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Abstract

In the paper we introduce novel model selection measures based on Lorenz Zonoids
which, differently from measures based on correlations, are based on a mutual notion
of variability and are more robust to the presence of outlying observations. By means
of Lorenz Zonoids, which in the univariate case correspond to the Gini coefficient, the
contribution of each explanatory variable to the predictive power of a linear model
can be measured more accurately. Exploiting Lorenz Zonoids, we develop a Marginal
Gini Contribution measure that allows to measure the absolute explanatory power of
any covariate, and a Partial Gini Contribution measure that allows to measure the
additional contribution of a new covariate to an existing model.

Keywords: Dependence measures, Linear models, Lorenz Zonoids, Marginal Gini Contri-
bution, Partial Gini Contribution.
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1 Introduction

A very important problem in statistics and in data analysis is to compare alternative models

on a given set of data, for example in terms of their predictive accuracy. The traditional

paradigm compares statistical models through a sequence of pairwise comparisons, which

eventually leads to a statistical test, that provides a threshold which can be used to decide

which model to adopt. Statistical model comparison is, however, generally not applicable

to machine learning models, which do not necessarily have an underlying probabilistic

model. In this case, models are compared in terms of information criteria such as AIC or

BIC which, while providing a total ordering of models, require thresholds to choose among

them (Hand, Mannilla and Smyth, Chapter 11, 2001; Burnham and Anderson, 2004).

To overcome this problem, the last few years have witnessed the growing importance

of model comparison methods based on the direct calculation of the predictive accuracy

of a model, through cross-validation methods. In the cross-validation process, the dataset

is split in two or more datasets, with training datasets used to fit a model and validation

datasets used to compare the predictions obtained with the fitted model on the validation

dataset. When the response variable is continuous, a typical cross-validation summary

criterion is the root mean squared error (RMSE) which calculates the difference between

the observed and the predicted values. This difference can be compared with a threshold

value to choose among competing models (see e.g. Diebold and Mariano 1995).

A problem with cross-validation measures, such as the RMSE, is that they are not

normalised, similarly to information criteria, differently from what occurs in statistical

model comparison. A further problem is that, when the number of explanatory variables

increases, the RMSE does not necessarily decrease.

We aim to overcome these drawbacks with a new model comparison dependence measure
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that is normalised, like statistical tests, but can also be applied to machine learning models.

The most commonly used measure to detect a relation of dependence between a response

variable and a set of explanatory variables is the coefficient of determination R2. The

coefficient of determination, although widely employed, has some drawbacks. For example,

it is based on the distance between each observation and the mean point and, consequently,

may be affected by extreme observations (Rousseeuw and Leroy, Chapters 1-2, 1987). We

propose to overcome this problem with the definition of a new measure of dependence,

based on Lorenz Zonoids. To do so, we extend the work of Giudici and Raffinetti (2011),

who introduced a decomposition of the classical Gini coefficient in terms of concordance

and discordance shares.

The new measure is normalized and enjoys an “inclusion property” which leads to values

that increase with the number of explanatory variables, similarly to the R2, but differently

from the RMSE. In addition, it is based on the mutual distance between the observations,

rather than on the distance from the mean value and, therefore, is less affected by extreme

observations.

The rest of the paper is organized as follows. Section 2 provides a background on Lorenz

Zonoids, especially on its main features and properties. Section 3 introduces our proposed

Lorenz Zonoid dependence measures, in the linear model framework. To better understand

our proposal, Section 4 includes an illustrative example and a real application to bitcoin

price discovery. Finally, Section 5 briefly concludes the paper.
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2 Background

The Lorenz Zonoid has been introduced by Koshevoy (1995) for empirical distributions

and by Mosler (1994) for general probability distributions. The Lorenz Zonoid of a d-

dimensional random vector corresponds to a convex set in Rd+1, whose role is to analyse and

compare random vectors. Through the Lorenz Zonoid representation one can establish an

ordering of random vectors that reflects their variability: the investigation of such ordering

is induced by the inclusion between subsequent Lorenz Zonoids. This aspect provides a

helpful support for our proposed development.

We now define the Lorenz curve for a non-negative variable Y , following Koshevoy and

Mosler (2007). The Lorenz curve of a non negative random variable Y having expectation

E(Y ) = µ is the graph of the function

t 7→ µ−1

∫ t

0

F−1
Y (s)ds, 0 ≤ t ≤ 1,

where F−1
Y is the quantile function of Y : F−1

Y = min{y : F (y) ≥ t}.

Roughly speaking, given n observations, the Lorenz Curve LY of the Y variable (see

Lorenz 1905) is given by the set of points (i/n,
∑i

j=1 y(j)/(nȳ)), for i = 1, . . . , n, where y(i)

indicates the Y variable values ordered in a non-decreasing sense and ȳ is the Y variable

mean value. Analogously, the Y variable can be re-ordered in a non-increasing sense provid-

ing the dual Lorenz curve L
′
Y , which is defined as the set of points (i/n,

∑i
j=1 y(n+1−j)/(nȳ)).

