
A Continuous Certification Methodology for DevOps
Marco Anisetti

Università degli Studi di Milano
Milano, Italy

marco.anisetti@unimi.it

Claudio A. Ardagna
Università degli Studi di Milano

Milano, Italy
claudio.ardagna@unimi.it

Filippo Gaudenzi
Università degli Studi di Milano

Milano, Italy
filippo.gaudenzi@unimi.it

Ernesto Damiani
Khalifa University
Abu Dhabi, UAE

ernesto.damiani@kustar.ac.ae

ABSTRACT
The cloud paradigm has revolutionized the way in which software
systems are designed, managed, and maintained. With the advent
of the microservice architecture, this trend was brought to the ex-
treme, pushing the whole software development process towards
unification of software development (Dev) and software operation
(Ops). This rapid evolution has not immediately found counterparts
in assurance techniques, where the evaluation of the non-functional
behavior of a software system and of the software development
process are completely decoupled. In this paper, we put forward the
idea that next-generation assurance techniques, and more specif-
ically certification techniques, must evaluate a software system
throughout the whole development process. To this aim, we de-
fine a continuous certification scheme for DevOps that evaluates
the software artifacts produced at each stage of the development
process. We then present the assurance framework managing our
certification scheme and experimentally evaluate the continuous
certification scheme in a real DevOps scenario.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Extra-functional properties; Development frameworks
and environments; • Security and privacy → Software security
engineering.
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1 INTRODUCTION
A cloud environment is a complex ecosystem where computational
resources and services can be provisioned on demand, adapted
based on events, and refactored as needed. The undebatable ad-
vantages of cloud environments come at the price of an increased
uncertainty and reduced transparency of their processes, where
application developers have little insights about their overall opera-
tion and behavior. With the advent of the microservice architecture,
the uncertainty and lack of transparency become even worse be-
cause cloud applications orchestrate a panoply of (micro)services
under the control of different providers.

Enabling assurance techniques [7], including certification, has
become a key requirement for the widespread diffusion of modern
software systems, where verification of non-functional properties
like security, privacy and dependability is a must-have feature for
end users. According to Denney and Fisher [13], software certifi-
cation is the process that “demonstrates the reliability and safety of
software systems in such a way that it can be checked by an indepen-
dent authority with minimal trust in the techniques and tools used
in the certification process itself.” Only recently, this definition has
been revisited to accomplish new requirements introduced by the
evolution of the software development towards IT services, cloud
environments, and microservices. Certification has been moving
from manual, after-deployment processes, to semi-automatic tools
for run time evaluation. New certification schemes for the cloud
have been defined [1, 3, 14, 15, 19], where the involvement of the
certification authority is weakened, and the importance of semi-
automatic and trustworthy techniques and tools raises. Notwith-
standing their huge potential, such approaches still prove a poor fit
for modern systems that mix cloud applications and microservices.
We argue that in the era of the unification of software develop-
ment (Dev) and software operation (Ops), we need to depart from
software verification approaches where the evaluation of the non-
functional behavior of the software system is completely decoupled
from the evaluation of the software development process. Cloud
platforms evolution toward service miniaturization is also paving
the way to lightweight and configurable certification that needs to
be aligned with the Continuous Integration (CI) and Continuous
Delivery (CD) development model. We then refine the notion of
continuous certification as a multi-step software system verification
process that is “synchronous” with and driven by the software de-
velopment process. It specifies the hooks for certification, specifies
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certification requirements, supports the deployment of the verifica-
tion mechanisms, and manages and adapts their execution when
moved between the development stages and the operation system.
The contribution of the paper is manifold. We first define a con-
tinuous certification scheme for DevOps. We then implement the
corresponding framework for service-based system certification.
We finally test the certification scheme in a real scenario for the
verification of security properties. To this aim, we use DevSecOps
manifesto (http://www.devsecops.org/), explicitly mentioning the
need for “Compliance Operations”, as a source of requirements for a
DevOps process and corresponding system under development. The
paper is organized as follows. Section 2 discusses the related work.
Section 3 discusses the notion of continuous certification applied to
a software development process and the requirements it poses on
certification schemes. After introducing our reference scenario (Sec-
tion 4), Sections 5 and 6 discuss our certification scheme for DevOps
and its instantiation. Section 7 presents our assurance framework.
Section 8 experimentally evaluates the certification-by-design con-
cept in a real environment. Section 9 gives our conclusions.

