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Background & Aim: Non-alcoholic fatty liver disease (NAFLD) is
the leading cause of chronic liver disease in adults and children.
Along with obesity, diabetes and insulin resistance, genetic fac-
tors strongly impact on NAFLD development and progression.
Dysregulated bile acid metabolism and the fibroblast growth
factor 19 (FGF19) pathway play a pivotal role in NAFLD patho-
genesis. However, the mechanism through which the FGF19
receptor system is associated with liver damage in NAFLD
remains to be defined.
Methods:We evaluated the impact of the rs17618244 G>A b-
Klotho (KLB) variant on liver damage in 249 pediatric patients
with biopsy-proven NAFLD and the association of this variant
with the expression of hepatic and soluble KLB. In vitro models
were established to investigate the role of the KLB mutant.
Results: The KLB rs17618244 variant was associated with an
increased risk of ballooning and lobular inflammation. KLB
plasma levels were lower in carriers of the rs17618244 minor
A allele and were associated with lobular inflammation, bal-
looning and fibrosis. In HepG2 and Huh7 hepatoma cell lines,
exposure to free fatty acids caused a severe reduction of intra-
cellular and secreted KLB. Finally, KLB downregulation obtained

by the expression of a KLB mutant in HepG2 and Huh7 cells

induced intracellular lipid accumulation and upregulation of
p62, ACOX1, ACSL1, IL-1b and TNF-a gene expression.
Conclusion: In conclusion, we showed an association between
the rs17618244 KLB variant, which leads to reduced KLB expres-
sion, and the severity of NAFLD in pediatric patients. We can
speculate that the KLB protein may exert a protective role
against lipotoxicity and inflammation in hepatocytes.
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Lay summary: Genetic and environmental factors strongly
impact on the pathogenesis and progression of non-alcoholic
fatty liver disease (NAFLD). The FGF19/FGFR4/KLB pathway
plays a pivotal role in the pathogenesis of NAFLD. The aim of
the study was to investigate the impact of a genetic variant in
the KLB gene on the severity of liver disease. Our data suggest
that the KLB protein plays a protective role against lipotoxicity
and inflammation in hepatocytes.
� 2019 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Non-alcoholic fatty liver disease (NAFLD) has become the lead-
ing cause of liver damage worldwide.1 The histologic spectrum
of NAFLD ranges from simple steatosis to non-alcoholic steato-
hepatitis (NASH), fibrosis, and eventually progress to cirrhosis
and hepatocellular carcinoma (HCC).2,3 NAFLD is a multifacto-
rial disease where environmental factors, such as an excessive
caloric intake and a sedentary lifestyle, and genetic factors
interact with each other, triggering the metabolic and hepatic
events that lead to liver fat accumulation and progressive liver
disease.4 In recent years, genome-wide association studies
(GWAS) have identified inherited variants in genes involved in
hepatic fat uptake, synthesis, storage and mobilization of
triglycerides which have been associated with a higher risk of
NAFLD in adults.5–7 Most of these genetic variants, such as the
rs738409 C>G in patatin-like phospholipase domain–containing
3 (PNPLA3) gene and the rs58542926 C>T in transmembrane 6
superfamily member 2 (TM6SF2) gene, also increase the risk of
NAFLD in pediatric patients.8–10 Due to their effect size these
polymorphisms explain the genetic susceptibility to NAFLD
development and progression in most individuals.11 However,
other genetic variants may contribute to determine the motley
pattern of histologic features associated with NAFLD and to
explain the missing heritability.12

NAFLD development and progression are complex to deci-
pher, and the most innovative pathogenic concept that has been
019 vol. xxx j xxx–xxx
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reverse TTGAGCAGCCTCCTTTCGG primers (Sigma-Aldrich, St.
Louis, MO, USA), which provided concordant results in all cases.
Positive and negative controls were included on each reaction
plate, to verify the reproducibility of the results.

