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The intestinal milieu harbours the gut microbiota, consisting of a complex

community of bacteria, archaea, fungi, viruses and protozoans that bring

to the host organism an endowment of cells and genes more numerous

than its own. In the last 10 years, mounting evidence has highlighted the

prominent influence of the gut mutualistic bacterial communities on human

health. Microbial colonization occurs alongside with immune system devel-

opment and plays a role in intestinal physiology. The community of the

gut microbiota does not undergo significant fluctuations throughout adult

life. However, bacterial infections, antibiotic treatment, lifestyle, surgery

and diet might profoundly affect it. Gut microbiota dysbiosis, defined as

marked alterations in the amount and function of the intestinal microor-

ganisms, is correlated with the aetiology of chronic noncommunicable dis-

eases, ranging from cardiovascular, neurologic, respiratory and metabolic

illnesses to cancer. In this review, we focus on the interplay among gut

microbiota, diet and host to provide a perspective on the role of micro-

biota and their unique metabolites in the pathogenesis and/or progression

of various human disorders. We discuss interventions based on microbiome

studies, that is faecal microbiota transplantation, probiotics and prebiotics,

to introduce the concept that correcting gut dysbiosis can ameliorate dis-

ease symptoms, thus offering a new approach towards disease treatment.

Introduction

Daily, our body is exposed to a wide variety of foods.

Similarly to drugs, these materials are recognized

as ‘not-self’ and may represent a potential source of

toxicity [1].

To assess adherence to dietary guidelines meant to

promote health and prevent chronic disease, the

Healthy Eating Index (HEI) was developed in the Uni-

ted States. The most updated version of the HEI
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focused on food quality, including healthy choices

such as whole grains, seafood and plant proteins [2].

What emerged from recent prospective studies is that

the majority of the population in the United States

achieved only an intermediate or poor HEI, as

reported in the National Health and Nutrition Exami-

nation Survey [3].

Bacteria, the main types of microorganisms, together

with archaea, fungi, viruses (especially bacteriophages)

and protozoans are found in the mammalian intestine

[4]. These latter groups of microorganisms likely mod-

ulate the activities of the host and may be as impor-

tant as bacteria [5,6]. By definition, the collective

microbial community present inside and on the surface

of the human body constitutes our microbiota,

whereas the term microbiome refers to the genes

expressed by the microbiota [7]. The stomach and

small intestine have a bacterial density of about 103–
105 organisms/g in mice. The ileum, which corresponds

to the distal portion of the small intestine, has a higher

bacterial density (108/g) and species diversity. The

highest density of colonization is found in the colon

(1010–1012/g), with a spectrum of at least 400 bacterial

species. In the lower intestine, anaerobes are predomi-

nant, particularly Bacteroides, Bifidobacteria, Fusobac-

teria and Peptostreptococci. On the other hand,

aerobes and facultative aerobes, including Enterobacte-

ria and Lactobacilli, are present at only moderate den-

sity [8]. The microbiome composition is unique to each

individual, rapidly developing throughout early child-

hood to become established in adulthood. Modifica-

tions in microbial composition depend on both genetic

and environmental factors including diet, geographical

location, toxin/carcinogen exposure and hormones [9].

This review focuses on the connections among gut

microbiota (mainly the bacterial fraction), diet and

human illnesses. Specifically, we discuss the role of gut

bacteria and diet in the pathophysiology of cardiovas-

cular disease (CVD), central nervous system (CNS)

syndromes and cancer.

The gut microbiota system

The intestinal microbial community that inhabits the

human gut counts more than 100 trillion microbial

cells (~ 4 9 1013), lives in a mutualistic relationship

with its host and is a key contributor to host metabo-

lism, for instance by producing vitamins and others

metabolites necessary to the host’s physiology. For this

reason, dramatic changes in the composition and func-

tion of intestinal microorganisms, defined as gut

microbiota dysbiosis, are associated with gastroenteric

disorders, as well as neurologic, respiratory, metabolic,

hepatic and CVD [10]. Bacteria also inhabit extrain-

testinal organs such as skin, oral and nasal cavities,

and vagina, but their number in these compartments

does not exceed 1012/g [11].

Shotgun metagenomics sequencing through random

sequencing of all genes established that the bacterial

microbiome of the human gut is dominated by Firmi-

cutes, Bacteroidetes, Actinobacteria, Proteobacteria and

Verrucomicrobia phyla. Firmicutes and Bacteroidetes

represent 90% of the gut microbiota [7]. Arumugam

et al. proposed that the gut microbiota is grouped into

three enterotypes or clusters, namely Bacteroides, Pre-

votella and Ruminocccus [12]. However, further studies

showed that discrete clustering methodologies could be

sensitive to sampling and selection bias, providing evi-

dence that enterotypes are fluid entities rather than

discrete community types [13]. Recently, Costea

et al.[14] concluded that, even though an appropriate

statistical description of the microbiome remains elu-

sive, the enterotype composition is still relevant in var-

ious clinical settings, ranging from direct disease

associations to personalized dietary interventions.

The intestine is colonized by microorganisms prena-

tally, reaching a steady state between 2 and 5 years of

age. Several studies have demonstrated that the foetus

lives in a nonsterile environment and the microbes that

colonize the foetus could influence both the pregnancy

outcome and later on the health status of the infant

[15,16]. Following birth, various microbes colonize the

human intestine, and factors like gestational age, mode

of delivery, diet (breastmilk vs. formula), sanitation

and antibiotic treatment are known to affect this pro-

cess [17]. In the preterm neonate, the microbiota have

reduced diversity with lower numbers of Bifidobac-

terium and Bacteroides and higher levels of Enterococ-

cus and Proteobacteria compared to full-term children.

Of note, high concentrations of Proteobacteria have

been recognized as a risk factor for the development

of neonatal-necrotizing enterocolitis (NEC) [18].

Maternal vaginal and faecal bacteria, including Lacto-

bacillus and Bifidobacterium, colonize vaginally deliv-

ered infants [19]. Enterobacteriaceae represent the main

group of microorganisms transferred from mother to

child through faeces [20]. Neonates born via C-section,

thus not directly exposed to maternal microorganisms,

are colonized by microbes coming from the skin and

the hospital environment. The main consequence is

that C-section delays Bacteroidetes colonization and

reduces microbiota diversity. However, as more recent

studies report conflicting results, it remains unclear

whether disruption of mother-to-infant transmission of

microbiota through C-section occurs and whether it

affects human physiology early on [21,22]. Besides,
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long-term follow-up trials based on larger cohorts,

high-resolution multi-omics analyses and detailed

immunological screening are necessary to unravel the

relationships between mode of delivery and health sta-

tus [23].