2 RELATEDWORK
The advent of DevOps as a set of software development practices
that increase the ability of organizations to deliver applications and
services at high velocity, coupled with the automation introduced
by Continuous Integration (CI) and Continuous Delivery (CD) para-
digm, require a re-thinking of assurance techniques that only verify
a system once deployed in staging or production. This is particularly
critical for security assurance, where security requirements must
be specified since the system design [10] and drive security testing
as part of CI [20]. DevSecOps is a step in this direction and incor-
porates security practices in the classic DevOps process. Mohan et
al. [18] report a survey to identify the main aspects of this trend.
Shain et al. [21] also report a systematically literature review on
continuous practices from 2006 to 2014. Mattetti et al. [16] present
a framework that can be applied to evaluate the security of Linux
containers and their workloads by defining and describing rules
and expected activities. Mohan et al. [17] describe the experience
made in IBM on deployment automation of 5 Business Intelligence
projects with specific security concerns: logging, separation of rules,
enforcement of accesses, audit. Debroy et al. [12] describe the au-
tomation of a web application testing on a CI/CD, starting from a
series of non-functional requirements. Bass et al. [9] go one step
forward investigating how to build a trustworthy pipeline where
integrity and security are the first concerns. Ullah et al. [24] face
the problem of providing a secure pipeline by analyzing security
requirements on code, data centers, and CI server, which are the
main components of a continuous deployment pipeline.

Recent service certification schemes [1–3, 5, 7, 22, 23] imple-
mented a continuous process aimed to continuously collect evi-
dence that infrastructures and/or applications consistently demon-
strate one or more non-functional properties. The role of certifica-
tion tools (controls in the following) becomes fundamental, being
the source of information for certificate issuing. The accredited
lab, the entity responsible for manual verification, is substituted by
semi-automatic frameworks that recurrently execute controls to
collect/aggregate evidence, which is reported back to the central

certification authority for the final evaluation. We note that, given
the high dynamics of service life cycle, recent certification tech-
niques departed from the assumption of a full involvement of the
certification authority in the management of certification processes.
Rather, the certification authority provides (signed) certification
model templates specifying the certification process as a computa-
tion to be performed on observable evidence, while semi-automatic
techniques are used to execute each computation [4].

Some approaches focused on the certification of the development
process only [8, 25], just few took the specific system under devel-
opment into account. Darwish at al. [11] for instance developed
a fuzzy-based fusion approach to combine process and software
metrics. To the best of our knowledge, no certification schemes
collect and aggregate evidence on system behavior as a part of the
development process used for its implementation.

In this context, the widely used notion of “by-design”, which
in most of the cases is associated with formal verification prac-
tices,1, can be also seen as coupled with the software development
process, reinforcing the tight relation between the development
process and the implemented system. For instance, the EU General
Data Protection Regulation (GDPR)mandates privacy-by-design and
security-by-design in the development of systems, meaning that pri-
vacy and security properties should be verified since requirements’
definition and across all development stages.

In this paper, we put forward the idea that certification pro-
cesses must move from traditional verification of service-based
systems to a notion of continuous certification, where certification
requirements are imposed during the development process and
non-functional property verification is planned since design time.

3 CONTINUOUS CERTIFICATION
A modern certification scheme must evaluate a target system along
all stages of the development process, supporting the concept of con-
tinuous certification. Continuous certification requires a multi-step
software system verification process that is driven by the devel-
opment process, the certification requirements, and the properties
to be certified on the target system. Certification activities need
to target all (intermediate) software artifacts and bind collected
evidence to all development stages, linking evidence back to certifi-
cation requirements. This goal can be only achieved by “shifting
to left” the non-functional (e.g., security) activities that usually
has been thought as a “bolt-on” process after the provisioning of
the application. More in detail, the notion of continuous certifica-
tion introduces new requirements on certification schemes that are
summarized as follows.

