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Abstract The problem of detecting a major change point in a stochastic process
is often of interest in applications, in particular when the effects of modifications
of some external variables, on the process itself, must be identified. We here pro-
pose a modification of the classical Pearson χ2 test to detect the presence of such
major change point in the transition probabilities of an inhomogeneous discrete
time Markov Chain, taking values in a finite space. The test can be applied also in
presence of big identically distributed samples of the Markov Chain under study,
which might not be necessarily independent. The test is based on the maximum
likelihood estimate of the size of the ’right’ experimental unit, i.e. the units that
must be aggregated to filter out the small scale variability of the transition prob-
abilities. We here apply our test both to simulated data and to a real dataset,
to study the impact, on farmland uses, of the new Common Agricultural Policy,
which entered into force in EU in 2015.

Keywords Weighted χ2 test · Inhomogeneous discrete time Markov Chains ·
Nonparametric Inference

1 Introduction

In the study of time-dependent data, it is often of interest the detection of instants
of major change in the process distribution, in order to quantify the effects of some
external variables which have been modified to influence the considered process.
This is of interest for example when some measures to limit the air pollution of an
urban area enter into force (stop of polluting vehicles in specific days, enlargement
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of pedestrian zones, etc.) and we then want to detect if a major variation in the
spatial distribution of the measured pollutants is observed and after how much
time; or when a new economical policy is adopted by a state and the time when
its effects on the GDP of different regions become relevant must be identified; etc.
All these examples have in common a period in which the system under study is
assumed to have a “standard behaviour”, meaning that changes in the distribution
of the system may happen but in a “smooth way” and with a small variance. This
period precedes the modification of the external variable and can be used as a
reference period.

We consider only discrete time dependent stochastic processes and we assume
that the process can take values in a finite set of states, i.e. we consider the
stochastic process

X : = {X(t)}t∈N
with X(t) ∈ S with S having cardinality k < ∞. Further we assume that X is a
Markov Chain, that is

E[X(t)|X(s), s < t] = E[X(t)|X(t− 1)] ∀t ∈ N,

with transition probability matrix P (t) = [pij(t)], where pij(t) = P [X(t) =
j|X(t− 1) = i]. We also assume that pij(t) > 0,∀i, j ∈ S,∀t ∈ N.

We say that the Markov Chain X is stationary if its transition probability
matrix is constant in time, i.e. pij(t) = pij , ∀t ∈ N.

Methods to identify point of changes in the parameters of time series or of
stochastic differential equations have been widely studied (see e.g. Moreno, Casella,
and Garcia-Ferrer 2005; De Gregorio and Iacus 2008; Ringstad Olsen, Chaudhuri,
and Godtliebsen 2008; Schütz and Holschneider 2011; Iacus and Yoshida 2012),
but since they are applied to general stochastic processes, they don’t exploit the
markovianity that is characterizing our case study and they don’t assume to have
a sample (of big size) of copies of the considered process.

In order to test if any major change occurred in the distribution of the process
X between time t and t+1 we will use a weighted χ2 test. It is well known [Knoke,
Bohrnstedt, and Potter Mee 2002; Eisinger and Chen 2017] that the Pearson χ2

test for goodness of fit is very sensitive to the sample size N , since the Pearson χ2

statistics, given by

C =

nrows∑
i=1

ncolumns∑
j=1

(Oij − Eij)2

Eij
,

(where Oij and Eij are the observed and expected frequencies, respectively) is
directly proportional to N . In fact, multiplying by a factor F every cell frequency
in a crosstabulation, will result in a C statistics multiplied by the same factor
F , but with no changes in the degrees of freedom of the asymptotic χ2 statistics,
which remain (nrows − 1)(ncolumns − 1). This implies that when N is large, even
small deviations between the expected and the observed frequencies produce a C
statistics bigger than the critical value, and are thus significant.

We will consider contexts where the sample size N is large and we will reduce
it by aggregating the sample units into a new experimental unit, that will provide
a C statistics insensitive to the variation of the process X in the reference period.

In general the process X is not assumed to be stationary, but in order to set
up our test and the related estimators, we will assume the stationarity of X in
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the reference period. This corresponds to filter out the “natural variability” of the
process.