Infant feeding methods, namely breastmilk and for-

mula, dramatically shape the gut microbiota in early

life. Human milk contains proteins, fats, carbohydrates

(mainly oligosaccharides), immunoglobulins and endo-

cannabinoids. The milk oligosaccharides reach the

colon where are fermented, mainly by Bifidobacterium,

to produce short-chain fatty acids (SCFAs), mainly

acetic, propionic and butyric acids [17,24,25]. A direct

correlation between oligosaccharides present in the

human milk and number of Bifidobacterium has been

found, showing that these milk components act as pro-

biotics by selectively promoting the formation of Bifi-

dobacterium-rich microbiota [26]. Based on these data,

milk formula has been optimized by adding certain

types of oligosaccharides, making it possible for

infants to establish Bifidobacterium-rich microbiota

[27]. Breastmilk contains also immunoglobulins (IgA

and IgG), lysozyme, lactoferrin, immune-regulatory

cytokines (e.g. TGF-b and IL-10) and lymphocytes

expressing gut homing markers [28,29]. For this rea-

son, intestinal bacterial colonization dramatically influ-

ences the maturation and physiology of the immune

system in early life and affects adult’s health and dis-

ease, as pointed out by the loss of immune function in

germ-free mice [30]. Various studies have also demon-

strated that intestinal bacteria and their metabolites,

including SCFAs, play a key role in the proliferation

and differentiation of T and B cells [29,31,32].

A marked transformation in the gut microbial com-

munity occurs after weaning from the mother and the

introduction of solid foods, with an increase in the

number of butyrate producers, that is Bacteroides and

Clostridium species [33]. Antibiotics use significantly

impacts the evolution of the infant gut microbiota by

increasing Proteobacteria and lowering Actinobacteria

populations [34], decreasing the overall diversity and

selecting for drug-resistant bacteria. Moreover, some

epidemiological studies correlated the antibiotic con-

sumption in early life with the increased risk of allergic

disease (i.e. asthma, atopic dermatitis, eczema) and

type-1 diabetes later on in life [35].

Compared to infants, the gut microbiome of chil-

dren is characterized by a higher degree of stability

and a reduced interindividual variance. In childhood,

gut microbiota are influenced by geography and food

culture and differ between developed and developing

countries, as well as between industrialized and rural

areas [15]. For example, it has been reported that the

gut microbiota of children from Burkina Faso were

enriched of Bacteroides, while Enterobacteriaceae,

pathogenic intestinal microbes causing diarrhoea, were

significantly lower compared to Italian children [36]. A

meta-analysis of metagenomic datasets obtained from

faecal samples of healthy adults living in 13 different

industrialized regions, as well as two preagricultural

communities, indicated that the urbanization process

has significantly shaped the gut microbiota, thereby

potentially impacting the overall functionality of the

gut microbiome [37]. Besides, epidemiologic studies

have suggested that the incidence of autoimmune dis-

orders is increasing in industrialized countries poten-

tially reflecting environmental/dietary/microbial

population changes [38]. In adulthood, the gut micro-

biota community is to some extent stable. However, a

higher level of interindividual variability has been

observed in the gut microbiota composition of aged

people compared to younger adults [39]. Centenarians

had reduced concentrations of Bacteroides, Bifidobac-

terium and Enterobacteriaceae, while Clostridium spe-

cies concentrations were increased compared with

younger adults. A correlation between gut microbiota

composition, diet and institutional or community liv-

ing was also reported. It will be necessary to devise

new dietary intervention studies to fully understand

and elucidate the clinical relevance of these modifica-

tions. Specifically, it should be important to establish

if a controlled variation on the dietary habits of aged

individuals could positively impact their gut micro-

biota composition in a context of global ageing popu-

lation [40,41].

Diet

Changes in socio-economic status, cultural traditions,

population growth and employment impact dietary

habits worldwide. Finding ways to increase the pro-

duction and availability of healthy foods is a major

need, giving the exponential growth of the global pop-

ulation, whose size is predicted to expand to 9 billion

by 2050 [42,43]. Various studies have demonstrated

that the nutritional value of food is partially affected

by the composition of the individual’s gut microbiota,

and that food, in turn, moulds both the microbiota

and the microbiome [44,45]. In line with these data, we

have to keep in mind that also plant hormones (such

as abscisic acid, auxins and salicylates) and polyphe-

nols (such as curcumin, lignans and cinnamic acid) can

influence microbial richness, diversity and composition

[46,47]. Besides, abscisic acid, salicylates and curcumin

exert positive effects against chronic and degenerative

disease, including diabetes and cancer [48–50]. Finally,
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answering the question of how food processing by the

gut microbiota influences our immune system will give

us the whole picture of this complex network.

It is still unclear what defines a ‘healthy’ microbiota.

We know that 30–40% of the gut microbiota in the

adult can be modified during the lifetime, and diet is

one of the most powerful instruments to do so. For

example, the Bacteroides enterotype is found in indi-

viduals consuming fat and protein-rich diet, whereas

the Prevotella enterotype is often present in the gut

microbiota of persons eating a fibre’s rich diet. It has

been estimated that about 90–95% of dietary fats are

absorbed in the small intestine, which may explain

why fats dramatically impact the gut microbiota com-

position [51,52]. High-fat diets are indeed associated

with low SCFAs and low Bifidobacterium concentra-

tions [53]. Mice fed a palm oil-based diet show an

increase in the ratio of Firmicutes to Bacteroidetes, an

elevation in Clostridium species, and a reduction of

overall microbiota diversity [51]. Proteins are an inte-

gral part of a healthy diet, but it has been shown that

the relationship between protein intake and health fol-

lows a U-shaped curve [54,55]. Specifically, intakes

below the minimum are associated with undernutrition

states, and intakes above the tolerable limit are associ-

ated with overnutrition illnesses [56]. Clinical studies

indicate a linear correlation between the levels of pro-

tein intake and the long-term risk of kidney disease in

people with below normal kidney function, and a non-

linear relationship with long-term mortality risk

regardless of kidney dysfunction [56]. It has been

demonstrated that dietary proteins reaching the colon

(about 10%) act both as a substrate for proteolytic

bacteria and as a source of nitrogen for saccharolytic

species [57]. The products of protein and amino

acid breakdown are SCFAs, branched-chain fatty

acids (BCFAs; isobutyrate, isovalerate and 2-

methylbutyrate), phenol compounds (phenylpropi-

onate, phenylacetate, p-cresol, indole propionate and

indole acetate), amines, sulphides and ammonia

(Fig. 1). Microorganisms involved in deamination are

Clostridium, Bacteroides and Enterobacterium species

[58]. For example, the acetate-producing commensal

Bacteroides thetaiotaomicron and the Faecalibac-

terium prausnitzii induce goblet cell proliferation and

mucus production, both effects able to maintaining gut

homeostasis and epithelial integrity [59]. On the other

hand, depletion of acetate-producing Bifidobacteria in

mice increased susceptibility to infections and pro-

moted intestinal inflammation [54]. Moreover, proteins

are the source of L-carnitine and choline [60,61], which

can be fermented by bacteria to trimethylamine

(TMA) and subsequently oxidized to trimethylamine

N-oxide (TMAO) via flavin monooxygenase 3 (FMO3)

