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15 Abstract

16 The “Carbonaceous Aerosol in Rome and Environs” (CARE) experiment took place at a 

17 Mediterranean urban background site in Rome (Italy) deploying a variety of instrumentation to 

18 assess aerosol physical-chemical and optical properties with high-time resolution (from 1 minute to 

19 2 hours). In this study, aerosol optical properties, chemical composition, and size distribution data 

20 were examined with a focus on the analysis of several intensive optical properties obtained from 

21 multi-wavelength measurements of aerosol scattering and absorption coefficients. The spectral 

22 behaviour of several quantities related to both aerosol composition and size was explored, analysing 

23 their high-time resolved temporal patterns and combining them in order to extract the maximum 

24 information from all the available data.

25 A methodology to separate aerosol types using optical data only is here proposed and applied to an 

26 urban area characterised by a complex mixture of particles. A key is given to correctly disentangle 

27 cases that could not be distinguished observing only one or few parameters, but that can be clearly 

28 separated using a suitable ensemble of optical properties. 

29 The SSCAAE, i.e. the wavelength dependence of the Single Scattering co-albedo 1-SSA (where SSA is 

30 the Single Scattering Albedo) - that efficiently responds to both aerosol size and chemical 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59



2

31 composition – resulted to be the best optical intensive parameter to look at for the discrimination 

32 between episodes characterised by specific aerosol types (e.g. sea salt, Saharan dust) and more 

33 mixed conditions dominated by local emissions. However, this study also highlighted that it is 

34 necessary to combine temporal patterns of different optical parameters to robustly associate 

35 SSCAAE features to specific aerosol types. In addition, the complete chemical speciation and the 

36 high-time resolved size distribution were used to confirm the aerosol types identified via a 

37 combination of aerosol optical properties. Look-up tables with most suitable ranges of values for 

38 optical variables were produced; therefore, these pieces of information can be used at the same 

39 site or at locations with similar features to quickly identify the occurrence of aerosol episodes. 

40 Graphical frameworks (both from the literature and newly designed) are also proposed; for each 

41 scheme features, advantages, and limitations are discussed. 

42

43 Keywords: Intensive optical properties, high time resolution, aerosol classification schemes.

44

45 1. Introduction

46 Atmospheric aerosol is a complex mixture of suspended particles characterized by a huge variability 

47 in terms of chemical composition, size and shape. Aerosols can have a direct (by direct scattering 

48 and absorption) and indirect (by impacting on cloud formation and albedo) effect on atmospheric 

49 radiation (IPCC, 2013). Moreover, atmospheric aerosol is known to have detrimental effects on 

50 human health (Dockery et al., 1993; Pope et al., 2002). 

51 Estimates of the climate impacts of atmospheric aerosol and their optical properties are affected by 

52 very large uncertainties; nevertheless, direct measurements of aerosol optical properties are not 

53 usually performed by air quality (AQ) monitoring networks, in contrast to particle concentration and 

54 chemical composition, often performed for different size fractions. Aerosol optical properties are 

55 related to the size and composition of the particles, as well as to their mixing state (e.g. Bond and 

56 Bergstrom, 2006). Spectral scattering and absorption properties depend on the considered aerosol 

57 type; therefore, simultaneous measurements of multi-wavelength aerosol optical properties, 

58 chemical composition, and size distribution can improve our knowledge about atmospheric particles 

59 impact on the radiative forcing and air quality. 

60 Several classification schemes have been proposed in the literature to distinguish aerosol types and 

61 mixtures. Most of these methods make use of column-integrated properties usually retrieved from 
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62 remote-sensing data, such as those provided by the global network of ground-based sun and sky 

63 radiometers AERONET (Aerosol Robotic Network) or obtained by Sun photometers (e.g. Dubovik et 

64 al., 2002; Gobbi et al., 2007; Kalapureddy et al., 2009; Russell et al., 2010; Giles et al., 2011, 2012; 

65 Cazorla et al., 2013, Rupakheti et al., 2019). There are also few studies dealing with in-situ 

66 measurements of optical properties, both ground-based and airborne (e.g. Yang et al., 2009; Lee et 

67 al., 2012; Costabile et al., 2013; Cappa et al., 2016, Donateo et al., 2018, Romano et al., 2019). As 

68 pointed out by Schmeisser et al. (2017), the majority of the existing classification schemes work well 

69 at sites where the aerosol characteristics are fairly homogeneous, while their performance is worse 

70 in areas that experience a heterogeneity of particle sources and/or episodes characterised by 

71 aerosol transported from e.g. deserts or oceans. The methods proposed to distinguish PM types are 

72 sometimes supported by chemical composition, size distribution data, or back trajectory analyses; 

73 however, these pieces of information are not usually included in the classifying approaches 

74 themselves.