• Development process modeling: the development pro-
cess, regardless of how it is implemented, must be part of
the certification model that is under the responsibility of the
certification authority.

• Stage-by-stage evaluation: The certification model must
describe certification requirements and the corresponding
controls used to collect relevant evidence at each develop-
ment stage.

1For instance, in the case of “Correctness-by-Design” where one starts from a formal
specification and the result is a program satisfying the specification.
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Figure 1: DevOps pipeline for our reference scenario.

• Trustworthy inspection: the development process must
support trustworthy execution of controls.

• Continuous verification: hooks in the development pro-
cess must be provided to support continuous evidence col-
lection by controls.

Although continuous certification (and corresponding require-
ments) is applicable to any development process, it provides the
best advantages in agile processes, where Continuous Integration
(CI) and Continuous Delivery (CD) make the development process
and the software it releases a unique conceptual entity. In the re-
minder of this paper, we then focus on certification of services
developed following a DevOps process, defining a new certification
scheme for DevOps (Sections 5 and 6). DevOps in fact provides full
control and automation of the development steps, and is a natural
candidate for supporting continuous certification.

4 REFERENCE SCENARIO
Our reference scenario is a cloud-native application designed as
an orchestration of microservices developed following the Dev-
Ops principles. The application, developed in the EU project H2020
Toreador (http://toreador-project.eu), implements a methodology
providing Big Data Analytics-as-a-Service. It relies on three main
services: i) analytics service handling the analytics tasks (e.g., cleans-
ing, ingestion, mining), ii) workflow service supporting the genera-
tion of the analytics workflows as a composition of analytics tasks,
and iii) execution service triggering workflow execution and manag-
ing the interactions with the Big Data ecosystem. The application
is designed and implemented using an API gateway, which provides
advanced functionalities for logging, authentication, and security,
on one side, and an interface to interact with front-end components
for specific vertical applications, on the other side.

The considered application, being devoted to data management
and analytics, must certify security and privacy properties accord-
ing to requirements collected in relevant regulations (e.g., GDPR).
For this reason, we apply our continuous certification approach and
define certification requirements at each stage of the development
process in Figure 1. The development process is composed of stages
that are executed on premise, during the CI/CD pipeline, and in
the deployment environment, and drives all certification activities
possibly resulting in the issuing of a certificate. An overview of the
certification activities done at each DevOps stage is sketched in the
following.

• Stage Plan designs the application. It also specifies security
requirements and metrics to measure performance and qual-
ity of service of the application itself.

• StageCreate generates the application code, statically verifies
it for security reasons, and builds it after the source code is
committed.

• Stage Verify provides features for functional and non-func-
tional testing of the software.

• Stage Package prepares the software artifacts for application
deployment, and the corresponding security verification on
packaging dependencies.

• Stage Release marks the difference between staging and op-
eration pipelines targeting private or public deployments,
respectively.

• Stage Configure configures the deployment environment,
and includes infrastructure-level and container-level security
verification.

• Stage Monitoring continuously monitors the application to
calculate those metrics needed for continuous security verifi-
cation. We note that stages Release, Configure, and Monitor
consider both staging and operation environments.

5 CERTIFICATION PROCESS MODELING
We define a certification process that goes beyond traditional sys-
tem verification [7], by enriching system certification with the
evaluation of the compliance of the development process against
non-functional policies and requirements. The certification process
is driven by a certification model that triggers a set of assurance
activities at each stage of DevOps development process.

Certification models as a way to specify all activities to be car-
ried out in a certification process, from the initial description of
assurance activities to the incarnation of these activities into a con-
crete certification process [4], is a common approach to certification
management that has been adopted in many solutions [7]. None
of them however incarnates the need of verifying the adherence
of the whole development process to policies and requirements;
they rather specify a set of (testing or monitoring) activities that
are executed on the final system before and after deployment in
the in-production environment.