(Fig. 1) [62]. Metabolomic studies suggested that high

TMAO concentrations are positively correlated with

cardiovascular events such as death, myocardial infarc-

tion (MI) and stroke [63]. In line with these data, in

Apoe-deficient mice fed a TMAO-rich diet increased

macrophage foam cell formation and aortic atheroscle-

rotic plaque development was observed [28,64].

Besides, dietary L-carnitine and choline were similarly

associated with atherosclerosis worsening and reduc-

tion of reverse cholesterol transport in mouse models

with an intact gut microbiota [65–67]. Furthermore,

high L-carnitine and TMAO levels were correlated with

increased risk for MI or death in a clinical study with

a 3-year follow-up [68].

Dietary fibres are polysaccharides divided into resis-

tant starches and nonstarch polysaccharides, which are

not digested by human enzymes and are able to

enlarge the faecal mass and increase the motility of the

intestine [69,70]. The nonstarch polysaccharides

include cellulose (a substrate for SCFAs synthesis) and

Fig. 1. Microbial metabolite-driven

pathways. Intestinal bacteria convert dietary

nutrients to metabolites able to modulate

the immune system and alter risk of

developing atherosclerotic cardiovascular

disease and cognitive decline.
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noncellulose fibres, that is pectins, gums, glycosamino-

glycans, alginates, carrageenans, chitosans and

fucoidans. A significant reduction of the Rose-

buria/ eubacterium rectale group and of the faecal

levels of SCFAs has been correlated with the con-

sumption of a high-fibre’s diet (Fig. 1). Several trypto-

phan metabolites (e.g. indole-3-carbinol and indole

[3,2b] carbazole) and xenobiotics (e.g. 2,3,7,8-tetra-

chlorodibenzo-p-dioxin, TCDD) are ligands of the aryl

hydrocarbon receptor (AhR), which has been shown

to significantly influence host metabolism and immu-

nity [71]. Ahr-deficient mice display various immuno-

logical deficits, including a higher sensitivity to Listeria

monocytogenes or Citrobacter rodentium-induced infec-

tions [72,73]. Experimental studies have demonstrated

that IL-22 plays a key role in the protection against

this kind of infections by stimulating (a) the secretion

of antimicrobial peptides from epithelial cells, (b) the

production of mucins and (c) the proliferation of

intestinal goblet cells. Besides, microbiota-derived tryp-

tophan metabolites have the ability to modulate the

AhR-IL-22 axis, thus impacting mucosal immune

homeostasis in the gut [74]. Importantly, high expres-

sion of IL-22 has been detected in tumour tissues and

it has been correlated with cancer progression and

poorer patient survival in pancreatic ductal adenocar-

cinoma [75]. Therefore, dietary-induced modifications

of host metabolomics and the presence of environmen-

tal contaminants may alter physiological homeostasis,

impacting host fitness and leading to inflammatory

responses.

Finally, gut microorganisms also metabolize mole-

cules that are secreted by the host into the gastroin-

testinal (GI) lumen. Primary bile acids, such as

glycocholic and taurochenodeoxycholic acid, are

released into the duodenum from the gall bladder to

facilitate the absorption of dietary lipids and lipophilic

vitamins. In the small intestine and, predominantly, in

the colon they are converted to secondary bile acids

(such as deoxycholic and lithocholic acids) by the

local microbiota (Fig. 1). This involves multiple steps,

with the initial deconjugation of glycine or taurine,

followed by dehydroxylation [76]. The enzymes

involved in these unique microbial modifications are

encoded by the gut microbiome, thus the bile acids

profile excreted in faeces, mainly composed by sec-

ondary bile acids, largely depends on the gut micro-

biota composition [77]. On the other hand, without

the microbial contribution, the host bile acid signature

is perturbed resulting in several GI, metabolic and

inflammatory disorders [78,79]. Primary and secondary

bile acids function as signalling molecules for various

cells of the immune system through interaction with

host bile receptors, such as ligand-activated nuclear

receptors such as the farnesoid-X-receptor (FXR) and

the vitamin D receptor, as well as the membrane-

bound G protein-coupled bile acid receptor (TGR5).

Importantly, these receptors are ubiquitously dis-

tributed in several tissues and have different affinity

for individual bile acids. For instance, TGR5 recog-

nizes both conjugated and free secondary bile acids

[80], whereas the primary bile acid chenodeoxycholic

acid is the most potent ligand for FXR [81]. The con-

sequence is that different microbial communities can

differentially affect bile signalling and determine the

degree of activation of these receptors with a con-

comitant impact on host metabolism. Interacting with

their receptors, they reduce the expression of proin-

flammatory cytokines from monocytes, macrophages,

dendritic cells (DCs) and hepatic macrophages known

as Kupffer cells [82]. Furthermore, it has been demon-

strated that free taurine itself can enhance the activa-

tion of the NLRP6 inflammasome, thereby increasing

the production of IL-18 by the intestinal epithelium,

which supports epithelial barrier function and mainte-

nance [83]. This novel gut microbiota-bile acid-host

signalling triangle represents the starting point for

microbiota-based therapeutic approaches to manage

diseases linked to alteration of bile acids metabolism.

Indeed, a cholesterol-lowering effect was observed

after administration of a Lactobacillus strain to mice

[84] as well as to hypercholesterolaemic subjects [85],

whereas administration of epigallocatechin-3-gallate

regulated bile signalling and reduced the development

of obesity [86].