The structure of the paper is the following: in Section 2 we introduce the mod-
ified χ2 test, and we provide a maximum likelihood estimator of the experimental
unit by which we rescale the countings in the test; we also recover the distri-
bution of such estimator, and we exploit it to build confidence intervals for the
estimated parameter. In Section 3 we test the effectiveness of the weighted χ2 test
on a simulated non-homogeneous Markov Chain, showing a jump in the transition
probabilities at a given time instant. We show that our test is able to identify the
jump, and also that by applying the χ2 test without the proposed rescaling, all the
transitions of the Markov Chain result significantly different from one another.

Finally in Section 4 we will apply our weighted χ2 test to study the impact
of the new Common Agricultural Policy (CAP), which entered into force in the
European Union from 2015, on the distribution of farmland uses in southern Lom-
bardy region, one of the most intensively cultivated areas in Italy. The new CAP
has introduced a new funding policy, called greening, which is conditioned to the
compliance of farmers with some ecological practices, with some mandatory eco-
friendly farming practices. Such farming practices regard, and potentially influ-
ence, farmland allocation, particularly that of arable land and grassland [Solazzo,
Donati, and Arfini 2015; Cortignani, Severini, and Dono 2017]. We will apply our
test to a sample of 638,952 land parcels in Lombardy, occupying a total area of
743,072 hectares, whose land use has been observed in the years 2011-2016. The
application of our test reveals a significant change in the land use starting from
2015, and this change could not have been identified without filtering out the nat-
ural variability of the process up to 2014. A detailed study of this application,
from an agricultural economics point of view, can be found in Bertoni et al. 2018.

2 The weighted χ2 test

We observe the values assumed by X in the integer time units t = 0, . . . ,m. We
assume to observe M copies (not necessarily independent), X1, . . . , XM , of the
process X. We further assume that the variables Xj(t) take values in the finite set
of states S = {1, . . . , k}.

For any fixed t, from the given samples, we compute the transition frequencies,
that is we compute mi1(t), . . . ,mik(t), i ∈ S, where

mij(t) = #{l : Xl(t− 1) = i,Xl(t) = j}.

We now assume that our process is stationary, i.e. the observed frequencies do
not significantly vary from one instant t − 1 to the next one t. We want then to
rescale our experimental units, that is our unit of measure, so that the assumption
of stationarity is satisfied. Thus our aim is to estimate the number {Ui, i ∈ S}
of units, evolving from state i, that must be “aggregated” to filter out the small
scale variability that violates the assumption of stationarity. Using the working
example to which we will apply our test in Section 4, if the original units are the
hectares of land cultivated with crop i, the new experimental units will be groups
of Ui hectares of land cultivated with crop i.

For any state i ∈ S, we denote by Mi(t) =
∑

j mij(t) = #{l : Xl(t−1) = i} the
frequency of state i immediately before time t. The rescaled transition frequencies
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will then be nij(t) =
mij(t)
Ui

= amount of new experimental units in the sample
which assume the values j at time t and i at time t−1, and the total amount of new

experimental units in state i before time t will be Ni(t) : = Mi(t)
Ui

=
∑

j mij(t)

Ui
=∑

j nij(t). Note that the quantities Ni(t) and nij(t) are not any more necessarily
integer numbers.

Consider now two consecutive time units, t − 1 and t. The assumption of
stationarity implies that the following set of hypotheses are satisfied

H0 : pij(t− 1) = pij(t) i, j ∈ S, t = 1, . . . ,m.

For any time t, we consider the estimate P̂ (t) of the transition matrix P (t), with
elements given by

p̂ij(t) =
mij(t)

Mi(t)
=
nij(t)

Ni(t)
i, j ∈ S.

For each starting state i ∈ S, we build the Pearson χ2 statistics, given by

Qi(t) =
k∑

j=1

(nij(t)−Ni(t)p̂ij(t− 1))2

Ni(t)p̂ij(t− 1)

=
k∑

j=1

(
mij(t)
Ui
− Mi(t)

Ui
p̂ij(t− 1))2

Mi(t)
Ui

p̂ij(t− 1)

=
1

Ui

k∑
j=1

(mij(t)−Mi(t)p̂ij(t− 1))2

Mi(t)p̂ij(t− 1)
. (1)

We assume that the Ni(t) rescaled random processes X̃1(t), . . . , X̃Ni(t), ob-
tained by weighting the original sample with Ui, are now independent. This implies
that the statistics Qi(t) are asymptotically distributed as χ2

k−1 [Fisz 1963], when
Mi → ∞,∀i ∈ S, since each vector [nij(t), j ∈ S] asymptotically approaches a
multinomial distribution, with parameters Multinomial(Ni(t), [p̂ij(t−1), j ∈ S]).
In fact, when Mi →∞, the fractional parts of nij(t) and Ni(t) become negligible
with respect to their integer part.