ELISA assays
KLB and FGF19 plasma levels were measured by commercially
available ELISA kits (LifeSpan BioSciences, Seattle, WA, USA;
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proposed involves the crosstalk between the liver, gut and adi-
pose tissue.13 Recent experimental and clinical evidence has
suggested that fibroblast growth factor (FGF) 15/19 and its
receptor system represent one of the most important gut-
derived signals, which impacts on adipose tissue and liver
response during diet-induced NAFLD.14,15

FGF19/FGF15 (FGF15 is the mouse orthologue of the human
FGF19) belongs to the FGF19 subfamily, together with FGF21
and FGF23. These factors have no affinity for heparan sulfates
and are able to freely diffuse from their tissue of origin into
the blood circulation. For these reasons, they can act as hor-
mones. In particular, FGF19 regulates bile acid (BA) homeostasis
and gallbladder filling/emptying.16–18 BAs are molecules syn-
thesized in the liver and stored in the gallbladder, essential
for solubilization of fatty acids, for digestion and lipid absorp-
tion in the small intestine.19 Liver-derived BA bind to farnesoid
X receptor (FXR) in enterocytes thus inducing the expression of
FGF19, which is released into the portal circulation. FGF19 is
transported to the liver and interacts with fibroblast growth fac-
tor receptor-4 (FGFR4) assisted by the b-Klotho (KLB) co-
receptor, which is crucial for full activation of the FGF/FGFR
complex and for the induction of the intracellular responses,
such as downregulation of cholesterol 7a-hydroxylase (CYP7A1)
and consequent inhibition of BA synthesis.20–23

We previously reported an inverse association between
FGF19 plasma levels, hepatic Klotho expression and severity of
liver damage in a cohort of obese pediatric patients with
NAFLD.24 These previous data suggested that the decrease of
hepatic Klotho protein in pediatric NAFLD could be ascribable
to the beta isoform (KLB), which is the main form in the
liver.25–28

Recently, two functional genetic variants modulating the
activity of the KLB/FGFR4 pathway, namely rs17618244 G>A
KLB and rs1966265 G>A FGFR4, encoding for the R728Q and
V10I aminoacidic substitutions have been associated with accel-
erated transit in irritable bowel syndrome,29 supporting a possi-
ble functional impact on the regulation of the gut-liver axis via
modulation of FGF19 signaling.30 Therefore, the aim of this
study was to examine the impact of the rs17618244 G>A KLB
and rs1966265 G>A FGFR4 variants on liver damage severity
in pediatric patients with NAFLD.

Material and methods
Study participants
A cohort of 249 Italian pediatric patients with biopsy-proven
NAFLD, evaluated at Bambino Gesù Children’s Hospital between
September 2011 and May 2016, were enrolled in the study. This
study was approved by local ethics committee (Bambino Gesu‘
Children’s Hospital and IRCCS, Rome, Italy – Protocol number
734_OPBG_2014 and 1956_OPBG_2019). Written informed con-
sent was obtained from the parents of each child.
All individuals were of European descent and were consecu-
tively enrolled. Other causes of liver disease including increased

BioVendor, Prague, Czech Republic) according to the manufac-
turer’s instructions. In detail, KLB levels were measured by
commercially available Human KLB/Beta Klotho ELISA Kit
(LS-F11894). Specifications of the kit were: detection range,
15.6–1,000 pg/ml; inter-assay precision, coefficient of variabil-
ity (CV) <7.9%; intra-assay precision, CV <4.4%. Our range data
for intra- and inter-assay CV were 1.8–4.3% and 1.7–7.2%,
respectively.
alcohol intake (>30/20 g/day in males/females), viral and
autoimmune hepatitis, hereditary hemochromatosis, alpha1-
antitrypsin deficiency, and history, Wilson disease, and infec-
tion with hepatitis B or hepatitis C were excluded.

Body mass index (BMI) and waist circumference were mea-
sured using standard procedures. Alanine aminotransferase,
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aspartate aminotransferase, triglycerides, total cholesterol,
high-density lipoprotein and low-density lipoprotein choles-
terol were measured by standard laboratory methods.

Demographic, anthropometric and clinical features of indi-
viduals are shown in Table S1. As a control group, we enrolled
128 pediatric healthy children (age range, 6.67–13.34 years)
from the population that adhere to special programs of liver dis-
ease screening performed by our hospital each year (Table S2).
As an additional control group, 502 healthy European individu-
als from the 1000 Genomes project for whom the genotypes of
interest were available (http://www.internationalgenome.org)
were included.

