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Abstract

We consider the evolution of quasi-free states describing N fermions in the mean field limit,
as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence
towards the classical Vlasov equation. For a class of regular interaction potentials, we establish
precise bounds on the rate of convergence.

1 Introduction and main results

This work is motivated by the study of the time-evolution of systems of /N fermions in the mean field
regime, characterized by a large number of weak collisions. The many body evolution of N fermions
is generated by the Hamilton operator

N N
Hy = Ay +A> V(x; —a)) (1.1)
j=1

1<J
acting on
L2R3N) = {¢p € L2(R3N) : p(21, .. ., Txn) = Onth(21, ..., xy) for all T € Sy},

the subspace of permutation antisymmetric functions in L*(R3V) (o, denotes here the sign of the
permutation 7). Due to the antisymmetry, the kinetic energy in (I.J]) is typically (for data occupying
a volume of order one) of the order N°/3 (for bosons, particles described by permutation symmetric
wave functions, it is much smaller, of order N). Hence, to obtain a non-trivial competition between
kinetic and potential energy, we have to choose A = N~1/3. Moreover, the large kinetic energy of the
particles implies that we can only follow their time evolution for short times, of the order N—1/3 (the
kinetic energy per particle is proportional to N%/3; the typical velocity of the particles is therefore of
the order N/ 3). After rescaling time, the evolution of the N fermions is governed by the many body
Schrédinger equation

N N

. 1

ZNl/?’atTf)N,t = Z —AI]. + W Z V(x; — xj) YNt (1.2)
j=1 i<j

for ¢ € L2(R3N). It is convenient to rewrite (L2) as follows. We introduce the small parameter

e=N"1/3
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and we multiply (LZ) by 2. We obtain

N

N
1
’LlﬁaﬂﬁN’t = Z —52Am]. + N Z V(CCZ — ,Ij) T;Z)N,t . (13)

Jj=1 1<j

Hence, the mean field scaling for fermionic systems (characterized by the N~! factor in front of the
potential energy) is naturally linked with a semiclassical scaling, where ¢ = N —1/3 plays the role of
Planck’s constant. Notice that for particles in d dimensions, similar arguments show that we would
have to take ¢ = N~/¢; in fact, our analysis applies to general dimensions (with appropriate changes
on the regularity assumptions); to simplify our presentation we will only discuss the case d = 3.
From the point of view of physics, we are interested in understanding the evolution of the fermionic
system resulting from a change of the external fields. In other words, we are interested in the solution
of (L3)) for initial data describing equilibrium states of trapped systems. It is expected (and in certain
cases, it is even known) that equilibrium states in the mean-field regime are approximately quasi-free.
At zero temperature, the relevant quasi-free states are Slater determinants, having the form

1
YSlater (1, ..., TN) = Vil det (fj(x:))1<ij<n

where {f; };VZI is an orthonormal system in L?(R3). Slater determinants are completely characterized
by their one-particle reduced density wy, defined as the non-negative trace class operator over L?(IR?)
with the integral kernel

wn(z;y) = N/dHCQ o dr N Ys1ater (T, T2, .., TN ) USlater (Y, T2, - ., TN) -

A simple computation shows that
N
wy =Y 1l
j=1

i.e. wy is the orthogonal projection onto the N-dimensional space spanned by the N orbitals fi,..., fnx
defining ¥gater (We used here the notation |f)(f| to indicate the orthogonal projection onto f €
L?(R?)). In the language of probability theory, the one-particle reduced density corresponds to the
one-particle marginal distribution, obtained by integrating out the degrees of freedom of the other
(N — 1) particles. Slater determinants have the properties that higher order marginals can all be
expressed in terms of wy via the Wick rule (this is, in fact, the defining property of quasi-free states).

The many-body evolution of a Slater determinant, as determined by (LL3)), is not a Slater determi-
nant. Still, because of the mean-field form of the interaction, we can expect it to remain close, in an
appropriate sense, to a Slater determinant. Under this assumption, it is easy to find a self-consistent
equation for the dynamics of the Slater determinant. We obtain the nonlinear Hartree-Fock equation

e = [—€2A + (Vxpy) — Xt,wN,t] . (1.4)

Here py(z) = N~ lwy(x;z) is the normalized density of particles at x € R3, the exchange operator X;
has the integral kernel X;(x;y) = N~V (z — y)wn(z;y), and, as before, & = N-Y3. 1t is easy to
check that, if wy —o is an orthogonal projection with rank N, then the same is true for the solution
wn,¢; in other words, the Hartree-Fock evolution of a Slater determinant is again a Slater determinant.



In [7], it was shown that indeed, for sufficiently regular interaction potentials, the many body
Schrodinger evolution of initial Slater determinants can be approximated by the Hartree-Fock evo-
lution, in the sense that the one-particle reduced density associated with the solution vy of (L3)
remains close (in the Hilbert-Schmidt and in the trace norm) to the solution wy; of the Hartree-Fock
equation (I4]). Previous results in this direction have been obtained in [9]; convergence towards the
Hartree-Fock dynamics in other regimes, which do not involve a semiclassical limit, has been also
established in [B [10], [18] [4].

At positive temperature, on the other hand, relevant quasi-free states approximating equilibria of
trapped systems are mixed states, described by a one-particle reduced density wy with trwy = N and
0 < wpn <1 (it follows from the Shale-Stinespring condition, see e. g. [20, Theorem 9.5], that every
such wy is the one-particle reduced density of a quasi-free state with N particles; Slater determinants
form a special case, with wy having only the eigenvalues 0 and 1). In the simple case of N fermions

with one-particle Hamiltonian h = —?A + V. and no interaction, equilibrium at temperature 7" > 0
is described by the Gibbs state with one-particle reduced density
1
WN = (1.5)

- 1 +6%(—62A+Vext—u)

where the chemical potential 1 € R has to be chosen so that trwy = N. If we turn on a mean-field
interaction, it is expected that equilibrium states continue to be approximated by quasi-free states
with one-particle reduced density of the form ([CH]), with the external potential Vi appropriately
modified to take into account, in a self-consistent manner, the interaction among the particles (for
results in this direction see, for example, [16, [19]).

In suitable scaling regimes, the state of the system at positive temperature is expected to be well
approximated by an appropriate mixed quasi-free state. Similarly as in the case of Slater determinants,
mixed quasi-free states are completely characterized by their one-particle reduced density. All higher
order correlation functions (i.e. all higher order marginals) can be expressed in terms of wy L. For the
evolution of mixed quasi-free states, we find the same self-consistent equation (L4]) derived for Slater
determinants. We observe here that the properties trwy = N and 0 < wy < 1, characterizing the
reduced one-particle density of mixed quasi-free states, are preserved by the Hartree-Fock equation
([T4). In [6], it was shown that, for sufficiently regular potential, the many-body evolution of a mixed
quasi-free state can be approximated by the self-consistent Hartree-Fock equation (4] (also here, the
convergence has been established through bounds on the distance between reduced densities).

To summarize, it follows from the analysis of [7l [6] that the many-body evolution of fermionic
quasi-free states can be approximated by the Hartree-Fock equation (L4]). This holds true for Slater
determinants (in this case wy; is an orthogonal projection with rank NN) as well as for general mixed
quasi-free states (satisfying only trwy; = N and the bounds 0 < wy; < 1).

In the mean field regime, the energy contribution associated with the exchange term can be esti-
mated as follows, for bounded potentials V:

1 VIl
ox [ dudyVia =yt < 1= fonlfs < € (1.6)
where the full energy is of order N (here we used that the Hilbert-Schmidt nornE of wy is bounded
by N/ 2). Because of the smallness of the exchange term, instead of considering the Hartree-Fock

Tn general quasi-free states are characterized by two operators on L*(R?), a one-particle reduced density wy and a
pairing density a. Here we restrict our attention to states with o = 0; this is expected to be a very good approximation
for equilibrium states of fermions in the mean field regime considered here.

2The Hilbert-Schmidt norm of a compact operator A is defined as ||A||fs = trA*A.



equation (L4]), we will drop the exchange term and study the fermionic Hartree dynamics, governed
by the nonlinear equation
1EQWN,t = [—€2A + (V% pr), wiv g (1.7)

with pi(z) = N~ lwn ¢(z;2) (a proof of the fact that the exchange term does not affect the dynamics
can be found in Appendix A of [7]).

The Hartree equation (I7) still depends on N (recall the choice ¢ = N~/3 and the normalization
trwy = N). It is therefore natural to ask what happens to it in the limit N — oco. To answer this
question, we define the Wigner transform of the one-particle reduced density wy by setting

3

Wht(z,v) = <%)3 /WN,t <:U + %y;x - %Z/) e~ Ydy . (1.8)

Hence, W is a function of position and velocity, defined on the phase-space R3 x R3. It is normalized
so that

/WN,t(x,v)dxdv = 3tr wne=1.

The Wigner transform can be inverted, noticing that

T+ e
wn(Tsy) = N/dv WN,t( 5 y,v)e“" = (1.9)
Eq. () is known as the Weyl quantization of the function Wi ;. Notice that |lwn ¢||ns = VN||Wa tl|2-

The Wigner transform Wy ; can be used to compute expectations in the quasi-free state described
by wy, of observables depending only on the position = or on the momentum —ieV of the particles.
In fact, for a large class of functions f on R3,

tr f(z)wny = /dwf(m)wN,t(x;x) = N/dvdxf(ac)WN,t(m,v)

and

tr f(ieV)wny = N/da:dv f)Wy(z,v).

In other words, [dvWy(z,v) is the density of fermions in position space at point z € R3, while
f dx W 4(z,v) is the density of particles with velocity v € R3. Notice, however, that Wit is not
a probability density on the phase-space, because in general it is not positive (this observation is
related with the Heisenberg principle; position and momentum of the particles cannot be measured
simultaneously with arbitrary precision).

From (7)), we find an evolution equation for the Wigner transform Wy ;:

1 )
ieOWnt(z,v) = W /dy 1eOWN ¢ (w + ﬁ; €T — %) e WY

2 2
g2 , o
= (27‘(‘)3 /dy (_Ax-i-ey/z + Ax—ey/Z)WNﬂf <.%' + E;x _ 7) e y
: Y YN iy
* @ /dy (V5 p) (@ +ey/2) — (V5 po) (& — ey/2)) wis (m L > vy

Using —A,4oy/2 + Ay = —2/eV, - V,, and expanding

(Vs po) (@ +ey/2) — (V x pi)(x — ey/2) = ey - V(V * pr) + O(e?)



we conclude, formally, that

. B 1 €Y. EY\ vy
ieOWnt(z,v) = 25(27T)3V$ /dy Vywn i (ﬂc + 5T S > e dy
2’ 2
= —2icv - VWi i(z,0) +ieV(V % p)(x) - VoW i(2,v) + O(e?) .

1 € 3 —iv-
+eV(V % pt)(x)W /dywat <x L+ _y) e Ydy + O(e?)

As a consequence, we expect that, in the limit N — oo (and hence ¢ — 0; recall that ¢ = N_1/3),
W+ approaches a solution W; of the classical Vlasov equation

8tWt + 2v - Vth - V(V * Qt) . VUWt (110)

with the density g¢(z) = [ Wi(z,v)dv (in contrast with Wi, the limit W; is a probability density, if
this is true at time ¢t = 0). The goal of this paper is to study the convergence of the Hartree dynamics
towards the Vlasov equation (LI0), in the limit N — oo.

This work is not the first one devoted to the derivation of the Vlasov equation (LI0) from quantum
evolution equations. In [I5] 21], the Vlasov equation is obtained directly from many body quantum
dynamics, starting from the fundamental N-fermion Schrodinger equation (the Vlasov equation also
emerges in the N-boson case, if the mean field limit is combined with a semiclassical limit; see [12],
where the dynamics of factored WKB states is analyzed). In [I3, 4], the authors take the Hartree
equation (7)) as starting point of their analysis, and they prove convergence (in a weak sense) towards
the solution of the Vlasov equation (ILI0). Note that the analysis of [I3] [14] also applies to singular
interactions, including a Coulomb potential (the analysis was extended to the Hartree-Fock equation
in [I1]).

In [15] 2], 03] 04} [I1], the convergence towards the classical Vlasov dynamics is established in
an abstract sense, without control on its rate. The problem of determining bounds on the rate of
convergence is not only of academic interest. When considering applications to real physical systems,
the number of particles N is large but, of course, finite. Bounds on the rate of convergence are therefore
important to decide whether IV is large enough for the Vlasov equation to be a good approximation
of the Hartree and of the full many body Schrodinger dynamics.

Bounds on the rate of convergence of the Hartree evolution towards the Vlasov equation have been
first obtained in [3]. In this paper the authors obtain the convergence in the Hilbert-Schmidt with a
relative rate e2/7 = N~2/2! for sufficiently regular initial data and potentials (they require V € H'(IR3)
and that V € L*(R3, (1+ |p|*)dp)). For smooth potentials, an expansion of the solution of the Hartree
equation (L) in powers of £ has been shown in [I7] (with no control on the remainder) and in [I], 2].

Our approach here is similar to the one of [3]; we consider the solution of the Hartree equation
(L) for initial data wy with sufficiently smooth Wigner transform Wy, and we compare it with the
Weyl quantization of the solution of the Vlasov equation ([LI0), with initial data Wy. We consider
regular interaction potentials. In Theorem 2.l and in Theorem we establish bounds on the norm-
distance of the solution of the Hartree equation wy,; with initial data wy and the Weyl quantization
wn,t of the solution of the Vlasov equation with initial data Wy. For every fixed ¢t € R, the relative
error is of the order ¢ = N~1/3 in the limit of large N. The dependence on N of these bounds
is expected to be optimal. This expectation is confirmed by the expansion of [I], where the next
order corrections are constructed (in fact, if we assumed initial data with smooth Wigner transform
Wy € W>(R3 x R?) and smooth interaction potential V' € W>(R?), the result of Theorem Z1]
would follow from Theorem 1.2 in [1]).



In Theorem 21l we get convergence in the trace-norm, for very regular initial data. In Theorem
221 we bound the Hilbert-Schmidt norm, under weaker assumptions on the regularity of Wy. The
strategy to show Theorem is similar to the one of [3]; we regularize the initial data, we compare
the solutions of the regularized Hartree and Vlasov equations and then we establish stability of both
equations with respect to the regularization. We can improve the bounds of [3] by using the trace
norm convergence shown in Theorem [Z.1] for the solutions with regularized data. The nonlinearity in
the Hartree and in the Vlasov equation depends on the convolution of the potential with the density
of particles in space. Differences among densities can be easily controlled through the trace-norm of
the corresponding fermionic operators (which are bounded in Theorem 21]). Estimating them directly
by means of Hilbert-Schmidt norms, as done in [3], leads instead to a deterioration of the rate of
convergence.

