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 41 

Abstract 42 

Dairy industry produces considerable amounts of liquid discharges, with high organic load. Cheese whey 43 

(CW), the liquid resulting from the precipitation and removal of milk casein during cheese-making, and the 44 

second cheese whey (SCW) derived from the production of cottage and ricotta cheeses, are the main by-45 

products of dairy industry. The major constituent of CW and SCW is lactose, contributing to the high BOD 46 

and COD content. Because of this, CW and SCW are high-polluting agents and their disposal is still a 47 

problem in dairy sector. CW and SCW, however, also consist of lipids, proteins and minerals, making them 48 

useful for production of various compounds.  49 

In this paper, microbial processes useful to promote the bioremediation of CW and SCW are discussed, and 50 

an overview on the main whey-derived products is provided. Special focus was paid to the production of 51 

health-promoting whey-drinks, vinegar and biopolymers which may be exploited as value-added products in 52 

different segments of food and pharmaceutical industries. 53 

with a special focus on value-added products such as health-promoting whey drinks from lactic and acetic 54 

fermentations, vinegar and biopolymers (poly-hydroxyalkanoates and bacterial cellulose). 55 

 56 
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 82 

Introduction 83 

Dairy industry produces considerable amounts of liquid discharges, with high organic load. Cheese whey 84 

(CW), the liquid resulting from the precipitation and removal of milk casein during cheese-making, and the 85 

second cheese whey (SCW) derived from the production of cottage and ricotta cheeses, are the main by-86 

products of dairy industry.  87 

Currently, the income from the Market of CW and its derivates has a small impact on dairy sector. In fact, 88 

according to data obtained from private dairy industries/factories the average Market prices in North-Italy are 89 

as follows: CW is 25-30 €/ton; CW powder for both animal husbandry and human nutrition is 1000-1200 90 

€/ton; food-grade lactose is 1600-1700 €/ton; whey permeate (WP) is 700-800 €/ton; whey protein 91 

concentrate (WPC) 35 powder is 3200 €/ton; WPC60 powder is 4900-5200 €/ton; WPC80 powder is 8500-92 

12000 €/ton; CW DEMI50 is 1500-1700 €/ton; CW DEMI70 is 1800-1900 €/ton; CW DEMI90 is 2300-2600 93 

€/ton (Siso 1996). 94 

Properties of CW are affected by the type of milk used in The milk used in cheese production. Therefore, c 95 

(cow, goat, sheep, buffalo and other mammals) influences the characteristics of the produced CW. 96 

Furthermore, casein precipitation leads to the formation of two CW types: acidic whey (pH 5)   having a pH 97 

around 5 is obtained after with fermentation or addition of organic or mineral acids, and sweet whey (pH 6.0-98 

7.0) is obtained by addition of proteolytic enzymes (Panesar et al. 2006)like chymosin (Panesar et al. 2007).  99 

Generally, CW exhibits high chemical oxygen demand (COD) (50-70 g/L) and biological oxygen demand 100 

(BOC) (27-60 g/L) because it retains about 55% of its total milk nutrients. The most abundant components 101 

are lactose (45-50  g/L to 50 g/L), soluble proteins (6-8 g/L to 8 g/L), lipids (4- g/L to 5 g/L) and mineral salts 102 

(8-10% of dried extract). The mineral salts include NaCl and KCl (more than 50%), calcium salts (primarily 103 

phosphate) and others. CW also contains lactic (0.5 g/L) and citric acids, non-protein nitrogen compounds 104 

(urea and uric acid) and group B vitamins (Carvalho et al. 2013)((Carvalho et al. 2013Siso 1996; Panesar et 105 

al. 2007). 106 

At large milk processing plants, CW is usually used as feedstock for animal feeding or to produce ricotta 107 

cheese, generating another by-product, that is SCW. However, at small-scale, milk farm or cheese producers, 108 

which are common in isolated rural areas, CW is not recovered and has to be treated along with the other 109 

generated wastewaters from the installation. The mixing of the whey wastewater with the washing waters, 110 

results into a diluted polluting effluent (2-4 g/L COD). Due to strict legislative requirements for effluent 111 

quality (Regulation (EC) No 1069/2009), CW and washing waters should be treated before being discharged 112 

into receiving waters. 113 

SCW results from the production of cottage or ricotta cheeses, and, similarly to CW, it is also a highly 114 

polluting effluent. Like CW, SCW maintains significant BOD and COD values (up to 50 and 80 g/L of O2, 115 

respectively), high lactose content (around 50 g/L) and high salinity (7-23 mS/cm). SCW exhibits acidic pH 116 

values within the range 3-6, possesses low level of fat (0.5-8 g/L), total suspended solids (≈8.0 g L−1) and 117 

protein (≈0.5-8 g/L) than CW. Moreover, it is normally free of amino acids and vitamins (Carvalho et al. 118 

2013)(Carvalho et al. 2013). It has been estimated that 15-20 L CW are needed to obtain 1 kg of ricotta 119 

cheese and producing 14-19 L of ricotta SCW (Mills 1986)(Mills 1986). 120 
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Currently, the treatment of SCW is considered more essential than that of CW, as CW is mainly used in 121 

ricotta and cottage cheese production. SCW is partially used as supplement feed for livestock, while most are 122 

not used by dairy. The disposal of this strong organic and saline polluting effluent remains a significant 123 

problem for the dairy industry. If SCW is incorporated into the wastewater, it increases the organic content, 124 

so the wastewater treatment becomes too expensive, particularly for small cheese plants. Considering that 125 

lactose is the major SCW constituent, the search for alternatives to minimize its environmental impact could 126 

be promising.  127 

In this light fermentative processes converting it into value-added products will allow both to reduce the 128 

pollution potential and to valorizse SCW. However, only few studies were focused on SCW treatment to 129 

obtain value-added products (Sansonetti et al. 2009)(Sansonetti et al. 2009). 130 