The area lying between the LY and L
′
Y Lorenz curves corresponds to the Gini coefficient,

which is typically employed as an indicator of inequality, especially when dealing with

income data.

When considering more than one variable, the generalisation of the Lorenz curve in d
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dimensions is the so-called Lorenz Zonoid.

The Lorenz Zonoid of a general d-variate random vector can be defined following Ko-

shevoy and Mosler (1996). Consider a set Yd+ of random vectors in Rd that have finite

and positive (in each component) expectation and, within this set, the subset Yd+
+ ⊂ Yd+

of those vectors that have support in Rd
+.

For Y ∈ Yd+, we introduce the notation

Ỹ =

(
Y1

E(Y1)
, . . . ,

Yd
E(Yd)

)
,

which is the vector component wise divided by its expectation.

The Lorenz Zonoid of a random vector Y ∈ Yd+ is a convex compact set in Rd+1,

defined as follows:

LZ(Y) =
{
E[(g(Ỹ), g(Ỹ)Ỹ)] : g : Rd → [0, 1] measurable

}
.

For the sake of clarity, a function g : E → R is measurable if E is a measurable set

and for each real number r ∈ R, the set {y ∈ E : g(y) > r} is measurable. It follows that

continuous and monotone functions are measurable. We remark that if X ∈ Yd+
+ , i.e. has

support in Rd
+, the Lorenz Zonoid is contained in the hypercube of Rd+1.

The Lorenz Zonoid fulfills many attractive properties, some of which are the building

blocks for the contribution proposed here.

Property 1 The Lorenz Zonoid induces a linear dependence order:

Y �ld X if LZ(X) ⊂ LZ(Y), (1)
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where LZ(X) and LZ(Y) are the Lorenz Zonoids of the random vectors X and Y and

where �ld indicates a linear dependence order (see, for instance, Dall’Aglio and Scarisni

2003).

Property 2 The Lorenz Zonoid induces a dominance order:

Y �L X if LZ(X) ⊂ LZ(Y),

where �L defines Lorenz dominance (see, for instance, Koshevoy and Mosler 2007):

An important corollary of property 2 is that, in the univariate case, there is a perfect

equivalence between the Lorenz Zonoid order and the order induced by the variability order:

Corollary 1 Y �dil X⇔ Y �L X,

where �dil indicates that V ar(Y ) ≥ V ar(X). In other words, through the Lorenz

dominance an ordering based on the variability can be equivalently specified.

Within the univariate context, let us denote the Gini coefficient with the notation

LZd=1(·), to indicate the Lorenz Zonoid in the univariate case. The condition of linear de-

pendence reported in Property 1, can be further re-formalized to cover the case of variables

whose linear dependence may be investigated through a linear regression model.

Proposition 1 Consider the bidimensional vector (Y,X) and apply a linear regression

model, such that ŷ = α̂+ β̂x. Assume that Ŷ takes non-negative values. Denote respectively

with LY (t) and L
′
Y (t) the Y Lorenz curve and its dual, and with LŶ (t) and L

′

Ŷ
(t) the

Ŷ Lorenz curve and its dual. One can prove (see e.g. Muliere and Petrone 1992) that

LY (t) ≤ LŶ (t) where L
′
Y (t) = 1

E(Y )

∫ 1

1−t F
−1
Y (s)ds, 0 ≤ t ≤ 1. Furthermore, L

′

Ŷ
(t) ≤ L

′
Y (t).
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Proposition 1 provides a very important “inclusion property” which parallels what oc-

curs to the variance explained by the regression: V ar(Ŷ ) ≤ V ar(Y ).

In other words, the existence of a linear dependence relationship between Y and X

translates into an inclusion between the response variable Y and the linear estimated vari-

able Ŷ Lorenz Zonoids. Figure 1 shows this outcome in a pictorial way.
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Figure 1. Visualization of the Y Lorenz Zonoid (area between red lines) and Ŷ Lorenz

Zonoid (area between blue lines).

Figure 1 shows that the Ŷ Lorenz Zonoid, based on the estimates obtained from the

linear regression of Y on X, is contained in the Y variable Lorenz Zonoid.

3 Proposal

We exploit the Lorenz Zonoid (LZd=1(·)) as a measure of variability that characterizes a

phenomenon of interest. While the variance measures the variability with repect to the

mean, the Lorenz Zonoid measures the mutual variability. Similarly to the variance, the
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Lorenz Zonoid can be used within linear models to assess the contribution of additional

independent variables in explaining the variability of the response variable.

This is the aim of our proposal: to introduce a new dependence measure, addressed to

explain the response variable Lorenz Zonoid share “explained” by any additional indepen-

dent variable, and to generalize this into a stepwise model selection procedure based on the

Lorenz Zonoid explained shares. To our knowledge, this is the only contribution available,

apart from a short and purely theoretical communication by Raffinetti and Giudici (2013).