Notice that, in Theorems 2.1l and 2.2 we consider the solution of the Vlasov equation for initial
data which are not probability densities. The well-posedness of the Vlasov equation for such initial
data can be obtained adapting the arguments of [§]; in Appendix [A] we sketch the proof.

If we assume additionally that the sequence of initial data wy has a limit, in the sense that
their Wigner transform Wy converge towards a probability density Wy, then we can also establish the
convergence of the Wigner transform Wy ; of the solution of the Hartree equation towards the solution
of the Vlasov equation W; with initial data W} (in this case, the solution of the Vlasov equation is a
classical probability density, for all ¢ € R). This is the content of Theorem

Our bounds on the norms of the distance between the Wigner transform Wy ; and the solution of
the Vlasov equation W; (as well as the bounds for the distance between Wy ; and the Weyl quantization
WN,t of the solution of the Vlasov equation with initial data W) hold for sufficiently regular initial
data. In particular, Theorem 22 needs Wy € H?(R?xR3) (with some additional weights; see Theorem
2.l for the precise assumptions). This condition is justified for initial data describing equilibrium states
of confined fermionic system at positive temperatures. At zero temperature, on the other hand, the
system at equilibrium relaxes to its ground state, which can be approximated by a Slater determinant.
Typically, in this case, the corresponding Wigner transform is not regular. For example, the ground
state of a system of NV free fermions in a periodic box with volume one is a Slater determinant with
Wigner transform

Wi (z,v) = N"'1(jv] < ¢p'/?) (1.11)

where p = N is the density of the particles (this system is translation invariant; therefore, particles are
uniformly distributed in the box). Eq. (ILIT]) corresponds to the idea that to construct the free ground
state, we should fill the N one-particle states with the smallest possible energy (by the antisymmetry of
fermionic wave functions, there cannot be two particles in the same state). If we switch on an external
potential and a mean-field interaction, it is believed that the ground state can still be approximated
by a state with Wigner transform of the form (LIIl); the only difference is that now we have to fill
low energy states locally, according to an effective particle density prr that can be determined by
minimizing the Thomas-Fermi functional

erelp) = zore [ do () + [ deVealwip(o) + 5 [ dody Vo~ 9)p(@)p(y)

among all p € L'NL>/3(R3) with ||p|l; = N. The resulting sequence of Wigner transforms Wy (z,v) =
N-11(jy] < cp,lf/;’(x)) is not in H?(R3 x R3). So, while Theorem 21l Theorem and Theorem
provide a good description of the fermionic dynamics in the mean field limit at positive temperature,

they cannot be applied at zero temperature.



For such initial data, we do not get norm convergence towards the solution of the Vlasov equation.
Nevertheless, in Theorem 2.4 and Theorem we can still prove convergence for the expectation
of a class of semiclassical observables. Semiclassical observables are functions of the multiplication
operator x and of the momentum operator —ieV; they detect variations in the spatial distribution
of the particles on “macroscopic” scales of order one and, at the same time, they are sensitive to
variations of order £~! in the momentum distribution (corresponding to the “microscopic” length
scale €).

Let us stress the fact that, to the best of our knowledge, Theorem 2.4] and Theorem are the
first rigorous results concerning convergence from the Hartree dynamics towards the Vlasov equation
that can be applied to reasonable approximations of ground states.

In Section ], in the remarks following our main theorems, we provide explicit examples of fermionic
states, constructed with the help of coherent states, approximating ground states and positive tem-
perature equilibrium states of fermionic systems in the mean-field regime, to which our theorems can
be applied.

2 Statement of the results

In order to state our results in a precise form, we need to introduce some norms for functions on the
phase space (z,v) € R? x R3. For s € N, we define the Sobolev norm

113 = 3 / VP (a2, v) Pdado
|BI<s

where 3 is a multi-index, and V? can act on both position and momentum variables. For s,a € N, we
introduce also the weighted norms

£ = 3 [t a4 2192 o) Py
|BI<s

We are now ready to state our main theorems. In the first theorem, we assume strong regularity
of the initial data, and we prove bounds in the trace-norm.

Theorem 2.1. Let V. € W2®(R3). Let wy be a sequence of reduced densities on L*(R®), with
trwoy =N, 0 <wy <1 and with Wigner transform Wy satisfying HWNHHE < C, uniformly in N.
We denote by wn ¢ the solution of the Hartree equation

i0WwN, = [—€2A + (V pt),wN,t] (2.1)

with pi(x) = N wn(z;2) and initial data wy .
On the other hand, we denote by Wy ; the solution of the Viasov equation

OWns +20- Vo Wry = V(V 5 1) - VoW (2.2)

with py(z) = [dv WN7t(1‘,U) and with initial data vaN,o = Wn. Moreover, let wy, be the Weyl
quantization of Wi, defined as in (1.3).



Then there exists a constant C' > 0 (depending on ||V |ly2.c and on supy [W|| g2, but not on the
higher Sobolev norms of W) such that

3
tr lwy s —wnt| < CNe exp(Cexp(Clt])) [1 + ng sup HWNHHZ;“] . (2.3)
N
k=1
Remarks.
1) Recall that we use the normalization trwy+ = N. In this sense, (Z3]) shows that wy; and Wy

are close, in the limit of large N, since their difference is smaller, by a factor e = N~'/3, than
their trace norms.

The assumption [[Wx|[gz < C on the Wigner transform of the initial data is equivalent to
suitable commutator estimates for the initial fermionic reduced density wy with the differential
operator V and the multiplication operator x. We begin by noticing that

HVmWNH% = /dxdv|VxWN(x,v)|2

83 .
= /dm’d?} ‘W /dy e_w'y[v’ WN](m' +€y/2,m - 5y/2) 2 (24)

= N7V, wn]lls -

Similarly, we find |V,Wx||3 = N~'e72||[z,wn]|/}is- As for the weights in the definition of the
H;-norms of Wy, we notice that

11+ 2% + 0?)2Wn 3 < CNTH(1+ 2% — 28) 2w s |

for some N-independent constant C' > 0.

Proceeding analogously, one can show that the estimate |[Wx|[ys < C follows from the bounds

N7+ 2 = £2A)?[ay, [as, [ag, [as, [as, wn]])Fis < C (2.5)

uniformly in N and for all choices of ay,...,as with either a; = /¢ or a; = V.

Therefore the commutator structure allows to quantify the regularity and decay properties of
the quantum state Wy. Estimates of commutators [z,wy] and [eV,wy] already played a key

role in [0} [7].

The estimate supy [|[Wy||gs < C or, equivalently, the bounds (2.5), are expected to hold true for
fermionic mixed states, describing systems of IV particles in equilibrium at positive temperature,
in the mean-field regime, [6]. A reasonable approximation for the reduced density of such a state
is given by the superposition

wn () = / dpdr M (5, p) for () For(3) (2.6)

of the coherent states ‘
for() = 732 P2/ — ) (2.7)



with a probability density M with 0 < M (r,p) <1 and

/dpdr M(r,p) =1

In ([2Z7), the function g is assumed to vary on the (possibly N-dependent) scale § and to be
normalized so that ||g||2 = 1. For simplicity, we shall make the explicit choice

1 —x2 /262

It is simple to check that, with the definition (2.6), one indeed finds that 0 < wy < 1 and
troy = N.

The smoothness and decay properties of the Wigner transform Wy of (2Z.6]) follow from analogous
properties of the phase space density M (r,p), i.e.

IWN gz < ClIM| gy - (2.9)

In fact, according to the previous remark, to prove (2.9) it is enough to show (2.1]). To this end,
we notice that

[2/e,wn] (@ y) = / dpdr M(p, 1) (—iVp) for (2) Ty () = / dpdr (iV,M(p, 7)) for () For (3)

¥, wn(z;y) = / dpdr M(p, 1)V, for (2) Tor ) = — / dpdr (VM (p.1) for (2)Tor &)
(2.10)

More generally, using integration by parts, all commutators of wy with /¢ and V can be
written as superpositions of coherent states, weighted by derivatives of the phase space density.
Therefore, ([2.9)) follows from

_ _2\2 52
‘(fprafp’r’” = ‘/dw fpr(x)fp/r/(x)‘ = CNeXp{ - % - 4_52(17_17/)2} ) (2'11)

for a constant C' > 0, independent of N and §, and from the bound

a1, [az, - . [aj, wn] - - Jllfs < /dpdp’drdr'\VBM(paT)HVBM(pCT’)!\(fp,mfp',r'>!2

< CN|IVPM [V M ]2 < CNIIMI,

(2.12)

for an appropriate multi-index § with |3| = j. The effect of the operators (1 + 22 — £2A)
appearing in (23] can be controlled using the decay of ([2I1]) and of the probability density M.

We conclude that, for any probability density M € HJ(R3 x R3) with 0 < M(r,p) < 1 for all
r,p € R3, the sequence of reduced densities (Z6) is an example of initial data satisfying the
assumption of Theorem 2.1l

In our second theorem, we relax partly the regularity assumption on the initial data. To reach
this goal, we start from (23] and we apply an approximation argument. In contrast with Theorem
211 here we only get bounds for the difference wy ¢ — Wy ¢ in the Hilbert-Schmidt norm (the Hilbert-
Schmidt norm of a reduced density is directly related with the L? norm of its Wigner transform; there
is no such simple relation between the trace norm of a reduced density and the L'-norm of its Wigner
transform).



Theorem 2.2. Let V € LY(R3) be such that

/W@m+m%@<m. (2.13)

Let wy be a sequence of reduced densities on L2(R3), with troy = N, 0 <wy < 1 and with Wigner
transform Wy satisfying |[W || g2 < C, uniformly in N.

As in Theorem [2], we denote by wn+ the solution of the Hartree equation (21]) with initial data
wn and by wyy the Weyl quantization of the solution /W\;N,t of the Vlasov equation (Z2) with initial
data WN,O = Wn. Then, there exists a constant C'> 0 depending only on supy |[W||g2 and on the
integral (213) such that

Wit — Tntllas < CVNe exp(C exp(Ct])) . (2.14)

Instead of comparing the solution WN of the Hartree equation with the Weyl quantization wy ¢

of the solution of the Vlasov equation WN +, we can equivalently compare WNt with the Wigner
transform Wy ; of wy . Eq. ([2I4) implies that

Wiy — Walla < Ceexp(Cexp(Cli])) (2.15)

If we assume that the fermionic initial data wy has a Wigner transform Wy (with appropriately
bounded H?2-norm) approaching, in the limit of large N, a probability density Wy on the phase space,
we can also compare the Wigner transform Wy ; of the solution wy; of the Hartree equation with
the solution W, of the Vlasov equation with initial data Wjy. In the next theorem, we show the
L?-convergence of Wi+ towards Wi.

Theorem 2.3. Let V € LY(R?) be such that (Z13) holds true. Let wy be a sequence of reduced densi-
ties on L2(R3), with trwy = N, 0 < wy < 1 and with Wigner transform Wy satisfying [Wnllg2 < C,
uniformly in N.

Furthermore, let Wy be a probability density on R3 x R3 with HWOHHE < oo and such that

||WN — WOHI < CKNJ, and HWN — W0||2 < CliN,g (2.16)

for sequences k1, kN2 = 0 with Ky j — 0 as N — oo for j =1,2.

Let wn, denote the solution of the Hartree equation (Z1) with initial data wy and let Wit be its
Wigner transform. On the other hand, let Wy denote the solution of the Viasov equation (2Z2), with
mitial data Wy. Then we have

Wit — Wi|l2 < Ceexp(Cexp(Clt]) + C(kn1 + kn2) exp(Clt]) (2.17)
Remarks.

1) Notice that, if [Wx — Wolly < sy for a sequence ky,1 — 0, and if [Wi ||z, [[Wollgz < C
uniformly in N, then, automatically, [|[Wx — Wpll2 < Cli%i, i.e. the second condition in (2.10)

follows from the first one, if we take Ky 2 = /{%21 However, it is often possible to get a better
estimate on k2, improving the bound ([2.I7) (for instance, in the example discussed in the next
remark, we find kyo2 = Ky = 61/2).

10



2) An interesting example of sequence of initial data satisfying all assumptions of Theorem can
be constructed again by means of coherent states. As in (28], consider the fermionic reduced
densities

wn (23y) = / dpdr M (r,p) for () f pr (y)

with fp,(z) = 6*3/2eip'x/€g(x — ) and with M a probability density on the phase-space, with
0 < M(r,p) <1 and [[M]; =1 and such that |[M||z2 < oo. For simplicity, we choose g as
in (28) to be a Gaussian function, localized on the length scale § = §(NV), with 6(N) — 0 as
N — oo.

The Wigner transform of wy, defined as in (L), is given by

3
c ey EYN i
Wy(z,0) = —— [ d ( £y, __)@yv
~N(z,v) (277)3/ yon (o + 5w )e
1 (o) — Emrrew/2?  (@or—cy/2)?
- W/dydrdpM(r7p)62y w p)e 262 e 252
23/2 _(zf'r)2 _M
= 22 [y

where, in the last step, we evaluated the integral over y. We find

23/2 2
Wy — M| < K /dxdvdrdpe_T eV’ |M (x + 0r,v +ep/d) — M(z,v)]
23/2 'r2 2
< COE /dmdvdrdp e~ ze?
T

1
X / dA[S]r| (Vo M) (x 4+ Aor, v 4+ Aep/0d)|
0
+21pl (Vo) (@ + Adr,v + Aep/8)|
g
< O6|| Ve M|y + CSHVUMHl
g
<O o+ 1Ml

and similarly,
9
Wy = Mlly < C [+ 5] 1M

To optimize the rate of the convergence Wy — M (i.e. to make the sequence of initial data
as “classical” as possible), we choose § = £!/2 (recall that ¢ = N~1/3). From Theorem 23
we conclude then that the distance between the Wigner transform Wy ; of the solution of the
Hartree equation and the solution W; of the Vlasov equation with initial data given by the
probability density Wy = M is bounded by

[Wi.e — Willa < Ce'/2 exp(C exp(C|t]))

Although in Theorem and in Theorem the assumptions on Wy are weaker than in Theo-
rem 2.T], we still need Wy € H3(R3 x R?), with a norm bounded uniformly in N. As pointed out in the

11



introduction, this assumption is typically satisfied for interesting initial data at positive temperature
(like the ones constructed in the remarks after Theorem 2.3]), but it is not valid for Slater determinants
approximating the ground state, which are relevant at zero temperature.

In the next two theorems, we establish a weaker form of convergence for the solution of the Hartree
equation towards the solution of the Vlasov equation. We prove convergence after testing against a
semiclassical observable (whose kernel varies on the length-scale € in the (xr — y) direction). The
advantage of these two results, as compared with Theorems 2.1l and 2.2] is the fact that they require
much weaker assumptions on the initial data; in particular, they can be applied to reasonable and
physically interesting approximations of the ground state of confined systems (examples of such states
are constructed in the remark after Theorem 2.5]).