The existing techniques forThe management and valorization of CW and SCW are mainly based on 131 

physicochemical and biological treatments. Physicochemical processes (i.e. protein precipitation and 132 

membrane separation) are useful to produce whey powder, whey protein concentrate (WPC), whey protein 133 

isolate (WPI), whey permeate (WP), lactose and minerals. Biological treatments, instead, involve the 134 

microbial conversion of lactose, present in CW, SCW or cheese whey permeate, into organic acids, 135 

bioalcoholsbioethanol, greenhouse gases (e.g. hydrogen, methane), and bioplastics (Prazeres et al. 2012; Yadav et al. 136 

2015; Lappa et al. 2019)(Prazeres et al. 2012; Yadav et al. 2015; Lappa et al. 2019). 137 

In this paper, the microbial processes useful to promote the bioremediation of CW and SCW are discussed, 138 

and an overview on the main whey-derived products (Table 1) is provided. Special focus was paid to the 139 

production of with a special focus on value-added products such as health-promoting whey-drinks (from 140 

lactic and acetic fermentations), vinegar and , biopolymers (i.e. poly-hydroxyalkanoates, PHAs; bacterial 141 

cellulose, BC) (Fig. 1), which may be exploited as value-added products in different segments of food and 142 

pharmaceutical industries (e.g. functional beverages, bio-packaging). 143 

Other compounds, not considered in this paper, are of industrial interest, however this review will 144 

contemplate microbial transformations that combine food production with valorisation of waste and by-145 

product streams.  146 

Main value-added compounds obtained by microbial fermentations of whey 147 

The main products obtained by microbial fermentations of whey-based media and the involved microbial 148 

groups groups are briefly reported in Table 1.  Many of these products (e.g. lactic acid, bioalcohols, biogases) 149 

have been extensively studied and reviewed overtime as possible solution for whey valorization because of 150 

their high industrial interest. Others received lesser attention, but their production could provide 151 

sustainability and economical boost for several food-related applications. 152 

The bioconversion of whey into functional beverages and biopolymers rank in the objectives of current 153 

European policies driven to promote human-health and environmental sustainability. The market of 154 

functional beverages is recently gain interest because of increasing consumer demand for foods that enhance 155 

health and wellbeing. The synthesis of biopolymers for production of bioplastics may have great potential in 156 

food, biomedical and agricultural applications because of biodegradability, thermo-plasticity, 157 

biocompatibility and non-toxicity features. 158 

Bio-valorization of whey and whey-derivatives in fermented lactic and acetic beverages as well as in poly-159 

hydroxyalkanoates and bacterial cellulose will be addressed in this review.  160 
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 161 

Whey-based beverages  162 

The use of CW and WP for the production of beverages, with or without microbial conversion, is one of the 163 

most attractive possibilities for the valorization and utilization of whey for human consumption.   164 

The industrial production of whey-based drinks dates back to 1970s and different products (e.g. unfermented 165 

and fermented beverages, alcoholic beverages, diet beverages, high-protein sport drinks) have been 166 

developed and are currently available on the market (Chavan et al. 2015)(Chavan et al. 2015; Skryplonek and 167 

Jasińska, 2017). Whey proteins are today the best protein source for the Ready-To-Drink (RTD) protein 168 

beverages, an expanding market that is expected to reach $ 17.67 billion by 2025 169 

(www.globenewswire.com). On the other hand, “Rivella”, a sparkling and flavored whey-based beverage, is 170 

the second soft drink in Switzerland, after Cocao-Cola.  One of the oldest and best-known whey-based 171 

beverages is “Rivella” (Anonymous 1960), a refreshing and thirst-quenching drink produced in Switzerland. 172 

Today, unfermented thirst-quenching beverages and whey-powder instant drinks cover a prominent position 173 

in the commercial whey-beverage segment.  174 

Whey drinks gained attraction among dairy- and functional-beverages because are produced with simple 175 

technologies and are characterized by a high nutritional value for the presence of proteins and peptides with 176 

several biological and health-promoting functions (e.g. antioxidant, anti-inflammatory, anticancer, 177 

immunomodulatory, cardioprotective and hypotensive activities; Patel 2015) (Patel 2015). 178 

Despite this, whey beverages Most of the whey proteins, in fact, have several health-promoting effects, and 179 

their fractionation by enzymatic and/or microbial activity may results in peptides with important biological 180 

functions, such as antioxidant, anti-inflammatory, anticancer, immunomodulatory, cardioprotective and 181 

hypotensive activities (Patel 2015). However, although the interest in whey-based drinks is rising, their 182 

production suffers from several limitations and these beverages are sometimes perceived as unattractive 183 

products with poor . The sensory quality. , in fact, is impaired by theThe high lactose-glucose ratio, acidity 184 

level and mineral content, in fact, may that result in sweet, dairy/sour and salty/sour flavors, with poor 185 

reduced palatability. The high lactose concentration, additionally, makes these products highly perishable. To 186 

counteract overcome these drawbacks, several technological solutions have been developed, such including 187 

as ultrafiltration, pH adjustment,  and flavor supplementation and microbial fermentation, have been 188 

developed. 189 

 190 

Lactic fermented whey beverages  191 

Fermentation is one of the cheapest ways for preserving foods, improving nutritional value, and enhancing 192 

sensory properties. CW or milk enriched with CW, WPC or WPI are suitable substrates for the production of 193 

fermented beverages by using yeasts and lactic acid bacteria (LAB). 194 

As for other dairy fermented drinks (e.g. drinking yogurts, fermented milks), LAB may improve the shelf-life 195 

(e.g. prevention of spoilage microorganisms through the lowering of pH), nutritional (e.g. protein 196 

degradation, production of bioactive peptides) and sensory (e.g. production lactic acid and aroma 197 

compounds) properties of whey-based beverages. Some LAB strains, moreover, are also able to degrade β-198 

lactoglobulin, the main allergenic protein in milk and whey-based products (Pescuma et al. 2012)(Bertrand-199 