Liver histology
Liver histology was evaluated by 2 experienced pathologists
unaware of clinical and genetic data. Briefly, liver biopsies were
routinely processed and analyzed by different staining includ-
ing, H&E, Van Gieson, periodic acid-Schiff diastase, and Prussian
blue stain. The main histological features, commonly described
in NAFLD, including steatosis, lobular and portal inflammation,
hepatocyte ballooning, and fibrosis were scored according to
the Scoring System for Non-Alcoholic Fatty Liver Disease devel-
oped by the NIH-sponsored NASH Clinical Research Network
(CRN).31 Diagnosis of NASH was based on the presence of
steatosis with lobular necroinflammation and ballooning.
Among 249 Italian pediatric patients with biopsy-proven
NAFLD, 186 (75%) have NASH and 118 (47%) have severe fibrosis
(F2-F4). The percentage of patients stratified by the severity of
liver damage is reported in Table S3.

Genotyping
The rs17618244 G>A KLB, rs1966265 G>A FGFR4, rs738409 C>G
PNPLA3 variants were genotyped by TaqMan 50-nuclease assays
(Life Technologies, Carlsbad, CA, USA) in 249 pediatric patients
with NAFLD and in 128 pediatric healthy controls. Briefly, geno-
mic DNA was isolated from venous blood using a Blood DNA
Extraction Kit (Qiagen, Valencia, CA, USA). The absorbance ratio
at 260/280 nm of all the samples ranged from 1.8 to 2 indicating
they were all free from contaminants. Real-time PCR was per-
formed using Applied Biosystems 7900HT Fast Real-Time PCR
System (Applied Biosystems, Carlsbad, CA, USA).

Results were confirmed in a group of random samples by
Sanger sequencing by Applied Biosystems 3500 Genetic Ana-
lyzer, using KLB forward CGAGCCTCTGTTGCATGC and KLB
19 vol. xxx j xxx–xxx
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Immunofluorescence
Staining for KLB and Sequestosome 1 (SQSTM1 or p62) was per-
formed on liver tissue from pediatric patients with and without
NASH stratified by the KLB rs17618244 genotype. Immunofluo-
rescence was performed on 2 lm-thick sections obtained from
formalin-fixed tissue embedded in paraffin. Antigen retrieval
was performed with EDTA (pH 9) (Dako, Glostrup, Denmark).
The sections were incubated overnight at 4 �C with rabbit
anti-KLB (dilution 1:300, Abcam, Cambridge, MA, USA) and with
mouse anti-SQSTM1/p62 (dilution 1:300; Santa Cruz Dallas,
Texas, USA) and revealed with Alexa Fluor 488 goat anti-
rabbit (dilution 1:500, Applied Biosystems, Life Technologies,
Carlsbad, CA, USA) and with Alexa Fluor 488 goat anti-mouse
(dilution 1:500, Applied Biosystems, Life Technologies, Carlsbad,
CA, USA). Nuclei were counterstained with 40,6-diamidino-2-p
henylindole (DAPI) for 5 min after extensive washing, sections
were mounted with PBS/glycerol (1:1) and covered with a cov-
erslip. The confocal microscopy imaging was performed on an
Olympus Fluoview FV1000 confocal microscope equipped with
FV10-ASW version 4.1 software, using a 40x objective. Quantita-
tive analysis of the imaging was performed as previously
described.24

Statistical analysis
Results are expressed as means ± SD for normally distributed
variables, median [IQR] for non-normally distributed variables
which were log-transformed before analysis. Mean values were
compared by ANOVA or by paired or unpaired 2-tailed Student’s
t test.

Association of the phenotypic trait with genetic variants was
analyzed by fitting logistic (diagnosis of NAFLD vs. healthy con-
trol) and ordinal (histological features of liver damage in biop-
sied individuals) regression models, adjusted for relevant
covariates (specified in the results section). Genetic traits were
analyzed under additive models.

The association of KLB and FGF19 plasma levels with the KLB
rs17618244 variant (R728Q protein variant) and histological

Hardy-Weinberg equilibrium (Table S4). The KLB rs17618244
variant tended to be over-represented in patients than in healthy
controls (p = 0.038; Fig. 1). By considering as further controls 502
healthy individuals included in the 1000 Genomes the associa-
tion of the KLB rs17618244 variant with NAFLD remained signif-
icant (p = 0.042). Conversely, there was no difference in the
frequency of the rs1966265 G>A FGFR4 variant between patients
with NAFLD and controls (Fig. 1).