Theorem 2.4. Let V € LY(R3) be so that

/ V()1 + [p*)dp < oo (2.18)

Let wy be a sequence of reduced densities on L2(R3), with trwy = N, 0 < wpy <1, such that
tr|[z,wn]| < CNe, tr|leV,wy]| < CNe (2.19)

Denote by Wy € LY(R? x R3) the Wigner transform of wn. We assume that

Wallgrr = 3 /dxdvyvﬂwN(m,v)\ <c
|B]<1

uniformly in N.
Let wny be the solution of the Hartree equation (21)) with initial data wy. On the other hand, let

wn, be the Weyl quantization of the solution Wi ¢+ of the Viasov equation (22) with initial data Wy .
Then there exists a constant C > 0, such that

[or 7=V (o y —Gvg)| < ONe(1+ [p| + |a]) 2™ (2.20)
for all p,q € R3, t € R.

Notice that the expectation of the observable appearing in (220 can also be expressed in terms
of Wigner transforms. In fact, for any fermionic operator wy, we find

tr etV = /dx 2P AT (1 — eq; )
= N/dxdv WN(x,v)eip'xeiq'” = NWN(p, q)
Hence (Z20) can be translated into the bound

Wia(p,0) = Waa(p, a)| < Ce(1+ [pl + gl 2"

where we recall that Wy ; is the Wigner transform of the solution wy; of the Hartree equation while
vaN,t is the solution of the Vlasov equation with initial data Wy.

If the sequence Wiy has a limit Wy, a probability density on phase-space, then one can also compare
the Fourier transform of Wy ; with the solution W; of the Vlasov equation with initial data W.

12



Theorem 2.5. Let V € LY (R3) satisfy (Z13). Let wy be a sequence of reduced densities on L?(R3),
with trwy = N, 0 <wpy <1 and such that

tr|[z,wn]| < CNe, tr|[eV,wn]| < CNe

Denote by Wy € LY(R3 xR3) the Wigner transform of wy. We assume that |Wy|ly11 < C uniformly
in N.
Furthermore, let Wy € WHL(R3 x R3) be a probability density, such that

W —Woll1 < kN

for a sequence Ky with ky — 0 as N — oo.

Let wny be the solution of the Hartree equation (21)) with initial data wyn and let Wy be the
Wigner transform of wy . On the other hand, let Wy denote the solution of the Viasov equation with
wiatial data Wy. Then we have

—

sup —————— [Wn+(p,q) — Wt(l% Q)| <C(e+knN) eCl
P:q (1 + |P| + |Q|)2

Remark. A physically interesting example of sequence of initial data satisfying the assumptions
of Theorem [2Z5] can be constructed also here with coherent states. Similarly to (Z0l), we consider the
sequence of fermionic reduced densities

an@ig) = [ drdp M) o) o) .21

with a probability density M € W1H(R3 x R3), the coherent states
Jrplw) = e3P g (e — 1)

and the Gaussian function g(z) = (2r62)~3/4e~*°/25" We notice that

&, wn(zsy) = € / drdp (VpM)(r,p) frp () Fop )
£V, wn](wsy) = € / drdp (V. M)(r,p) frp(2) Fop )

Hence, we obtain
tr|[z,wn]| < Ne||V M|y, tr|[eV,wn]| < Ne|| V. M|y

Moreover, it is simple to check that the Wigner transform Wy of wy satisfies ||[Wx|[yyr1,1 < C uniformly
in N and (similarly to the remark after Theorem [2.3]),

W — M|y < C(0+¢/0)|| M|y

Choosing § = €'/2, we find |Wy — M||; < Ce'/2. Theorem 23 implies therefore that the Wigner
transform W, of the solution of the Hartree equation with the initial data (Z2IJ) is such that

1 _

sup W i(p,q) — Wilp, q)| < Ce'/? el

p,qER3 (1 + ‘QI + ‘p’)z
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for all t € R. Here W, denotes the solution of the Vlasov equation with the initial data given by the
probability density Wy = M. Notice that the assumption M € Wh! is also compatible with M being
an approximate characteristic function; this observation is important at zero temperature, to describe
systems at or close to the ground state.

The rest of the paper is devoted to the proof of our five main theorems, appearing in Sections
BHEl Appendix [Bl contains an important lemma on the propagation of regularity for the solution of
the Vlasov equation (LI0), which is used in Sect. Bl and Sect. @l Appendix [C] on the other hand,
contains a bound on the propagation of certain semiclassical commutators, which plays a key role in

Sect. M and in Sect. Bl

3 Trace norm convergence for regular data
Here we prove Theorem 21l Recall that wy; denotes the solution of the Hartree equation

ieOwnyt = [hp(t), wn ]

with the Hartree Hamiltonian

hg(t) = —*A+ (V% p)(2)

and the density pi(r) = N lwy(2;2). We introduce the two-parameter group of unitary transfor-
mations U(t; s), generated by hy(t). In other words, U(¢; s) solves the equation

ie0U(t; s) = hp(t)U(t; s) (3.1)

with U(s;s) =1, for all s € R. Notice that wy+ = U(t; 0)wnU*(t;0).
On the other hand, wy; is the Wigner transform of the solution Wy ; of the Vlasov equation
(CI0). We find that Wy satisfies

is@t@N,t = [—62A,(:JN¢] + At
where A; is the operator with the kernel

r+y

Auaia) =V 270 (T52) - (0 = 1) yaloin)

We conjugate now the difference wy; — wy with the unitary operator U(¢;0). Taking the time
derivative, we find

ie 0 U (t;0) (wnyt — W) UL 0)
= —U"(t;0) [hu (1), wn, — On UL 0)
+ U (t0) ([P (1), wn ] — [—€* A, O] — An) U(t;0) (3.2)
=U"(t;0) ([V * pr,One] — Ag) U(2;0)
=U"(t;0) ([V * (pe — pr), wne] + Br) U(t;0)

where B; denotes the operator with the integral kernel

Bulaia) = |V ) (@) = V5 0) = T ) (52 ) - )| walosn) 63
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Integration in time gives (since, at time t =0, wy o = WN,o = W)

U*(;0) (wne — wne) Ut;0) = %/0 U (t;s) [V (ps — ps),wn,s] U(t; s) ds

1 t
+— | U"(t;s) BsU(t;s)ds
€ Jo

Taking the trace norm, we obtain

. I L~ 1 [
trlwne — wne| < g/ tr[[V*(ps—ps),st]\ds—i—g/ tr|Bg| ds.
0 0

(3.4)

(3.5)

We will estimate the two terms in the right-hand side of (B3] separately, and conclude by applying

Gronwall’s lemma.

Estimate of the first term in (B3.5]). We start by considering the first term on the r.h.s. of ([B.5).

To this end, we observe that
e[V« (o, = 7Bl < [ delpule) = A IV (-~ 2). B
< llps = psllisuptr |[V(z — ), wn s]|-

We start by estimating the last term in the right-hand side of (3:6). We have

tr|[V (- —2),wn,q]| = tr|(1 — EA) 14 2H 7M1+ 2 - E2A) [V (- — z),Wn,s|

<= A) A+ 2) s (1 +2?) (1 = 2A) [V (- — 2), Gv,s]llms -

An explicit computation shows that
I(1—e*A)" (1 +2%)Hus < CVN
As for the operator D := (1 + 22)(1 — e2A)[V (2 — .),@n ), it has the integral kernel
D(x;y) = (1+2%)(1 = 2As)(V(z = 2) = V(y — 2) Dn,s(x3y)
o=y

= N1 +22)(1 - 2A)(V(z — 2) — V(y — 2)) / dv WN,S(”TTW,U) eV

(3.6)

(3.7)

where we used the definition of Wy s as the Weyl quantization of the solution W, of the Vlasov equation,
with initial data Wy. Taking into account the fact that the Laplacian A, can act on the potential
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V(xz — z), on the function Wy or on the phase e (@=Y)/e e obtain that

D(z;y) = N1 +22) (V(z — 2) — V(y — 2)) /WN,S (B2, 0) evteie gy

_ N€2(1 + 1_2) (AV)(I' - Z) /’WVN’S (1’ ;— y’v) eiv.(x—y)/a dv

- NTe(l +22)(V(z—2) = V(y—2)) /(A{W/N,s)@ ; y,v) G v @=v)/e gy

FN(4 ) (Vo= 2) = Vig=2) [ Wy (T20) et gy

- N%Q(l +2%) (VV)(z - 2) / (Vi) (L v) e e o 39
=N+ (V) = 2) - [ T (5L w) o0

iNe
2

7
=: ZD]‘(OC;?/)

+y

(1+2%) (V(z —2) - V(y—2)) /(V1WNS)< ) veiv@/E gy

We estimate now the Hilbert-Schmidt norm of the different contributions on the r.h.s. of (3.8]). To
control the term D;, we expand

Di(z;y) = N1+ 2*)(V(z —2) - V(y — 2) /WNS , ) iv-(2=y)/2 gy,

=N(1+ xQ)(VV)@) (x—y) / WN,S %,v) eV @=v)/e g,

= iNe(U+ )TV [ (Valwa) (ThL0) e e oy

for an appropriate £ on the segment between x — z and y — z. Using the bound

9 Tty 2 g2 T —y 2
1+2° <142 ——| +=
2 2 €

and the assumption V € W22 (R3) we get:
)T [ w2

= CNe? /dXdr 1+ X% 4 627“2] ‘ /(VQWMS)(X,v)ew'rdv‘

| D1]/4s < CNZgQ/dxdy{l + 2< vt y> )ew'(x_y)/adv ’

2

< ON&2 / dXdvo(1 + X2)2|VaTW.s(X,0) + CNE° / AX do| V3T o(X, v)|?

< CN&QHfWVN,SHHi + CN€6HWN7SHH3
(3.9)
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Similarly, we control the Hilbert-Schmidt norm of the second term on the r.h.s. of ([B.8]):
—~ . 2
| Do/} < CNe? / dXdr [1+ X2 + 22 ‘ / Wy s(X,v)e " dv
< CNe!|Will3o + CNE® | Wl

Proceeding analogously to bound the Hilbert-Schmidt norm of the other terms on the r.h.s. of (B3],
we conclude that

1Dl < CVN [ Wasllizg + 2 IWansllz + 1 Wasllmg + €Wl s

Proposition [B.Ilallows us to control the weighted Sobolev norms of the solution WN, s of the Vlasov
equation by their initial values. We obtain

IDllns < Ce“FIVN [ellWivllgy + eWivllzz + €XIWill g + I Will

for a constant C' > 0, depending on [[Wy|[g2. Thus, from B.Z), we finally find

[V (- = 2),@nsl| < CeFINe | [Wirllgy + el Wl g + €Wy + & [ Wi 3
Therefore, from (B.0)):

tr [V + (ps = ps), Onsll < Mlps = psllitr [V (- = 2), W]l
< Ce“FINeps = Bl Wl

Clisl 72 ~ ) (3.10)
+ CeFINE | ps — sl [[Wll g2 + el Wil s + %Wl 4]
=I1+11I
Consider first I. We have
lps — psll = sup /J(Z)(ﬂs(Z) —ps(2))dz| < N7 sup  trJ(wn,s — D)
JeLee (R3):]| /]| <1 Ji[J)I<1

where on the r.h.s. the supremum is taken over all bounded operator with operator norm lesser or
equal than one. We conclude that

Hps - ﬁs”l < Nil tr |WN,s - CJN,S|

Therefore,
1< CePletr|wn s —on sl [Wn | (3.11)

To bound II, we write:

lps = Aslly < llpslls + 155l = N~ erwns + [1Aslli < 1+ [[Waslh
Using that the Vlasov dynamics preserves the P norms, we get:

Wl = 1Wnll = (142 +0°) 72 (1 +2° +0*)* W1 < C[Wi| g
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and thus:
11 < Ce“PINE Wi o (W [l 22 + Wl gz + €2 1WN | 4] (3.12)

From (3.09), (3I0), GII), BI2), we obtain:

1 t t
—/ tr |[V % (ps — ps),Wns]|ds < C/ eClsl gy lwn,s —Wn 5| ds
€ Jo 0 (3.13)

+ CeCllINe [HWNHHE +elWillgg + €2HWN”H3]

where the constant C' > 0 depends on ||[Wy ||z, but not on the higher Sobolev norms of Wy. This
concludes the estimate of the first term in the right-hand side of (3.15]).

Estimate for the second term in (3.5]). To conclude and apply Gronwall’s lemma, we need to
bound the second term in ([B5]). We find

tr|By| < [[(1—A) " (1 +2%) s [ (1+27)(1—28) Byllus < CVN]|(1+22)(1—A)B,lus (3.14)

Let Us := V % ps. The kernel of the operator B = (1 — 2A)B; is given by

~ T+ -~ .%'—i‘ NG ))
B(x§y) = N[Us(x) - Us(y) - VUS(Ty> : (.%' _y) /WN,S Tyvv)e Ey dv

—Nez[AU( )——AVU (”Hy) (z—y ——AU (”Hy /WNS x;y Qa’v@dv
—NTEQ[US(QC)—US(y) VU( "2”/) (z — )} /(A1WN78)<””TW,v>eiv-(”sy)dv
+N[Us(x)—U() VU, (x;ry) (z —y) /WNS x;y >v26w( o
e frin 5
—Ne[VUs(x)——VQ (x;y) —vu, (””y /W %Q ol
—Na[Us(x) < Ty ) )} /(v-VlWst)(xTw,ﬂe”'(zsy)dv
::ZEJ(:c,y)

j=1

(3.15)

In the contributions El, §4, EG, §7, we need to extract additional factors of e; the goal is to show that
(1 + 22)B|lgs < Cv/Ne?. To this end, we write

Us(z)—=Us(y) — VUs (m ;_ y> (z—y)
1
= /0 A\ [VUs(Az + (1 = N)y) — VU ((z +v)/2)] - (z — v)

:Z/ dA/ d,uaaU Az +(1=XNy)+ (1 u)(x+y)/2)($—y)i(x—y)i<)‘_1)

1,7=1
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and we estimate, using the assumption V € W2>°(R3) and integrating by parts,

|By(x;)| < CNe? z / 01,00, Wi (L ) i e-0e

1,j=1

Hence, proceeding similarly as we did in (3.9), we get:

2

(1 4 2?)By |3 < CN264/dxdy (14 22

/ 00,8, Wava (52 )it /e

5,j=1
2

= CN€4/dXdr [1 + X2 4+ 627"2]2 /31,1.8@;147]\/,5 (X,v) eV

< ONeH|[ W2 + CNM| W3

The Hilbert-Schmidt norm of the other terms in the right-hand side of ([B.I5]) can be estimated in a
similar way. To do this, it is useful to notice that:

[V3Ulloo = V2V % Viislloo < [IV2V el V7511 < Ce
where we used that V € W2>(R?), and that ||Vps||1 < CHWN7S|’Hi' The final result is:
11+ 22)Bllus < CVN |1Wivslliz + 22 IWavolmg + & IWavsllzrg + 1 Wavoll g
Therefore, by Proposition [B.]
11+ 22)Bllus < Ce“FIVNE? [|Willgz + el Wil g + 2 IWarllzg + €Wl g |
where the constant C' > 0 depends on [[Wi|[g2 but not on the higher Sobolev norms of Wy. This
gives:

tr|By| < Ce“FINE? | [Winllgz + el W llzrg + 2 IWll g + € 1W vl g (3.16)

Proof of Theorem [2.J1 We are now in the position to conclude the proof. Inserting [B.13]), (B.16])
into ([B.0), we get:

t
trlwne — wne| < C/ tr eClsl lwn,s — Wn,s|ds
0
+ OV W g+ 250p Wl + 2% sup Wl + =*sup [ Wi
N N N

Finally, Gronwall’s lemma implies the desired bound
tr ‘UJNJ — a]\ﬂt‘

< CNeoxp(C exp(CIED) [sup W g+ £5up Wl + <% sup Wl + =*sup [ Wi |

with C' depending only on ||[Wi||g2. This concludes the proof. O
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4 Hilbert-Schmidt norm convergence

Here we prove Theorem and Theorem The proof of Theorem is based on an approximation
argument, together with our previous result Theorem 211

Regularization of the initial data. We start by approximating the initial data Wy. For k > 0,
we define 5
]{? —%(1‘2-1—1)2)

and
W]]\g/'(x7 U) = (WN * gk)(xa U) = /dl’ld’vlgk(.%' - xla Gl U/)WN(xla U/)

Then, we have HW]’\?HHE < oo for all N € N. In fact, we find

1WAl < ClWN gz if j <2 and )
Wl < CRU=22 Wl for j =3,4,5. '

Furthermore, we notice that

W = Wil < \/—HWNHHS'H (4.2)

for s = 0,1 (with the convention H® = L?) and for a < 4. We denote by wk the Weyl quantization of
Wk. We observe that

o) =N [aowh (T2 v)en e

3 A2 e
= %/dvdm'dv e s (73 —2) s 00 Wy (2, v')e” =
™

k3/2 - N2 _ _ i E=
= gy [ dwda e BCE Y e ( P IR
1 / 2 2 - T=Y
= dwdz e 2e 2y ( Y+ ) W ke
(271')3 \/_ \/_
1 w-—L = — 2.V —ijw—E-
= ) /dwdz e 22w/ [e VieeVE Y wye VE Ve \/EE} (z:y)
™

Hence wﬁv, as a convex combination of fermionic reduced densities, is again a fermionic reduced density
(ie. 0 <wh <1 and trwk, = N). From ([€2), we find

N
lwn — whllns = VN|[Wy — WE |2 < \/ zHWNHﬂl (4.4)

We denote by wy; and w?\,t the solution of the Hartree equation with initial data wxy and, respec-
tively, w]’i[. On the other hand, wy; and &é‘c\,t will denote the Wigner transform of the solutions WMt
and /I/I\?J]f,t of the Vlasov equation with initial data W and, respectively, W]]\“, Notice that, since the

Vlasov equation preserves all the LP norms, [|Wn¢||us = N1/2||WN¢H2 = NY2||Wy|2 and, similarly,
WX llns = NY2|Wk|a, for all t € R,
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We need to compare wy,; with wy . To this end, we will first compare W?\/,t with a’?\/,t- Later, we

will have to compare wy,; with wﬁ“\,’t and, separately, wy,; with &fv’t.

Comparison of wé‘c\,t with &f\,t. To begin, we prove that there exists a constant C' > 0 such that

w

ok — &% s < CNY2e exp(Cexp(Ct])) Z (4.5)

The constant depends on supy |[Wn /|52, but not on the higher Sobolev norms. To show ({.1), we
shall use our previous result, Theorem 21 In fact, from (23), (1) we find

[k, — @ llie < ONe exp(C exp(CJE]) | [WR |z + Ze Sup ||WN||HB+2
B=1

3
< CNe exp(Cexp(C|t])) Z

for a constant C' > 0 depending only on supy |[Wi||g2. We shall use this result to prove an estimate
for the Hilbert-Schmidt norm of the difference of the two evolutions. Proceeding as in (1)) — B35,
we have:

_ I _ I
ok = THalhas < 2 [ s 00 0 = 0.+ 2 ) ds 1B (47)
g Jo HS € Jo

where B¥ is the operator with the integral kernel

BhGain) = |V h(o) =V ) = T ) (T34 - (@ = )| htain)

We shall estimate the two terms in (A7) separately. We start with the first. We have:

< [ delbta) - B V- .3k

H[V*(p — P5), Wi ] s

HS

< Ik =3l [ ol 7w e,k

Using [|pf — p¥|l1 < N_lef\,J — Wy ¢lltrs the identity
1 - .
[ ipT w]li[ s] :/ d\ e@)\p.x [ip . 37,&3?\/' s} el(l—)\)p.x

0 )

and the assumption (2.I3)) on the potential, we conclude that
~k — k
V5 (ps = 78), @Rl < ON 7wk s — O sl 8 s (4.8)
HS

We shall use the regularity of W¥ , to extract a factor e from the commutator in (). We have:

[x,@]]“{;78](x;y) =(z—vy) /dv kaﬁ(%—i—y,v)ewz;y = g/dv vaj@7s<x;y,v>ei”'z;y




and thus, similarly to (2Z4)),
[z, @ wNS HHS = ENl/zHvaWv]’fLSHQ < CeClleNY2|Wi || i

The second inequality follows from the propagation of regularity for solutions of the Vlasov equation,
proven in Proposition [Bl Inserting the last bound and (@6)) in (£3]), we obtain

3
< CN'Y2e% exp(Cexp(CJt])) Z (4.9)

v (o = 7.8k

which concludes the estimate for the first term in ([@7). Let us now consider the second term in (7).
We have:

2
| (23 y)?

IBuls = [ oy |V )0 = 0V ) = 9 5 78) (52 ) (@ -

2

1
— [ dady B (e~ oP /0 A [V(V 53+ (1= Ny) = (V35 (@ +9)/2)|

< / dady | (@3 y)2)x — y)*
1 1 2
[y /O dp (X — 1/2)VA(V  55) (u(Oa + (1= Ny) + (1 — ) (@ +1)/2)

e / dady |z — /&, (2: )|

using the assumption (2.13]). Since

(1‘ - y)z(:)]k\f,s(x§y) - —EQ/dU AUWKT,S(%'TW,U) eiv- €
we find, similarly to (24]),
IBsllfis < CNe AW (3 < CePIN[WE 7 < eIt

where we used again Proposition [BJJl This concludes the estimate of the second term in (7).
Therefore, plugging the estimates (£9)), [2.4) into (£7), we have:

ek, — s < CN'2¢ exp(Cexp(C|t]))

IIMCO

as claimed.

Comparison of w]k\, , With wy ;. The next step is to compare the Hartree dynamics of the regularized
initial data with the Hartree dynamics of the original data. Our goal is to show that:

1
— Wk Cltl Ny1/2 -
WN w s < Ce"™MN <5 + > 4.10
” it N,t” \/E ( )
for a suitable constant C' > 0, dependent on supy |[Wx||g2 but not on the higher Sobolev norms.
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Let U(t; s) be the unitary group generated by hy(t) = —e2A+ V% py, with pi(x) = N~ twy i (z; ).
From

ieOU* (£0) Wiy, U(t;0) = ~U*(£;0) {V * (pr — pf%w?v,t} U(t; 0)
we have:

Wiy —why, = U(E0) (w — Ut 0)why U (t; 0)) U*(t: 0)

= U(t;0)(wn — W)U (£;0) + %/0 dsU(t; s) [V * (ps — pf),wz’“v,s] U*(t;s)

Hence

1 [t ~
Jeome — gl < o — whyllns + = / ds / ap |V (p)|
0

|| [eipﬂ:’ W]k\f7s] ||HS

(4.11)

tr e_ip'$(wN7s — w]k\f78)

We start by estimating the commutator in the right-hand side. We have
. 1 . .
) = [ el 0P
0
By Proposition [C.1] it follows that:

LD k k C k k
e,k Jlns < Ipllie, s < Clple®™ (Illz,whllns + e, wh]lns )
Since

[, wi]llus = eNY2 VWi |2 < eNY2Wol|
[V, wh]llus = eNY2| Vo Wila < eNY2[Wol|
we conclude that ‘
[, wh JJllns < CN/2e|p|e”!*! (4.12)

Then, we are left with estimating the trace on the right-hand side of ([@I1]). To do this, we shall use
the following lemma.

Lemma 4.1. Under the same assumptions of Theorem [2.3, there exists a constant C > 0, only
depending on supy [|Wi || g2 but not on the higher Sobolev norms, such that

sup

) 1
tr e (wyy — wh ‘ < CeCltIN <— + 6) 4.13
B Ty T e ) v -

Plugging (£12), (£I3) into ([AIT]), and using the bound (£4]) on the difference of the initial data,
we get

1
oo — whtllis < CeClIN/2 <ﬁ N )

which concludes the proof of (ZI0)). Thus, we are left with the proof of Lemma A1
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Proof of Lemma[f.1} Consider, for an arbitrary p € R3,
tr eip'x(wMt — wjkvvt) = trU* (t;0)eP U(t;0) (wy — U*(t;0) w]]if7tU(t; 0))

where, as in B.0)), U(¢;0) denotes the unitary group generated by hpy(t) = —e2A + V x p;, with
pe(x) = N~ twy (z; 7). From

iU (t; 0) wiy Ut 0) = U (8;0) |V * (pr — pf)), wir, | U(E; 0)

we find
tr eip'm(wN,t — wf“‘v,t)
= trU*(t;0)e™P*U(t; 0) (wy — why)
Lot ipe By
ey trU*(t; s)e U(t; s) {V * (ps — Ps)ast] ds (4.14)
= trU*(t;0)e™ U(t; 0) (wy — why)
1 t ~ 5 ~ * ip-x ip-x
= [ [ V@ (5.0) = @) e ) U)o k)
Since

~ 1 5.
ps(ﬁ) - /p\]sc(ﬁ) - Ntr ezp$(wN7s - wik\ﬂs)

we conclude that

tr eip'x(wN7t—w]kV7t)

< ‘tru*(t; 0)eP U (t; 0) (wy — wky)
1 t ~ . 4 .
+ m/ o / ap |V (B)] [tr €7 (s — e )| [or 7 (8 )P U E: ), €7y,
0

and therefore, using the assumption (ZI3]), that

tr eip'm(wNJ — wf“‘v,t)‘

sup
peER3 1+ |p|
1 .
< sup —— [tr U (¢;0)ePTU(t;0) (wy — w%)‘
pers 1+ ||
J . | I CRD)
—|——/ ds sup — ‘tr {L{*(t; s)ePTU(t; s),e”"m] W
Ne Jo  ppers (1+p))(1 + [p]) *
X su _ |tr e (wys — wh
SR T I e T )

To bound the second term on the r.h.s. of ([AI3) we shall use the following lemma, whose proof is
deferred to Sect.

Lemma 4.2. Assume that (2.18) holds true. Let U(t;s) be the unitary evolution generated by the
Hartree Hamiltonian h(t) = —e?A + (V  p;). There exists a constant C' > 0 such that
1

Sup |tr [, U* (8 5)e™ PTEV U (t; 5)] w| < e(|p| + |q])e!
w,r |T
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for all p,q € R®. Here, the supremum is taken over r € R® and over all trace class operators w on
L2(R3) with tr |w| < 1.

It follows from Lemma and from tr[wk, | = N that:

‘tr [L{*(t; 8)eP U (t; s),eiﬁ'x] wé“v,s < CNelp||p] eIt (4.16)

To bound the first term on the r.h.s. of ([LI5]), we proceed as follows. We choose a function y. €
C>®(R3), with y<(z) = 1 for |z| <1 and x<(z) = 0 for |z| > 2. We set y~ = 1 —x~. For an arbitrary
R > 1, we decompose
tr U™ (t;0)eP U (t; 0) (wy — why)
= trU* (0)e® U (L; 0)x < (—* A/ R) (wn — wiy)

+ trU* (£ 0)eP U (t;0) x> (—e* A/ R) (wy — Wiy )x<(—e*A/R) (4.17)
+tr U (80)e® U1 0) x> (—2* A/ R) (wn — wiy)x>(—*A/R)
=1+ II+ III

To estimate the last term, we observe that
TIT| < trx2 (—e?A/R)wy + trx2 (—>A/R)wk;
1
< = [tr (—’A)wy + tr (—eQA)w]’ﬂ (4.18)

R
N N
-7 [/dwdvaWN(aﬂ,v) +/dmdvv2W]@(x,v)] < %

from the assumption supy ||[Wx|/g2 < oo, and using that x> (—€?A/R) < (—€?A/R). Next, let us
consider the first term on the r.h.s. of ([LIT). We write

I = trld*(t;0)eP*U(t; 0)x < (—2A/R)(1 + 22) 711 + 22) (wy — why)

and we decompose

(1 + 2% (wn —wﬁ[)] (r;y) = N(l—l—x2)/dv [WN(x;y,v) —Wf;(x_i—y,v)} eV e

= Di(x;y) + Da(a;y) + Ds(;y)

2
14 r+y /dv WN<m+y,v>_W],\€[(x+y’v) eiv_(xgy)
2 2 2
is the Weyl quantization of the function (1 + 22)(Wy(z,v) — WX (x,v)) defined on phase-space, while
Ne? [z —y 2 +y T4y i (Z=9)
DQ(CE;y)ZT( c ) /d [WN( 2 ) WN< 2 ”)]ew :

N: /dv [A WN<x;y v) - A WN<x;y v)] o 7Y

where

Dy(x;y) = N
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is the Weyl quantization of (£2/4)(A, Wy (x,v) — A, W& (z,v)) and

Dafaiy) = N2 2 (2 ) - w (T2 )| e

S Cass /dv [VUWN(” o) - vk (S yv)} giv =2

is the Weyl quantization of ex - (V, Wy (z,v) — V,Wk(z,v)). We bound the contributions of the three
terms D1, Do, D3 separately. We begin with

tr U™ (40)eP U (t; 0)x< (—e2A/R)(1 + x2)*1D1‘
= |trU*(£;0)eP U(t;0)x< (=2 A/R)(1 + 23711 — 2A) 11 — £2A) Dy
<1+ 2*) 71 (1 = 2A) Hlusll(1 - e*A) D1 |lus
< CVN||(1 = 2A)D1||us

where we used that 0 < y~(—£2A/R) < 1. We have

2
r+y
1
+(57)
It is not difficult to see that:

11 = 228)Dilus < CVN(1 + ) (1 + 02 (Way = W)z
+ CVNe|Wx = Wl + CVNE Wy = Whl| 2

[(1—e2A)Dy](z;y)