Harb et al. 2003; Pescuma et al. 2012). The use of probiotic strains, moreover, may enhance healthy features 200 
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in fermented whey drinks (Turkmen et al. 2019). LAB mostly used for the production of whey-based beverages belong to the Lactobacillus and Streptococcus 201 

genera. Combinations of yoghurt-derived L. delbrueckii subsp. bulgaricus and S. thermophilus cultures were 202 

extensively tested for their capability to reduce the lactose content, and for the acidifying and proteolytic 203 

activities (Gallardo-Escamilla et al. 2007; Pescuma et al. 2008; Almeida et al. 2009; Pescuma et al. 2012; 204 

Saeed et al. 2013; Sohrabi et al. 2016; Skryplonek 2018)(Almeida et al. 2009; Gallardo-Escamilla et al. 2007; Pescuma et al. 2008, 2012; Saeed et al. 2015; Skryplonek 2018; Sohrabi et al. 2016), demonstrating to be promising starters also for 205 

whey fermentation. Other authors , instead, demonstrated the capability of many LAB to produce flavoring compounds 206 

(Mauriello et al. 2001; Ricciardi et al. 2019)(Mauriello et al. 2001; Ricciardi et al. 2019) and to scavenge radicals (Virtanen et al. 2007)(Virtanen et al. 2007) when cultivated 207 

in whey-based medium., suggesting their effectiveness for the production of whey-derived drinks.    208 

The challenge in whey-beverage segment, however, is certainly the use of probiotic strains. to develop 209 

functional drinks. The strains The species principally used for the production of fermented 210 

probioticfunctional whey beverages belong to the speciesare L. acidophilus, L. casei, L. rhamnosus and L. 211 

reuteri (Turkmen et al. 2019)(Turkmen et al. 2019). Several authors (Tripathi and Jha 2004; Castro et al. 212 

2013a; Bulatović et al. 2014)(Bulatović et al. 2014; Castro et al. 2013a; Tripathi and Jha, 2004) demonstrated 213 

that different probiotic lactobacilli (i.e.  214 

the same strain was used in co-culture with L. acidophilus La-5 and S. thermophilus St-36 for the production 215 

of milk-whey beverages (Yerlikaya et al. 2012), and with L. rhamnosus GG for the production of mulberry 216 

whey drinks (AbdulAlim et al. 2018). Combination of B. lactis Bl-07 and L. acidophilus La-14 were used as 217 

probiotic adjunct in milk-beverages supplemented with different whey concentrations (Castro et al. 2013b). 218 

Hernandez-Mendoza et al. (2007) used different ratio of L. reuteri NRRL1417 and B. bifidum NCFB271 to 219 

ferment whey beverages that preserved acceptable flavor and significant level of survived probiotics during 220 

the storage period.    221 

Combination of LAB and yeasts have been used for the production of kefir-like whey-beverages using kefir 222 

grains (including Lactobacillus, Lactococcus, Leuconostoc, Streptococcus spp., and Kluyveromyces, Torula, 223 

Candida and Saccharomyces spp.) for fermentation process (Koutinas et al. 2007; Magalhães et al. 2010; 224 

Sabokbar and Khodaiyan 2016)(Koutinas et al. 2007; Magalháes et al. 2010, 2011a,b; Sabokbar and 225 

Khodaiyan, 2016). These products had interesting aroma profile, sensory properties and antioxidant 226 

capability, suggesting that kefir grains may be potential starters for the production of whey-based beverages. 227 

Although fermented whey-drinks may offer greater benefits than unfermented ones, to date the marketed 228 

products containing LAB cultures and/or probiotics are very limited. To our knowledge, “Gefilus” (Valio Ltd 229 

Company, Finland), containing L. rhamnosus GG, lactose-hydrolyzed and demineralized whey or whey 230 

protein concentrates, fruit juices or fruit aromas and fructose as sweetening agent, is the only probiotic drink 231 

commercially available.   232 

Compared to whey-based products, fermented milks with probiotic supplementation (see a list in Turkmen et 233 

al. 2019), remain the mainstay of functional beverage market. The currently marketed whey-drinks are still 234 

mainly recognized as energy-sport drinks with specific functions (e.g. recovery of muscle and muscle 235 

cramps, increase in lean weight, neurostimulant). On the contrary, the fermented whey beverages can be used 236 

to formulate different products with multiple applications and functionalities, allowing to retain different 237 

groups of health-conscious consumers. Furthermore, the production costs of fermented whey drinks would be 238 

comparable to those of fermented milks, since cheese whey and derivatives are cost-effective substrates. 239 
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Bioconversion into fermented beverages, would allow cheese whey valorization also in small and medium 240 

scale cheese plants, which cannot sustain the operational and equipment costs for the production of other 241 

whey-derived products (e.g. whey protein isolates, whey protein concentrates, purified organic acids). 242 

The probiotic L. rhamnosus GG is today exploited for the production of commercial “Gefilus” whey drink, a beverage produced in Finland (Valio Ltd Company) with lactose-hydrolyed and demineralized whey or whey protein concentrates, flavored by fruit juices or fruit aromas and fructose as sweetening agent.  243 

Alcoholic and low and low acetic beverages  244 

The bioconversion of whey and derivatives into low-alcoholic and acetic beverages, including vinegar, is an 245 

interesting alternative to lactic drinks for producing new food commodities from the dairy waste.  246 

Alcoholic fermentation 247 

Ethanol production worldwide has strongly increased since the oil crises in 1970. Its market grew from less 248 

than a billion liters in 1975 to more than 39 billion liters in 2006, and reached 100 billion liters in 2015. 249 

Significant amounts of renewable ethanol are produced not only as biofuel but also for beverage and 250 

industrial end-uses. In 2018 EU produced 5.81 billion liters of bioethanol, 9% of which was food-grade 251 

ethanol (www.epure.org). The biological production of bioethanol from whey requires microorganisms, 252 

generally yeasts, suitable to assimilate lactose into ethanol.. The main applications of yeasts in ethanol 253 

bioconversion are reported in Table SX. The best alcohol-producer yeast Saccharomyces cerevisiae does not 254 

have the pathway for lactose assimilation, and thus it cannot be exploited to produce ethanol from CW and 255 

other derivatives (SCW and whey permeate) without any preliminary enzymatic hydrolysis of lactose into 256 

glucose and galactose (Das et al. 2016).  257 

By contrast the The yeast species Kluyveromyces lactis and Kluyveromyces marxianus (synonyms 258 