Our certification modelM is a technology- and system-indepen-
dent abstract representation of the certification process, driving
its execution according to the selected policies/requirements. It
models the development phases and specifies certification process
inputs, including high-level policies/requirements, configurations,
and activities for the certification of a property for a given class of
target systems. We formalize the certification model M as follows.

Definition 5.1 (M). A certification model M is defined as a
4-tuples of the form <Pi , T si , Ci , Gi>, where Pi refers to the i-th
DevOps phase triggering the execution of certification activities in Ci ,
T si →{T si ,1,. . .,T

s
i ,n }⊆T is a system artifact, that is, a portion (i.e., T si , j )

of the system (i.e., T) under certification, Ci→{ci ,1,. . .,ci ,n } is a list
of control types suitable for system certification, and Gi defines the
guards that need to be satisfied for triggering a phase transition.

We note that eachCi specifies a class of controls that points to a
set of real controls {ci ,1,. . .,ci ,n } that can be selected for system ver-
ification. For instance, class application web vulnerability refers to
all those controls that provide functionalities for web vulnerability
assessment. We also note that guards Gi are defined as a Boolean
expressions of conditions of the form op({c ,T s },EO ), where op is
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P1=“Plan”
T s1 ={T s1,1=“Software design”}
C1={c1=“Check requirements document”}
G1= =({c1,1 ,T s1 }, success)
P2=“Create”
T2= {T s2,1=“Requirements document”, T s2,2=“Code repository”}
C2= {c2,1=“Check requirements links”, c2,2=“Static code analysis”}
G2= (c2,1 ,T s2,1 }, success) ∧ ({c2,2 , T s2,2 , success)
P3=“Verify”
T s3 ={ T s3,1=“Latest build release”}
C3={c3,1=“Security tests”}
G3= ({c3,1 , T s3 }, success)
P4=“Package”
T s4 ={T s4,1=“Dependencies”}
C4={c4,1=“Dependencies vulnerability checks”}
G4= ({c4,1 T s4 }, success)
P5=“Release”
T5={T s5,1=“Deployment environment”}
C5={c5,1=“Release procedure checks”}
G5=({c5,1 , T s5 }, success)
P6=“Configure”
T s6 ={T s6,1=“Deployment Infrastructure”}
C6={c6,1=“Security benchmarking”, c2=“Pen test”}
G6=({c6,1 , T s6 }, success) ∨ ({c6,2 , T s6 }, success)
P7=“Monitor”
T s7 ={T s7,1=“Application”}
C7={c7,1=“Vulnerability scan”, c7,2=“Pen test”, c7,3=“Execution trace checks”}
G7=({c7,1 , T s7 }, success) ∧ ({c7,2 , T s7 }, success) ∧ ({c7,3 , T s7 }, success)

Figure 2: An excerpt of the certification model M for the
DevOps process in our reference scenario in Section 4

an operator in {=,≤,≥,<,>}, c is a control, T s is the target of the
control, and EO is the expected output of the execution of control c
on target T s . Guards define conditions that need to be satisfied by
the specific verification step in order to proceed with subsequent
activities. We note that if a guard is not satisfied, the certification
process ended and correction activities are requested to fix the
issues discovered by the guard. Our solution is complementary to
existing certification solutions and reuses them as much as possible
to provide a semi-automatic certification solution.2

Figure 2 shows an extract of a certification model for our refer-
ence scenario in Section 4.
P1 refers to stage Plan. C1 contains a single manual control c1,1
ensuring that the requirements document exists and has the format
requested to drive the remaining of the process (G1).
P2 refers to stage Create. C2 contains two types of controls: i) c2,1
verifies whether the requirements document in stage Plan (T s2,1)
has been manually annotated to link requirements to the source
code components they regulate; ii) c2,2 statically verifies the source
code in the code repository (T s2,2) to identify security issues. In case
both c2,1 and c2,2 succeed (G2), the following stage is executed.
P3 refers to stage Verify.C3 contains a single control c3,1 executing
ad hoc security testing on the latest version of the build release
(T s3,1).
P4 refers to stage Package. C4 contains a single control c4,1 execut-
ing dependency vulnerability checks on the additional packages
(T s4,1), if any, required for application packaging.
P5 refers to stage Release.C5 contains a single control c5,1 verifying
the correctness of the release procedure.