Remark 1. Note then that our test is distribution free but is an asymptotic
one, and will work only when the number of experimental units M →∞, exactly
like the classical Pearson χ2 test. The assumption that all the transition probabil-
ities pij(t) are strictly positive implies that when M →∞ also Mi →∞,∀i ∈ S.

Remark 2. The assumption that theNi(t) rescaled random processes X̃1(t), . . . , X̃Ni(t)

are independent can be interpreted as follows, with reference to our working ex-
ample in Section 4: hectares which are part of the same farm, or belong to neigh-
bouring farms will in general not be independent, since each farmer will split the
crops that she/he wants to cultivate in a specific way in the hectares of her/his
farm, taking into account the characteristics of the ground, the behaviour of the
neighbours, the presence of natural barriers (rivers, streets, etc.), and many other
factors. What we assume is that there is a scale of aggregation of the experimental
units (i.e. the hectares) at which the decision to change from one crop to another
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one in two subsequent years becomes independent from the behaviour of the other
experimental units (i.e. from the behaviour of groups of hectares ”far apart” from
the considered rescaled experimental unit).

From our sequence of samples taken at time units t = 0, . . . ,m, we can then
consider them couples of consecutive time units and build a sampleQi(1), . . . , Qi(m)
of Pearson χ2 statistics. These statistics can be assumed asymptotically indepen-
dent, because of the Markov property and the consistency of the sample estimators
p̂ij of the transition matrix.

Let us now assume that the Ni(t) are sufficiently big to approximate the dis-
tribution of Qi(t) with a χ2

k−1, for all i, t.

Reminding that the χ2
k−1 distribution can be revisited as a Gamma(k−1

2 , 2)
distribution, we will exploit the following two properties of the Gamma distribution
(see e.g. Fisz 1963) to find the maximum likelihood estimator of the unknown
parameter Ui.

Property 1. If X is a random variable distributed as a Gamma(a, b) and c is a
constant, then cX is distributed as a Gamma(a, cb).

Property 2. If X1, . . . , Xm are independent random variables distributed as Xt ∼
Gamma(at, b), then their sumX1+· · ·+Xm is distributed as aGamma(

∑m
t=1 at, b).

2.1 Maximum likelihood estimator of each scale parameter Ui

Let us fix the starting state i ∈ S from which our processes evolve. We apply
Property 1 to the Pearson statistics Qi(t), by defining Q̃i(t) := UiQi(t), and thus
obtaining that (Q̃i(1), . . . , Q̃i(m)) is a sample of independent and identically dis-
tributed random variables, all distributed as Gamma(k−1

2 , 2Ui). Their likelihood
and log-likelihood functions are

L(q,Ui) =
m∏
t=1

1

Γ (k−1
2 )(2Ui)

k−1
2

q
k−3
2

t exp(− qt
2Ui

),

logL(q,Ui) = −m log(Γ (
k − 1

2
))−mk − 1

2
log(2Ui)+

k − 3

2

m∑
t=1

log qt−
1

2Ui

m∑
t=1

qt,

where q = [q1, . . . , qm]. By differentiating and equalizing to zero logL we find

d logL

dUi
= −m(k − 1)

2Ui
+

1

2Ui2
m∑
t=1

qt = 0

from which we obtain the maximum likelihood estimator

Ûi =

∑m
t=1 Q̃i(t)

m(k − 1)
. (2)
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2.2 Distribution of the estimator and confidence interval

Since we know that Q̃i(t) ∼ Gamma(k−1
2 , 2Ui), ∀t = 1, . . . ,m and they are inde-

pendent, by Property 2 we have that

m∑
t=1

Q̃i(t) ∼ Gamma(
m(k − 1)

2
, 2Ui)

and thus, by Property 1,

Ûi =
1

m(k − 1)

m∑
t=1

Q̃i(t) ∼ Gamma(
m(k − 1)

2
,

2Ui
m(k − 1)

).

Then E[Ûi] = Ui and our estimator (2) is unbiased.