75 Data analysed in this paper were collected in the frame of the CARE Experiment (Carbonaceous 

76 Aerosol in Rome and Environs), which was carried out in Rome (Italy) using a variety of instruments 

77 and techniques to obtain a comprehensive and highly time-resolved picture of the aerosol 

78 properties at a Mediterranean urban background site. Indeed, several studies in recent literature 

79 (e.g. Timonen et al., 2010; Lucarelli et al., 2015; Costabile et al., 2017) pointed out the importance 

80 of shorter time scale (<1h) to study atmospheric processes and source variability. The CARE 

81 campaign was carried out at a site impacted by different local emission sources and sometimes 

82 affected by medium-long range transport of e.g. sea salt or Saharan dust.  An overview of 

83 measurements performed and methodologies applied during the CARE experiment is given by 

84 Costabile et al. (2017).

85 A phenomenology of specific episodes characterised by aerosol with different properties is given 

86 exploiting all the available information about high-time resolved optical properties, chemical 

87 composition, and size distribution of atmospheric aerosol. The main objective here is to find out one 

88 or more possible combinations of intensive optical parameters that can be used as a tool to identify 

89 aerosols with different origin. In addition, graphical classification schemes reported in the literature 

90 were applied and some were newly developed to visually distinguish specific episodes and aerosol 

91 types via 2D plots of optical parameters. These representations appear useful to have a first hint on 

92 the typologies of particles observed during a campaign, even though they are not able to clearly 
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93 disentangle different contributions, especially when atmospheric aerosol is dominated by mixtures 

94 of particles emitted by a variety of sources. In these cases, it is shown here that, exploiting multi-

95 wavelength optical properties measured with high-time resolution, only the combined analysis of 

96 their temporal patterns allows to identify the dominant contributions.

97

98

99 2. Material and Methods 

100 2.1 Site description

101 The CARE experiment took place from January 27th to February 28th 2017 at an urban background 

102 site in downtown Rome. Due to its geographical position (in the middle of the Mediterranean Sea) 

103 and its meteorological conditions, this site can experience the advection of air masses transported 

104 from the Sahara Desert (Barnaba and Gobbi, 2004; Gobbi et al., 2007; Barnaba et al., 2017; Gobbi 

105 et al., 2019) or from the sea (Perrino et al., 2009). The CARE measurement site is also affected by 

106 local urban sources such as vehicular traffic and biomass burning for heating and cooking (Costabile 

107 et al., 2017 and 2019).

108

109 2.2 Aerosol characterisation techniques

110 A detailed list of the instruments deployed during the CARE experiment and their operating 

111 conditions has been already reported in Costabile et al. (2017). Instruments and techniques which 

112 produced data here analysed will be shortly described in the following. Where not specified, 

113 instruments were operated at ambient relative humidity (RH).

114

115 2.2.1 Wavelength-dependent optical properties

116 On-line instruments continuously measured multi-wavelength PM10 scattering and absorption 

117 coefficients with a time resolution of 1 minute. In this study, 5-minute averages of each parameter 

118 are considered in order to reduce data noise. 

119 A 3-wavelength integrating Nephelometer (Aurora 3000, Ecotech) measured dry aerosol scattering 

120 coefficient σs(λ) at 450, 525, and 635 nm. Total scattering coefficients were corrected for truncation 

121 error according to Müller et al. (2011a). 

122 On-line dry aerosol absorption coefficient σa(λ) at 7 wavelengths (370, 470, 520, 590, 660, 880, and 

123 950 nm) was retrieved by equivalent Black Carbon (eBC) concentrations measured by a dual-spot 
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124 Aethalometer (AE33, Magee Scientific) (Drinovec et al., 2015) and using instrument-specific Mass 

125 Absorption Cross sections (MAC) at different wavelengths.

126 Moreover, a Multi-Angle Absorption Photometer (MAAP, Thermo Scientific) was used to measure 

127 eBC concentration at RH<30%. From these data, σa(637) was retrieved using the MAC of 6.6 m2/g 

128 set in the MAAP and a wavelength correction factor of 1.05 as reported in Müller et al. (2011b).