2The way in which the targets of a verification (i.e., T and T s ) are specified and
modeled, and the corresponding verification activities instantiated and executed are
out of the scope of this paper. A possible solution has been defined in [3] and used in
our experiments.

P6 refers to stage Configure. C6 contains two types of controls
both having as target to deployment infrastructure (T s6,1): i) c6,1
performs security benchmarking according to International regula-
tions (e.g., Center for Internet Security – CIS – benchmarking); ii)
c6,2 performs a penetration testing.
P7 refers to stage Monitor. C7 contains three types of controls both
having as target to system application (T s7,1): i) c7,1 performs a
vulnerability scan; ii) c2 performs a penetration testing; and iii) c3
monitors the executions of the target system when deployed in the
operation environment [2].

We note that, according to Figure 1, P5, P6, P7 verify the tar-
get system at DevOps stages Release, Configure, and Monitoring,
respectively, both in staging and operation environments. This
reinforces the concept of a certification process that is strongly
coupled with the development pipeline and not only verifies the
final deployed system, but rather continuously verifies all artifacts
produced since system design.

6 CERTIFICATION PROCESS
INSTANTIATION

The certificationmodel in Definition 5.1 is a composite model where
certification activities are independently specified for each DevOps
stage. These certification activities are then mapped to the DevOps
process by multiple instantiation functions λi . At a logical level,
when the i-th DevOps stage is triggered, the corresponding λi is
executed and the certification activities inM instantiated on the
relevant system artifact T si (e.g., system code, system build, system
package).

We define a vector V of instantiation functions λi , one for each
DevOps stage in M, as follows.

Definition 6.1 (Instantiation Function λi ). An instantiation
function λPi is a function that takes as input a tuple <Pi , T si , Ci ,
Gi> ∈M and returns as output an instance <P i ,T

s
i ,Ci ,Gi> where: i)

P i deals with all activities requested for the verification of the i-th
DevOps stage, ii) T

s
i contains the hooks to the real target (or a part

thereof) under certification, iii) Ci includes references to the controls
that need to be executed on T

s
i , iv) Gi instantiates the guards inM

with the parameters retrieved by executing Ci on T
s
i .

The result of the execution of the instantiation functions in
V is an instance MI of the certification model M, which drives
real certification activities along the DevOps pipeline.3 We recall
that phase Plan in M requires manual activities; therefore, the
instantiation function executes manual checks. We note that the
instantiation of the certification activities or, in other words, the
execution of instantiation functions λ can be pre-computed, when
possible, for performance reasons.

Example 6.1 (Function λmon ). Let us consider the DevOps Mon-
itor stage only and the relative 4-tuple <Pmon , T smon , Cmon ,Gmon>

∈M . Annotation function λPmon ∈V is triggered when stage Monitor
is reached after a successful verification of guard Gconf . It generates
<Pmon , T

s
mon , Cmon , Gmon>, where Pmon specifies the ordered list

of controls to be executed and the environmental information used
3Details on how this instantiation function is implemented is out of the scope of this
paper and will be considered in our future work.
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Figure 3: Certification framework. Single line rectangles re-
fer to components deployed on the public cloud; double line
rectangles refer to components that can be either deployed
on the public cloud or on premises.

to set up the evaluations (see Section 7), T
s
mon specifies the hooks to

the target system (or specific artifacts thereof) deployed on the CI/CD
pipeline, Cmon configures the set of controls cmon with all relevant
parameters, Gmon specifies the guards as a Boolean expression of the
outputs of each control cmon .

