of unpolymerized

tubulin. DAPI staining revealed a reduction in the volume of

the nucleus in yatein-treated cells (Figure 2D) compared with

control cells.

In P3X cells treated with higher concentrations of yatein

(25mg/mL), we observed brilliant cytoplasmic areas,

indicating the formation of large tubulin aggregates

(Figure 2E). DAPI staining revealed an apparent reduction

in the volume of the nucleus compared with control cells

(Figure 2F).

SEM and TEM

SEM imaging revealed that control cells (untreated cells) had

a regular round shape with numerous filamentous extensions

on the cell surface (Figure 3A). Cells treated with 12.5 mg/mL

yatein increased in size and transitioned to an ‘‘egg-like’’

shape (Figure 3B). Additionally, we observed a consistent loss

of filamentous extensions on the cell surface (Figure 3C) and

the formation of holes in the cell membrane (Figure 3D,

stars).

TEM imaging revealed that control murine myeloma cells

were round, with a heterochromatic nucleus (Figure 4A).

Mitochondria (Figure 4B) and the Golgi apparatus

(Figure 4C) displayed a defined and ordered ultrastructure;

viruses were also visible in the cytoplasm as they are residents

of this cell line (Figure 4A, rectangles). In contrast, cells

Figure 2. Immunofluorescence analyses of
the cytoplasmic effects of yatein in murine
myeloma cells (P3X). In control cells,
(A) microtubules are widely distributed in the
cytoplasm. Microtubule organizing centers
(MTOCs) are clearly visible (arrows), and the
nucleus is localized in a defined zone of cell
cytoplasm (B). In P3X cells treated with
12.5mg/mL yatein, (C) MTOCs disappeared,
the organization and distribution of micro-
tubules were altered (C), and DAPI staining
(D) showed a reduction in the volume of the
nucleus. Treatment with 25mg/mL yatein led
to the formation of large tubulin aggregates
that were visible as brilliant cytoplasmic
areas (E), and DAPI staining revealed a
reduction in the volume of the nucleus
(F). (n) nucleus; bars 10 mm.

DOI: 10.3109/13880209.2014.922588 Antiproliferative activity of yatein 381



treated with 12.5 mg/mL yatein displayed a highly condensed

nucleus (Figure 4D) and a completely disorganized membrane

system in the cytoplasm (Figure 4E); in some cells, the mem-

brane system was highly compromised (Figure 4F and G).

In addition, treated cells displayed nuclear fragmentation and

mitochondria with damaged cristae (Figure 4H). We also

observed cellular membrane interruptions (Figure 4I, arrow-

heads) and the extrusion of cytoplasmic materials from the

cell (Figure 4L, arrows). Extruded materials located in

proximity to cavities (Figure 4M, star) were also noted in

SEM observations (Figure 3D).

As demonstrated by SEM investigations, treatment with

25 mg/mL did not substantially generate additional morpho-

logical alterations (data not shown). The membrane system

was dramatically altered (Figure 5B) by 12.5 mg/mL, as

demonstrated by SEM and TEM. Cellular inclusions were

subsequently extruded (Figure 5C, arrowheads), and multi-

lamellar bodies were present in the cytoplasm (Figure 5D,

arrows).

Discussion

The wood extracts of Chilean Cupressaceae are composed

of fatty acids, mono and sesquiterpenes, diterpenes,

lignans, and phytosterols. The most active compounds

are phenolic diterpenes and lignans, and among them

matairesinol, podophyllotoxin, yatein, ferruginol, and 6,7-

dehydroferruginol (Banskota et al., 2003; Donoso et al.,

2008, Donoso-Fierro et al., 2009). Lignans represent one

of the most important and interesting classes of biologic-

ally active compounds, because lignan molecules can

induce cancer cell apoptosis (Ayella et al., 2010; Chavez

et al., 2011; Huong et al., 2011; Singh et al., 2007; Xu

et al., 2006, 2011). Podophyllotoxin inhibits microtubule

assembly of the mitotic apparatus, acting as a competitive

inhibitor of the binding site for colchicine to tubulin

(Loike et al., 1978); this process occurs during mitosis,

where the microtubules are rearranged to form the mitotic

spindle, which is essential for cell division (Ayres & Loik,

1990; Islam & Iskander, 2004; Schmidt & Bastians, 2007).

Among the compounds tested here, only yatein was active

against P3X murine myeloma cells, inhibiting proliferation

and killing 75% of cells. The molecular structure of yatein, a

lignan previously isolated from A. chilensis heartwood

(Donoso et al., 2008), is characterized by a podophyllotoxin

ring system, which includes a four member fused ring system

containing a lactone ring and a pendent aromatic ring

(Figure 6). Studies on the structure–activity relationship

(SAR) revealed that the antiproliferative activity of com-

pounds with a podophyllotoxin ring system depends on

the presence of rings A and E. Specifically, studies on the

structural modification of podophyllotoxin analogues, such

as VP-16 (40-demethylepipodophyllotoxin-4-(4,6-O-ethy-

lidene-b-D-glucopyranoside), revealed that removal of the A

ring reduced their activity by one-third. The E ring is

responsible for activity due to its ability to rotate freely

(Long & Casazza, 1994).