Functional foods

Probiotics

Several bacterial species, that is Lactobacillus and Bifi-

dobacterium species, have been used to improve human

health. The concept of probiotics evolved from a the-

ory first proposed by Nobel Prize laureate Eli Metch-

nikoff, who suggested in 1908 that the long life of

Bulgarian peasants depended on their consumption of

fermented milk products [87]. Organizations and agen-

cies such as Codex (which comes under the FAO/

WHO umbrella), Health Canada, the World Gastroen-

terology Organisation, the European Food Safety

Authority (EFSA) and the Institute of Food Technolo-

gists use the following definition when referring to pro-

biotics: ‘live microorganisms that, when administered

in adequate amounts, confer a health benefit on the

host.’ This definition describes the philosophy behind

the term ‘probiotics,’ that is microbial, viable and
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beneficial to health [88,89]. The beneficial effects of

probiotics have been demonstrated in diarrhoea, aller-

gies, inflammatory bowel disease, lactose malabsorp-

tion and NEC [90].

Prebiotics

The term ‘prebiotic’ was introduced in the 1980s and

refers to ‘non-digestible food ingredients that benefi-

cially influence the host by selectively stimulating the

growth and/or the activity of one or a limited number

of bacteria in the colon, thus improving host health’

[91]. SCFAs, peptidoglycans, polysaccharide A (PSA)

and various oligosaccharides belong to the prebiotics

family. Their main effect is on microbial metabolism,

and SCFAs are the most studied. Indeed, if dietary

fibres are present in the colon, the anaerobic bacteria

extract energy from the fermentation of the carbohy-

drate component, producing SCFAs, which are not

toxic to the host. Besides being an energy source,

SCFAs have various important physiological functions

including maintaining the luminal pH, inhibiting

pathogens’ growth, influencing bowel motility and

potentially reducing colon cancer by causing cancer

cell apoptosis [89]. Moreover, inulin, galacto-oligosac-

charides (GOS), fructo-oligosaccharides, soybean

oligosaccharides and xylo-oligosaccharides are the

oligosaccharides considered prebiotics [92]. GOS and

short-chain trisaccharides (such as sialyllactose or

fucosyllactose) present in human milk are usually the

first prebiotics used by humans to promote the growth

and the activity of Bifidobacterium and Lactobaccillus

species in infants [93]. Prebiotics act as regulatory fac-

tors of the immune system due to their ability to

directly stimulate toll-like receptors (TLRs) on intesti-

nal epithelial cells (IEC) and host immune cells induc-

ing the expression of anti-inflammatory cytokines (i.e.

IL-10 and TGFb). In addition, SCFAs and other bac-

terial metabolites might stimulate the expression of G

protein-coupled receptors, such as Gpr41 and Gpr43,

on the IEC to limit host inflammatory responses

[90,94].

Ten years ago, Gibson introduced the concept of

synbiotics, a combination of prebiotics and probiotics

meant to strengthen the effects of probiotics adminis-

tered alone [95]. Synbiotics are used to improve sur-

vival of live microbial dietary supplements in the GI

tract and to selectively stimulate the growth and/or

activate the metabolism of health-promoting bacteria

[96].

In summary, while the effectiveness of these agents

seems promising, additional studies are needed to

establish recommendations for most clinical settings.

Faecal microbial transplantation

In addition, faecal microbial transplantation (FMT)

from healthy donors into the bowel of patients suffer-

ing from recurrent diarrhoea due to the antibiotic-re-

sistant Clostridium difficile has emerged as an

alternative option to treat severe cases of C. difficile

infections [97]. The efficacy rate for these patients is

about 90%, dramatically higher than with antibiotic

therapies [98]. Based on these data, FMT is now

included in the standard practice for treating recurrent

and refractory C. difficile infections, the only indica-

tion approved by the Food and Drug Administration

(FDA) since 2013 (FDA-2013-D-0811-0022) [99]. The

mechanisms underlying probiotics function have been

the object of intensive investigation and include the

following: (a) increased integrity and enhancement of

the epithelial barrier; (b) increased adhesion to the

intestinal mucosa and concomitant inhibition of patho-

gen adhesion; (c) competitive elimination of pathogens;

(d) production of antimicrobial substances; (e) modu-

lation of DCs; (f) effect on T-cell polarity; and (g)

modulation of the immune system and the inflamma-

tory response [90]. Even though probiotics have an

excellent overall safety record, for selected groups of

patients, particularly those with severe immunodefi-

ciency, malnutrition, cancer or preterm neonates, cau-

tion has to be taken. Indeed, bacteraemia, sepsis and

cholangitis induced by Bacillus subtilis or fungal sepsis

caused by Saccharomyces boulardii have been reported

[100].

Gut microbiota and human disease

Cardiovascular disease

In 2011, the American Heart Association committed

that by 2020 the cardiovascular status of Americans

should improve by 20%, aiming at reducing by the

same magnitude the deaths from CVD and stroke.

These goals became the foundation of the ‘Health

Campaign for Life’s Simple 7’ where ‘ideal cardiovas-

cular health’ is described by the lack of clinically mani-

fest CVD combined with optimal indexes for seven

major metrics, including (a) not smoking, (b) healthy

diet, (c) daily physical activity, (d) body weight, (e)

total cholesterol (TC), (f) blood pressure (BP) and (g)

fasting blood glucose, in the absence of any drug treat-

ment [101–103].

A recent meta-analysis of 12 878 individuals pro-

vided data on the importance of cardiovascular health

metrics on risk for clinical events. This meta-analysis

indeed inversely correlated the cardiovascular health
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metrics and the risk of stroke, CVD, cardiovascular

mortality and all-cause mortality [103,104]. Up to

now, about 92.1 million adults in the United States

have at least one type of CVD, and by 2030, 43.9% of

the US adult population is predicted to have some

form of CVD [105]. Moreover, the direct costs (cost of

physicians, hospital services, prescribed medications

and home health care) and indirect costs (loss of pro-

ductivity) of CVD and stroke in the United States

were $316.1 billion in 2013, and by 2030, it is pro-

jected to increase to $918 billion [103,106]. It is impor-

tant to note that 80% of CVD deaths take place in

low- and middle-income countries and occurs almost

equally in males and females. Indeed, a survey com-

paring the availability of aspirin, b-blockers, angioten-
sin-converting enzyme inhibitors and statins in 18

countries showed that these medications were poten-

tially unaffordable for 60% and 30% of households in

low- and in middle-income countries, respectively,

compared with only 0.14% of households in high-in-

come countries [107–109]. This dramatic scenario

appears to be dependent on the fact that, with greater

industrialization, Western-type diets instead of tradi-

tional plant-rich diets have become the most con-

sumed. As a consequence, a significant increase in

human pathologies such as obesity and type-2 diabetes

has been recorded [110]. These metabolic diseases are

now considered as a chronic low-grade inflammatory

disease, but the underlying mechanisms have not been

clearly elucidated [111,112].