7 THE CERTIFICATION FRAMEWORK
Our certification scheme is implemented in a certification frame-
work that addresses the following requirements:

• Limited interference: the certification framework must
minimize the interference with the development process.

• Minimal impact: the certification framework must reduce
the impact on the application deployment.

• Full automation: the certification framework must trigger
controls in a fully automatic way.

Our certification framework [6] provides a distributed architec-
ture that integrates evidence collection within a DevOps process.
It offers a set of general-purpose controls, as well as a methodol-
ogy to develop custom controls, to perform the requested security
checks. All controls are implemented using containers, scripts skele-
tons, and wrapping drivers, keeping dependencies confined and
preserving isolation between controls.

7.1 Certification Framework Architecture
Figure 3 shows a simplified view our framework architecture imple-
mented as a service in the cloud. It is based on i) compute nodes exe-
cuting evaluation activities on different hooks (Execution Manager)
to collect evidence used to verify the target system (Certification
Manager), ii) storage nodes storing the certification controls (Control
Repository) and the results of the evaluation activities (Evidence
Storage).

More in detail, Certification Manager is the process owner, and
implements functionalities to correlate and analyze the collected
evidence. It executes a certification modelMI for a specific DevOps
process, collects evidence for system certification, and keeps the
control repository up to date. It inspects the evidence collected as
the result of the control execution and stored in Evidence Storage to
evaluate the relevant guardGi . To this aim, it instruments Execution

λ

M
contains

uses

Certificate

targets

supports

Ml

Certification
Authority

produces
& signs

Certification

Framework
is adopted by

executes

specific for

DevOps Team

- Application -

Figure 4: DevOps pipeline for our reference scenario in Sec-
tion 4.

Manager, which is in charge of executing the certification controls
Ci on the corresponding targets T si . General-purpose controls (e.g.,
channel confidentiality and integrity verification), as well as ad hoc
controls usually developed in synergywith the system development,
are stored in public or private Control Repositories as versioned
scripts. The proposed architecture can scale and migrate with the
application development pipeline. It exposes APIs that are called
during the different DevOps stages to carry out the certification
process.

7.2 Certification Methodology and Execution
Figure 4 presents an overview of the continuous certificationmethod-
ology implemented in our framework. The certification authority
first produces and signs the certification modelM, which is later
instantiated into a certification instance MI by means of instan-
tiation functions λ . The goal of the methodology is to obtain a
certificate for the target system, which presents a link to the origi-
nal modelM and an indirect reference to the certification authority
signing it. The instantiation functions λ take a certification model
M as input and generates a certification model instanceMI as a
set of YAML files as output. YAML files are bound to the different
stages of the DevOps pipeline and executed by the DevOps team
through the framework. Verification activities at each stage are
triggered by sending the YAML file to Certification Manager, where
it is interpreted and executed. This approach permits to separate
the DevOps pipeline from the specific certification activities.

Let us consider certification model M in Figure 2. Figure 5
presents an excerpt of the YAML file incarnation of tuple <Pcr ,
T
s
cr , Ccr , Gcr>∈M

I for stage Create. Once the YAML file is gener-
ated, it is bound to the corresponding stage of the pipeline by the
DevOps team. This constitutes the only point of contact between
the DevOps pipeline and the certification activities executed by
Certification Manager. When stage Create is triggered, the corre-
sponding YAML file incarnation is sent to Certification Manager.
Certification Manager first inspects P i of the YAML in order to
retrieve environmental information, such as available Execution
Managers and Control Repositories for the specific stage (e.g., “Exe-
Man1” and “PublicRepo” in Figure 5). Then, the portion of the YAML
file specifying target T si and controls Ci is used to instrument Exe-
cution Manager with i) the controls to be executed, each one with
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# (P_create) env information
Create:
−env:

repo:
− PublicRepo:

url:...
credentials:∗∗∗

ExeMan:
− ExeMan1:

url:...
certificate:∗∗∗

# (T_create) target definitions
−targets:
− softwarerepo:

rootpath:....
executor: ExeMan1

− requdoc:
rootpath:....
executor: ExeMan1

# (C_create) controls definition
− controls:
− id: RequirementsChecks

repo: PublicRepo
parameters:

reqdocpath=...
− id: StaticCodeAnalysis

repo: PublicRepo
parameters:

language=nodejs ...