Kluyveromyces fragilis nom. inval. and Candida pseudotropicalis) are lactose-fermenting yeasts thanks to 259 

assimilate lactose as unique carbon source. This ability depends upon two genes not found in S. cerevisiae,the 260 

genes LAC12 and LAC4, encoding for lactose permease and intracellular β-galactosidase, respectively (Varela 261 

et al. 2017)(Varela et al. 2017). Both yeasts are commonly isolated from food, fruits and plants, as well as from 262 

fermented dairy products, thus they gained the European Food Safety Authority (http://www.efsa.europa.eu/) 263 

Qualified Presumption of Safety (QPS) status and are Generally Regarded as Safe (GRAS) organisms (Coenen 264 

et al. 2000)(Coenen et al. 2000). Despite their phylogenetic closeness, K. lactis and K. marxianus differ in 265 

sugar metabolisms. K. marxianus engages better in fermentative metabolism than the respiring yeast K. lactis 266 

even at high temperature (45-50°C), and therefore it is preferred over K. lactis for bioethanol conversion (van 267 

Dijken et al. 1993; González Siso 1996)(van Dijken et al. 1993; Siso et al. 1996). However, whey fermentation by K. marxianus suffers of low ethanol 268 

yield. The maximum theoretical yield of ethanol from lactose is 0.538 g ethanol/g lactose, thus the fermented 269 

product contains approximately 3-5% ethanol, depending upon strain and fermentation technology adopted. 270 

The fermentation product is then centrifuged to remove the biomass, and sent to a distillation column where 271 

the alcohol content is increased to 95 v/v%. K. marxianus exhibits a great strain variability in lactose utilization, 272 

so an accurate strain selection is essential to optimize ethanol yields. Selected strains should exhibit ethanol- 273 

and thermo-tolerance in order to avoid inhibitory effects on yeast growth due to catabolite repression and 274 

reduce cooling cost in ethanol production bioprocesses, respectively. Furthermore, high lactose-utilizsingselected yeasts 275 

should possess a functional KmLac12 transportprotein  which efficiently transports  catalases the lactose into the celluptake (Fonseca et al. 276 

2008)(Fonseca et al. 2008). 277 

Feeding, oxygen, temperature and fermentative modes also strongly contribute to alcohol productivity 278 

(Sansonetti et al. 2009) (Sansonetti et al. 2009). In batch processes, high lactose, relatively low temperature 279 

http://www.epure.org/
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and low oxygen levels generally increased alcoholic fermentation (Sansonetti et al. 2009; Sansonetti et al. 280 

2010; Sansonetti et al. 2011)(Sansonetti et al. 2009, 2010, 2011). Lactose amount in the range of 50-200 g/L enhanced ethanol productivity, 281 

while values higher than 200 g/L negatively affected yeast growth (Ferreira et al. 2015)(Ferreira et al. 2015). Empirical models 282 

indicated 32.3°C as the best operating temperature (Sansonetti et al. 2010)(Sansonetti et al. 2010), whereas temperature higher than 283 

35-37°C increased the lag phase (Christensen et al. 2011)(Christensen et al. 2011). Oxygen depletion reduced biomass and glycerol 284 

(required for NADH oxidation) production in favour of ethanol (Sansonetti et al. 2009)(Sansonetti et al. 285 

2009). Cells immobilization in batch bioreactor (Roohina et al. 2016)(Roohina et al. 2016), fed-batch 286 

processes (Brady et al. 1997; Kourkoutas et al. 2002) (Brady et al. 1997; Kourkoutas et al. 2002) and 287 

continuous cultivation (Kourkoutas et al. 2002; Sansonetti et al. 2011; Gabardo et al. 2014; Hadiyanto et al. 288 

2014)(Gabardo et al. 2014; Kourkoutas et al. 2002; Hadiyanto et al. 2014; Sansonetti et al. 2011) modes 289 

coupled with immobilized K. marxianus cells overcame free cells in batch bioreactor in alcohol productivity, 290 

as new substrate was available without any catabolite repression. 291 

Differently from Kluyveromyces spp., the best alcohol-producer yeast Saccharomyces cerevisiae is unable to 292 

assimilate lactose, and thus it cannot be exploited to produce ethanol from CW and other derivatives (SCW 293 

and whey permeate) without any preliminary enzymatic hydrolysis of lactose into glucose and galactose 294 

(Guimarães et al. 2010; Das et al. 2016)(Guimarães et al. 2010; Das et al. 2016). Alternatively, S. cerevisiae 295 

can be used in whey alcoholic fermentation only if lactose was pre-hydrolysed into glucose and galactose by exogenous β-galactosidase from Kluyveromyces spp. (Guimarães et al. 2010). Exogenous β-galactosidase enzyme from K. lactis and S. cerevisiae cells can be employed in two-step 296 

sequential process or, alternatively, in co-immobilized state to avoid enzyme and cell washing-out. 297 

Bioreactors with direct contact membrane distillation allowed for the continuous removal of ethanol and 298 

increased the efficiency of sugar conversion to ethanol, by-passing catabolite repression (Tomaszewska and 299 

Białończyk 2016)(Tomaszewska and Białończyk 2016). Alternatively, Considering S. cerevisiae, even if strains can be engineered for lactose consumption produce more ethanol from whey than K. marxianus, these genetically engineered yeasts are not used for beverage production. Engineering approaches typically relyby the on 300 

heterologous expression of Kluyveromyces LAC12 and LAC4 genes (Domingues et al. 2010)in S. cerevisiae (Domingues et al. 2010). These 301 

engineered strains generally exhibited more ethanol yield than K. marxianus, but should be discarded for the 302 

production of food-grade ethanol. Furthermore, However, in presence of glucose and galactose, S. cerevisiae 303 

preferentially consumes glucose due to catabolic repression of enzymes necessary for galactose uptake. 304 