Let LZd=1(Y ) be the Lorenz Zonoid of the response variable Y , and X1 an independent

variable such that ŶX1 is the vector of the estimated values computed with a linear regression

model such that ŶX1 = α̂ + β̂X1. Define with LZd=1(ŶX1) the Lorenz Zonoid of ŶX1 .

Consider an additional independent variableX2 and a corresponding linear regression model

such that ŶX2 = α̂ + β̂X2. Define with LZd=1(ŶX2) the corresponding Lorenz Zonoid.

A very useful result, contained in Lerman and Yitzhaki (1984) is that, in the univariate

case, the Lorenz Zonoid of a variable may be expressed by resorting to the covariance

operator. Formally we have

LZd=1(Y ) =
2Cov(Y, F (Y ))

µ
, (2)

where µ is the response variable Y mean value and F (Y ) is the distribution function of

Y . In the same manner, LZd=1(ŶX1) and LZd=1(ŶX2) can be expressed as

LZd=1(ŶX1) =
2Cov(ŶX1 , F (ŶX1))

µ
and LZd=1(ŶX2) =

2Cov(ŶX2 , F (ŶX2))

µ
, (3)

where E(ŶX1) = E(E(Y |ŶX1)) = µ and E(ŶX2) = E(E(Y |ŶX2)) = µ, F (ŶX1) and

F (ŶX2) are the distribution functions of ŶX1 and ŶX2 , respectively.
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It can be shown that (2) and (3) can be equivalently expressed in term of rank scores.

The following holds.

Result 1. Let r(Y ), r(ŶX1) and r(ŶX2) be the rank scores corresponding to the Y , ŶX1

and ŶX2 variables. Since the r(·) terms are the empirical representation of F (·) = r(·)/n,

it can then be shown that:

LZd=1(Y ) =
2Cov(Y, r(Y ))

nµ
, LZd=1(ŶX1) =

2Cov(ŶX1 , r(ŶX1))

nµ

and LZd=1(ŶX2) =
2Cov(ŶX2 , r(ŶX2))

nµ
. (4)

Proof. Consider the response variable Y . We have to prove that

LZd=1(Y ) =
2Cov(Y, F (Y ))

µ
=

2Cov(Y, r(Y ))

nµ
. (5)

The term Cov(Y, F (Y )) is equivalent to Cov
(
Y, r(Y )

n

)
. Through some computations,

we obtain that

Cov

(
Y,
r(Y )

n

)
=

1

n

n∑
i=1

Yi
r(Yi)

n
− µr̄(Y )

n
=

1

n

[
1

n

n∑
i=1

Yir(Yi)− µr̄(Y )

]
=

1

n
Cov(Y, r(Y )) =

1

n
Corr(Y, r(Y ))σY σr(Y )

where r̄(Y ) is the mean of r(Y ), σY and σr(Y ) are the standard deviations, respectively,

of Y and r(Y ). The equivalence in (5) follows.

From an interpretational viewpoint Result 1. shows that the Lorenz Zonoid is propor-

tional to the correlation between the response variable and its ranks. We recall that the

variance is proportional to the squared distance of the response variable from its mean.
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The previous result easily generalizes to ŶX1 and ŶX2 and, therefore, the Lorenz Zonoid

share explained by a linear model is proportional to the correlation between the fitted

values and their ranks.

Thus, when the employed measure of variability is the Lorenz Zonoid, the goodness

of fit of a regression is proportional to the correlation between the fitted values and their

ranks. In contrast, in the standard linear model case, the goodness of fit of a regression is

proportional to the squared distance between the fitted values and the mean.

Remark 1 Given a sample data of size n, the formulas in (2) and (3) may be re-expressed

as:

LZd=1(y) =
2Cov(y, r(y))

nȳ
, LZd=1(ŷx1) =

2Cov(ŷx1 , r(ŷx1))

nȳ

and LZd=1(ŷx2) =
2Cov(ŷx2 , r(ŷx2))

nȳ
(6)

where y, ŷx1 and ŷx1 are the vectors of the observed and estimated values, r(y), r(ŷx1)

and r(ŷx2) are the ranks of the observed values, and ȳ is the sample mean.

It can also be shown that the Lorenz Zonoid can be expressed as a function of the sum

of the distances between the y-axis values of the points lying on the Lorenz curve and those

of the points lying on the bisector curve (the black curve in Figure 1). To be able to show

this, we first need to derive the expression of the distance.