Studies show that dietary habits influence various

‘old’ cardiovascular risk factors, including BP, TC,

glucose levels and obesity/weight gain, as well as ‘nov-

el’ risk factors, that is inflammation, cardiac arrhyth-

mias, endothelial cell function, triglyceride levels,

lipoprotein[a] levels and heart rate [113–115]. A clinical

study demonstrated that greater adherence to a

Mediterranean diet characterized by higher intakes of

vegetables, legumes, fruits, whole grains, fish and

lower intakes of red meat was associated with a 22%

reduction in cardiovascular mortality (RR, 0.78; 95%

CI, 0.69–0.87) [116–118]. These findings were con-

firmed by a randomized secondary prevention trial

enrolling patients with recent MI and by the PRE-

DIMED trial [103,119]. This latter clinical study

demonstrated a 30% reduction in the risk of stroke,

MI and death due to cardiovascular causes in those

patients randomized to Mediterranean-style diets rich

in extravirgin olive oil or mixed nuts [119].

Numerous studies have shown that atherosclerosis,

the dominant cause of CVD, is influenced by the

immune system with cytokines involved in all stages of

the disease [120–122]. Specifically, chronic inflammation

triggers the migration and proliferation of monocyte-

derived macrophages and T lymphocytes within the

plaques. It has been demonstrated that human

atherosclerotic plaques are characterized by a predomi-

nance of T helper (Th) cells secreting Th1 cytokines,

that is IFN-c and TNF-a, and few clones producing

Th2 cytokines. This Th1 milieu may contribute to the

thrombogenicity of the lesions by increasing the tissue

factor production, which associates with platelet acti-

vation and endothelial dysfunction [123]. The Canaki-

numab Antiinflammatory Thrombosis Outcomes Study

(CANTOS) trial demonstrated that anti-inflammatory

therapy targeting the IL-1b pathway markedly reduced

plasma levels of IL-6 and of C-reactive protein [124],

lowering the rate of recurrent cardiovascular events

compared with placebo, independently of lipid-level

lowering [125].

Several evidences suggested that the gut microbiota

regulates inflammation by affecting cytokine produc-

tion and haematopoiesis, as well as by affecting the

differentiation of inflammatory cell types [32,126,127].

An increase in lipopolysaccharide (LPS) plasma levels,

likely derived from gut bacteria [6,128], has been asso-

ciated with inflammatory cell infiltration in adipose tis-

sues, liver and pancreatic islets. LPS is a major

component of the outer membrane in Gram-negative

bacteria and its plasma levels are correlated with

changes in intestinal microbiota where the Gram-nega-

tive-to-Gram-positive ratio is increased by high-fat

feeding [129]. Besides, atherosclerotic plaques contain

bacterial DNA, and the bacterial taxa observed in

atherosclerotic lesions are also present in the gut of

the same individuals. This indicates that the gut micro-

biota could be a source of bacteria in the plaque,

which may affect plaque stability and the incidence of

CVD. In line with this hypothesis, a link between the

gut microbiota and the severity of MI has been

reported in an experimental model [130]. Also, the

high blood concentration of the microbiota-dependent

metabolite TMAO has been linked to an increased risk

of atherosclerosis, indicating a pivotal role for the gut

microbiota in atherogenesis (Fig. 1) [66]. In addition,

germ-free Apoe-deficient mice showed lower circulating

LPS levels, reduced systemic inflammation and

decreased atherogenesis compared with conventionally

raised Apoe-deficient animals [131,132]. Together, these

findings suggest a link between gut microbiota, host

immunity and atherogenesis (Fig. 2). This is supported

by a recent study by Brandsma et al. showing that

proinflammatory microbiota accelerated atherosclerosis

development in LDLr-deficient mice fed a high-fat/

high-cholesterol diet. Mice were also characterized by

increased proinflammatory plasma cytokines, and
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circulating and in-plaque monocytes and neutrophils,

as well as reduced levels of SCFAs in the caecum and

of SCFA-producing taxa [133,134].

The bacterium Akkermansia muciniphila, the most

abundant species in the human intestinal microbiota,

has been associated with anti-inflammatory functions.

Indeed, in genetically and diet-induced diabetic mice,

the levels of A. muciniphila were inversely correlated

with body mass, inflammation index, insulin resistance

and glucose tolerance [135]. Prebiotic feeding markedly

increased the abundance of A. muciniphila and reduced

fat mass, insulin resistance and liver steatosis. In line

with these results, the administration of A. muciniphila

protects against the development of atherosclerosis in

Apoe-deficient mice [72,136]. Also, metformin-treated

diabetic patients reported beneficial effects on

metabolic parameters linked to CVD risk [137]. It is

possible that the beneficial action of A. muciniphila is

due to the protein Amuc_1100, localized on the mem-

brane of the bacteria, which has been shown to play

immuno-modulatory roles both in vitro and in vivo

[138].

A leaky gut and alterations in gut microbiota com-

position can lead to the transfer of endotoxins into the

circulation promoting systemic inflammation and

development of obesity and related metabolic disease

[139]. Backhed et al. demonstrated that germ-free ani-

mals are protected from diet-induced obesity by two

main mechanisms that result in increased fatty acid

metabolism: (a) elevated levels of the fasting-induced

adipose factor, also called angiopoietin-like protein 4

(Angptl4), in the intestinal epithelium and (b)

Fig. 2. Major mechanisms involved in the cross-talk between microbes and host. The balance between healthy and pathological conditions

depends on different factors, including genes, food (Mediterranean vs. Western diet), prebiotic/probiotic intake, stress and antibiotic

treatments.
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increased AMP-activated protein kinase activity [140].

These data were not confirmed by Fleissner et al.