= N(1-£%A,)

[T s g

1
<CVN (ﬁ + 5)
Therefore
trU*(¢;0)eP U(t; 0)x< (—*A/R) (1 + x2)_1D1‘ <CN <% + 6) (4.19)

The contribution of D, on the other hand, can be controlled by
trU*(;0)eP U(t;0)x< (—2A/R)(1 + )1 Dy
< Ix<(=eA/R)(1 + 2*) 7 lus[| D2llns < C*VN|[Wol pzllx<(—e*A/R)(1 + 2°) ! |us

where

I<(~€2A/R)(1 + %) s
— (1427 (1 - 2A) A (- 2A/R><1—52A>—1<1+x2>—1

=tr(14+22) 7 1(1 — £2A) (1 = 2A)2 2 (=2A/R)(1 — 2A) 1 (1 + 22) !
<CRY(1+2*)7'(1—-e2a)"! ||HS
< CR’N
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Hence, we conclude that
trUd* (t;0)eP U(t;0)x < (—e? A/R)(1 + 2%) 1 Dy| < CNR£? (4.20)
We proceed similarly to bound the contribution of the term Ds. We find
U (850)e P Ut 0)x< (—e*A/R) (1 + 2%) 7 D3| < [x<(=*A/R)(1 + 2%) " ||us || Ds|lus

< ONRe| Wiy ~ Whl
CNRe
Vk

where in the last step we used ([@2]). The last equation, combined with ([@I9), (L20) implies that

<

1 Re
I[[<CN —+5+R52+—>
n=ov (7 Vi
Analogously, one can show that the same estimate holds for the term IT on the r.h.s. of {17 as well
(in this case, we introduce the identity (1 + 22)(1 +22)~! on the right of the difference wy — wk; and
we use the cyclicity of the trace). With ([@I8]), we conclude that
1 1

trU*(¢;0)eP U(t; 0) (wn — wﬁ;)‘ <CN <\/_E +e+ Re? + % + E)

Choosing R = ¢!, we obtain

. 1
U (50)e U 0) (wy — wh)| < N (7% * >

Inserting this bound and ([@I6]) in (@I5]) and applying Gronwall’s lemma, we obtain

. 1
sup tre”*(wn, —wk ‘ < CeClt Ny <— —|—a> 4.21
h T 17 o m Vi o
which concludes the proof of (£I3]). O

Comparison of (Z}?Vt with @y ;. We now compare the Vlasov evolution of the regularized initial
data with the Vlasov evolution of the original data. We claim that there exists a constant C' > 0,
depending on supy [[Wy||z2 but not on the higher Sobolev norms, such that:

- - ~ ~ CeCl
HWN,t - WJk\CtHHS = Nl/zHWN,t - WJ@¢H2 < Nl/zw (4.22)
To prove this, let
pr(x) = /dv vaN,t(ac, v) and  pf(z) = /dv ’W]@,t(x, v) (4.23)

be the densities associated with W]\Lt and W]@t For t € R, we denote by (X¢(x,v), Vi(z,v)) and by
(X} (z,v), V¥ (z,v)) the flows satisfying the differential equations

{ Xy(z,0) = 2Vi(z,v)

Vi(z,v) = —V(Vxp)(Xs(z,0)) (4.24)
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and
Xt (z,v) =2V} (x,v)
{ VE(z,v) = =V(V % pF)(XF(z,v)) (4.25)

with initial data given by, respectively, Xo(z,v) = X§(x,v) = 2, Vo(x,v) = VF(x,v) = v. We compare
the two flows (X;, V;) and (XF, V/F). We have

0 = X)) = 20V - V) a0)
S = V) a0) = =9V B (Xeler0)) + TV # 7) (X (,0)
and therefore
4 (%, - x@0)| <2[Vite.) - Vi)
SWi= VA 0| < Clo = 7l +C [ Xulav) - X ,0)

where we used the assumption (ZI3]). Gronwall’s lemma implies that

t
(2, 0) - XH(z,0) <ce [ ds|p - s
0

+ Vil v) = Vi(a,v)

t (4.26)
< CeC|t/ ds | W, — Wk,
0

We will also need to control the difference between derivatives of the flows (X;(x,v), Vi(x,v)) and
(Xf(x,v), VF(z,v)). Integrating the flow equations ([E24), [E2H), we have

VXt(xv)—l—i-Z/Vva)d

(4.27)
VoVi(z,v) = /VZV*pS s(z,v)) - Vo Xs(x,v)ds
which implies that
t
|V Xi(z,0)| <1+ 2/ ds |V Vs(z,v)]
0
t
|V Vi(z,v)| < C/ ds |V Xs(x,v)|
0
and hence, by Gronwall’s lemma, that
V2 Xi (2, 0)| + |VaVil(a,v)] < (4.28)
Analogously, we also find
Vo Xy (z,0)| + |V Vi(z, )| < MM (4.29)

and
Vo XF (2,0)] + |V Vi (2,0)] < eCT
Vo XF (z,0)] + |V Vi (2, 0)] < M
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Moreover, from (£27]), we obtain
t
‘VxXt(x7v)_vaf(x7v)‘ < 2/ ds ‘vxvs(xav) - vask(x7v)
0

and thus
V. Vi(z, v)—VmV;k(x, v)

t
= / ds ‘Vz(v * ﬁs)(Xs(xav)) : Vst(x7U) - VQ(V * ﬁlsc)(Xf(xav)) : Vgng(m',U)
0
t t
< C/ ds Hﬁs - ﬁ?Hl + C/ ds ‘XS(.%',U) - Xf(x,v)HVst(x,v)\
0 0

t
+ C/ ds |V Xs(z,v) — Vo XE(z,0)|
0
To get the second inequality, we used that
IV3V 5 lloo < IV2V oo VW1 < Ce¥l [ W]y (4.30)

Using ([£2])) and ([@26]), and applying Gronwall’s lemma, we conclude that

‘VxXt(x, v) — Vo XF(x, v)‘ + ‘Vth(az, v) — Vo Vi (z,0)

t t s
< ce [ s i+ e [ as [Cari - gt
0 0 0

Similarly, we can also show that

(4.31)

VvXt(x7U) - Vva(m,v)‘ + ‘Vvvt(xav) - vvvtk(xav)‘

t t S
<ce [ s -+ e [Cas [Cari - g
0 0 0

Next, we control the L' norm of the difference WN,t — W]]\“,t To this end, we write

(4.32)

||WN¢ — W}@Ah = /dxdv{WNﬂg(x,v) — W]]ff7t(x,v){
= /dxdv|WN(Xt(x,v),Vt(x,v)) — WR(XE,(z,v), VE, (z,0))]
< /dmdv{WN(X_t(x,v),V_t(x,v)) — W]]@(X_t(x,v),v_t(x,v))‘

+ /dxdv|Wf[(Xt(x,v),Vt(x,v)) — Wh(XE,(z,v), VE, (z,0))]

Using that the Vlasov dynamics preserves the volume in phase-space, we get:

Wi — WE i < Wy — WEL

+ / dxdv

< |Wy —WE|IL + /d)\dxdv[‘(VmW]’f,) (Z(z,v,A),5(z,v,\)) || X_e(z,0) — XFy(z,0)]

/01 A %Wj@ (A(X,t(x, ), Voe(a,v) + (1 — N)(XE, (z,0), VE (z, v))) ‘

+ [(Vu W) (@, 0,2), 5w, 0, 1)) [V (2, 0) = VE (2,0)|
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where we introduced the notation
E(x,0,A) = AX _g(z,0) + (1 = NXE (2,0), 0@, 0,0) = AV (x,0) + (1 = NV, (z,0)

From (4.26]), we obtain

—~— o~ t —~— o~
!WMJWNSWW—WMﬁC/wfwwm—WhM
0

(4.33)
y [/dAdxdv\(V W) (@(e,0.0), 5,0, 0) | + | (V8 (32, 0.0), 50, 3)) ||
We observe that
/dmdv‘(v W) (&(x, v, \), 0(x,v,\)) {—/‘ (VW (& “J )‘d:cdv (4.34)

with the Jacobian

B VoX_y V.V, V. Xk, V,Vk
J = det [A< VoX_y V.V > =) ( V. XE, Y,V

To estimate the determinant J(z, ) in ([@34]), we proceed as follows. For a fixed constant C' > 0
(that later will be chosen large enough), let us define ¢* > 0 such that:

O3 20t
=1/2 4.35
7 / (4.35)
We claim that, for all |¢| < t*,
. eCltl

Wi = Wl < 0 (4.36)

We prove ([A36]) for ¢t > 0 (the case of ¢ < 0 can be handled similarly, of course). We set

. E— — CeCltl

to = inf {t >0 Wy — W1 > W} (4.37)

and we proceed by contradiction, assuming that tg < t*. At time ¢ = 0, we have:

mm~wmh§/mmmwmefw—MMW@w—WMﬂun
1

.
(27‘1’)3 WN <$+\/—E,U+ﬁ> —WN(,I,’U)
1
- / drdvdrds / dX e~ (P2
(2m) 0
S

[ (o) B (o)

c C
(HV Wil +IVoWal1) < \/_—HWNHHl < =

dzdvdrds e~ +5%)/2

—

<

8w
(2m)?

<~
%

(4.38)
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where in the last line we estimated the L'-norms by proceeding as in ([&30). Since, moreover, ¢ — WN,t

and t — W}f,t are continuous in the L!-topology, by choosing C' = 2C' in Eq. [{@37), we conclude that
to > 0. The continuity property is a standard fact (see e.g. [§]).
By definition, for 0 < t < tp, we have ([@36]) and therefore, from ([@3]]) and (£32]),

20t
Vo X (2, 0) — Vo X5, (2,0)] + |V Voi(z,v) — Vo VE (2, 0)] < C2° 7
and
e2C1H
Vo X_t(2,0) — Vo XF,(2,0)] + [V Vei(z,0) = Vo, VE(2,0)] < C? 7
Writing

IS VoX_y V.V B V. Xk, -V, X, V., VF-V,V,
J(@,0) = det [A< VoX_ V.V > =2 ( VoXE, — V,X_, V,VE —V,V.,

and using that

(2

V. X_+ V.V_; B
det < VX, Y,V )' =1

we conclude that
3C

Vk

if the constant C' > 0 is large enough. From (£35]), and from the assumption ¢ty < t*, we conclude
that

1@, )| -1] < ¢?

|J(z,v)| >1/2
for all 0 <t <ty. Eq. (@34]) implies:

/dwdv |(VaWR) (E(z,0, M), 0(z,0,0)) | < 2/d5cd6 (VoW (2,8)| < CIWRm < CIWN|
for all 0 <t < ty. Similarly, we obtain
[ dede [(2,W8) (3.0, 2), 5z, 0, 0) | < CWx g

Plugging the last two bounds in the r.h.s. of [@33)), we find that

— —_— t —~ —

W = Wholl < [Way = Whl+ € [ ds e ye =

0

for all 0 <t <tyg. Eq. [@A38)) and Gronwall’s lemma imply that, if the constant C' > 0 is sufficiently
large,

Wiy — Wh i < Cﬂ
’ ’ VE

for all 0 <t < ty, in contradiction with the definition of #y. This shows that tg > t*. Repeating the
same argument for ¢ < 0, we obtain that
Clt|

= = e
Wit — W]]\cf,tHI < Cﬁ (4.39)

31



for all |¢t| < ¢*. From ([€26]), we also find that

20|
X, 0) — XE(@,0)] + Vil v) — VP (@, 0)] < O25 (4.40)
Vi
for all |t| < t*. Moreover, Eqgs. (£31]) and ([£32]) imply that
|J(z,0)] > 1/2 (4.41)

for all |t| < t* and for all 7,0 € R3.
Finally, we control the difference Wi ; — W]’\“Lt in the L?-norm. To this end, we observe that

Wi = Whell = [ dodo [W (X 0), Voalo, ) = WEE (0,0), VE 0]
/ dadv [Wx(X_o(@,v), Voi(,0)) — Wh (X2, 0)Vei (2, 0))
/dmdv ‘WN _t(z,0), Vg (x,v)) — W]]ff(Xﬁt(ﬂU,v),V_kt(ﬂv,v))‘2
Using that the Vlasov dynamics preserves the phase-space volume, we get, for all || < ¢*:
Wi = Wl < 2lWn — WIS
+2/ d)\/dxdv (Vo WE) (@2, 0,0), (2,0, \) [P | X o, 0) — Xy (2,0)|

(VW) (@0, ), 5,0, 0) PIVes(e,0) = VEy(, o)
<2|Wy - Wi 3

04 el 2
/ d)\/dxdv (V. WE)(&,9) ] + [(VoWE) (3, 8)|°]

1
+2 N
J(2,0)|
4 4C\t|
< 1OC

Wl

To get the first inequality we used the estimate (£40]), while to get the last one we used ([(@A41]). By
definition of t*, we conclude that, after an appropriate change of the constant C > 0,

CeCl
Vk

for all t € R (recall that the bounds HWN¢H27 HWJI\%HZ < (C are trivial, since the Vlasov equation
preserves the LP norms). This concludes the proof of (£.22]).

Proof of Theorem We have, using ([L5), (£10), (£22):

W = Wiz <

lwn,e — @nellas < lwnye — whellus + Wi, — D llas + 10k — Onllas

& 4.42
< CN'/? <6+%> exp(Cexp(Clt])) Z (4.42)

32



for a constant C' > 0 that depends on supy [[Wy ||z but not on the higher Sobolev norms. Choosing
k = 72, we conclude that

lwn s — Gnellas < CNY2e exp(Cexp(Clt)))

as claimed. This concludes the proof of Theorem O

Proof of Theorem Let vaN,t be the solution of the Vlasov equation with initial data Wy. We
estimate

Wi = Willa < Wi = Wavalla + [Wv = Wil (4.43)
The first term can be bounded by Theorem In particular, (2I5]) implies that

Wit — Wailla < Ceexp(C exp(Clt])) (4.44)

As for the second term on the r.h.s. of ([{43]), we have to compare two solutions of the Vlasov
equation, with slightly different initial data. But this is exactly what we did in Step 3 of the proof of
Theorem 221 The only ingredients that we used there were a bound for the L' and for L? norm of the
difference of the initial data. Now, by assumption we have ||[Wy — Wi |1 < kn 1, [[Wo — Will2 < kn2
and ||[W| 2 < C. Therefore, the arguments used in Step 3 of Section E imply that

Wit —Will2a < Clna + KN,Q)GCM
Together with (£44]), we conclude that

(Wt — Wi|l2 < Ceexp(Cexp(Clt])) + C(kn1 + £n2) exp(Clt]) .

5 Convergence for the expectation of semiclassical observables

Here we prove Theorem 241 and Theorem To show Theorem 24 we make first the additional
assumption that the Wigner transforms Wy of the fermionic operators wy are so that supy [|[Wy || g1 <
oo; later, we will relax this assumption with an approximation argument.