Then, dDiauxic shift to galactose imposes the synthesis of novel enzymes for galactose catabolism, leading to a 305 

sluggish fermentation. Alternatively, S. cerevisiae can be used in whey alcoholic fermentation only if lactose was pre-hydrolysed into glucose and galactose by exogenous β-galactosidase from Kluyveromyces spp. (Guimarães et al. 2010). β-galactosidase enzyme and S. cerevisiae cells can be employed in two-step sequential process or, alternatively, in co-immobilized state to avoid enzyme and cell washing-out. Bioreactors with direct contact membrane distillation allowed for the continuous removal of ethanol and increased the efficiency of sugar conversion to ethanol, by-passing catabolite repression (Tomaszewska and Białończyk 2016).  306 

Data on economic sustainability of bioethanol conversion from whey permeate are generally poorly 307 

available. Cost-benefit analysis performed by Utama et al. (Utama et al. 2017)(2017) showed that ethanol 308 

production from cheese whey and napa cabbage covered the wastes disposal costs, leading to a financial 309 

benefit up to US$ 3 816.96 per month, and attained the breakeven point in 3.53 months. Conversely, Da Silva 310 

et al. (Silva et al.( 2015)(2015) suggested that production of WPC was more economically sustainable when 311 

coupled with lactose powder production than with ethanol bioconversion of whey permeate due to high 312 

production cost for ethanol. 313 

 314 

Acetic acid fermentation 315 

CW and derivates after alcoholic fermentation can reach an ethanol amount around 6% (v/v) which allow the 316 

production of both vinegar and low acetic beverages. This way to valorize CW is in tune with consumer’s 317 

demand for high value-added products and government initiatives promoting healthy food and drink. Health 318 

based recommendations include reducing alcohol consumption; calories from added sugars; and limiting the 319 
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consumption of foods that contain refined grains, especially refined grain foods that contain added sugars and 320 

sodium. Foods and beverages with added sugars are higher in energy and low in essential nutrients or dietary 321 

fiber. Moreover, the safe use of non-nutritive sweeteners, like aspartame, is currently under on-going 322 

scientific debate, opening the avenue for alternative low caloric sweeteners.  323 

Overall, these issues raise the opportunity for the beverage industry with fermentation background to make a 324 

dynamic comeback with the production of new whey-based and alcoholic-free fermented beverages. 325 

From the biotechnological point of view, the conversion of ethanol produced from CW and its derivates into 326 

acetic acid by AAB is highly feasible. AAB are able to produce acetic acid in fermenting liquids, in which 327 

ethanol content ranges from 2-3% to 15-18%, according to the fermentation system and the microbial strain 328 

used (Gullo et al. 2014)(Gullo et al. 2014). This wide range allows to design versatile bioprocesses obtaining 329 

vinegars and drinks at variable acetic acid content and residual ethanol. Besides the protective action of 330 

residual alcohol or acids on acetic drinks, the fermentation process can have additional roles. Microbial 331 

secondary metabolites produced by AAB can improve the functional properties and reduce or eliminate some 332 

compounds while maintaining or even increasing others.  333 

In this scenario the exploitation of AAB by selective fermentations producing ethanol-free drinks, containing 334 

low amount of acetic acid, fructans, while reducing the content of sugar, is a challenge. 335 

Among fructans, levan-type exopolysaccharides (LT-EPS) are synthesized by the extracellular enzyme 336 

levansucrase (or sucrose 6-fructosyltransferase), which catalyses the transfer of D-fructosyl residues from 337 

sucrose to a growing fructan chain by trans-fructosylation (Donot et al. 2012)(Donot et al. 2012). After 338 

sucrose depletion, levansucrase cleaves the ß(2-6) linkages of the newly-formed levan chain, causing the 339 

consecutive release of the terminal fructose units until a branching point is reached (Méndez-Lorenzo et al. 340 

2015)(Méndez-Lorenzo et al. 2015). 341 

The interest for bacterial fructans arises from some their properties, like bio-compatibility, bio-degradability 342 

and biomedical properties such as antioxidant, anti-inflammatory, anti-tumor and cholesterol-lowering 343 

agents. Moreover, they are considered prebiotic molecules since their hydrolysis products, which are short-344 

chain fructooligosaccharides, show the ability to preferentially stimulate the growth of intestinal 345 

bifidobacteria (Roberfroid et al. 1998)(Roberfroid et al. 1998). 346 

Some studies focused fructans production by AAB, especially for food and beverages industry applications, 347 

but they are rarely applied in the food industry due to the lack of defined  commercially preparations. 348 

However, they are used for some non-alcoholic beverages (e.g. in some ultra-high-fructose syrups) as 349 

sweetener or dietary fiber (La China et al. 2018)(La China et al. 2018).  350 

Among AAB, the strain Gluconacetobacter diazotrophicus SRT4 highlighted the ability to synthetize high 351 

amount of branched LT-EPS with a molecular weight above 2 x 106 Da. The ability to synthetize LT-EPS was 352 

also found among Komagataeibacter xylinus strains (see La China et al. 2018 for references). Recently, 353 

Jakob and co-workers quantified and characterized the LT-EPS produced by strains of the species 354 

Gluconobacter frateurii, G. cerinus, Neoasaia chiangmaiensis and Kozakia baliensis, by a combination of 355 

NMR and AF4-MALS-RI analysis (Jakob et al. 2013)(Jakob et al. 2013). These latter studies showed that the 356 

molecular weight of LT-EPS has a high variability among AAB species, ranging from 4 MDa (G. frateurii) to 357 

2000 MDa (K. baliensis). This aspect deeply influences the physiochemical properties (different rheology) as 358 

well as the function (changes in antitumor and antiviral activities) of LT-EPS. Although a number of studies 359 
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highlighted the high potential applying AAB able to produce both acetic acid and LT-EPS, no commercial 360 

products are available in the market.  361 

Whey vinegars 362 

The conversion of cheese whey into whey vinegars represents a valuable option to recycle whey in traditional 363 

fermented food chain and to circumvent the main disadvantage of low productivity found in bioethanol 364 

production from whey. The basic process is the bioconversion of sugars into ethanol by lactose-fermenting 365 