# (R_create) rule definition
− rule:

connectors: and
controls:
− RequirementsChecks

target: softwarerepo
EO: success
op: equal

− StaticCodeAnalysis
target: requdoc
EO: success
op: equal

Figure 5: An excerpt of the YAML file inMI for stage Create
of M in Figure 2.

the relevant parameters (e.g., “language: nodejs” for control Stat-
icCodeAnalysis in Figure 5), ii) the repository to be contacted to
obtain the container wrapping each control. Execution Manager
retrieve the controls from Control Repository and executes them.
The results of their execution are stored in Evidence Storage and
used by Certification Manager to verify Gi . If the evaluation of the
guard is successful the DevOps pipeline proceeds with the following
stage; otherwise, it stops and a certification error is returned.

We remind that a DevOps process is a continuous process, where
each stage can be triggered for a number of different reasons, fur-
ther triggering the subsequent stages until the deployment in op-
eration/staging. For instance, a new functionality may require a
refinement of the CI/CD pipeline since stage Plan, while a new
security recommendation on the infrastructure/container may trig-
ger the process from stage Configuration. In addition, since the
certification process is continuous itself, an update on some of the
controls in Control Repository will automatically trigger their re-
execution on the pipeline even if no DevOps activities are requested.
For instance, in case a new security threat for NodeJS in our refer-
ence scenario in Figure 5 is disclosed, control StaticCodeAnalysis
is updated in the repository and Certification Manager contacts
ExecutionManager1 to re-execute the updated control.

Finally, hook and control configurations may change between
different DevOps stages. For instance, a complete vulnerability as-
sessment can be executed during stage Monitoring of the staging
environment, while it could just control the most relevant vulner-
abilities in stage Monitoring of the operation environment (e.g.,
for performance reasons). Additional hooks and controls can also
be defined to tackle specific deployment platforms like Amazon
AWS orMicrosoft Azure, for instance, monitoring the infrastructure
during the configuration stage by connecting to Azure Security
Center.

8 EXPERIMENTAL EVALUATION
We experimentally evaluate our certification scheme in the refer-
ence scenario in Section 4.

8.1 Experimental setup
For simplicity but with no lack of generality, we considered the
API gateway in our reference scenario (Section 4) as the target of
certification and confidentiality in transit as the security property
to be certified on it. The API gateway is based on Moleculer Web
API gateway (https://github.com/moleculerjs/moleculer-web), the
API gateway of Moleculer, a microservice framework developed
in NodeJS (https://moleculer.services/). We implemented the cor-
responding DevOps pipeline in Gitlab for CI/CD, and integrated
its declarative specification in our certification framework. Open-
shift 3.7 was selected as the operation environment just for the
scope of this experiments, since it provides a free account for test-
ing purposes.

8.2 Certification case study
We refined the certification model M in Figure 2 to fit the API
gateway peculiarities. First, to setup the certification process, we
specified a declarative description of the security requirements
document (Figure 6(a)), where the link to the target source code
is specified. We then implemented the instantiation functions λi
to generateMI ; λi receive the requirements doc and M as input,
and produces the corresponding YAML files.4 Annotation functions
can be executed at stage Plan to pre-compute the YAML files for
all stages, or, alternatively, at run time during each single stage.
Figure 6(b) shows a portion of the complete YAML file generated
by λmon for stage Monitoring, where control https-robustness is
defined. We note that the YAML file in Figure 6(b) extends the one
in Figure 5 with a number of additional activities and configuration
details. For instance, two separate test cases are listed as part of
this control (“c#73” and “c#75”) and a list of additional parameters
is provided. In case of test “73”, the target port is 443 and, being a
monitoring control, the execution is scheduled every 24 hours.