Case supy [|[Wn | gs < co. We use the expression (B.4)) for the difference wy s — Wy to write

: _ 1t I
tr P rtaeV (WNt — WN) = — / tr elp'm‘Lq'EVZ/{(t; $)[V x (ps — ps), Wn,s| U™ (t; 5)ds
€ Jo

Lt (5.1)
+ R / trePTTIEV Y (t; 5) B, U (t; 5)ds
0
with By as defined in (3]). We start by considering the first term on the r.h.s. of (GI). We have
tr PV Y(t55)[V ok (ps — Bs), Ov.s] U (85 5)
= /dz (ps(2) — Ps(2))tr ePTTIN Yt 8) [V (z — 2), DN .| U (t; 5)

= /dk V(k)) / dz eiik'z(ps(z) — ps(2)tr o TtaeV U(t; 8)[eik'm, Dn.s) U (¢ 5) (5.2)

1 N A . .
- = / kT (k) tr e (wn s — Do) tr P (1 )[BT o U (1 5)
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Hence

tr ePTHIEN Y (15 8) [V x (ps — Ps), On,s| Ut 8)ds

1 ~ . . .
< N /dk: |V (k)| ‘tr R T (W g — Tng)| [trePTFIEV Y (t; 8) [T, Do U (t; S)‘

Ctr @y 1 - ~ (5.3)
< — su tre™f(wns —w
STV SR e e e m o
1 tk-x g % ip-x+q-eV
x sup — |tr [e"F, U*(t; s)eP T L{(t;s)]w‘
w,k ||

where we used the assumption (2.I8) and where the supremum is taken over all k¥ € R? and all w with
tr|w| < 1. From Lemma [£2] we obtain

tr ePTTIENVY (1 8) [V * (ps — Ps), N 5| U(t; 5)ds

Ctr|wn s Cli- 1 - N (5.4)
< — U hel s| - |t ik-x o
< S pl ) sp s for e o — )
Consider now the second term on the r.h.s. of (5I). By the cyclicity of the trace, we find
tr e TTCEV Y (t;5) BoU* (t;5) = trld* (t;5) ePTT9V U (t;5) B, . (5.5)

We recall that the kernel of the operator By is

Bufain) = |V < 7)@) =V« 7)) = V0V 27 (T52) « (0 = ) Gl

Expanding the parenthesis with the potentials in Fourier integrals, we obtain

(V) (@) = (V) () =V (V 475) (%) (z—y)] = / kO (k) (e — v — 550 (2 — )
with U =V * ps. We write

1 1
ik _ giky _ / d}\ieik-(Ax-i—(l—)\)y) _ / A O+ ik (5 — )
o dA 0

and hence

ik ik - 24V ' ik-(Az+(1—A ik- 25
e — Y — et zk-(x—y):/ d\ [ez Qe+ (1=Ny) _ otk 5 }zk-(x—y)
0
1 1
_ / I / dpp e IO A=+ @)/ () 1 /9)[k - (2 — y)]?
0 0

This implies that

3 1 1
By=Y_ /0 A (A —1/2) /0 dyu / dk U (k)k;k; [m [mj,elw“(1*@/2)’?'93@78@@(“(14”<1*“>/2>’f'l“]}
ij=1
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Therefore, we can bound the absolute value of the second term on the r.h.s. of (&) by

tr P TTCEV Yt 5) BsU* (t; 5)

3 1 1 R
< Z/O d)\|)\—1/2|/0 dp/dk|U(k:)||k|2

ij=1

« ‘tru*(t; 8)e¢p-m+q-evu(t; 8)[%, [xj, ei(ﬂ)ﬁL(1*#)/2)’?'52@N786i(ﬂ(1*>\)+(1*,&)/2)’?'9«“H

3 1 1
- _ - 2
— Z/O dA[A 1/2\/0 du/dk\U(k)Hk!

i,j=1

x ‘tl" [xi’ [xj’u* (t; S)eip-erq-sVu(t; S)H ei(,uAJr(lfu)/2)k-m(:)Nﬁei(u(lf)\)Jr(lf,u)/2)k-:v

< Ctrlwn, s /dk |/U\'(/’<:)||k:|2 sup ‘tr 4, [, U (t; S)eip'Hq'evl/{(t; s)]]w| .

w7l7]

(5.6)

The supremum on the r.h.s. is taken over all indices i,j € {1,2,3} and all trace class operators w
with tr |w| < 1. This term is controlled thanks to the next lemma, whose proof is deferred to the end

of the section.

Lemma 5.1. Under the same assumptions of Theorem [2.4], there exists C > 0 such that

sup [tr [ [w;, U (t;5) P71V Ut 5) | w| < C2(Ip] + |q])2eCN!

27.]70")

(5.7)

where the supremum is taken over all i, € {1,2,3} and over all trace class operators on L*(R3) with

trjw| < 1.

Using |U(k)| < |V (k)|, the assumption (ZIR) and (5.7), we conclude that

tr ePTTCEV Y (£ 5) B U™ (t; s)‘ < Ctr|wns| (|p| + |q| )22l
Inserting (5.4]) and (B.8) on the r.h.s. of (B1J), we obtain

1
5 |tre

sup ip-x+q-eV (
p,gER3 (|p| + |C.7| + 1)

WN,t — CTJN,t)‘

t ~
trlwn,s| o 1 ik- ~
<0 | as T o e e~ B

t
+C’/ ds tr |y, eeCt !
0

tr P rteeV (w

t tr|c~uN |
< C/ ds ——23 Clt=slgyp —— —
~ o N pa (1+pl+1al)? |

t
+ C/ dstr @y, o] € el
0
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Now, we estimate the trace norm of Wy s (here we need the additional regularity of the Wigner
transforms of the initial data assumed at the beginning of the proof). We have

tr|@n,s| = tr | (1 — A1+ 271+ 2?)(1 - €2A)&N,S|
< (1 =2A) " 1+ 2?) sl (1 + 2%) (1 — 2 A)wn,s||us (5.10)
< CVN||(1 4231 - 2A)Tn s |lns

The operator K = (14 2%)(1 — e2A) Wy s has the integral kernel

K(zy) = N(1+2)(1 —e2Ax>/dvWN,s(x;y,v)ez‘v-zy
= 2 +y —jv- =Y
_N(1+x)/dUWNs< 5 >e

—{—N(l—l—xQ)/dvvzWNS(x;y >e_“"z;y

— &2N(1 + 2?) / dv (A, W) (m ; y,v) eI

—i—isN(l—l—xQ)/dvv \% WNS<x—;—y )e_i”'g%zi

(1+m2):1+<$;y>2+ <x2y>2

4
1K las < OVN Y & [Wisll

J=0

Writing

we conclude that

The propagation of regularity of the Vlasov equation from Proposition [B.] gives us

4
1K lns < CVNe™! Y & [Wi
j=0

and thus, with (G.10),
4
tr[@y.| < CNey el [Will
j=0 !
Inserting in (5.9) and applying Gronwall’s inequality, we find

1
sup

‘t eip-erq-sV
p,qER3 (1 + |p| + |q|)2

(wNﬂf - &V)Nﬂf)‘

. A (5.11)
O[S IWal gy | Neexp (O] X2 & IWill ] exp(Cle)

j=0 Jj=0

This completes the proof of Theorem 2.4, under the additional assumption that [[Wx|/gs is
bounded.
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Proof of Theorem 2.4l We have to relax the condition sup ||[Wy /|2 < co. To this end, we proceed
as follows. We set

Wiz, v) = (W * g)(z,0) = /dx'dv'gk(x — a2 v =0 )Wy (2!, 0)

with 5
k k(g2 402
gk(x’ U) = (271')3 € 2 )

and we denote by w]’i[ the Weyl quantization of W]’\“[ We recall from (£.3]), that
1 Lz L2 e
wi(z3y) = @) /dwdz e %2~/ [em VieeVE Vwye VE Ve \/Es] (@3 y) (5.12)
T
is a fermionic reduced density with 0 < wh < 1 and trwX, = N. In fact, (512), together with the

assumption (Z.I9]), also implies that

N
tr WN—WM <C— (5.13)

Vk

To see this, we write:

1
W / dwdz e 2e= 0?2 y

w-—L- 2.V _ 2 w2
tr{wN —wm < e ke eV wnye VE e " ke —wN‘ ,
where

x z

iw- 2 v/ 2 v A _z.y i —T e —E
e Vke eV wnye VE e " ke —wN‘ §terN,e vk H—}—tr‘ezw Vkewpye ke —wN‘

tr

< tr| [wN, e_ﬁ'v] | + tr‘ [wN, e_m'ﬁ]

|z

< —|tr|[wN,VH + M

tri|lwn, || ;
\/E \/EE H N ”
this estimate together with the assumptions (2.9 implies that:
CN 1 2 2
t . I S dwdz e~ * /2 —w?/2
r{wN wi| < 7 (27)3/ wdz e e (2] + wl] ,

which proves Eq. (513]).
We have HW]’\“,HH] < CK/? for all j =1,...,4. Choosing k = ¢~2, (5II)) implies that
4

1
sup

D T a? e e ~ @] < ONeexp(Cexp(Clt))
J2UIS

On the other hand, proceeding as we did between ([@I4]) and ([@I5]) (replacing the observable ¢
with @4V we obtain

1
sup ———
pg 1+ ‘P’ + ’(J‘

tr e 7Yy, — wlk\ﬂt)‘ < Cexp(Clt]) trwy — wh|
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With (513, we conclude that (again with the choice k = £2)
1

sup ———— [treP ety WNt — Wk ‘ < CNeexp(C|t
P T T I e — ) i

Finally, we observe that
tr et @y — 3 ) = N (W, ) = Who(0,0))
and therefore we estimate
tr P @ — )| < ON Wi = Wi
The L'-stability of the Vlasov equation with respect to perturbation of the initial data has been

already established in the proof of Theorem Following the arguments between (£23) and (4.39))
(using the assumption on the W' Sobolev norm of the sequence W), we obtain

[Wa = Wil < Ce“M Wy — Wiy
Using again the uniform bound |[Wy ||y1.: < C, and the choice k = 72, we find
[Wac = Wil < Cee€l
We conclude that

SUp 5 [tr P TTIN (wn — D) | < CNeexp(Cexp(Clt]))
pa (1+[p[+14]) ‘ |

for any sequence of initial densities wy satisfying (Z.J9) and whose Wigner transforms Wy satisfy
|[Wnx|ly1.1 < C uniformly in V. O

Proof of Theorem We write

W i(p, q) — Wi(p, q)‘ < ‘WN,t(p, q) — Wi(p, q)‘ + ‘WN,t(p, q) — Wip, q)

where WN,t denotes the solution of the Vlasov equation with initial data Wy. From Theorem 2.4l we
know that

'WN’t(p’ 0) = Waalp. q)‘ < Ce(1+ |p| + |ql)%e

To conclude the proof of the theorem, we need to compare the solutions WMt and W, of the Vlasov
equation, using the fact that the two initial data are close in L'. As in the approximation argument
used in the proof of Theorem [Z4], we make use of the L!-stability of the solution of the Vlasov equation,
established in Step 3 of the proof of Theorem 221 Following the arguments between (£23]) and (£39]),
we obtain

Wi = Wil < Ce“M[Wiy — Woly
where the constant C' > 0 depends only on ||[Wy||yy1,1. This implies that

Wt — Willoo < Wiy = Willi < Cryelt

Hence,
Wi(p,q) = Wi(p,q)| < C(1+ |p| + |a)* (e + k)
which concludes the proof Theorem O
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6 Proof of auxiliary lemmas

In this section we show Lemma and Lemma [5.11
Proof of Lemma [].2 We define the unitary evolution u (t; s) satisfying
ied U(t; s) = €% h(t) e " U(t; 5) . (6.1)
= (h(t) + 2ie?r - V + 22 U(t; 5)
We observe that

sup [tr [¢%,U* (t; 5)e™ PHV Ut 5)] w| = sup
v w

tr [, U (t; 8)e™ PTEV Y (¢ 5)] U(s; 0)wld*(s;0) ‘

trid* (s;0) [e"'x, U (t; S)eix'p+ev'q2/{(t; S)] Ul(s; O)w‘
(6.2)

= sup
w

where the supremum is taken over all trace class operators w on L?(R?) with tr|w| < 1 and where we
used the fact that tr [U(s; 0)wld*(s;0)| < tr |w|. For a fixed w and for fixed ¢ € R, we compute now the
time-derivative of

iedstrU*(s; 0) [e”'x, U*(t; s)e PV ay (¢ s)| U(s; 0)w
= —trld*(s;0) [h(s), [T, U (t; 5) PV LY (8 )] U(s; O)w
— 262 trU*(5;0) ir - V [€7 U (t; 5) € PV (8 8)] U(s; 0)w
20240 U* (5;0) [, U (t; 5) e PHEVIY (8 5)]| U (s;0)w
+trid*(s;0) [, [h(s), U (t; 5) € PHEVIY (t; 8)]| U(s;0)w
Using the properties of commutators, we find
iedytri*(s;0) (e U (t; 5)e T PrEVayf (¢, )| U(s;0)w
= — 2%t U (5;0) ir - V [, U (5 5) 2PV Y (8 5)] U (550)w

— 202t U (5;0) [e7, U (t; 5) € PTEVIY (1 5)] U (53 0)w (63)
+trUd*(s;0) [U* (5 5) €2 PHVOY (8 ), [h(s), €7 7] U (s; 0)w
We have
[h(s), €] = (=2ie?r - V — 2r?) ™™ .
Inserting this expression in ([G.3]), we get
iedstrU*(s;0) [ U™ (t; 5)e™ PTEV U (t; 5)] U(s; 0)w (6.4)

= 2etr U™ (s;0) U (t;5) € PTEV Y (1 5), ir - eV] €77 U (53 0)w
Integrating this equation from time s to time ¢, we find

G (370) [, U (5 5)e P+ (1 5)] U 5 0)
= trU*(¢;0) [ PV 1 (4 0)w

t ~ , .
+ 21’/ drtrlUd* (7;0) [U* (t;7) e PV Y (8 7Y, ir - eV] e U (5 0)w
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which implies that

U (5;0) [, U (t.5)e PV U (8 )] U(s; O)W‘
<

tr [, PV AL (¢ 0)wld* (£ 0) ‘

t
+2/d7'

[eir-x7 ei:v-ereV-q]

tr [Z/l*(t; T)em'erev'qZ/{(t; T),ir - esV] U (15 0)w L~{*(T; 0)

Since

(efisr-q/Q _ eisr-q/Q)ei:v-(err)JrsV-q

we conclude that, for any trace class operator w on L%(R3), with tr |w| < 1, we have