Let us now apply again Property 1 to the ratio Ûi

Ui
, which is then distributed

as a Gamma(m(k−1)
2 , 2

m(k−1) ), independent from Ui, and which can thus be used
as pivotal statistics to build confidence intervals or to test statistical hypotheses.

Let us find, as an example, a right confidence interval for Ui at level 1− α:

1− α = P (
Ûi
Ui
≤ b)

= P (Ui ≥
Ûi
b

).

Thus the interval I(Ui) = [ Ûi

b ,+∞) is the desired confidence interval, where b is

the critical value at level 1− α of a Gamma(m(k−1)
2 , 2

m(k−1) ). If the aggregation
of units is significantly needed to filter out the small scale variability, then the
interval I(Ui) should not include 1.

3 Results on a simulated example

In order to test the performance of our weighted χ2 test, we simulated a sample
of 30,000 i.i.d. copies of a Markov Chain X, with state space S = {1, 2, 3}, having
transition matrix

P (t) =

p11(t) p12(t) p13(t)
p21(t) p22(t) p23(t)
p31(t) p32(t) p33(t)

 .
The transition probabilities are varying in time, according to the equations

reported in Table 1 and the graphs reported in Figure 1.

As can be seen from the graphs, for the first 10 time steps the probability to observe
transitions to the state 1 is higher than the others, leading thus to a prevalence
of the sample of our Markov chains being in state 1. Starting from time step 11
we observe a sudden increase in the probability to move to state 3, which then
becomes the new most observed state in the sample of Markov chains.

All the Markov chains have been initialized at time t = 0 with a random
state, equally distributed on S = {1, 2, 3}. We then applied our weighted χ2 test
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Fig. 1 Plots of the evolution of the transition probabilities in the matrix P during time
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t = 1, . . . ,10 t = 11, . . . ,13

p11(t) = 1
2

exp(1 + 0.3t)/(1 + exp(1 + 0.3t)) 1
2

exp(−0.3t)/(1 + exp(−0.3t))

p12(t) = 1
2

exp(0.1t)/(1 + exp(0.1t)) 1
2

exp(−0.1t)/(1 + exp(−0.1t))

p13(t) = 1− p11(t)− p12(t) 1− p11(t)− p12(t)
p21(t) = 1− p22(t)− p23(t) 1− p22(t)− p23(t)

p22(t) = 1
2

exp(−0.2t)/(1 + exp(−0.2t)) 1
2

exp(0.2t)/(1 + exp(0.2t))

p23(t) = 1
2

exp(−0.3t)/(1 + exp(−0.3t)) 1
2

exp(2 + 0.3t)/(1 + exp(2 + 0.3t))

p31(t) = 0.8 exp(1 + 0.4t)/(1 + exp(1 + 0.4t)) 1
2

exp(−0.1t)/(1 + exp(−0.1t))

p32(t) = 1− p31(t)− p33(t) 1− p31(t)− p33(t)

p33(t) = 1
2

exp(−0.1t)/(1 + exp(−0.1t)) 0.7 exp(1 + 0.3t)/(1 + exp(1 + 0.3t))

Table 1 Evolution of the transition probabilities in the simulated Markov chains. The values
have been fixed so that the rows of P sum to one.

Starting state 1 2 3

Ûi 9.49 12.5 3.89
95% CI [6.04,+∞) [7.96,+∞) [2.47,+∞)

Table 2 Estimate of the new experimental units from the simulated data and corresponding
right 95% confidence intervals

using the time steps from 1 to 10 to compute the maximum likelihood estimators
Ûi, i ∈ S, obtaining the results reported in Table 2. Note that all the computed
right 95% confidence intervals of the Ûi are not including 1, showing thus that the
units must be aggregated to filter out the small scale variations. We then applied
the test, rescaling by Ûi, i ∈ S the countings, and testing the set of null hypotheses:

Hi,t
0 : pij(t) = pij(t+ 1),∀j ∈ S (3)

for i = 1, 2, 3 and t = 2, . . . , 12. The p-values of the tests are reported in Table
3. Using a significance level α = 0.05 we observe a change in the distribution of
the sample of Markov chains only starting from the comparison of the transitions
pij(10) with respect to pij(11), as was expected. We also tested the same set of
hypotheses (3) using a “traditional” χ2 test, without any counting rescaling. The
results are also reported in Table 3 and show that at all time steps before the
major change there is a significant difference in the distribution at level α = 0.05.
This confirms that our rescaling is strictly needed in order to allow the χ2 test to
detect only the major changes in the distribution of the studied process.