The KLB rs17618244 variant increases the risk of ballooning
and lobular inflammation in children with NAFLD
The impact of the KLB variant on NAFLD severity was then eval-
uated in pediatric patients with NAFLD. The clinical features of
pediatric patients stratified by KLB rs17618244 variant are
shown in Table S5. No differences in demographic and anthro-
pometric features were found across rs17618244 genotypes.

The relationship between the KLB rs17618244 variant and
the severity of liver damage is shown in Table 1. At multivariate
ordinal regression analysis adjusted for age, sex, BMI, and
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features of liver damage was analyzed by generalized linear
models, adjusted for sex, age, BMI and PNPLA3 rs738409 geno-
type (I148M protein variant).

Statistical analyses were carried out using the JMP 14.0 Sta-
tistical analysis software (SAS Institute, Cary, NC, USA), and R
statistical analysis software version 3.3.2. p values <0.05 were
considered statistically significant. The study methods and
results have been reported according to the STROBE/STREGA
guidelines for genetic association studies.

In vitro methods
All in vitro methods are reported in the supplementary
information.

For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.

Results
The KLB rs17618244 variant is associated with pediatric
NAFLD
We first evaluated the impact of rs17618244 G>A KLB and
rs1966265 G>A FGFR4 variants, which may influence FGF19
signaling, on liver damage in 249 children with NAFLD and in
128 pediatric controls. The frequency distribution of the
KLB rs17618244 and FGFR4 rs1966265 variants was in
Journal of Hepatology 20
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PNPLA3 rs738409 variant, carriers of the KLB rs17618244 vari-
ant had increased risk of both ballooning (Estimate: 0.45; 95%
CI 0.035–0.88; p = 0.032) and lobular inflammation (Estimate:
0.45; 95% CI 0.034–0.87; p = 0.036). However, the KLB
rs17618244 variant did not impact on steatosis, and was not
significantly associated with fibrosis.

This data is consistent with the hypothesis that the KLB
rs17618244 variant predisposes to progressive NAFLD by pro-
moting hepatocellular damage.

Conversely, we did not find any association between the
rs1966265 G>A FGFR4 variant and the entire spectrum of liver
damage (Table S6). Therefore, only the KLB rs17618244 variant
was further considered.

Circulating KLB concentration is reduced and correlated with
FGF19 in pediatric patients with NAFLD
To evaluate the mechanism underpinning the association
between the KLB rs17618244 variant and progressive NAFLD,
we next evaluated circulating KLB in 205 pediatric patients with
NAFLD and in 36 healthy individuals.

Circulating KLB concentration was lower in pediatric patients
with NAFLD compared to age-matched controls (p <0.0001;
Fig. 2A). In children with NAFLD, KLB plasma levels were lower
in carriers of the A allele of the KLB rs17618244 risk variant
(p <0.0001; Fig. 2B). At multivariate generalized linear model,
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Fig. 1. Minor alleles frequency of KLB rs17618244 and FGFR4 rs1966265.
The histogram reports the frequency distribution of the KLB rs17618244 and
FGFR4 rs1966265 minor allele (A) in pediatric healthy controls (n = 128),
children with NAFLD (n = 249) and healthy European individuals from the
1000 Genomes project (n = 502). Data were analyzed by ANOVA test,
*p = 0.038 patients with NAFLD vs. healthy children ^p = 0.042 NAFLD patients
vs. overall controls (healthy children and individuals included in the 1000
Genomes project). NAFLD, non-alcoholic fatty liver disease.
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adjusted for age, sex, BMI and PNPLA3 genotype, KLB plasma
levels were associated with KLB rs17618244 variant (Estimate
�0.005; 95% CI -0.006 to �0.004; p <0.0001), lobular inflamma-
tion (Estimate �0.002; CI �0.003 to �0.0003; p = 0.02), balloon-
ing (Estimate �0.003; CI �0.004 to �0.001; p = 0.001) and
fibrosis (Estimate �0.003; CI �0.005 to �9.8 � 10�4;
p = 0.004) (Table S7). In a multivariate generalized linear model,
adjusted for age, sex, BMI, PNPLA3 genotype and the KLB
rs17618244 variant, KLB plasma levels remained associated
with lobular inflammation (Estimate �0.001; 95% CI �0.004 to
�0.00002; p <0.047), ballooning (Estimate �0.003; CI �0.004
to �0.0008; p = 0.005) and fibrosis (Estimate �0.003; CI
�0.006 to �0.001; p = 0.003).