129

130 2.2.2 Chemical analyses

131 Both on-line and off-line techniques were used to assess aerosol chemical composition (elements, 

132 carbonaceous fractions, non-refractory components) on different size fractions with time resolution 

133 from 30 minutes to 2 hours. 

134 PM2.5 samples collected with 1-hour time resolution using a streaker sampler were analysed off-

135 line as for elemental composition by Particle Induced X-Ray Emission (PIXE) analysis (Calzolai et al., 

136 2015). This technique allows the detection and quantification of Z>10 elements. 

137 A Sunset Field Thermal-Optical Analyser (Model-4 Semi-Continuous OC-EC Field Analyzer – Sunset 

138 Laboratory inc.) measured elemental carbon (EC) and organic carbon (OC) in PM2.5 with a 2-hour 

139 time resolution.

140 An Aerodyne Aerosol Chemical Speciation Monitor (ACSM; Ng et al., 2011) provided PM1 non-

141 refractory chemical components (organic matter, sulphate, ammonium, nitrate, and chloride ions) 

142 on-line. The instrument operated at RH<30% with 30-minute time resolution and 1-hour averages 

143 were then calculated. Organic aerosol (OA) concentration apportioned among the sources by the 

144 SoFi software (Canonaco et al., 2013) was also analysed as an additional information; vehicular 

145 traffic (HOA), oxygenated secondary aerosol (OOA), and biomass burning (BBOA) were the major 

146 components taken into account. 

147

148 2.2.3 Particle number size distributions

149 To obtain particle number size distribution (PNSD), a Scanning Mobility Particle Sizer (TROPOS-

150 SMPS) and an Aerodynamic Particle Sizer (APS, TSI) were employed during the CARE campaign. Both 

151 instruments were operated with a time resolution of 5 minutes. SMPS and APS covered the 8-700 

152 nm range in electrical mobility diameter (dm) and 0.5-20 µm in aerodynamic diameter (da), 

153 respectively. To obtain a unique number size distribution in the range 8 nm ≤ dm ≤ 10 µm, APS data 

154 were converted to a dm-based size distribution (i.e. dN/dlog(dm)) and then merged to SMPS output 
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155 following the procedure described in Khlystov et al. (2004). More details about the PNSD calculation 

156 at the CARE site can be found in Costabile et al. (2017) and in Alas et al. (2019).

157

158 3. Calculations

159 3.1 Aethalometer data corrections
160 The multi-wavelength aerosol absorption coefficient σa(λ) was obtained by an AE33 Aethalometer, 

161 which gives eBC concentration using instrument-specific MAC values at seven wavelengths (e.g. 

162 10.35 m2/g at 660 nm). As described in Drinovec et al. (2015), the instrument internal software 

163 retrieves σa(λ) from attenuation measurements and corrects them for loading (k parameter) and 

164 multiple scattering (C factor) effects. It is noteworthy that literature studies (e.g. Collaud Coen et 

165 al., 2010; Segura et al., 2014) pointed out the site-specificity and possible wavelength dependence 

166 of these effects.

167 As evidenced by some recent literature studies (e.g. Goetz et al., 2018), the C factor equal to 1.57 

168 currently fixed in AE33 to convert attenuation into absorption can lead to a significant 

169 overestimation of the σa(λ) by this instrument. Aiming at reducing this bias, in this work the 

170 availability of parallel (independent) optical measurements was exploited and - following Collaud 

171 Coen et al. (2010) –the loading-corrected C factor (here Ccorr) was inferred via a linear regression 

172 analysis between the attenuation coefficient (loading-corrected) σatn,k(660) calculated from the eBC 

173 concentration given by the AE33  and σa(637) measured by the MAAP. Indeed, the MAAP is often 

174 considered as the reference instrument for filter-based measurements of aerosol light absorption 

175 coefficient (Müller et al., 2011b), and no simultaneous in-situ σa data were available for the CARE 

176 campaign. However, Hyvärinen et al. (2013) showed that when eBC concentration is high, the MAAP 

177 response lacks in linearity; in this study a non-linear behaviour at σa(637)>100 Mm-1 was observed, 

178 thus only MAAP data giving σa(637)<100 Mm-1 were considered in the regression σatn,k(660) vs 

179 σa(637). 