ﬁ‘tr [ U (t; 8)e PV (1 )] U(s; 0) w U (s, O)‘

t
< ¢lq] —|—2/ dr sup
s w

tr [L{*(t; T)eim'p+€v'ql/{(t;7),iﬁ -€V:| w‘
r

where, on the r.h.s., the supremum is taken over all trace class w with tr|w| < 1. From (6.2]), we
obtain

sup |tr [e”'x,l/{*(t;s)ei$'p+€v'ql/{(t;s)] w‘
| t , | (6.5)
<celq| + 2/ dr sup |tr [zﬂ eV, U* (t; T)em'pﬁv'ql/{(t;T)} w‘
s w,r r
Next, we bound the supremum on the r.h.s. of the last equation. To this end, we observe that
sup |tr [Zﬁ eV, U (t;5) e PTEVa (¢, s)] w'
w ,,’l
= sup |tr [Z/l*(t; 5)e TPV (¢, s),i% -esV} L{(s;O)wU*(s;O)‘ (6.6)
= sup |trU*(s;0) [ *(t; 5)e T PTEV (¢t s),iﬁ . eV} U(s; O)w'
w r
We compute
iedstr U™ (s;0) [U*(t; $)e TPV (L2 5) i - eV]U(s;0)w
= —trlU*(s;0) [h(s), [U*(t;5) e=PTEVIY(t; 5) , der - V]]U(s; 0)w
+tr U (s;0) [[A(s), U*(t; s) €TPHEVIY(t: 5)] , ier - V]U(s;0)w
The Jacobi identity implies that
iedstr U™ (s;0) [U*(t; $)e TPV (L2 5) i - eV]U(s;0)w 6.7)

= —trUd*(s;0) [U* (t;5) €= PTEVIU(E; s) , [h(s) , der - V]]U(s; 0)w .
We have

[h(s),ir - eV] =ier - V(V % pg)(z) = ier - /dkk‘?(k:)ﬁs(k)eikw
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Hence
iedstr U™ (s;0) [U*(t; $)e T PTEVAY (8 5), ir - eV]U(s;0)w
= —ie- /dkr kV (R)pe(k) trid* (s;0) [U*(t; 5) PV 9 Y (t: 5) | €| U (s;0)w

Integrating from time s to time ¢, we find

trU*(s;0) [U*(t; $)e TPV ALY (t: 5) ir - eV] U(s;0)w
U*(t;0) [ei$'p+€v'q, ir - eV]U(t; 0)w

t
+ z/ dr [ dkr - EV (k)pr (k) trtd* (75 0) [U* (t; 7) e PV (8 7)), P U(T; 0)w

Since
[ezx~p+6v-q7 ir - EV] —er- pell‘-p-i-sv.q

we conclude that, for any trace class operator w with tr |w| <1,

‘trl/{*(s; 0) [ *(t;5)ePTEV Y (t; 5), zﬁ
,

teU*(7;0) [U*(t;7) eim'p+€v'ql/{(t;7), eik'x]U(T;O)w‘ /dk:|k|2|‘7(k:)|

: ev} Uls: O)w‘

= ¢|p| —|—/ dr sup
S

Ikl

From (&.4), we find

sup

tr [‘ | eV, U (t; 8)ePTEV Y (t; ) ] w‘

<elp| + C/ dr Sup tr U™ (7;0) [U* (t;7) em'pﬁv'ql/{(t;T) , eik'x]U(T; O)w‘

!7“\

Combining this bound with (6.5]) and applying Gronwall, we obtain

sup
w,r

tr [e T U (t; )T PTEV ALY (¢ 5) ‘—i—sup

tr [’ ‘ eV, U (t; 8)eTPTEV Y (t; 5) } w‘

< eN(Jp| + lq)e !

]
Proof of Lemma 521l We observe, first of all, that
sup [tr [z; [z, U (; 5) €PNV Ut 5) ]| w
= sup ‘tr [z [z, U (t; 5) eip'Hq'evl/{(t; $) [JU(s; 0)wld™ (s; O)‘ (6.8)

w

= sup |trtd*(s;0) [@; [2;, U*(t; s) ePTTCEN Y (8 5) || U(s; 0)w|
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We consider now the derivative
iedstrU* (5;0) [z; [2, U (t;8) ePTIV Ut 5) U (55 0)w
= —trlU*(5;0) [h(s), [z [z, U (;5) €PNV U(t; ) )] U(s;0)w
+trU* (5;0) [ [z, [h(s),U*(t;8) €P TV Ut ) )] U(s;0)w
The Jacobi identity implies that
iedstrU* (5;0) [ [x, U (t; 5) €P IV Ut 5) ]| U(s; 0)
= trlU*(s;0) [a; [[aj, h(s)], U (t5) PV UL ) [ U(s3 0)w
+trU*(5;0) [[2i, h(s)], [, U (t;8) ePTTTEV UY(t; 8) || U (535 0)w

W

Since [z, h(s)] = €2V, (and since [V, 2;] = d;; is a number), we conclude that
iedstr U (s;0) [z, [, U (t; 5) P TFCEV UY(t;8) [JU(s;0)w
= etrU*(s;0) [V, [2,U"(t; 5) ePTTCEV 1 (¢ 5) [JU(s; 0)w
+etrU*(s;0) [eVa,, [, U (t;5) eP TNV Ut 8) || U(s; 0)w
Integrating over time, we find
U (530) o, [ U (155 052 (1 )| (55 0
= trU* (t; 0)[2;, [, ePTTIEVU(E; 0)w

¢
—l—i/ thrU*(T;O)[avxj, [z, U (t; T)eip'z+q'€vU(t;T)]]L{(T;O)w

¢
—l—i/ drtrU*(7;0)[eVg,, [z, U (¢; T)eip'z+q'€vU(t;T)]]L{(T;O)w

Since

ip-:erq-eVH ip-x+q-eV

[z, [x), e = e%g;qje

we find
|t U™ (550 (@i, [z;, U (; $)eP TN (t: )| U (s; 0)w|
t
<eq)® + / dr sup |tr eV, 23, U (t; 7)eP TNV (¢ )]lw|
s w,1,J
for all trace class w with tr |w| < 1. From (6.8), we obtain

sup {tr xy, [z, U (t; s)eip'$+q'€v2/{(t; S)]]w‘

w7l7]
t
< 2q)* + / dr sup ‘tr [eVa,, [xs, U™ (t; T)eP eV (¢ T)]]w‘
S

UJ7Z7]

where the suprema are taken over all trace class w on L?(R3) with tr|w| < 1.
Next, we look for an estimate for

sup [tr [V, [z, U™ (t; 5)ePTrENV (¢, $)]Jw|

w727.]

= sup |trtd*(s;0)[eVa,, [ws, U (t; s)ePTTeEV (¢ $)]JU (s;0)w|

UJ7Z7]
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To this end, we compute the derivative

iedstr U (5;0) [eVa,, (25U (t;8) ePTHCEY Yt ) [JU(s;0)w
U (55 0) [h(5), [V, [ U (8 5) €0 U (15 5) U
+ U (5;0) [V, [, [A(s), U (t5) €7V Ut ) ] U (s 0)w
= trU*(5;0) [V, R(3)], [, U (t;8) €PTINV U (L 5) ]| U (55 0)w
+trlU*(5;0) [eVa,, [[25, h(s)], U (t; ) eP =TTV U (t;5) || U(s; 0)w

s;0)w

With
£V, h(s)] = eVa, (V % ps)(z) = & / dkle; V (k) ps (k)™ (6.10)

we obtain
iedstrU* (5;0) [eVa,, 25U (t;5) ePTTIV Ut ) ]| U(550)w
/ dkk; V (k) ps (k) tr U* (5;0) [, [, U (t; 8) €TV U (8 5) ] U (55 0)w
+ etrt*(5;0) [eVa,, [V, U (t;5) ePTTCEV UY(t; ) ]| U(s; 0)w

Using the identity

1
67, Al = e T A — AT = / dA ddA . L / A ik -, Al VR (6.11)
0 0

we conclude that
iedstr U™ (s;0) [V, [x;,U™(t; 5) PN 1 (1 5) | U (53 0)w
= 8/1 d)\/dkkingA/(k)ﬁs(k)trU*(s;O) N [y [y, U (5 8) P TV Y (15 5) ]] LR TY (5 0)w
+ Ztr U (5;0) [eVa,, [V, U (t;5) ePTTIV U (t; 5) || U(s;0)w

and hence, after integrating over time,

trid*(s;0) [eVa,, [25,U(t;5) eP IV Ut ) ] U(s; O)w‘

< e td* (#:0) [Va,, [z, eP=TIV] U 0)w(

t 1
+/ dT/ d)\/dk|k:|2|V(k)
s 0

X ‘tru*(T; 0) ei)‘k'x[xg, [, U" (t;7) P rtaeV U(t; 1) ] ei(lf)‘)k'mL{(T; 0)w
t
—i—/ dr

G U(7;0) [V, [V, U (6 7) P70 Ut 7) [ U O

Since
ip-:erqe-VH ip-x+qe-V

eV, [z), e = —i52piqje
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this implies that
tr[eVa,, [2;,U*(t;s) eP TV UY(t; 5) |Jw

sup
w7i7j

t
< &%[pllq| + C/ dr sup [tr [z, [z, U (67) €TV U T) ||| (6.12)

w,?,]
t
/ dr sup
S LLJ,Z,]

Finally, we need an estimate for
sup |tr [eVy,, [eVa,, U™ (t;5) PV 1 (1 5) || w

U (3,0) [V, [V, U (£ 5) €P7HY Y (1 s)]]U(s;O)w(

eV, [V, U (157) 70T Ut )

= sup
w7l7j

Hence, we compute the derivative
ie0str U (5;0)[eVy,, [V, U (t;5) ePITCEV 1 (1 8) |JU(s;0) w
—trU*(s;0)[h(s), [eVa,, [V, U (t;5) PV Y (15 5) ]
+trU*(5;0)[eVa,, [V, [M(s), U (5 5) PV Y (15 5) ]
= trU*(5;0)[[eVa,, h(s)], [eVa, , U (t; 5) ePITCEV 1 (8 8)])U (55 0)w
+trU*(5;0)[eVa,, [V, h(s)], U™ (t; ) ePTTCEN Y (8 5)])U (55 0)w

0)w
0

JU(s;
JU(s;0)w

From (6.10), we find

ie0str U™ (550)[eVyy, [eVa,, U (t;5) ePTETEV Y (t: 5) || (53 0)

/ dkk:V (k) ps (k) trtd* (s; 0)[e™F, [eV 4, U (t; 5) P TFC=Y U (#; 5)]JU (5; 0) (6.13)

/dkkﬁ?(kz)ﬁs(kz) trU*(s;0)[eVa,, [ U (t; 5) P TV LY (E; 5)]U(s; 0)
In the first term on the r.h.s. of the last equation we use (6.II). In the second term, on the other

hand, we notice that
trid*(5;0)[eVa,, [, U (t; ) eP TV Y (L 5)])U (55 0)w

= trlU*(5;0)[e*®, [eV,., U (t; 5) ePTTIEV Y (t; 5)])U (55 0)w
+ trU*(5;0)[[eVa,, eF ], U (t; 5) €PTTIEV Ut 5)U(s;0)w
Again, the first term on the r.h.s. of the last equation can be handled with (6.I1]). As for the second
term, we use that [eV,,, e*?] = ick;e’**. Integrating ([GI3]) over time, we find

‘trU*(s;O)[aVzi, eV, , U (t; s) P TTeEV 14 (¢ s)]]U(s;O)w‘
< |trtd*(t;0)[eVa,, [Va;, PV Y (¢ 0)w|

+ C/ dr sup |tr [eVa,, [z, U (t57) PN 1y (¢

w7l7j

+Ce [/dku?(k)uﬁs(k)uk\?’dk] [/ dr sup ‘tr (€7 U (£ 7) €PN Y (47 w‘]

)]
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To bound the integral involving the potential in the last term on the r.h.s. of the last equation, we
use ([ZI8) with ||ps]jcc < 1. From

[EVW [5vxja 62p.gg+q-6V] _ _€2pipjezp-x+q.ev
and from Lemma 2] we obtain

trid*(s;0)[eVy,, [V, U (t;s) ePITCEV 1 (8 5) |JU(s;0) w‘

, t , o (6.14)
< Ce” + C/ dr sup |tr [eVa,, [z, U (t;7) eP*TCV U T)]w|

w7l7]

Combining ([€9) and (6.12]) with the last equation and applying Gronwall lemma, we deduce that

sup [t [z, fog, " (:5) 77V U 5) ) ] < CeX(p] + fa e
/[:7j7w
sup [ (V. [y, 2" (855) €71V U (1) ) o] < CeX(p] + g 26
/[:7j7w

sup
i?j7w

U [V (£, U (1) 7T Ut 5) | o] < CE2(p] + a1

A Well-posedness of the Vlasov equation for signed measures

The goal of this appendix is to show that the arguments of [8] can be extended to prove the well-
posedness of the Vlasov equation (LI0) for initial data given by signed measures.

Following the notation of [§], let M denote the space of all finite signed measures on the Borel
o-algebra B(R%). For an open interval A C R, we denote by M the set of all families M = {1 }en,
with gy € M for all t € A such that, for all bounded intervals A’ C A, there exists Cas > 0 with
sup;ens |lpee|l < Car, and such that the function

(OV i) @) = [ TVl =) dun(a' )

is continuous in t € A, for all x+ € R? (V denotes the interaction potential entering the Vlasov
equation ([CIO)). For C' > 0, we also denote by Ma(k) the set of families M = {u;}ea with
el = suppepms) [1(B)| = £ for all ¢t € A.

Defining 4, B : R? x R?® — R? x R3 by A(z,v) = (2v,0) and B(z,v) = (0,VV(x)) and, for every
peM,

By (z,v) = /B(x — a2’ v = )du(z’,v)

we say that a family M = {;}ten € Ma is a weak solution of the Vlasov equation on the interval A
if, for every test function h € D(R®) in the Schwarz space,

pe) = [ o))
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is differentiable in t € A and 4

E#t
It is easy to check that, if the weak solution p; has a density Wy (z,v), differentiable in ¢, then W, is
a solution of the standard Vlasov equation (LI0).

(h) = p((A + By, )Vh)

Proposition A.1. Let V € Cg(R?’). For any finite signed measure u° € M, and every open interval

A C R with 0 € A, there exists a unique weak solution M = {u}ten of the Viasov equation on A

with pry—g = p°.

Proof. We follow the strategy of [§], adapting it to the case of signed u". We will use the variable
z = (z,v) € RS. For M = {ji4}sen € Ma, we define

Gu(t,2) = A(z) + By, () (A.1)

and we consider the solution of Newton’s equation

d
—z
dt
We denote by zps(t,u) the solution of (A2]), with initial data zps(0,u) = u.
For a fixed ;i € M, we define the map 7' : Ma — Ma by

(t) = Gu(t, (1)) (A.2)

(TM)(E) = p° ({u € R®: zp(t,u) € E})

for all E € B(R). Asin [§], it is easy to check that M € M is a weak solution of the Vlasov equation
with initial data p° if and only if M is a fixed point of T, i.e. if TM = M.