The reduction of circulating KLB levels in the presence of the
KLB rs17618244 variant could be the result of decreased hepatic
protein levels or protein cleavage and release. Therefore, we
assessed the hepatic expression of KLB in a subgroup of 69 chil-
dren with NAFLD. As shown in the Fig. S1A, hepatic KLB was
reduced in NAFLD patients who carry the rs17618244 A allele
and this finding was confirmed even after stratification for the
presence of NASH (Fig. S1B).

rs17618244 risk variant compared to non-carriers (p = 0.01;
Fig. 2C). In a multivariate generalized linear model adjusted

Table 1. Impact of KLB rs17618244 variant on liver damage in 249 pediatric

Age (years) Gender (M)

Steatosis
Estimate �0.08 0.04
95% CI �0.17–0.01 �0.20–0.29
p value* 0.09 0.74

Lobular Inflammation
Estimate �0.03 �0.08
95% CI �0.11–0.06 �0.32–0.16
p value* 0.52 0.53

Ballooning
Estimate �0.14 0.09
95% CI �0.22–0.00 �0.14–0.34
p value* 0.002 0.42

Fibrosis
Estimate �0.09 �0.06
95% CI �0.17 to �0.01 �0.29 to �0.17
p value* 0.03 0.62

*At multivariate generalized linear analysis; models were adjusted for age, sex, BMI, a
BMI, body mass index; NAFLD, non-alcoholic fatty liver disease.
Bold values represent the significant associations.
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Fig. 2. Assessment of KLB and FGF19 circulating levels. The plots report KLB
plasma levels according to the presence of (A) NAFLD and (B) KLB genotype.
Data were analyzed by 2-tailed t tests, ***p <0.001 (Panel B refers to patients
with NAFLD). (C) The plots report FGF19 plasma levels according to the KLB
genotype. The panel refers to patients with NAFLD. Data were analyzed by 2-
tailed t tests, **p = 0.01. NAFLD, non-alcoholic fatty liver disease.
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This data suggests that the KLB rs17618244 variant may pre-
dispose to more advanced liver damage by reducing KLB protein
levels.
4 Journal of Hepatology 20
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Circulating levels of FGF19, which requires KLB as co-
receptor to facilitate its interaction with FGFR4, were also ana-
lyzed. FGF19 levels were lower in patients who carried the KLB

patients with NAFLD.

BMI (kg/m2) PNPLA3 (I148M) KLB (R728Q)

�0.006 0.36 0.09
�0.05–0.03 0.04–0.69 �0.34–0.69

0.75 0.03 0.52

�0.009 0.11 0.45
�0.05–0.03 �0.20–0.43 0.03–0.88

0.64 0.49 0.036

0.017 �0.07 0.45
�0.02–0.05 �0.38–0.24 0.03–0.88

0.38 0.66 0.032

0.004 0.29 0.25
�0.03 to �0.04 �0.01–0.61 �0.14–0.65

0.85 0.06 0.22

nd PNPLA3 148M allele.
for age, sex, BMI and PNPLA3 genotype, FGF19 plasma levels
were associated with the KLB rs17618244 variant (Estimate
�0.003; 95% CI �0.006 to �0.0006; p = 0.02), ballooning (Esti-
mate �0.005; 95% CI �0.01 to �0.001; p = 0.01) and fibrosis
(Estimate �0.009; 95% CI �0.01 to �0.004; p = 0.0007).

This data suggests that liver damage is associated with both
decreased FGF19 and KLB-dependent signaling.

Treatments inducing in vitro NAFLD reduce KLB expression
and release, thus enhancing lipotoxicity
In order to evaluate the interplay between NAFLD and the KLB
protein, an in vitro model of NAFLD was established. Firstly,
HepG2 and Huh7 cells were genotyped for the KLB
rs17618244 variant. Both cell lines expressed wild-type (GG)
KLB. Next, cells were treated with 2 concentrations of palmitic
acid and oleic acid in a 1:2 molar ratio for 24 h. As shown in
Fig. 3A and 3B, after 24 h, free fatty acids (FFAs) induced statis-
tically significant dose-dependent lipid accumulation, alongside
a relevant reduction of cell viability, particularly after treatment
with FFAs at high dose (Fig. 3C and 3D).