[141]. A recent study showed higher expression of the

Angptl4 gene in the small intestine of germ-free mice

compared with conventionally raised animals. Angptl4

expression was decreased upon gut recolonization

[142]. These conflicting data warrant further investiga-

tions into the role of Angptl4 in the intestinal epithe-

lium. Various clinical studies indicate that gut

microbiota play a key role in adiposity and glucose

metabolism, demonstrating that subjects with obesity

and type 2 diabetes have an altered microbiota compo-

sition [143]. Additionally, FMT from obese mice to

recipient germ-free mice significantly increased body

fat content and insulin resistance, compared to those

receiving FMT from lean mice [144]. Based on these

experimental results, several studies have evaluated the

possibility of altering the gut microbiome, that is by

FMT, as a potential therapy for obesity and the meta-

bolic syndrome [99]. In a small clinical study,

improved peripheral insulin sensitivity was associated

with increased levels of butyrate-producing intestinal

microbiota 6 weeks after FMT from lean donors into

patients with metabolic syndrome [145].

Mouse and human gut bacterial species are com-

posed for the most part (about 90%) of Bacteroidetes

and Firmicutes phyla. Homozygous genetically obese

(ob/ob) mice, carriers of a single autosomal recessive

mutation on the leptin encoding gene (also known as

the obese gene), are lacking functional leptin despite

showing high levels of leptin mRNA in adipocytes

[146]. Compared to their lean counterparts, ob/ob mice

have early-onset obesity, decreased abundance of Bac-

teroidetes and increased presence of Firmicutes [147].

Enrichment of hydrogen-oxidizing methanogens has

been observed in obese compared to normal weight

individuals. These microorganisms are critical for fer-

mentation since hydrogen accumulation in the colon

inhibits fermentation. Many of the hydrogen-oxidizing

methanogens detected in the human gut belong to the

Firmicutes phylum, and this may partly explain why

an increase in Firmicutes has been observed in obesity

[148].

Central nervous system disease

The ‘gut–brain axis,’ consisting of a series of inte-

grated physiological functions (neural, endocrine)

based on the bidirectional interaction of intestine and

CNS, is well established (Fig. 3) [149]. It has become

increasingly evident that, through various mechanisms,

gut microbiota are active elements of the gut–brain
axis. The CNS can influence the gut microbiota

through metabolic and endocrine pathways and via

the release of signalling molecules such as cytokines

and peptides [150]. On the other hand, the microbiota

can influence CNS function in several ways, including

the release of molecules that, once in circulation, can

Fig. 3. The gut–brain axis. Brain and gut

communicate bidirectionally. Stress

conditions trigger CNS responses that may

lead, chronically, to the development of

neuropsychiatric and neurodegenerative

disorders. This causes aberrant release of

soluble mediators, including cytokines and

neurotransmitters, which affect the

functionality of the gut and the gut

microbiota. On the other hand, microbiota

products produced by a dysbiotic intestinal

flora can cause gut permeability, leaking

bioactive molecules into circulation. As they

reach the brain, they can affect brain

function exacerbating CNS disease.
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reach the CNS and activate specific receptors on neu-

ral cells (Fig. 3). This bidirectional interaction between

microbiota and CNS occurs from development

through adult life. It is known, for example, that expo-

sure to early life stress is able to trigger disturbances

in the composition of the adult gut microbiota, and

this can be counteracted by probiotic administration

[151]. Stress-induced modifications in the gut micro-

biota composition have been shown in preclinical

models as well, where animals developing stress-in-

duced despair behaviour show alterations in micro-

biota composition and function, specifically in the

Lactobacillus genus. Reactive oxygen species produced

by Lactobacillus species negatively affect the metabo-

lism of kynurenine, a serotonin precursor, thus possi-

bly affecting brain function [152].

The stability of the gut microbiota has been asso-

ciated with neuropsychiatric diseases. It is worth

mentioning that also blood circulating microbiota

have been suggested to play a role in neuropsychi-

atric disorders [153]. In a study on major depressive

disorder, faecal samples from affected patients dis-

played increased Bacteroidetes, Proteobacteria and

Actinobacteria, whereas Firmicutes levels were signifi-

cantly reduced compared to age-matched controls,

and these alterations positively correlated with the

severity of depressive symptoms [154]. Furthermore,

FMT from depressed patients into germ-free mice

induced depressive- and anxiety-like behaviours, pos-

sibly through glucocorticoid signalling, thus correlat-

ing the gut microorganisms with the development of

depression [155]. Alterations in gut microbiota have

also been identified in patients with autism spectrum

disorder (ASD). It is well established that individuals

with ASD suffer from GI tract complications.

Though the cause is still unclear, this appears to be

related to abnormal gut flora and/or excessive use of

antibiotics that contribute to further alter the gut

microbiota [156,157]. ASD severity has been strongly

correlated with GI symptoms, as well as alterations

in the gut bacterial species Bifidobacter and Lacto-

bacillus [157]. Prebiotic intervention in ASD paedi-

atric patients lowers the abundance of

Bifidobacterium species and Veillonellaceae family

bacteria and concomitantly increases F. prausnitzii

and Bacteroides species levels. This regimen proves

to be beneficial, triggering changes in faecal metabo-

lites and improvements in GI symptoms as well as

in antisocial behaviours, one of the hallmarks of

ASD [158]. Recent studies highlighted that ASD

patients may also display alterations in the GI bacte-

rial phyla Bacteroidetes and Firmicutes, with higher

abundance of Sutterella, Odoribacter and

Butyricimonas, and lower abundance of Veillonella

and Streptococcus genera [159].

Evidence of altered gut microbiota in individuals

diagnosed with bipolar disorder has been found.

Patients show increased levels of Flavonifractor Bac-

terium, Actinobacteria and Coriobacteria phyla, which

may induce oxidative stress and inflammation in the

host, although other factors, such as smoking, may

also contribute to the dysbiosis [160].

Alterations in the gut microbiota have been reported

in Parkinson’s disease (PD), the most common move-

ment disorder [161]. Although motor dysfunction is

central in PD, nonmotor symptoms have received

growing attention in the last decade [162]. Gut dysbio-

sis has been associated with the severity of PD symp-

toms. Indeed, the abundance of Prevotellaceae in

faeces of PD patients was shown to be reduced by

77.6% compared with unaffected individuals, and the

relative abundance of Enterobacteriaceae was posi-

tively associated with the severity of postural instabil-

ity and gait difficulty [163]. Furthermore, GI disorders,

possibly associated with dysbiosis, are known to be

prominent and disabling in PD patients [164] and have

been suggested to precede the onset of motor symp-

toms by years [165]. Lewy bodies, a-synuclein aggre-

gates characteristic of PD neuropathology [166], are

also found in the GI system of PD patients both

undergoing treatment and newly diagnosed, thereby

never exposed to PD drugs [167]. This has prompted

intensive investigations into the profiling of the gut

microbiome in newly diagnosed PD patients, as it may

lead to the identification of reliable early biomarkers

that can allow precocious therapeutic intervention to

slow or stop the course of the disease [161].