Result 2. Let Y be a response variable, whose values arranged in non-decreasing sense

are denoted with y(i), for i = 1, . . . , n. Let q be the sum of the distances between the y-axis

values of the points lying on the Lorenz curve and those of the points lying on the bisector

curve. It can then be shown that
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q =
1

ȳ
cov(y(i), r(y)). (7)

Proof. Consider the coordinates (i/n,
∑i

j=1 y(j)/nȳ) of the points lying on the Lorenz

curve of the response variable Y and the coordinates (i/n, i/n) of the points lying on the

bisector curve. It follows that q can be defined as

q =
n∑
i=1

{
i

n
− 1

nȳ

i∑
j=1

y(j)

}
=

n∑
i=1

i

n
− 1

nȳ

n∑
i=1

i∑
j=1

y(j). (8)

Because
∑n

i=1 i = n(n+1)
2

and
∑n

i=1

∑i
j=1 y(j) = n(n + 1)ȳ −

∑n
i=1 iy(i), the term on the

right hand side of equation (8) can be written as

q =
n(n+ 1)

2n
− 1

nȳ

[
n(n+ 1)ȳ −

n∑
i=1

iy(i)

]
=

1

ȳ

[
1

n

n∑
i=1

iy(i) −
n(n+ 1)

2n
ȳ

]
=

1

ȳ

[
1

n

n∑
i=1

iy(i) −
(n+ 1)

2
ȳ

]
. (9)

The term within the square brackets in (9) corresponds to the covariance between the

Y values and their ranks, where the mean of i (i.e., r(y)) is equal to ī = (n+ 1)/2. Then,

the equivalence in (7) follows.

We are now able to show that the Lorenz Zonoid is a function of the sum of the distances

between the y-axis values of the points lying on the Lorenz curve and those of the points

lying on the bisector curve. The following result demonstrates the equivalence.

Result 3. From equations (7) and (9), it follows that

LZd=1(y) =
2

n
q =

2

nȳ

[
1

n

n∑
i=1

iy(i) −
n(n+ 1)

2n
ȳ

]
. (10)
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The previous result easily generalizes also for variables ŶX1 and ŶX2 , which are the

estimated fitted values. Let ŷ(x1i) and ŷ(x2i), for i = 1, . . . , n, be the ŶX1 and ŶX2 values

arranged in a non-decreasing sense. Similarly to (10), LZd=1(ŷx1) and LZd=1(ŷx2) may be

re-expressed as

LZd=1(ŷx1) =
2

nȳ

[
1

n

n∑
i=1

iŷ(x1i) −
n(n+ 1)

2n
ȳ

]
(11)

LZd=1(ŷx2) =
2

nȳ

[
1

n

n∑
i=1

iŷ(x2i) −
n(n+ 1)

2n
ȳ

]
. (12)

We can now employ the previous results to derive a marginal dependence measure,

which will be denoted by MGC (Marginal Gini Contribution). The measure can evaluate

the Y Lorenz Zonoid share marginally explained by a single explanatory variable Xh for

h = 1, . . . , k. It can be defined as

MGC(Y |Xh) =
LZd=1(ŶXh

)

LZd=1(Y )
=

2Cov(ŶXh
, r(ŶXh

))/nµ

2Cov(Y, r(Y ))/nµ
=
Cov(ŶXh

, r(ŶXh
))

Cov(Y, r(Y ))
, (13)

whose sample version is

MGC(y|xh) =

2
nȳ

[
1
n

∑n
i=1 iŷ(xhi) −

n(n+1)
2n

ȳ
]

2
nȳ

[
1
n

∑n
i=1 iy(i) − n(n+1)

2n
ȳ
] =

Cov(ŷxh , r(ŷxh))

Cov(y, r(y))
. (14)

The MGC measure may be used to select the explanatory variables in a regression

context. For example, the explanatory variable with the largest contribution in explaining

the share of the response variable Lorenz Zonoid measured by the MGC can be chosen as

an explanatory variable in a regression model.
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To understand whether further variables can improve a given regression model, we need

to define a partial contribution measure. This can be done extending the MGC definition

into a model selection procedure.

In the general context, characterized by k explanatory variables, we would like to de-

termine the effect related to the introduction of a new (k + 1)-th explanatory variable

into a linear regression model. The inclusion of a new explanatory variable provides an

enlargement of the Ŷ Lorenz Zonoid. The Lorenz Zonoid of the Y linear estimated val-

ues, denoted with LZd=1(ŶX1,...,Xk
), corresponds to the dilation measure of the Y response

variable Lorenz Zonoid LZd=1(Y ). Therefore, the introduction of an additional covari-

ate in multiple linear regression models translates into an increase of the “explained” Y

variability.