Kluyveromyces yeasts, which is further converted into acetic acid by AAB (Parrondo et al. 2009)(Parrondo et 366 

al. 2009). 367 

 FAO/WHO defines vinegar as any liquid, fit for human consumption, obtained exclusively by the biological 368 

process of double fermentation, alcoholic and acetous, from liquids or other substances of agricultural origin 369 

(Joint FAO/WHO Food Standards Programme, 1998. Codex Alimentarius 1987). In the USA, the Food and 370 

Drug Administration (FDA) requires that vinegar products must contain a minimum acidity of 4 g per 100 g. 371 

There are currently no standards to identify vinegars, however FDA has established “Compliance Policy 372 

Guides” that the Agency follows regarding labelling of vinegars, such as cider, wine, malt, sugar, spirit and 373 

vinegar blends (FDA/ORA CPG 7109.22). In EU, each country has specific regional standards for vinegar 374 

produced or sold in the national area. Unlike the USA law, EU has established a minimum threshold of 5% 375 

(w/v) and a maximum threshold of 0.5% (v/v) for acidity and ethanol, respectively, when the raw material for 376 

acetic acid fermentation is not wine.  377 

The most famous vinegars are from wine or cider, however, vinegars can be produced from other non-378 

conventional sources containing sugars, like lactose-rich CW and SCW. Actually, vinegars from CW and its 379 

derivates are produced mainly in Switerland, but they are poorly known. 380 

As ethanol amount higher than 5-6% could inhibit AAB, Kluyveromyces yeasts grown on whey permeate 381 

with lactose up to 200 g/L assure enough alcohol for the subsequent acetic acid production. Parrondo et al. 382 

(Parrondo et al. 2003)(2003) produced vinegar with acetic acid content between 5 and 6% (v/v) by sequential 383 

fermentation of K. marxianus and Acetobacter pasteurianus. Using whey permeate with 135 g/L of lactose, 384 

K. marxianus produced whey liquor with a final concentration of ethanol around 55 g/L within 48 hours at 385 

optimal temperature of 30°C. Ethanol was converted into acetic acid by A. pasteurianus in four days with an 386 

efficiency of around 84%. Similarly, K. marxianus strains fermented three-fold concentrated whey, producing 387 

a whey liquor containing 8% ethanol (Tamura 2000). It was two-fold diluted before oxidization of ethanol to 388 

acetic acid by A. pasteurianus IFO 14814. The resulting whey vinegar contained 5.2% acetic acid and 389 

exhibited a faint odour of cow milk as well as a mellow acidic taste. Whey vinegar was also proposed as 390 

stable nutrient ingredient in dairy cattle diet (Lustrato et al. 2013)(Lustrato et al. 2013). Sequential 391 

fermentation of K. marxianus and Acetobacter aceti led to average lactose consumption of 56%, ethanol 392 

yield of 6.7 g/L/d and acetic acid production of 4.35 g/L/d. 393 

The current vinegar market offers a number of products with peculiar attributes, especially those containing 394 

healthy and functional compounds, which number continuously, increase. These vinegars originate from 395 

different raw materials such as fermentable fruits and vegetables. CW and its derivates are suitable raw 396 

materials to design innovative bioprocesses conducted by selected yeasts an AAB strains to produce added 397 

value vinegars. 398 

Distilled whey-based spirit (whey vodka) 399 
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Once produced, bioethanol should be distilled and/or concentrated for food or biofuel usage. Developed since 400 

1940 in Ireland, the so called Carbery’s process represents the first and most common mode to produce potable 401 

whey spirits from whey permeate on industrial scale. It relies on batch or fed-batch fermentations by K. 402 

marxianus coupled with continuous extractive distillation. The resulting distillate (95% by volume ethanol) is 403 

further diluted with water and redistilled to remove impurities and to produce potable whey spirits. The 404 

Carbery’s process is currently used by ain Ireland to produce 11 thousand tonnes of ethanol per year. Also, in 405 

New Zealand company to produce over 18 million litresliters of ethanol were produced annually from whey through Carbery’s process 406 

the and annually, which are exported to Asian market (Hughes et al. 2019)(Hughes et al. 2018)(Risner et al. 2018).  407 

The concept of producing whey-based spirits has been recently shifted to small craft distilleries which used 408 

pot distillation instead of extractive method. Based on life cycle analysis, production of distilled whey-based 409 

spirit resulted more sustainable than the conventional method for unaged spirit production from malted barley 410 

in terms of carbon dioxide-equivalent (CO2e) emissions and water usage (Risner et al. 2018)(Risner et al. 411 

2018). Volatilome of distillates changed depending upon wheys, with sweet whey distillates enriched in 412 

alcohols, acids, esters, and ketones, whereas acid whey distillates in aldehydes, terpenes, and terpenoids 413 

(Risner et al. 2019)(Risner et al. 2019).  414 

Although this is a means to reduce CW waste, it cannot considered among healthy strategies to valorize dairy 415 

wastes since alcoholic beverages are not in tune with healthy recommendations. 416 

 417 

Biopolymers 418 

The environmental problems associated with the accumulation of traditional petrol-derived plastics make 419 

urgent to find new alternatives (European Commission 2013). The real opportunity to overcome the state of 420 

emergency caused by environmental pollution related to the dispersion of plastics and issues relating to their 421 

disposal, results in the use of bio-polymers of bacterial origin. In order to reconcile food security and natural 422 

resource scarcity and environmental sustainability, the side-products of cheese production can also be used to 423 

produce biopolymers such as PHAs and BC. These biopolymers are promising candidates for industry to 424 

substitute the traditional fossil fuel derived plastics. However, the industrial production of PHA and BC, by 425 

fermentation, is a challenge in terms of economic sustainability of the process. By contrast the production cost 426 

of plastics from petrochemical product is still more competitive and preferred by industrial companies 427 

compared to biopolymer production. In fact, in order to be competitive with petrol-derived plastics, the selling 428 

price of biopolimers should not exceed 2000 €/ton. At present, unfortunately, a prediction on the revenues 429 

obtainable from products derived from biopolymers is difficult and no evidences are present in bibliografy. 430 