Alzheimer’s disease (AD) is the primary cause of

dementia in the ageing population and is characterized

by the progressive decline of cognitive functions [168].

Neuropathological hallmarks of the AD brain are neu-

rofibrillary tangles of Tau protein aggregates, and pla-

ques of amyloid beta peptide [169]. It has been shown

that diet and specific nutrients can modify the compo-

sition of the gut microbiota influencing the production

and/or aggregation of amyloid proteins through mech-

anisms of molecular mimicry [170]. Computational

studies also associated cognitive decline in AD with

metabolites such as succinic acid, mannitol, 4-hydroxy-

benoic acid (DOPAC) and TMAO, the latter being a

gut microbial metabolite of dietary meat and fat

(Fig. 1) [171]. Clinical studies performed on cerebro-

spinal fluid samples have demonstrated that TMAO

may be relevant to the neurodegenerative changes in

AD-related tau pathology, thus confirming the role of

the gut–brain axis in the pathophysiology of AD [172].
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Comprehensive 16s rRNA sequencing of stool samples

of AD patients demonstrated their microbiome has

decreased microbial diversity, with an increased rela-

tive abundance of Lactobacillales, and decreased abun-

dance of Bacteroidales and Selenomonadales [173].

Multiple sclerosis (MS) is a chronic, inflammatory,

demyelinating disease of the CNS. Though its aetiol-

ogy is unknown, MS is initiated and sustained by the

synergistic contribution of dysregulated immunity,

genetic susceptibility and environmental factors. Hall-

marks of MS are white and grey matter demyelinating

lesions in the brain and spinal cord, where demyelina-

tion occurs through the concerted action of immune

cells (T cells, B cells, macrophages) infiltrating into the

CNS and CNS-resident cells, mostly microglia and

astrocytes [174]. Studies on the gut microbiota in MS

have provided evidence of alterations at the levels of

phyla and genera in MS patients, such as an increase

in Methanobrevibacter and Akkermansia and decrease

in Butyricimonas. Compared with untreated patients,

patients on treatment have increased abundance of

Prevotella and Sutterella [175]. Microbial dysbiosis was

also confirmed in another study on patients affected

by relapsing–remitting MS displaying increases in

Psuedomonas, Mycoplana, Haemophilus, Blautia and

Dorea genera [176]. Modifications of the gut micro-

biota have been detected in early-onset paediatric MS,

where patients showed enrichment in microorganisms

involved in glutathione metabolism, suggestive of a

proinflammatory environment [177]. Moderate dysbio-

sis was also reported in a study on a small cohort of

Japanese relapsing–remitting MS patients. In this

study, 20 patients were analysed (12 who were under

therapeutic regimen and eight that never received any

type of treatment) and compared to control individu-

als. Faecal samples were collected during the remission

phase. The mixed MS group exhibited alterations of

intestinal taxa comprised primarily of Clostridium spe-

cies belonging to Clostridium clusters XIVa and IV

and Bacteroidetes [178].

From a preclinical standpoint, various studies in the

experimental autoimmune encephalomyelitis (EAE)

model of MS have highlighted the role of the gut

microbiota in the development of motor symptoms.

Ochoa-Reparaz et al.[179] have shown that oral treat-

ment with antibiotics can induce the accumulation of

FoxP3+ Treg cells in distal peripheral lymph nodes

and reduce the severity of EAE. This indicates that

modifications of gut commensal bacteria can modulate

peripheral immune tolerance that ultimately confers

protection from EAE in mice. Studies from the same

group have underscored the protective role of PSA, a

nontoxic component of the human commensal

microbiota produced by Bacteroides fragilis. Oral

administration of purified PSA produced by B. fragilis

induced protection from EAE in mice, reducing its

severity [180]. In a large-scale screen of MS patients,

increases in A. muciniphila and Acinetobacter cal-

coaceticus taxa have been identified. These have been

shown to trigger proinflammatory responses and main-

tain the proinflammatory environment. Indeed, FMT

from MS patients into germ-free mice induced more

severe EAE symptoms compared to mice colonized

with microbiota from healthy age-matched controls.

This indicated a causal role for the gut microbiota in

MS development [181].

Cancer

Cancer is the second leading cause of death worldwide,

resulting from the random accumulation of sponta-

neous mutations during DNA replication, together

with environmental exposure and lifestyle habits, both

able to dramatically affect cancer risk [182–184]. In

recent years, accumulating evidence highlighted the

role of commensal bacteria as key determinants of

health or pathologic conditions, including cancer

[185,186]. Various experimental studies performed on

germ-free animals demonstrated that gut microorgan-

isms promote carcinogenesis in various organs such as

lungs, skin and breast [187], and there is an inverse

relationship between cancer development and intestinal

microbiota depletion by antibiotics [188]. In addition,

accumulating evidence indicated that dysbiosis is asso-

ciated not only with tumours arising in the affected

organs but also in distant organs [189,190]. The high

degree of variability on both the number of microor-

ganisms and their diversity in different organs and

from individual to individual could be responsible for

the above-described phenomenon [191].

The tumour microenvironment, where the neoplastic

and immune cells interact with microorganisms and

vice versa, is dramatically affected by genetic and epi-

demiological factors [192,193]. The communication

between the gut microbiota system and the body

organs is controlled by the intestinal permeability (IP).

Importantly, mechanisms regulating IP control the

exchange between the intestinal content and the portal

blood. Food, intact bacteria and bacterial components,

that is bacterial DNA, peptidoglycans (molecules

belonging to the class of pathogen-associated molecu-

lar patterns) can reach the liver in large amount

depending upon the degree of IP [194]. Indeed, IP

degree is highly variable and results from the combina-

tion of several factors: diet, gene expression, intestinal/

liver pathology, surface mucus, tight junction integrity
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and production of immunoglobulins [195]. The micro-

biota can contribute to carcinogenesis both by enhanc-

ing or diminishing the risk through three main

mechanisms: (a) altering the balance of cell prolifera-

tion and death; (b) modulating immune system func-

tion; and (c) affecting the metabolism of ingested

foods, host-produced factors and drugs. In addition, it

is important to remember that the host immune system

supports the gut microorganisms while protecting

against pathogenic microbes. In essence, human gut

microbiota carry out a pivotal role in cancer initiation,

development and its response to cancer therapy

(Fig. 4) [196].