4 Application to detect the effects of “greening” in the new CAP

In this section we will apply our weighted χ2 test to study the impact of the new
Common Agricultural Policy (CAP), which entered into force in the European
Union from 2015, on the distribution of farmland uses in Lombardy, one of the
most intensively cultivated regions in Italy. The new CAP has introduced a new
funding policy, called greening, for which farm subsidies are conditioned to the
compliance of farmers with some “agricultural practices beneficial for the climate
and the environment” (Regulation EU 1307/2013), namely i) arable crops diver-
sification, ii) maintenance of permanent grassland and iii) ecological focus areas
(EFA). Such farm practices regard, and potentially influence, farmland allocation,
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p-values of the weighted χ2 test

Starting state
1 2 3

Transitions
t = 1→ 2 vs. t = 2→ 3 0.055 0.185 0.0397
t = 2→ 3 vs. t = 3→ 4 0.269 0.131 0.151
t = 3→ 4 vs. t = 4→ 5 0.237 0.305 0.19
t = 4→ 5 vs. t = 5→ 6 0.321 0.417 0.4
t = 5→ 6 vs. t = 6→ 7 0.588 0.175 0.883
t = 6→ 7 vs. t = 7→ 8 0.240 0.621 0.239
t = 7→ 8 vs. t = 8→ 9 0.478 0.413 0.798
t = 8→ 9 vs. t = 9→ 10 0.587 0.326 0.588
t = 9→ 10 vs. t = 10→ 11 0 2.31e-196 5.63e-182
t = 10→ 11 vs. t = 11→ 12 0.799 0.833 0.451
t = 11→ 12 vs. t = 12→ 13 0.951 0.617 0.332

p-values of the not weighted χ2 test

Starting state
1 2 3

Transitions
t = 1→ 2 vs. t = 2→ 3 1.2e-12 7.02e-10 3.57e-06
t = 2→ 3 vs. t = 3→ 4 3.96e-06 9.30e-12 6.49e-04
t = 3→ 4 vs. t = 4→ 5 1.16e-06 3.60e-07 1.59e-03
t = 4→ 5 vs. t = 5→ 6 2.07e-05 1.78e-05 2.84e-02
t = 5→ 6 vs. t = 6→ 7 6.46e-03 3.6e-10 6.15e-01
t = 6→ 7 vs. t = 7→ 8 1.35e-06 2.62e-03 3.8e-03
t = 7→ 8 vs. t = 8→ 9 9.16e-04 1.56e-05 4.15e-01
t = 8→ 9 vs. t = 9→ 10 6.33e-03 8.36e-07 1.26e-01
t = 9→ 10 vs. t = 10→ 11 0 0 0
t = 10→ 11 vs. t = 11→ 12 1.18e-01 1.02e-01 4.54e-02
t = 11→ 12 vs. t = 12→ 13 6.21e-01 2.41e-03 1.37e-02

Table 3 p-values of the hypotheses (3) tested both with the weighted χ2 test, with countings

rescaled by Ûi, i ∈ S, and with the not weighted χ2 test, where countings have not been
rescaled.

particularly that of arable land and grassland [Solazzo, Donati, and Arfini 2015;
Cortignani, Severini, and Dono 2017]. Farmland evolution has already been mod-
elled in literature using Markov Chains [Sang et al. 2011; Fu, Wang, and Yang
2018]. We will apply our weighted χ2 test to detect if any major change in the
farmland use of Lombardy occurred starting from 2015.

Our dataset is composed by a sample of 638,952 farmland parcels in Lombardy,
occupying a total area of 743,072 hectares, whose land use has been observed in the
years 2011-2016. The farmland uses have been aggregated into 23 classes, which
are reported in Table 4, with the corresponding evolution of the extension of each
cultivation across time.