This depend on both type of raw material used, which is 20% to 80% higher than the cost of raw materials of 431 

conventional plastics and type of products obtained from biopolymers. It is expected that advancement in the 432 

industrialization process of PHA would drive the cost of PHA and make it an effective alternative for 433 

conventional plastic (Research and Markets, 2019a).  434 

The PHAs are polymers of carbon and energy of reserve accumulated in the cytoplasm of many bacterial 435 

species under particular conditions of excess of carbon availability, while some other factor is limiting (i.e. N, 436 

P, S, etc). Considering that, whey can be considered as one favorite substrate for PHAs production, due to its 437 

relatively high organic load (lactose 39-60 g/L, fats 0.99-10.58 g/L, proteins 27-60 g/L, and mineral salts 4.6-438 

8 g/L) (Colombo et al. 2016)(Colombo et al. 2016). The use of this waste materials, among several others 439 
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(Anjum et al. 2016; Koller et al. 2017)(Koller et al. 2017; Anjum et al. 2016) as carbon source for microbial-derived PHA production has the dual 440 

function of reducing both PHA production costs and waste management costs, and it has been recently 441 

extensively reviewed by Amaro et al. 2019 (Amaro et al. 2019). PHAs are the only “bio-plastics” with a whole “green” life-442 

cycle: renewable resources act as feedstock of the production (bio-based), living cells are responsible for both 443 

synthesis of their monomeric building blocks, and their subsequent polymerization (bio-synthesized), no 444 

adverse effects on the biosphere (bio-compatibility) and, lastly, they endure degradation by the action of 445 

living organisms (biodegradability) (Verlinden et al. 2007; Koller et al. 2013)(Koller et al. 2013; Verlinden et al. 2007), such as Gram-positive and 446 

Gram-negative bacteria, Bacillus spp., Pseudomonas spp., Streptomyces spp. and fungi as Aspergillus 447 

fumigates (Bugnicourt et al. 2014)(Bugnicourt et al. 2014). 448 

PHA has been used in the fixation and orthopedic applications, tissue engineering, production of bioplastic, 449 

food services, in packaging, pharmaceutical industry and agriculture. According to Research and Markets 450 

(2019b), the global polyhydroxyalkanoate market accounted for $78.20 million in 2017 and is expected to 451 

reach $135.78 million by 2026 growing at a CAGR of 6.3%. 452 

The PHAs are of great interest for potential applications that may arise, such as packaging materials, 453 

biomedical applications and bio-fuels. These polymers can be synthesized in different types of PHA that 454 

microorganisms accumulate as insoluble inclusion bodies. The first PHA identified was the homopolymer 455 

poly-3-hydroxybutyrate (PHB) Lemoigne (1927), a semi-crystalline isotactic polymer that endures surface 456 

erosion due to the hydrophobicity of the backbone and its crystallinity. Moreover, hydrolytic degradation of 457 

PHB ends in the formation of D-(-)-3-hydroxybutyric acid, a normal blood constituent, making it an excellent 458 

candidate for use in long-term tissue engineering applications being biocompatible, workable, and degradable 459 

(Ulery et al. 2011)(Ulerly et al. 2011). It can be applied also in many types of implant applications including 460 

orthopedic, craniomaxillofacial, dental, and cardiovascular, as well as in cardiology, plastic and 461 

reconstructive surgery, general surgery, ear, nose, and throat surgery, and oral surgery. While the PHAs offer 462 

a wide range of mechanical properties, which are potentially useful in medical applications, their use 463 

particularly in vivo as bioresorbable polymers has been limited by their slow hydrolysis (Niaounakis 464 

2015)(Niaounakis et al. 2015). Other general characteristics of PHAs are: water insoluble and relatively 465 

resistant to hydrolytic degradation; good ultra-violet resistance but poor resistance to acids and bases; soluble 466 

in chloroform and chlorinated hydrocarbons; sinks in water, facilitating its anaerobic biodegradation in 467 

sediments; nontoxic; less “sticky” than others polymers when melted (Bugnicourt et al. 2014)(Bugnicourt et 468 

al. 2014). These properties make PHA also good candidates for food packaging. Koller (Koller 2014)(2014) 469 

reviewed the main aspects to be considered when PHA are used for this purpose: purity and sensory quality, 470 

in which a specific role is played by the extraction and purification methods in order to avoid typical rancid 471 

odor and smell of the material that can easily and negatively affect the quality of the packaged food. 472 

Moreover, particular attention has to be given to the removal of remaining lipids and pyrolytic 473 

lipopolysaccharides (endotoxins) that are frequently spotted attached to PHAs from Gram negative strains 474 

(Furrer et al. 2007)(Furrer et al. 2007); the oxygen barrier of the film depends on the composition of PHAs 475 

on the monomeric level; water barrier, PHA polyesters show the advantage of substantial hydrophobicity in 476 

comparison to other biopolymers of natural origin (starch). Generally, values for PHB are similar to 477 

petrochemical opponents (PET) and poly(vinyl chloride) (PVC); high barrier for flavouring substances to 478 

protect the flavour of the food; chemical resistance, PHAs are easily subjected to acid-catalysed hydrolytic 479 
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degradation, so the performance and the suitability of biopolymers stored with common food packaging 480 

solution as a function of time has to be assessed. Bugnicourt et al. (2014) and Koller (2014) summarized the 481 

most known commercially available PHAs. 482 

Since the first discovery by Lemoigne (1927), a number of studies indicated many microbial species able to 483 

synthesize PHAs, and the most important are E. coli (engineered culture) and Cupriavidus necator. These 484 

bacterial species are the most used for industrial application since they associate high productivity to reduced 485 

times of accumulation, ranging from 0.02 to 5.2 g/L/h (Amaro et al., 2019). Unfortunately, as reviewed by 486 

Amaro et al. (2019), despite whey is a rich media that supports microbial growth, some of the best-described 487 

PHA-producing microbial species have been shown to be unable to directly produce PHA from whey, due to 488 

its carbon source, the lactose. Alcaligenes latus, Bacillus spp., Bacillus megaterium, Sinorhizobium meliloti, 489 