8.3 Performance Evaluation and Discussion
Different sets of (custom) controls have been defined in MI for
each stage of DevOps as follows: i) requirement check (custom) and
static code inspection based on sonarqube [Create], ii) security test
(custom) [Verify], iii) dependency check using a control based on
audit for NodeJS [Package], iv) configuration check based on kube-
hunter [Configure], v) HTTPS robustness check based on nmap and
NodeJS penetration test (custom) [Monitoring].

Figure 7 presents the execution time of the above controls for
the API gateway verification process carried out in Gitlab. These
values have been obtained as an average of 10 executions. The
entire pipeline with all controls executed took around 465s . The
most expensive stage was stage Create (241s) and, in particular, the
control static code analysis that took 89s; the less expensive was
stage Release (0s) with no controls to be executed. In addition to

4We note that the reason why YAML files have been used to represent certification
models is twofold: i) YAML is the de-facto standard for the representation of DevOps
stages, ii) YAML provides a human-readable format that supports validation activities
that are not completely automatic.
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{
"Specifications": [
{
"SrcPath": "CWD/../

examples/ssl",
"SrcFiles": "index.js",
"CompulsoryProperties": [

{
"Name": "Channel−Safety",
"Type": "https−robustness",
"OccurencesMin": "1"
}
]

}
],
...
"Export": {

"Path": "CWD",
"File": "AgentConfig.yaml"

}
}

# (C Monitor) controls definition
− controls:
− id: https−robustness

repo: PublicRepo
parameters:

url=∗∗∗
...

mapping:
− 'c#73': '0'
− 'c#75': '1'

tests:
− control: 73

name: Encrypted−channel
execution_cluster: 1
interval_detail:

id: 0
periods: scheduled
every: 86400

testcase:
config:

port: 443
running: {}
target: 165
target_detail: mol_web_stage_os

...
(a) (b)

Figure 6: An excerpt of (a) requirements definition and (b)
a YAML file generated for requirements corresponding to
stage Monitor.

the control execution time in Figure 7, additional 89s were needed
for pipeline settings, initialization, and deploy in operation, which
brought to a total execution time of 554s . We note that, on top
of this, the MI generation time, which have been pre-calculated
offline during stage Plan, took 2.5s on a laptop based on Intel Core
i5-4310M with 16GB of RAM and 250GB SSD. The execution of the
controls revealed 131 vulnerabilities, three with moderate impact
and two with high impact on the software code, and one with high
impact at Openshift configuration level. The latter vulnerability per-
mitted to access to pod’s service account token, giving an attacker
the possibility to use the server APIs (privilege escalation).

Figure 8 presents the total overhead introduced by our frame-
work increasing the number of executed controls from 0 to 20.
The overhead is 72s on average without control execution time,
which is less than 13% of the entire pipeline execution time (554s
on average). In the worst case of 20 controls, the overhead raises to
128s on average. Our experimental evaluations shows that i) the
computational effort requested by each control is dominated by the
control complexity, ii) the overhead of adopting our framework is
negligible compared to the time of executing the controls, iii) the
overhead for framework deployment and startup is independent
by the number of controls, while the control call is linear in the
number of controls.

To conclude, our framework provides the following advantages
with respect to an approach implementing the same controls di-
rectly in the pipeline. First, the controls provided by our framework
are continuously updated to accomplish new threats/vulnerabili-
ties. Second, new controls are continuously added to the framework
repository to cope with new threats/vulnerabilities, supporting a
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continuous certification process. Third, embedding scripts in the
pipeline can become a time-consuming effort for the DevOps team,
which is reduced when our semi-automatic approach is adopted.

9 CONCLUSIONS
We presented a new certification scheme for DevOps that evaluates
the software artifacts produced at each stage of the development
process. The proposed scheme supports the concept of continuous
certification for DevOps, where a system is developed with certifi-
cation in mind. This paper leaves space for future work. First of all,
the definition of a complete chain of trust grounded on trustworthy
instantiation functions. Then, the refinement of our certification
scheme towards any development processes.
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