We model the system as a sample of Markov chains, one for each cultivated
hectar, which evolve across time in one of the different 23 cultivation classes. The
assumption of markovianity, i.e. the fact that the land use of next year depends
only on the present land destination and not from the past, is reasonable, since
rotational crops are usually alternated on an annual or seasonal basis, and the
majority of decisions of change of cultivation are based on current (and expected)
prices of crops, annual environmental conditions and other factors, which are con-
sidered mainly on an annual basis.
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Code Farm land use hectares hectares hectares hectares hectares hectares
2011 2012 2013 2014 2015 2016

10 Maize 246,873 242,553 229,257 218,559 185,849 166,590
20 Maize for silage 57,484 60,801 67,278 73,305 66,004 68,045
30 Rotation ryegrass + maize for silage 31,728 34,025 34,907 37,141 42,943 48,003
40 Wheat 45,407 56,133 63,507 57,192 66,341 79,298
50 Barley 13,715 14,966 16,139 14,065 18,892 19,536
60 Triticale-other cereals 10,247 13,374 14,437 15,677 14,385 12,704
100 Rice 106,059 99,175 88,319 90,850 96,894 101,648
160 Soybean 22,160 15,680 24,574 27,253 39,290 32,325
190 Pulses 800 751 832 834 1,264 1,612
260 Horticulture 16,251 15,252 14,097 15,712 16,703 17,263
270 Flowers 4,231 4,158 4,081 3,952 3,892 3,902
320 Other arable crops 9,633 9,533 8,373 9,255 7,403 7,184
321 Ryegrass 1,514 787 760 898 4,024 5,315
322 Grass herbages 7,969 9,363 11,187 10,657 6,389 6,838
323 Legume herbages 238 172 116 142 1,214 909
325 Mixed herbages 4,458 3,928 4,892 4,629 3,674 4,435
330 Alfalfa 54,996 53,830 50,342 53,087 58,784 58,396
350 Other temporary grassland 49,632 49,575 49,833 49,910 48,261 47,373
360 Permanent grassland 8,831 8,979 8,797 8,700 8,871 8,941
414 Permanent crops 26,665 26,525 26,652 26,495 26,614 27,096
501 Wood-landscape 10,391 10,961 11,170 11,432 6,394 6,876
961 Fallow land 3,484 3,241 5,304 4,520 8,158 8,927
990 Non-eligible surfaces 10,292 9,295 8,205 8,797 10,818 9,845

TOTAL BALANCED FARM LAND 743,072 743,072 743,072 743,072 743,072 743,072

Table 4 The 23 categories into which have been classified the different land uses in Lombardy
and hectares occupied by each crop in different years. The considered sample of parcels has
been selected so that the total farmland is constant across time. The code is an univocal
(administrative) number which identifies the type of crop

Thus, coming back to the notations introduced in Section 2, in our application
k = 23 is the number of different farmland uses, the times t span the years from
2011 to 2016, where the years from 2011 to 2014 are assumed to have a “standard
behaviour”, and will be used to estimate the experimental unit Ui which allows to
filter out the small scale variation.

First we applied the Anderson-Goodman test for stationarity [Anderson and
Goodman 1957], which is based on the maximum likelihood ratio, to the transition
probabilities pij(t), for t varying from 2011 to 2014, in order to check if they may be
assumed constant in time, and thus if our sample of Markov chains can be assumed
homogeneous, before the application of greening policy. The null hypothesis of
homogeneity was rejected with a p-value < 0.0001. Thus we are exactly in a
situation in which our proposed weighted χ2 test should be applied.

We first considered the distribution of hectares into the 23 crop classes, and
we applied our χ2 test to check the hypotheses

H0:the proportion of hectares in each of the 23 crop classes is the same in year
t− 1 and year t (t = 2012, . . . , 2016).

The results are reported in Table 5. They show that a major discontinuity in
the land use distribution has been observed exactly passing from 2014 to 2015,
that is immediately after the introduction of greening policy. For this first test,
we considered a unique U = Ui for all i. The estimated rescaling factor here is
Û = 225.47.

We also applied the weighted χ2 test to check if the transition probabilities
of specific types of crops have changed significantly across time. This further set
of tests was aimed to identify the main causes of the observed discontinuity on
land use distribution on 2015, since we expected that some types of crops were not
much affected by greening (like e.g. rice, wood-landscape, permanent grassland,
etc.), since they already satisfied the ecological requirements of the new CAP,
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Q DF p-value freq < 5 n(t-1) n(t)
Comparison 2011-12 16.246 22 0.80350 0.087 3295.6 3295.6
Comparison 2012-13 21.901 22 0.46579 0.130 3295.6 3295.6
Comparison 2013-14 7.139 22 0.99881 0.130 3295.6 3295.6
Comparison 2014-15 64.714 22 0.00000 0.087 3295.6 3295.6
Comparison 2015-16 17.295 22 0.74685 0.043 3295.6 3295.6