In the well-known linear regression model, the contribution of a single variable to the

regression plane is additive and, therefore, the addition of a new explanatory variable trans-

lates into an increase of the multiple determination coefficient (see e.g. Giudici, Chapter 4,

2003). More precisely, suppose a linear regression model is built that is characterized by k

explanatory variables. Let us introduce an additional (k + 1)-th explanatory variable. Its

contribution determines an increase of the Y variable “explained” variability, defined as the

difference between V ar(ŶX1,...,Xk+1
) and V ar(ŶX1,...,Xk

), where V ar(ŶX1,...,Xk
) denotes the Y

variability “explained” by the X1, . . . , Xk independent variables whereas V ar(ŶX1,...,Xk+1
)

denotes the Y variability “explained” by the X1, . . . , Xk+1 independent variables. The

squared partial correlation coefficient is expressed as

r2
Y,Xk+1|X1,...,Xk

=
V ar(ŶX1,...,Xk+1

)− V ar(ŶX1,...,Xk
)

V ar(Y )− V ar(ŶX1,...,Xk
)

, (15)

where V ar(Y )−V ar(ŶX1,...,Xk
) identifies the Y variable variability not explained by the
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X1, . . . , Xk covariates.

We aim at building a partial contribution measure that “parallels” the partial corre-

lation coefficient construction. Specifically, we propose as partial contribution measure

the ratio between a numerator characterized by a term denoting the contribution gener-

ated by the (k + 1)-th explanatory variable and a denominator including a term which

describes the share of the Y Lorenz Zonoid “not explained” by the ŶXk
Lorenz Zonoid.

The additional contribution related to the (k+ 1)-th explanatory variable inclusion can be

measured through the difference between the ŶX1,...,Xk+1
and ŶX1,...,Xk

Lorenz Zonoids, that

is LZd=1(ŶX1,...,Xk+1
)− LZd=1(ŶX1,...,Xk

).

A relative index, measuring the additional contribution provided by the Xk+1 inde-

pendent variable can then be obtained in analogy with the partial correlation coefficient

construction. Such a measure, which we will call PGC (Partial Gini Contribution), can

be expressed as:

PGCY,Xk+1|X1,...,Xk
=
LZd=1(ŶX1,...,Xk+1

)− LZd=1(ŶX1,...,Xk
)

LZd=1(Y )− LZd=1(ŶX1,...,Xk
)

. (16)

Note that equation (16) can be re-expressed, in analogy with the partial correlation

coefficient, in terms of covariances:

PGCY,Xk+1|X1,...,Xk
=

2
nµ
Cov(ŶX1,...,Xk+1

, r(ŶX1,...,Xk+1
))− 2

nµ
Cov(ŶX1,...,Xk

, r(ŶX1,...,Xk
))

2
nµ
Cov(Y, r(Y ))− 2

nµ
Cov(ŶX1,...,Xk

, r(ŶX1,...,Xk
))

=
Cov(ŶX1,...,Xk+1

, r(ŶX1,...,Xk+1
))− Cov(ŶX1,...,Xk

, r(ŶX1,...,Xk
))

Cov(Y, r(Y ))− Cov(ŶX1,...,Xk
, r(ŶX1,...,Xk

))
. (17)

We remark that, for the first variable (denoted h) included in the model, the equivalence

MGC(Y |Xh) = PGCY |Xh
holds.
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Result 4. It can be shown that, after some manipulations, PGCY,Xk+1|X1,...,Xk
computed

on sample data can be expressed as:

PGCy,xk+1|x1,...,xk =

∑n
i=1 i(ŷ(x1,...,xk+1i) − ŷ(x1,...,xki))∑n

i=1 i(y(i) − ŷ(x1,...,xki))
. (18)

Property 3 Under the condition of linear dependence between Y and the k explanatory

variables, it holds that 0 ≤ PGCY,Xk+1|X1,...,Xk
≤ 1. In the intermediate scenarios the PGC

measure takes values always smaller than 1 or greater than 0, depending on the contribution

provided by the additional Xk+1 covariate to the explanation of the response variable.

Proof. The following inequalities have to be proven:

a)
LZd=1(ŶX1,...,Xk+1

)−LZd=1(ŶX1,...,Xk
)

LZd=1(Y )−LZd=1(ŶX1,...,Xk
)

≥ 0;

b)
LZd=1(ŶX1,...,Xk+1

)−LZd=1(ŶX1,...,Xk
)

LZd=1(Y )−LZd=1(ŶX1,...,Xk
)

≤ 1.

It is worth noting that the denominator of (16) is always positive. The only case in which

LZd=1(Y ) − LZd=1(ŶX1,...,Xk
) = 0 is reached, is if the k covariates perfectly explain the

response variable. In this case, no additional explanatory variable needs to be considered

for inclusion in the model. Moreover, no negative values are allowed due to the inclusion

of LZd=1(ŶX1,...,Xk
) into LZd=1(Y ). From inequality a) it follows that

LZd=1(ŶX1,...,Xk+1
)− LZd=1(ŶX1,...,Xk

) ≥ 0⇒ LZd=1(ŶX1,...,Xk+1
) ≥ LZd=1(ŶX1,...,Xk

). (19)

The relation in (19) is always fulfilled since the inclusion of a new explanatory vari-

able into the model typically provides an enlargement of the Lorenz Zonoid built on

the corresponding linear estimated values. Only in the case that the additional explana-

tory variable does not provide any improvement in the explained variability of the re-

sponse variable, it results that LZd=1(ŶX1,...,Xk+1
)−LZd=1(ŶX1,...,Xk

) = 0, which is equal to
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LZd=1(ŶX1,...,Xk+1
) = LZd=1(ŶX1,...,Xk

). The same conclusion may be obtained by resorting

to formulas (17), in terms of covariances, and (18), when referring to the sample data.