Exposure to FFAs caused a statistically significant reduction
of KLB protein expression (Fig. 4A and Fig. S2A) that was not
associated with changes in KLB mRNA levels (Fig. S2B). Next,
the culture media of the cells treated with FFAs were collected
to evaluate KLB release. As shown in Fig. 4B and Fig. S2C, expo-
sure to FFAs was associated with reduced KLB secretion com-
pared to untreated cells.

Exposure to FFAs mimics some aspects of lipotoxicity which
occur in NAFLD. Indeed, FFAs stimulated p62 at mRNA and pro-
tein levels (Fig. 4C and 4D), which is also overexpressed in
patients with NASH carrying the AA genotype (Fig. 4E).

KLB downregulation influences lipid accumulation,
lipotoxicity and inflammation
In order to examine the hypothesis that KLB downregulation is
associated with hepatic fat accumulation and lipotoxicity in
hepatocytes, the KLB gene was silenced in HepG2 and Huh7 cells
using commercial siRNAs. A pilot study was performed to iden-
19 vol. xxx j xxx–xxx
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and 50 nM siRNA for Huh7, which did not affect cell viability
(Fig. S3C and D).

As shown in Fig. 5A and Fig. S4A, KLB silencing was unable
per se to cause changes in lipid accumulation in HepG2 and
Huh7 cells, while it significantly increased the intracellular lipid
accumulation in the presence of FFAs. However, the silencing-
induced downregulation of KLB caused an upregulation of the
expression of p62, ACOX1 and ACSL1 mRNA levels (Fig. 5B and
Fig. S4B).

Next, we transfected HepG2 (GG) and Huh7 (GG) with the
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tify the amount of KLB siRNAs required to obtain the best effi-
ciency of silencing (Fig. S3A and B). The best efficiency of KLB
silencing (40–50%) was obtained with 10 nM siRNA for HepG2

plasmid expressing the R728Q KLB mutant form (Fig. S5A).
The overexpression of the R728Q KLB plasmid (Fig. S5B) had a
dominant negative effect, downregulating the expression of
KLB protein, while WT KLB plasmid transfection moderately
increased protein levels (Fig. 6A and Fig. S5C). The downregula-
tion of the KLB protein caused by the mutant plasmid was asso-
ciated with an increase in lipid content (Fig. 6B).

As observed in patients with NASH who carry the
rs17618244 AA genotype, the expression of the R728Q KLB
mutant form in HepG2 and Huh7 induced an upregulation of
lipotoxic and the pro-inflammatory genes, including p62,
ACOX1, ACSL1, IL-1b, and TNF-a (Fig. 6C).

Discussion
In this study, we showed for the first time an association
between the rs17618244 G>A genetic variant in the KLB gene
and more severe liver damage in pediatric NAFLD. We found
that the presence of the KLB variant was associated with an
increased risk of ballooning and lobular inflammation. We also
showed in the subgroup of children with NAFLD that the pres-
ence of the KLB variant was linked to a lower expression of cir-
culating levels of FGF19 and hepatic and soluble KLB. The
circulating levels of the latter were associated with lobular
inflammation, ballooning and fibrosis. Supporting a causal role
of reduced KLB expression in determining the susceptibility to
liver damage, in vitro data confirmed that lipid accumulation
after FFA treatment causes a reduction of cellular and soluble
expression of the KLB protein in human hepatoma cell lines,
which express wild-type KLB. Moreover, the reduction of KLB
in the same cells increases lipid accumulation and induces
upregulation of lipotoxic and pro-inflammatory genes.