Table 5 Comparison of the hectares distribution across couples of subsequent years. Here Q
is the value of the rescaled χ2 statistics, DF are its degrees of freedom, p-value is the p-value of
the test, freq < 5 is the proportion of cells of the considered contingency table having expected
rescaled frequencies lower than 5 (this is the heuristic condition that should be satisfied in order
to apply asymptotic approximations with the χ2 distribution), n(t-1) and n(t) are the number
of total rescaled hectares in the two considered years

MAIZE
Transitions Q DF p-value freq < 5 n(t-1) n(t)

11-12/12-13 8.052 9 0.52887 0 569.9 558
12-13/13-14 9.948 9 0.35475 0 558 528.5
13-14/14-15 11.381 9 0.25048 0 528.5 503.9
13-14/15-16 14.718 9 0.09897 0 528.5 428.4

MAIZE FOR SILAGE
Transitions Q DF p-value freq < 5 n(t-1) n(t)

11-12/12-13 4.913 8 0.76687 0.111 630.9 669.5
12-13/13-14 11.087 8 0.1968 0.056 669.5 737.3
13-14/14-15 37.151 8 0.00001 0 737.3 789.6
13-14/15-16 31.102 8 0.00013 0 737.3 711.6

WHEAT
Transitions Q DF p-value freq < 5 n(t-1) n(t)

11-12/12-13 9.889 10 0.45031 0 738.7 911
12-13/13-14 10.111 10 0.43079 0 911 1020.1
13-14/14-15 722.043 10 0.01489 0 1020.1 914.6
13-14/15-16 42.91 10 0.00001 0 1020.1 1061.1

SOYBEAN
Transitions Q DF p-value freq < 5 n(t-1) n(t)

11-12/12-13 8.212 9 0.51292 0.25 433.2 298.9
12-13/13-14 9.788 9 0.36793 0.15 298.9 476.4
13-14/14-15 17.515 9 0.04124 0.05 476.4 528.1
13-14/15-16 32.822 9 0.00014 0 476.4 747.7

RICE
Transitions Q DF p-value freq < 5 n(t-1) n(t)

11-12/12-13 3.695 3 0.29628 0.250 325.6 303.2
12-13/13-14 7.669 3 0.05336 0.250 303.2 270.8
13-14/14-15 0.635 3 0.88834 0.250 270.8 278.5
13-14/15-16 2.751 3 0.43161 0.250 270.8 296.8

Table 6 Results of the weighted χ2 test for specific crops to check if a significant change in
the transitions before (2013/14) and after (2014/15 and 2015/2016) the greening introduction
at level α = 0.05 occurred. For the meaning of the columns see the caption to Figure 5

while other types of crops, like maize, maize for silage, wheat should show a bigger
alternation with less pollutant crops, like soybean, starting from 2015, and thus
should show a significant change in the transition probabilities. The results are
reported in Table 6.

We observe that all results fit with our expectations, apart from maize, that
doesn’t show a significant change in the transition probabilities at level α = 0.05.
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MAIZE - CENTRAL LOMBARDY
Transitions Q DF p-value freq < 5 n(t-1) n(t)

11-12/12-13 5.536 8 0.69908 0.22 578.9 558.3
12-13/13-14 10.464 8 0.23394 0.11 558.3 524.2
13-14/14-15 21.421 8 0.00611 0 524.2 504.1
13-14/15-16 24.109 8 0.00219 0.05 524.2 431.1

Table 7 Results of the weighted χ2 test on transition probabilities of maize in central Lom-
bardy. For the meaning of the columns see the caption to Figure 5

After a deeper study, based on the computation of a geographical Gini Index
[Bertoni et al. 2018], to highlight the local degree of crop differentiation, we realized
that changes in the cultivation of maize happened, but mainly in the central part
of Lombardy, which has a major livestock tradition, characterized by dairy farms
based on on-farm feed production (particularly maize). Therefore, the weighted
χ2 test was applied only to the data located in the provinces of Bergamo, Brescia,
Lodi, Cremona, representing the core of the livestock district. The results of the
test are reported in Table 7. The small p-value in the comparisons 13/14-14/15
and 13/14-14/15 shows a significant change in the transition probabilities when
greening was introduced, confirming that in this part of Lombardy a significant
change in maize diffusion and in alternation with other crops occurred. For further
comments and results see also Bertoni et al. 2018.
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