Specifically, it follows that Cov(ŶX1,...,Xk+1
, r(ŶX1,...,Xk+1

)) ≥ Cov(ŶX1,...,Xk
, r(ŶX1,...,Xk

)) and

ŷ(x1,...,xk+1i) ≥ ŷ(x1,...,xki).

Next, from inequality b) it follows that

LZd=1(ŶX1,...,Xk+1
) ≤ LZd=1(Y ). (20)

The condition in (20) is a direct consequence of the inclusion property. Indeed the Y

variability explained by the X1, . . . , Xk+1 covariates, here defined in terms of the Lorenz

Zonoid built on the linear estimated values provided by the linear regression model, corre-

sponds at most to the total variability underlying theresponse variable. Equality between

LZd=1(ŶX1,...,Xk+1
) and LZd=1(Y ) is achieved if the linear model built on the X1, . . . , Xk+1

covariates perfectly explains the target variable Y . as for inequality a), the relation in (20)

can be expressed in terms of covariances and in terms of sample data as Cov(ŶX1,...,Xk+1
, r(ŶX1,...,Xk+1

)) ≤

Cov(Y, r(Ŷ )) and ŷ(x1,...,xk)i ≤ y(i).

In the standard linear model selection context, it is well known that the multiple coef-

ficient of determination is related to the partial correlation coefficient of each explanatory

variable. We would like a similar relationship to hold for Lorenz Zonoids as well. The

following can be proved.

Result 5. In the standard model selection context with k explanatory variables, one can

prove that the overall contribution of the fitted plane depends on the single contributions

through the following recursive relationship:

R2
Y,X1,...,Xk

=
k∑
j=1

r2
Y,Xj |Xi<j

(1−R2
Y,X1,...,Xj−1

), (21)
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where R2
Y,X1,...,Xk

represents the determination coefficient of the model built on the k ex-

planatory variables, R2
Y,X1,...,Xj−1

denotes the coefficient of multiple correlation between Y

and the fitted plane determined by the explanatory variables X1, . . . , Xj−1, and rY,Xj |Xi<j

denotes the coefficient of partial correlation between Y and Xj, conditional on the explana-

tory variables previously included into the model (see, e.g. Giudici, Chapter 4, 2003). We

now show that the overall contribution provided by the k covariates to the explanation of

the non-negative response variable Y mutual variability depends on the single contribution

measured in terms of the PGC measures according to the following recursive relationship:

MGC(Y |X1,...,Xk) =
k∑
j=1

PGCY,Xj |Xi<j
(1−MGC(Y |X1,...,Xj−1)), (22)

where MGC(Y |X1,...,Xk) denotes the overall Y mutual variability explained by all the involved

variables (i.e., LZd=1(ŶX1,...,Xk
)), PGCY,Xj |Xi<j

is the contribution associated with the j-th

explanatory variable included in the model and MGC(Y |X1,...,Xj−1) is the overall contribution

provided by the (j−1)-th explanatory variables (i.e., LZd=1(ŶX1,...,Xj−1
)), with j = 1, . . . , k.

Proof. The aim is to prove the equivalence in (22). For the sake of simplicity we consider

the case of three explanatory variables (k = 3). We start by fitting first X1, then X2 and

finally X3. The relationship in (22) becomes:

MGC(Y |X1,X2,X3) =
3∑
j=1

PGCY,Xj |Xi<j
(1−MGC(Y,X1,...,Xj−1))

LZd=1(ŶX1,X2,X3)

LZd=1(Y )
=
LZd=1(ŶX1)

LZd=1(Y )
+
LZd=1(ŶX1,X2)− LZd=1(ŶX1)

LZd=1(Y )− LZd=1(ŶX1)

[
1− LZd=1(ŶX1)

LZd=1(Y )

]

+
LZd=1(ŶX1,X2,X3)− LZd=1(ŶX1,X2)

LZd=1(Y )− LZd=1(ŶX1,2)

[
1− LZd=1(ŶX1,X2)

LZd=1(Y )

]
. (23)

In equation (23), the term in the squared brackets corresponds to LZd=1(Y )
LZd=1(Y )

− LZd=1(ŶX1,X2
)

LZd=1(Y )
,
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leading to:

LZd=1(ŶX1,X2,X3)

LZd=1(Y )
=
LZd=1(ŶX1)

LZd=1(Y )
+
LZd=1(ŶX1,X2)− LZd=1(ŶX1)

LZd=1(Y )− LZd=1(ŶX1)

[
LZd=1(Y )− LZd=1(ŶX1)

LZd=1(Y )

]

+
LZd=1(ŶX1,X2,X3)− LZd=1(ŶX1,X2)

LZd=1(Y )− LZd=1(ŶX1,2)

[
LZd=1(Y )− LZd=1(ŶX1,X2)

LZd=1(Y )

]
.