Sinorhizobium spp., Bacillus cereus, Pseudomonas aeruginosa, Hydrogenophaga pseudoflava, Pseudomonas 490 

hydrogenovora, Haloferax mediterranei, Thermus thermophiles, Methylobacterium spp., and Halomonas 491 

halophila were the species used until now to produce PHAs from whey and a comparison among used 492 

substrate, type of culture, microorganism, culture method, productivity and type of PHA has been reported in 493 

Amaro et al. (2019).  Alternatively, mixed microbial cultures (MMCs) enriched in PHA-storing bacteria 494 

within the classes of Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria have been 495 

exploited (Morgan-Sagastume 2016; Amaro et al. 2019)(Morgan-Sagastume, 2016; Amaro et al. 2019). 496 

MMCs are used using feast and famine cycles in order to enrich the strains that are able to use accumulate 497 

PHAs. While MMCs were associated with lower yields of PHA production in respect to the pure strains 498 

(0.0035-0.56 g/L/h vs 0.0039-0.17 g/L/h),, they have the advantage of not requiring sterile condition (Amaro 499 

et al., 2019).  500 

 501 

Cellulose is the most abundant biopolymer on earth, recognized as the major component of plant biomass, 502 

but also as a representative of microbial extracellular polymers. BC is a highly pure form of cellulose with 503 

the same chemical structure as plant cellulose, but having superior physical and chemical properties (eg. 504 

stability at high temperature, purity, biodegradability and water holding capacity (Gullo et al. 2017)(Gullo et 505 

al. 2017). These properties result from a higher degree of polymerization and ultrafine network architecture. 506 

Moreover, BC does not contain hemicellulose or lignin and it shows a more crystalline structure with respect 507 

to plant cellulose. Because of its unique properties, BC has found a multitude of applications in food, paper, 508 

textile industries, as well as in cosmetic and medicine fields (Gullo et al. 2018)(Gullo et al. 2018). Many BC-509 

based scaffolds are approved by the Food and Drug Administration (FDA) because of the low proteins and 510 

endotoxic units content (Petersen and Gatenholm 2011)(Petersen and Gatenholm 2011). 511 

The global BC market is valued at 207.36 million USD in 2016 and is estimated to reach 497.76 million USD 512 

by the end of 2022 (QYResearchReports, 2017). However, until now the industrial production of BC suffers 513 

from the low production yield. BC production can be properly optimized to overcome these limitations. The 514 

design of a rational selection strategy to recover suitable producing strains is the first step to obtain 515 

functionalized BC for different applications.  516 

The use of biodegradable BC-based material can be an outstanding alternative to substitute materials 517 

currently used in food packaging (Umaraw and Verma 2017)(Umaraw and Verma 2015). According to 518 

American Society for Testing and Materials (ASTM Standard D-5488-94d), a biodegradable material is 519 



14 
 

defined as a material able of undergoing decomposition into carbon dioxide, methane, water, inorganic 520 

compounds, or biomass in which the predominant mechanism is the enzymatic action of microorganisms, 521 

that can be measured by standardized tests, in a specified period.  522 

BC as eco-friendly polymer, has received considerable attention especially to produce composite materials 523 

aimed to increase the shelf life of foods. Due to its specific properties, BC can be functionalized to fabricate 524 

innovative materials for the development a new generation of active packaging, in which antimicrobial 525 

agents are combined into the packaging material creating a protective layer. 526 

Highly interesting seems the development of biodegradable active food packaging with improved physical, 527 

mechanical, barrier and additional bioactive function to ensure food safety and to extend the shelf-life of 528 

foods. Moreover, BC activated with antimicrobial compounds and probiotic can be effective against bacterial 529 

food pathogen infection, thus extending the shelf life of food products. 530 

Some studies showed the antimicrobial effect of a BC packaging embedded with sorbic acid in mono- and 531 

multilayer BC against E. coli (K12-MG1655) (Jipa et al. 2012)(Jipa et al. 2012).  532 

Among the strictly aerobic AAB, different species synthetize BC which production yield largely differs, but 533 

the most important one is K. xylinus (Chawla et al. 2009; Gullo et al. 2019)(Chawla et al. 2009; Gullo et al. 534 

2019).  535 

To reduce the costs of feedstock while contributing to environmental impact reduction, various low-cost 536 

alternative carbon sources for producing BC have been valued. In particular, researches focused on cheap 537 

agricultural products or waste containing suitable carbon sources (Thompson and Hamilton 2001; Kuo et al. 538 

2010)(Thompson and Hamilton 2001; Kuo et al. 2010). Although results are encouraging, many issues 539 

related to the yield and quality of the BC produced are still to be solved. 540 

Few studies evaluate the use of CW and derivates for BC production. However, recently agri-food waste such 541 

the residual liquid of grape in combination with cheese whey was evaluated for BC synthesis (Bekatorou et 542 

al. 2019)(Bekatorou et al. 2019). As for other raw material, no optimized bioprocesses are available and the 543 

main issues are related to the low BC production yield and pro and cons are related to costs and quality of BC 544 

produced. In this lightlight, the exploitation of CW and derivates in producing BC is highly appealing.  545 

Conclusion and perspectives  546 

CW and SCW are main waste of dairy industry responsible for a high organic load. Although existing 547 

strategies to manage these wastes contribute to reduce their amount, there is a need to further valorize them. 548 

Among biological treatments, fermentative approaches using yeasts, LAB and AAB offer the opportunity to 549 

consolidate already used bioprocesses and to introduce innovative bioprocesses combining the valorization of 550 

these wastes with the need to produce healthy food commodities.  551 

Considering the fermented beverages sector, the selection of appropriate microbial culture of yeasts, LAB 552 

and AAB could reinforce the valorization of CW and its derivates by increasing the yield of the main 553 

fermentation compounds and offering the opportunity to design and produce new functional beverages with 554 

healthy attributes.  555 

The production of biopolymers such PHAs and BC from food wastes is of great interest by the 556 

biotechnological industry. On the basis of the current knowledge there is a wide potential but further 557 

optimization steps are needed to enhance the industrial feasibility.  558 

 559 
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