KLB is a transmembrane protein mainly expressed in the
liver. It acts as a co-receptor crucial for full activation of
FGF19/FGFR4 complex that regulates BA synthesis by suppress-
ing the expression of the CYP7A1. This process is tightly regu-
lated since BA accumulation in the liver can lead to
hepatotoxicity.32,33 Indeed, intestinal FGF19 and the hepatic
KLB/FGFR4 receptor system represents an endocrine network,
essential for maintaining BA homeostasis. It is currently
accepted that changes in the enterohepatic cycling and distribu-
tion of BAs may impair glucose and lipid metabolism and there-
fore BA levels are relevant for NAFLD development and
progression.34 Adults and children with NAFLD exhibit elevated
hepatic and circulating concentrations of BAs that correlate with
the severity of disease, mainly with fibrosis.35,36

In recent years, there has been a growing interest in BAs as
signaling molecules and they are emerging as key players in
the treatment of liver diseases.19 Indeed, BAs, through activa-
tion of FXR, may regulate a wide range of target genes that mod-
ulate BA homeostasis, lipoprotein and glucose metabolism, and
inflammatory responses.37 In particular, it has been reported
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Fig. 3. Analysis of lipid content and cell viability in HepG2 and Huh7 cells
after treatment with FFAs. The histograms (upper panels) report the fold
change of the lipid content measured as O.D./mg protein by ORO in (A) HepG2
and (B) Huh7 cells treated with 500 or 1,000 lM PA/OA for 24 h compared to
untreated (NT) cells. In the lower panels are reported representative images
(40x) of the ORO staining. Data the mean ± SD of 2 independent experiments
repeated at least in triplicate. Data were analyzed by 2-tailed t tests, *p <0.05,
***p <0.001 vs. control cells. Effect of FFAs on (C) HepG2 and (D) Huh7 cell
viability measured by XTT assay. Data refer to mean O.D. of 3 independent
experiments repeated at least in triplicate. Data were analyzed by 2-tailed t
tests, ***p <0.001 vs. control cells. FFAs, free fatty acids; OA, oleic acid; ORO,
Oil Red O; PA, palmitic acid.
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that FXR activation may repress de novo lipogenesis and
lipoprotein export, as well as improve steatosis and reduce
inflammation and fibrosis in mouse models of NASH.38 Hence,
FXR agonists or FGF19 analogues could be successful pharmaco-
logical strategies for NASH. Indeed, a recent multicenter, ran-
domized, placebo-controlled clinical trial demonstrated that
obeticholic acid (OCA), an FXR agonist, improved steatosis,
inflammation and fibrosis.39 Moreover, preliminary data from
a multicenter, randomized, placebo-controlled phase II trial
reported that an engineered FGF19 analogue (NGM282),
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3
Fig. 4. Expression of KLB and p62 in HepG2 and Huh7 cells after treatment
with FFAs and expression and intracellular distribution of p62 according
to disease severity and KLB genotype. (A) Representative western blotting
for KLB in HepG2 and Huh7 cells treated with 500 or 1,000 lM PA/OA for 24 h
compared to untreated (NT) cells. a-Tubulin is reported as a loading control.
(B) Representative Western blotting for circulating KLB in media from HepG2
and Huh7 cells treated or not with FFAs. All experiments were performed at
least in duplicate. (C) p62 mRNA and protein levels were evaluated by qRT-
PCR and western blotting in HepG2 cells incubated with 500 or 1,000 lM PA/
OA for 24 h compared to untreated (NT) cells. a-Tubulin is reported as a
loading control. Data are the mean ± SD of 2 independent experiments
repeated at least in triplicate. Data were analyzed by 2-tailed t tests, *p <0.05
and ***p <0.001 vs. control cells. (D) p62 mRNA and protein levels were
evaluated by qRT-PCR and western blotting in Huh7 cells incubated with 500
or 1,000 lM PA/OA for 24 h compared to untreated (NT) cells. a-Tubulin is
reported as a loading control. Data are the mean ± SD of 2 independent
experiments repeated at least in triplicate. Data were analyzed by 2-tailed t
tests, ***p <0.001 vs. control cells. (E) The representative immunofluorescence
was performed on 2 lm-thick sections obtained from formalin-fixed tissue
embedded in paraffin. The staining of p62 is shown in red. The nuclei are
revealed by specific DAPI staining, displayed in blue. 40x Magnification. FFAs,
free fatty acids; OA, oleic acid; PA, palmitic acid; qRT-PCR, quantitative
reverse transcription PCR.