Carcinogenic microorganisms include Helicobac-

ter pylori and Epstein–Barr virus for gastric carcinoma

[197]; hepatitis B and C viruses for hepatocellular car-

cinoma [198]; human herpesvirus-8 for Kaposi’s sar-

coma [199]; human papilloma virus for uterine cervical

cancer [200]; and Fusobacterium nucleatum for colorec-

tal carcinoma (CRC) [201]. By quantitative PCR anal-

ysis, high prevalence of F. nucleatum sequences in

tumour vs. normal tissue was detected and correlated

with lymph node metastasis [202]. It has been hypothe-

sized that these F. nucleatum sequences promote car-

cinogenesis by stimulating the Wnt signalling cascade

in CRC [203,204]. The correlation between abdominal

infections and increased risk of CRC development

reinforces the clinical correlation between dysbiosis

and carcinogenesis. Alteration in the gut microbiota

community directly modulates the probability of devel-

oping CRC in genetic and mutagen-induced animal

models of carcinogenesis [205]. Experimental studies

performed in germ-free or cohoused mice, as well as in

gnotobiotic models and mice treated with antibiotics,

strengthen the role played by the intestinal microor-

ganisms in CRC and hepatocellular carcinoma

[206,207]. Dysbiosis in patients with CRC has been

detected in several studies [208,209]. Besides, F. nuclea-

tum could be also regarded as a marker of CRC sus-

ceptibility [210], being abundantly found in patients

suffering from chronic gut inflammation, that is

inflammatory bowel disease [211,212]. It has been

shown that the adhesion molecule FadA from F. nu-

cleatum attaches to E cadherin leading to activation of

b-catenin in CRC tumours, promoting inflammation

and tumour development [213]. Coherent with these

data, FadA is elevated in human CRC samples.

Besides their tumour-inducing actions, microbiota

have also been reported to display anticancer activities

[187]. For instance, TLRs and NOD-like receptors-

based treatments promote the antitumor effects of

microbiota, as the innate immune system could acti-

vate the anticancer responses [214,215]. Indeed, a

reduction of cell growth and cancer risk was demon-

strated in Trl-4-deficient mice and with FMT from

wild-type into Nod-2-deficient mice, respectively

[216,217]. Similarly, microbial-derived SCFAs are able

to inhibit host’s tumour cell histone deacetylase caus-

ing antitumour effects, as shown in both CRC and

lymphoma [218,219]. These data indicate that several

commensal bacteria could potentially be used for their

probiotic activity, that is protecting against gut dysbio-

sis and/or enhancing host immune defence mecha-

nisms, in combination therapies. One example is

Lactobacillus casei, which can trigger tumour apopto-

sis via JNK pathway activation on host’s immune

cells, that is NK cells and DCs, leading to the suppres-

sion of cancerous or precancerous cells [220,221]. Vari-

ous clinical investigations have been designed to

address the potential of single strain probiotics at

improving antitumour immune response [222,223].

Probiotics or synthetic stools have sought to recapitu-

late the benefits of FMT in delivering a diverse ecosys-

tem in a product easy to manufacture and with

Fig. 4. Interactions between gut microbiota

and cancer therapies. Chemotherapeutic

agents can undergo metabolic inactivation

by bacterial present in the GI tract (gut

microbiota) or within the tumour

(intratumour microbiota). As an alternative,

gut microbiota can reactivate the drugs

leading to treatment-related systemic

toxicity. On the other hand, cancer therapy

can exert a bacteriostatic effect on the gut

microbiota causing dysbiosis.
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minimal lot-to-lot variation (i.e. consistent composi-

tion). Preliminary results obtained with these products

in recurrent C. difficile infections demonstrated stable

engraftment of a diverse microbial community [224].

Many foods or food components have been associated

with increase or decrease in the risk of cancer. Nowa-

days, the idea is that different dietary ingredients work

together to generate a meta-inflammatory milieu

responsible or not of tumour progression. Neverthe-

less, whether specific dietary components might

favourably alter the microbiota is still an open ques-

tion. Data from short-term dietary studies showed that

a dramatic shift in diet could equally impact on the

microbiota as well as on cancer biomarkers, that is cel-

lular proliferation [225–227].

Cancer therapy

Data from preclinical and human studies have coher-

ently indicated that both the tumour microenviron-

ment and the gut microbiota may influence therapeutic

efficacy and tolerability of anticancer therapy by

affecting microbial diversity and the abundance of

specific taxa (Fig. 4) [228–230].

Specifically, microbial beta-glucuronidase (GUS)

enzymes have been linked to the GI side effects of

drugs, tumour progression and increased incidence of

Cohn’s disease and colitis [231]. GUS enzymes play a

key role in the metabolic fate of molecules important

in host health and disease, including bilirubin, hor-

mones, neurotransmitters, bile acids, fatty acids and

many anticancer agents. Indeed, bacterial GUS

enzymes regenerate the original drug inactivated by

the host, increasing its half-life and sometimes its toxi-

city. For this reason, 89% of glucuronated-chemother-

apic drugs exhibit GI toxicity that is mediated, at least

in part, by bacterial GUS activity, resulting in a para-

sitic symbiosis in which bacteria receive sugar from

drug glucuronides and the host retains toxic metabo-

lites [232]. For example, SN-38, the active form of

irinotecan, which is used to treat colorectal and pan-

creatic cancers, is inactivated in the liver by conversion

into SN-38-glucuronide [232]. In the gut, microbial

GUS enzymes recreate SN-38 and cause severe GI tox-

icity in the form of dose-dependent diarrhoea that is

reduced by the selective inhibition of GUS enzyme

activity [215].

Although insight has been gained on the role of the

gut microbiota in response to cancer therapy, more

studies are needed to fill significant gaps of knowledge

in the components of the human gut microbiota and

how they interact and influence one another and the

whole immune response.

Conclusion

The importance of the human gut microbiota in health

and disease has emerged over the past decade. Each

person’s microbiome is unique, rapidly developing

throughout early childhood and relatively stable but

susceptible to changes in adulthood. These variations

in microbial composition can be influenced by both

genetic and environmental factors, including diet, geo-

graphical location, toxin/carcinogen exposure and hor-

mones. Dysbiosis, meaning imbalances in the

composition and function of the intestinal microbes, is

associated with various human diseases. Despite cur-

rent unresolved questions that limit interpretative and

translational capabilities, the possibility of correcting

gut dysbiosis by microbiota-based interventions repre-

sents an intriguing approach in preventing and treating

human pathologies.
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