(24)

Through some mathematical manipulations, (24) can be re-written as

LZd=1(ŶX1,X2,X3)

LZd=1(Y )
=
LZd=1(ŶX1)

LZd=1(Y )
+
LZd=1(ŶX1,X2)− LZd=1(ŶX1)

LZd=1(Y )

+
LZd=1(ŶX1,X2,X3)− LZd=1(ŶX1,X2)

LZd=1(Y )
.

Thus,

LZd=1(ŶX1,X2,X3) = LZd=1(ŶX1)+LZd=1(ŶX1,X2)−LZd=1(ŶX1)+LZd=1(ŶX1,X2,X3)−LZd=1(ŶX1,X2)

which proves the desired identity.

We finally remark that the previous results hold for non-negative variables. The re-

striction to non-negative variables is due to the Lorenz Zonoid construction, which in the

univariate context corresponds to the Gini measure. As discussed by Raffinetti, Siletti

and Vernizzi (2015) the main problem with negative values concerns the violation of the

Gini coefficient normalization principle. Indeed, if the negative observed and/or linear es-

timated values of Y are involved, the corresponding Gini coefficient may achieve values

greater than one. This is due to the graphical position of the underlying Lorenz curve

partially lying under the x-axis and consequently intersecting the x-axis in a point which

defines the transition from cumulative negative values to cumulative non-negative values.

Roughly speaking, the Lorenz Zonoid of a real-valued variable is not inscribed into the
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unit side square. Moreover, the presence of negative values may lead to failure of the

inclusion property. As an example, suppose that Ŷ is real-valued and Y is non-negative.

In this scenario, the inclusion property would be partially reversed yielding the condition

LZ(Y )d=1 ⊂ LZ(Ŷ )d=1 to be fulfilled until the cumulative function of the negative values

becomes positive and grater than the cumulative function of the response variable Y values.

To overcome this drawback, the Gini coefficient (Lorenz Zonoid) of the real-valued variable

has to be adjusted to ensure that its range is bounded between 0 and 1. This adjustment

was suggested by Raffinetti et al. (2015) and is based on a new definition of the polarization

phenomenon, according to which the total negative variable amount should be assigned to

one unit and the remaining total positive variable amount to another unit, while setting

the values of the other n−2 units equal to 0. In this way, the non-negative variable Lorenz

Zonoid and the real-valued variable Lorenz Zonoid become equally scaled.

4 Application

To better understand our proposal, we first consider an illustrative example and then an

application to real data.

4.1 Illustrative example

Consider the data in Table 1. This table contains information about the response variable Y

and six explanatory variables (X1, . . . , X6), among which X1 is a nominal variable; X2, X3

are quantitative variables and X4, X5, X6 are ordinal variables.
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Table 1. A data example with one independent variable Y and six explanatory variables.

Y 23 26 23 28 21 19 19 35 27 11 22 22 26 24 24 26 21 32 17

X1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

X2 9 8 7 8 8 8 9 10 9 4 8 9 8 8 7 8 9 10 8

X3 10 7 8 8 7 8 8 10 8 7 8 9 8 10 6 8 10 10 9

X4 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3

X5 4 2 6 4 4 6 4 6 6 2 4 4 4 4 2 4 4 4 4

X6 4 4 6 4 6 6 6 6 6 2 4 6 4 4 4 4 4 6 4

The data in Table 1 can be used to show how a model selection procedure can be based

on Lorenz Zonoids.

First, using the MGC measure we can assess which explanatory variable in the multiple

linear regression model is the most important in explaining the (mutual) variability of the

response variable. It turns out that X2 is the most important variable, with MGC(y|x2) '

0.599 meaning that the Lorenz Zonoid of ŶX2 represents almost the 60% of the Y Lorenz

Zonoid. Consequently, the first explanatory variable to be added into the linear regression

model is X2.

Second, among the remaining covariates, the one which gets the largest partial contri-

bution to the variability of the response can be determined computing PGCy,x?|x2 . It turns

out that the highest PGC value is obtained for X5, being PGCy,x5|x2 ' 0.224. The inclu-

sion of the covariate X5 into a model that already has X2 allows to increase the dilation of

LZd=1(ŶX2) by 2.4%.

The procedure can then be repeated for all other variables. The results are as follows:

• the third added covariate isX1, which provides an increase of the dilation of LZd=1(ŶX2,X5)
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by 15.6% (PGCy,x1|x2,x5 '= 0.156);

• the fourth added covariate is X4, which provides an increase of the dilation of

LZd=1(ŶX2,X5,X1) by 14% (PGCy,x4|x2,x5,x1 '= 0.140);

• the fifth added covariate isX3, which provides an increase of the dilation of LZd=1(ŶX2,X5,X1,X4)

by 9.1% (PGCy,x3|x2,x5,x1,x4 '= 0.091);

• the last added covariate isX6, which provides an increase of the dilation of LZd=1(ŶX2,X5,X1,X4,X3)

by 7.8% (PGCy,x6|x2,x5,x1,x4,x3 ' 0.078).