representative images (40x) of the ORO staining. Data are the mean ± SD of 2
independent experiments repeated at least in triplicate. Data were analyzed
by ANOVA test, *p <0.05, ***p <0.001. (B) Relative mRNA expression of KLB,
p62, ACOX1 and ACSL1 genes measured by qRT-PCR in HepG2 cells transfected
with 10 nM siRNA for KLB (siKLB) or control siRNA (scramble). Data are the
mean ± SD of 3 independent experiments repeated at least in triplicate. Data
were analyzed by 2-tailed t tests, **p <0.01, ***p <0.001 vs. scramble. FFAs, free
fatty acids; OA, oleic acid; ORO, Oil Red O; PA, palmitic acid; qRT-PCR,
quantitative reverse transcription PCR.
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reduced liver fat content and non-invasive biomarkers of fibro-

sis after 12 weeks of treatment.40 The assessment of KLB levels
could be relevant for evaluating the efficacy of these types of
drugs. However, to date, no studies had investigated KLB co-
receptor levels, either as a risk factor for NAFLD pathogenesis
or as a predictive factor for treatment response.

In our study, we reported a relationship between the

rs17618244 G>A KLB gene variant and the severity of liver dam-

age. Carriers of this variant showed an increased risk of both
ballooning and lobular inflammation and a decreased expres-
sion of hepatic KLB. We also observed a trend for more severe
fibrosis (F2-F4; data not shown) in patients carrying the
rs17618244 variant.

Furthermore, we analyzed the circulating KLB levels in our
pediatric patients. We observed a significant reduction of KLB
plasma levels in children with NAFLD. Our data represent the
first evidence in the literature of a soluble form of KLB that
could presumably act as soluble Klotho. Soluble forms of Klotho
and KLB could be the result of a constitutive process named
ectodomain shedding. Therefore, the levels of the soluble form
of the protein should mirror the levels of the transmembrane
and full-length form.41 Noticeably, the reduction of circulating

KLB was higher in patients who carried the rs17618244 KLB
minor A allele. Indeed, at multivariate analysis, KLB plasma

levels were associated with the rs17618244 KLB variant, lobular
inflammation, ballooning and fibrosis. An association between
KLB reduction and fibrosis was recently reported by Somm
et al.42 It was demonstrated that KLB-deficient mice were in a
proinflammatory state with early evidence of fibrosis, defined
by moderate deposition of collagen fibers and increased hepatic
expression of fibrogenic genes.

The reduction of circulating KLB levels, associated with the
presence of the rs17618244 gene variant, could be due to a
decrease in hepatic protein levels, or protein cleavage and
Journal of Hepatology 20
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release. Our data seem to be in contrast to the study by
Wong et al.,29 wherein they showed that the rs17618244
KLB variant in HEK293 cells increased protein stability. These
results were reported before the characterization of free and
ligand-bound KLB extracellular regions,43 so further investiga-
tions are needed to explore the role of this mutation in liver
cells. Furthermore, since KLB also interacts with FGF21 and
FGFR1c, the presence of the rs17618244 KLB variant could
also influence adipose tissue homeostasis, which warrants
further investigation.41

Notably, our data showed that hepatic expression of KLB was
reduced in individuals with NASH compared to children without
NASH, and more so in patients who carried the rs17618244 KLB
variant. In addition, NASH carriers of the rs17618244 KLB vari-
ant displayed upregulated p62 protein expression. The down-
regulation of KLB and the upregulation of p62 were also
confirmed in in vitro models of NAFLD. This data suggests that,
independently of the presence of the variant, the accumulation
of intra-hepatic lipids (steatosis) could be an indirect epigenetic
regulator of KLB co-receptor expression, which in turn exacer-
bates lipotoxicity and promotes liver damage.

Furthermore, we found that the KLB downregulation, by the
expression of the R728Q KLB mutant, increased the intracellular
lipid accumulation and caused an upregulation of p62, ACOX1,
ACSL1, IL-1b and TNF-a mRNA in HepG2 and in Huh7 cells.

The main limitation of this study is the lack of validation in
other ethnic groups and in adults. Therefore, the replication of
the study in independent cohorts from different ethnic groups
is required to confirm the impact of rs17618244 KLB variant
on the severity of liver damage in NAFLD. Further studies are
also required to understand how this variant may impact on
fibrosis.

In conclusion, we showed an association between
rs17618244 KLB variant and the severity of NAFLD in Caucasian
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children. Moreover, we found that the KLB protein may protect
against lipotoxicity and inflammation in hepatocytes. Further
studies are needed to elucidate the mechanism linking altered
hepatic KLB expression to NAFLD development and progression.
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