Hence, to prove Proposition [A.T] it is enough to show that T is a contraction on Ma. In fact,
since clearly TM € Ma(||u°]]), for all M € Ma, it is enough to show that the restriction of T to
MAa([|°]]) is a contraction, with respect to an appropriate metric, that we are now going to define.

For two signed measures p, 1/ € M, we define

d(p, 1) = dier(ps, 1) + dicr(p—, 1) (A.3)

where p = p4 — p— is the Jordan decomposition of p in its positive and negative parts and where di g
is the Kantorovich-Rubinshtein metric, defined by

dgp(v, V') = meJi\l;l(E V,)/ﬂ(21,22)dm(21,22)

where p(z1,29) = min(]z; — 22],1) and N(v,2') is the space of all positive measures m on B(R!?)
such that m(E x R®) = v(E) and m(R® x E) = V/(E) for all E € B(R®). Furthermore, for M =
{petiea, M" ={pitiea € Ma, we define

d(M,M') = /Ag(ut7u£)

It is easy to check that (A.3)) defines a metric on M(A).
We claim that, for |A| small enough,

d(TM, TM) < %d(M, M) (A.4)
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for all M, M’ € Ma(||i°])). To prove BA) we observe that, for all 4, i/ € M,
Bu(2) = Bu(2) = [ Bz = widn(w) ~ [ Bz = w)d'(w)
< [ (B —w) - B~ wp)dm (wr,uz)

= [(BG = w1) = B~ wp)dm(wr,u)

for any my € N(p4, py),m— € N(u—,p"). Recalling that B(z,v) = (0,VV(z)) and the assumption
V € C(R3), we find

Bu(e) — Bu@) < [ 1B = wn) = Bl — us)ldmy (w1, 02)
+ / |B(z —wy1) — B(z — wa)|dm_(wy,ws)
< C/p(wl,wg)dm+(w1,w2)—|—/p(w1,w2)dm(wl,wg)

Since the inequality holds for every m € N(u4, /) and m_ € N(u_, p’), we conclude that

Bu(z) — Bu(2)| < Cd{u, ) (A.5)

for all p, ;' € M and all z € RS.
Furthermore, recalling the definition ([AJ]), we observe that there is a constant C, depending on
|1°]|, such that
Gu(2) — Gu ()| < Clz — 2| (A.6)

for all z, 2" € R® and for all M € Ma(||u°]]).
For M, M’ € Ma(||1°]]) and v € R®, we define the quantity

(X(M, Mlau) = Sup ’ZM(tau) - ZM/(t,’LL)‘
teA

With (A.6l), we obtain
lzar(t,u) — zpp (t,u)| < /Ot |G (s, zar(s,u) — Gapr (s, 200 (s, u))|ds
< /A G5, 21 (5,w) — Gt (5, 20 (5, )|
—i—/AGM(s,zM/(s,u) — G (s, 2z (s,u))|ds
for all t € A. Combining (AF) and (A6G]), we find
|zar (t,u) — zpp ()| < C/A |zp1 (s,u) — 2p0 (s, u)|ds + Cd(M, M")
Taking the supremum over ¢, we conclude that, for sufficiently small |A|,

a(M, M, u) < ¢

—————d(M, M’
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We are now ready to bound d(T'M,TM'). For M, M’ € Ma(||1°]), we notice that
(TM)+(E) = pS ({u € RO : 2p(t,u) € E})
for every E € B(R®). Now, let
o (F) = i, ({u € B : (ar(t, ), 2 (1)) € F))

for every F' € B(R'2). Then we have m¢ 4 € N((TM;)+, (TM])1) and

/mawgm%ﬂawﬁ=/}@Mwwxwammmyw

< / o M, M’ u)dpd (u)

Cllud '
< W= v, M
~1-C|A| (M; M)
This implies that
drr((TMy)+, (TM{)+) < Md(M M
A WSTVN Rk
and therefore that C|A[|| 1
(TM, )—1—C\A!( M)

Hence, for |A| sufficiently small, we obtain (A) for all M, M’ € Ma(||u°]). This proves that T
defines a contraction on M (||1°]|) and implies the existence and the uniqueness of a weak solution of
the Vlasov equation, for |A| sufficiently small. The argument can then be iterated to obtain existence
and uniqueness for all times. O

B Regularity estimates for solutions of the Vlasov equation

In the next proposition we estimate the weighted Sobolev norms ||[Wy|| g of the solution at time ¢ of
the Vlasov equation in terms of their value at ¢t = 0.

Proposition B.1. Assume that
/@W@m+m%<w (B.1)

Let Wy be the solution of the Vlasov equation (II0) with initial data Wy. For k = 1,2,3,4,5, there
exists a constant C' > 0, which depends on |[Wo||g2 but not on the higher Sobolev norms, such that

IWell s < CeCMWoll (B.2)

Proof. We use a standard argument. We denote by ®.(z,v) = (X¢(z,v),Vi(z,v)) the solution of
Newton’s equations

Xt(x’v) = 2‘/;5($,U)
Vi(z,v) = =V (V % pp) (X¢(2,0))

48



with initial data Xo(z,v) =z and Vy(z,v) = v. Here py(x) = [ dv Wi(z,v). We can rewrite Newton’s
equation in integral form

t
X¢(z,v) :x+2/ ds Vy(x,v)
0

t (B.3)
Viw.o) == [ 9V p)(Xofa0)
In the following, it will be convenient to introduce the following shorthand notation:
150 o 3= max [V Xe, o)
IV oo s= max [V Via o), (B4

1200 = X loo + 1V oo -

In general, to control |[Wy[|gx, it is sufficient to control ||<I>2Ej)HOO for j < k. In fact, it is not difficult
to see that:

HWtHiIf = Z /dxdv (1+ 22 +v2)4|VaW0(X,t(x,v), V,t(az,v))|2
|a|=k

<C Z Z /dmdv (1+ 2%+ 02)4| (VBWO) (X_t(ac,v), V_t(m,v)) ‘2
m‘gka1+-..jé-lol.‘;\7:‘]§‘\ai|21 (B.5)
X ‘Vo‘l (X,t(x,v), V,t(az,v)) |2 e |V0‘\5\ (X,t(x,v), V,t(az,v)) |2
k
<cy W3 1o 12 - |2
n=1 mi,..., Mn

- mi+...tmnp=k,m; >1

to get the last step we performed a change of variables and we used that, by Gronwall’s lemma together

with (B3) and ||[VV e < o0t
14+ X2 (x,0) + V2(z,v) < CeCM (1 + 2% +0?) (B.6)

We start by estimating ||[W[| 1. To this end, we need to control H@gl) loo- For any multi-index o with
|a] = 1, we obtain from (B.3]) that

t
V"Xl < 142 [ ds |9V
0
t
IV Voo < 1+/ ds [V2(V % ) 0 Xs - VX, o
0
t
< 1+c/ ds |V X, |
0

where we used that [[V3(V # fs)]lec < [IV2V]|oollPs]l1, and [I5s]ly < [Wolls < Cl[Wollgy (see @3D).

Gronwall’s lemma, together with the assumption |[V2V]| < oo, implies that

[0V o0 < CeCM (B.7)
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where the constant C' depends on |[Wol| o, but not on the higher Sobolev norms. Thanks to (B.5),
the bound (B.7) immediately implies

Wil < Ce“M[WoliZ, (B-8)

where the constant C' depends on [[Wol|go, but not on the higher Sobolev norms. This concludes
the proof of (B:2) with k = 1. Next, let k = 2. As before, we start by considering the derivatives
VX, V¥V, now for |a| = 2. We have:

IV (V(V #55) 0 Xo)loo < IVAV 5 o IX IV + IV2(V % Bo) oo | X 1o

. ! (B.9)
< Ce“P N Wollgr + IV (V 5 56) oo | X8 [loo

where in the last step we used [|[V3(V * p5)[loo < [V2V 0o | VPs]l1 < CeC‘S|HW0||Hi, and we estimated
[Voslh < ClIWellgy < CBCIS‘HWOHHi- This, together with the estimate (B.7)), implies:

t
X <2 [ ds Vo
0
t
Ve £C [ Al X + Wil
0
thus, by Gronwall’s lemma:

12§ [0 < Ce“M[Wol 1 (B.10)

Therefore, proceeding as in (B.8]), we get
[Willgzz < Ce“M[Wo |12 (B.11)

where the constant C' > 0 is allowed to depend on [[Wyl|f1, but not on the higher Sobolev norms.
This concludes the proof of (B:2) for £ = 2. Consider now k = 3,4,5. We will use that, for |a| = k:

VYV 5 B9l < CIIVV oo D IV 5slh
|Bl=k~1 (B.12)
< OIVPV oo W | i1

and

VAV ) o Xl <C S S VPRV )| XD g - xS

BI<la] OBl
artotag =k

(B.13)

for a k-dependent constant C' > 0. Let k = 3. We have, for |a| = 3:
[VEVV 5 ps) 0 X oo
< OV # B llool XSV 13 + 192 (V 5 ) oo 1X P oo 1X P oo + V2V # 5 [loo | X8V oo |- (B.14)
< e[ Woll 2 + ClI X |oc
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where the constant C'> 0 is allowed to depend on ||[Wyl| 1, but not on the higher Sobolev norms. The

last step follows from (B.12]) and from the previous estimates on |[W]| ,;s, \|X§j) lloos 7 = 1,2. Plugging
4
this bound in ([B.3]), we find
187 loc < CM ol (B.15)

where the constant €' > 0 is allowed to depend on [[Wyl|g1, but not on the higher Sobolev norms.
Thus, proceeding as in (B.g):
IWellgs < Ce“M[Woll g (B.16)

where the constant €' > 0 is allowed to depend on [[Wyl|g2, but not on the higher Sobolev norms.
This concludes the proof of (B2) for k = 3. Let k = 4. Similarly to (BI4]), using (BI2) together
with the estimates for |[Wl|,;, j = 1,2,3, we find, for |a| = 4:

4

[VHV(V 5 ps) © X[l o
< C[||V5(V # 55 loo [ XSV 15 + VAV 5 5o) oo | X P oo [ XEV 13
+ IV 5 ) lloo (I ool XD oo + IXPIZ ) + IV2(V 5 5 lloo | X2
< G Woll gz + CIIXE oo
where the constant C' > 0 is allowed to depend on [[Wyl|gz2, but not on the higher Sobolev norms.

This implies
19§ lloo < CeClH Wl 13 (B.17)

where the constant C' > 0 is allowed to depend on [[Wyl|fz2, but not on the higher Sobolev norms.
Then, we claim that:

IWellgs < Ce“MIWoll s (B.18)
where the constant C' > 0 is allowed to depend on [|[Wy|| 2, but not on the higher Sobolev norms. In

fact, from (B.A]) we get and from the previous estimates on H@gj ) loo, 7 < 4, we have:

4
4
IWellZs < e[ IWolZ 196112 + 3 IWoll2e IWo12 (B.19)
k=2

This, together with (B.IT), implies (B.18) and concludes the proof of (B.2) for k = 4. The case k =5
can be studied in a similar way. Let || = 5. Using once more (B12), (B3], and proceeding as for
the previous cases, we get:

IV (V(V 55) 0 X) oo < Ce“M[Wol s + CIIX oo (B.20)

where the constant C' > 0 is allowed to depend on |[[Wo|[z, but not on the higher Sobolev norms. By
Gronwall’s lemma, we get:

5
1967 oo < CeClH Wl (B.21)

where the constant C' > 0 is allowed to depend on [[Wyl|fz2, but not on the higher Sobolev norms.
Then, we claim that:

IWell gz < Ce“IWoll g (B.22)
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where the constant C' > 0 is allowed to depend on |[Wg|| 2, but not on the higher Sobolev norms. To
see this, we use again (B.0]). We get:

5 4 1 3 2
IWul%s < G [IWoll2 1067 12 + IWo 2 1 (1067 12, 198712 + 2§12 9o 1, )
5 ) b (B.23)
+ > IWoll3 IWol3 |
k=3

which, together with (BI3), (BI7), (B2I), implies (B:22]). This concludes the proof of (B2]) for
k =5, and of Proposition [B.1l O

C Propagation of commutator bounds along the Hartree dynamics

Bounds for norms of commutators of the form [z,wy ] and [eV,wpy ] play an important role in our
analysis. In this section, we show how they can be propagated along the Hartree evolution. Similar
bounds have been proven in [7].

Proposition C.1. Assume
[ 7w+ oy < oo (©1)
Let wn s be the solution of the nonlinear Hartree equation
ieQwN s = [—EQA + (V % pt),wN,t]
with initial data wn—o = wn. Then there exists a constant C > 0 such that
Iz, wn il s < Ce“M [z, wn]llms + |V, wn]ll ]
eV, wndllas < Ce“M ||z, wnllms + [V, wn] | s]

Moreover,

Iz, wnlller < Ce“M T, wnller + €V, ]l

1=V, wnalller < Ce“M |z, wn]ller + [V, wn] o]

Proof. Let hy(t) = —2A + (V * p)(x) and U(t; s) be the unitary evolution generated by hy(t), as
defined in (BI]). We compute

e U™ (t; 0) [z, wn  JU(t;0) = — U (t;0)[hrr (¢), [, wn JJU(E 0) + U (8 0) [, [P (£), wn, U (2 0)
= U (t;0)[[A(t), x], wn  JU(E; 0)
=cU"(t;0)[eV,wn|U(t; 0)

Integrating over time, we find
t
(2, o] = U O) o, o U (450) + i / dsU(t: $)[V, won oJU* (¢ 5)
0

and thus .
s wnalllis < s wn]lus + / ds |[eV, o) 113 (C.2)
0
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On the other hand,

ieOU™ (4 0)[eV,wn e Ut 0) = — U (40) [ (1), [EV,wn JJU(E;0) + U (E50)[eV, [ (1), wn | JU(t; 0)
=U"(t;0)[[eV, hy (t)], wn . JU(t; 0)
=cU*(t;0)[V(V * py), wn ¢ JU(2;0)

:g/dpp?(p) pe(p) U™ (t; O)[ei”'x,wMt]Z/l(t; 0)

Using the identity

1
[ezp-a:’wNJ] _ / d\ ez)\pm[ip . x’wNJ]ez(l—)\)p-a:
0

we obtain, with (C.I),

t
1V, wellls < eV, wnlllis + / aplV (o) Ip15:(p) /O ds| [z, o) s
(C.3)

t
< NeVwonlus +C [ ds oo
0

Combining the last equation with (C.2) and applying Gronwall’s lemma, we find

[z, wndllas + eV, wrdllus] < Ce“ iz, wnllins + eV, wn]lns]

as claimed. In the same way, one can also prove the estimates for the trace norms of the commutators.
O
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