4.2 Cryptocurrency price data

We consider an application to real data, to illustrate the functioning of our proposed

methodology in a professional context. The application concerns the cryptocurrency data

collected and illustrated in a recent work of Giudici and Abu-Hashish (2019). We apply

our proposal to assess whether the daily bitcoin prices in different crypto exchanges may

be affected by the prices of classical financial assets.

The available data contains information on the daily bitcoin prices in eight different

crypto exchanges, from 18 May, 2016 to 30 April, 2018. The analysis was carried out

including all eight crypto exchanges in Giudici and Abu-Hashish (2019). For the sake

of brevity we only report the findings for Coinbase Bitcoin and HitBtc Bitcoin, which

represent the response variables of interest. The other exchanges have a similar behavior,

due to common underlying bitcoin price.

The explanatory variables which are taken into account are the price of Oil and Gold,

that are ”classical” financial variables. We first compute the MGC coefficients for both the

response variables. Through the MGC coefficients we can detect which covariate provides
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the greatest contribution in explaining the bitcoin price mutual variability. Such covariate

will be included into the linear regression model. The contribution of the remaining ex-

planatory variable is assessed in terms of the PGC indices. The results from the Lorenz

Zonoid measure referred to Coinbase Bitcoin and HitBtc Bitcoin, together with the MGC

coefficients, are displayed in Table 2. The table also reports the corresponding values of

the coefficient of determination.

Table 2. Lorenz Zonoids, MGC and R2 measures for Coinbase Bitcoin and HitBtc

Bitcoin prices

Target variable LZd=1(·) MGC(·|Gold) MGC(·|Oil) R2
·,Gold R2

·,Oil

Coinbase Bitcoin 0.554 0.398 0.332 0.127 0.086

HitBtc Bitcoin 0.554 0.406 0.341 0.134 0.092

Table 2 shows that both the Coinbase Bitcoin and HitBtc Bitcoin prices present quite

the same variability, measured by the corresponding Lorenz Zonoids. We can conclude

that both prices do not suffer from strong daily differences. The explanatory variable Gold

provides a contribution equal to the 39.8% and 40.6% for the Coinbase Bitcoin and HitBtc

Bitcoin variables, respectively. The other covariate, Oil, provides a smaller contribution.

Thus, variable Gold is the first variable to be introduced into the model. The results

obtained applying the coefficient of determination are similar.

We now consider the effect of introducing an additional variable into a model, comparing

our proposed PGC measure with the partial correlation coefficient.

The results of this analysis are displayed in Table 3, for the response variables Coinbase

Bitcoin and HitBtc Bitcoin.

From Table 3, note that adding the variable Oil to the model that contains Gold leads
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Table 3. PGC and R2-based indices for Coinbase Bitcoin and HitBtc Bitcoin

Target variable Additional Covariate PGC·,Oil|Gold r2
·,Oil|Gold

Coinbase Bitcoin Oil 0.236 0.125

HitBtc Bitcoin Oil 0.248 0.134

to a contribution equal to 23.6% and 24.8% for the Coinbase Bitcoin and HitBtc Bitcoin

variables, respectively. Similarly, in terms of the squared partial correlation coefficient,

the variable Oil explains the 12.5% and 13.4% of the variance not explained by the model

built using only the Gold variable. Similar findings can be obtained for the other crypto

exchanges. We can thus conclude that not only the gold price but also the oil price have an

important role in the explanation of the bitcoin prices from all exchanges. This conclusion

is consistent with what was found by Giudici and Abu-Hashish (2019).

5 Conclusions

In this paper Lorenz Zonoids were introduced as a new model selection tool to assess the

contribution associated with the explanatory variables included in a linear model in terms

of the explained mutual variability.

Our approach presents similarities and dissimilarities with R2-based approaches. On

the one hand both methods are built on a quantitative response variable and aim to detect

the variables which mainly impact the phenomenon of interest. On the other hand our

proposal is based on the mutual distance between all observations, rather than deviations

from the mean and, therefore, is more robust to outlying observations.

Our proposed Lorenz Zonoid-based model selection approach seems to be a useful model
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selection tool, that can be used along with standard tools, to enhance the robustness of the

results.

Further research development concerns the extension of the proposed work to a more

general class of models that also include non continuous response variables. From an applied

viewpoint, it would be interesting to apply the methodology to other related application

fields, such as credit scoring (as in Figini and Giudici, 2013 and Calabrese and Giudici,

2015) and operational risk management (as in Fantazzini et al., 2008 and Giudici and

Bilotta, 2004).
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