In contrast, recent studies indicate that yatein is toxic

toward DLD-1, CCRF-CEM, and HL-60 cell lines (Chen

et al., 2011) and significantly suppresses herpes simplex virus

type 1 replication in HeLa cells (Kuo et al., 2006). Here, we

show that yatein affects P3X cells in a dose-dependent

manner, and we investigated the possible cytoplasmic targets

of yatein.

P3X cells that survived yatein treatment clearly displayed

an altered microtubular apparatus, with the disappearance of

filamentous structures and diffuse cytoplasmic fluorescence,

which is an indicative of tubulin depolymerization. There is

Figure 3. Scanning electron microscopy
(SEM) images of P3X control cells and
cells treated with 12.5mg/mL yatein.
(A) Control cells showed a regular round
shape with characteristic filamentous exten-
sions on the surface. (B–D) Treated cells
revealed alterations in their shape (B), loss of
the filamentous structures (C), and holes on
the surface (D, stars). Bars: 1 mm.
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no evidence to establish whether yatein can bind microtubules

and directly affect the tubulin depolymerization process.

However, considering the similarity in the molecular structure

between yatein and podophyllotoxin, our data suggest a direct

(not unique) effect of yatein on microtubules.

SEM and TEM were used to investigate of the effects

of yatein at the ultrastructural level. In response to yatein,

we observed the loss of filamentous structures and a change in

the size and shape of P3X cells. Inside the cell, we observed

deep alterations to the membrane system, with the extrusion

of cytoplasmic materials and condensation and fragmentation

of the nucleus. Taken together, these results confirm the

effect of yatein on different cellular targets and biochemical

and physiological cell parameters. Further studies focused on

Figure 4. Transmission electron microscopy
(TEM) images of P3X control cells and cells
treated with 12.5 mg/mL yatein. (A–C)
Control cells were characterized by a round
shape, a heterochromatic nucleus, and a
mitochondria and Golgi apparatus with a
normal ultrastructure; viruses were also
visible in the cytoplasm, as they are resident
to this cell line (rectangles). (D–M) TEM
micrographs evidenced morphological alter-
ations in cells treated with 12.5 mg/mL yatein,
including condensation of the nucleus
(D) and the complete disorganization of the
membrane system in the cytoplasm (D and
E). The membrane system was highly com-
promised in some cells (F and G). Nuclear
fragmentation and mitochondria with
damaged cristae were also observed (H).
Cellular membrane rupture (I, arrowhead)
and the extrusion of cytoplasmic materials
from the cell were evidenced (L, arrows), and
some cavities originated by the extrusion of
cytoplasmic material were noted in proximity
of the cell surface (M, star). (n) nucleus;
(m) mitochondria; (g) Golgi apparatus. Bars:
(A) 5 mm, (B) 1.25mm, (C) 600 nm, (D) 5mm,
(E) 1.25mm, (F) 5 mm, (G) 1.25mm, (H)
2.5mm, (I) 300 nm, (L) 1.25mm, and (M)
1.25mm.
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Figure 5. Electron microscopy images of control P3X cells and P3X cells treated with 25 mg/mL. (A) SEM micrographs showing normal and damaged
cells after treatment. (B–D) TEM observation did not reveal new alterations with respect to the previous experiments. Cells displayed a high level
of modification to the membrane system and cellular inclusions (B) (arrowheads). Multilamellar bodies (arrows) were also observed in the cytoplasm
(C, rectangle). (n) nucleus; bars: (A) 5 mm, (B) 5 mm, (C) 5 mm, and (D) 1.25mm.

Figure 6. Chemical structures of the compounds isolated from native Chilean Cupressaceae.
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the characterization of the molecular mechanisms underlying

the effect of yatein on P3X cells are warranted.

In addition, similar research in other mammalian cell

models is being carried out in our laboratory to elucidate the

mechanism of action of this interesting lignan molecule.

Conclusions

We tested several purified compounds from Patagonia

Cupressaceae plants and yatein consistently inhibited P3X

murine myeloma cell proliferation. Other compounds from

the same plants did not show similar biological properties. In

cells that survived to yatein treatment, the microtubular

apparatus was altered, as determined by immunofluorescence

techniques, and SEM and TEM analyses displayed changes at

the morphological and ultrastructural level. Yatein treatment

altered cell shape and damaged the membrane system.

To elucidate its mechanism of cytotoxic action on P3X and

other cell lines, the biological activity of yatein and its

chemically modified analogs warrants further study.
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