180 The AE33 attenuation coefficient σatn,k(660) was retrieved as follows:

181 σatn,k(660)= σa(660)·C= [eBC(660)]·MACAE33(660)·C= [eBC(660)]·10.35·1.57

182 The linear fit (performed with a Deming regression – see Figure S1) had intercept compatible with 

183 zero (within 95% confidence interval) and a slope (i.e. the Ccorr) of 2.66 that was used to correct the 

184 AE33 absorption coefficients at all wavelengths, following the approach developed by Collaud Coen 
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185 et al. (2010) and neglecting the possible wavelength-dependence as controversial results are 

186 reported in the literature so far.

187 The corrected σa(λ) from AE33 data were then calculated as:                        

188 σa,corr(λ)=σa(λ)·C/Ccorr=σa(λ)·1.57/2.66

189 For the sake of simplicity, σa,corr(λ) calculated with this procedure will be referred to as σa(λ) in the 

190 following.

191

192 3.2 Intensive optical parameters
193 Wavelength dependences of scattering and absorption coefficients, represented respectively by  

194 Scattering Ångström Exponent (SAE) and Absorption Ångström Exponent (AAE), have been used in 

195 literature (e.g. Cazorla et al., 2013; Cappa et al., 2016) to distinguish different aerosol types. Indeed, 

196 while SAE is mainly related to particle size, AAE is more linked to aerosol composition, even though 

197 it is influenced by particle size distribution as well. Consequently, the combination of these two 

198 parameters (SAE and AAE) can provide information about the origin and properties of the studied 

199 aerosol. 

200 In order to highlight possible stronger or weaker dependences of optical properties in some spectral 

201 regions, SAE and AAE were here calculated at different wavelength pairs. SAE(λ1,λ2) and AAE(λ1,λ2) 

202 were thus obtained as

203 SAE(λ1,λ2) =‒
ln (σs(λ1)/σs(λ2))

ln (λ1/λ2)

204 AAE(λ1,λ2) =‒
ln (σa(λ1)/σa(λ2))

ln (λ1/λ2)

205 where λ1<λ2 

206 With a similar equation Extinction Ångström Exponent EAE(λ1,λ2) was also inferred from extinction 

207 coefficients σe(λ) calculated at Nephelometer wavelengths (i.e. 450, 525, and 635 nm) as σe(λ)= 

208 σa(λ)+σs(λ). 

209 Due to the difference in the operating wavelengths of instrumentation used for measurements of 

210 scattering and absorption properties, σa(λ) was reported to 450, 525, and 635 nm (i.e. the three 

211 operating λs of the Nephelometer). Since the absorption coefficient wavelength dependence can be 

212 represented by a power law (σa(λ)~λ-AAE) with good approximation, the quantity AAE(fit) was 

213 calculated via a power-law fit of all 7-λ σa(λ) to exploit all the available absorption spectral range. 
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214 For each of the three operating λs of the Nephelometer, the resulting σa(λ) was then obtained as σa

215 , where λref is the nearest wavelength at which absorption data were (λ) = σa(λref)( λ
λref)

‒ AAE(fit)

216 available (i.e. 470, 520, and 660 nm for the AE33). 

217 To better analyse the spectral behaviour of σa(λ), the variation in AAE calculated employing different 

218 wavelength pairs was considered as the AAE itself may vary with the wavelength (Eck et al., 1999; 

219 Schuster et al., 2006; Moosmüller and Chakrabarty, 2011). Indeed, even though the absorption 

220 wavelength dependence is usually represented by a simple power law, it has to be noted that 

221 especially when different aerosol components (e.g. Black Carbon, Brown Carbon and mineral dust) 

222 contribute to light absorption, the spectral behaviour can be more complicated; this feature is 

223 commonly referred to as spectral curvature. 

224 The parameter used to quantify this effect will be hereafter referred to as dAAE(λ1,λ2,λ3); it 

225 represents the spectral curvature of σa(λ), computed as the derivative of AAE as a function of ln(λ). 

226 This calculation is similar to the one performed to obtain the curvature of Aerosol Optical Depth 

227 (AOD) often used by the AERONET network as a proxy for particle size (Kaufman, 1993; Eck et al., 

228 1999; Schuster et al., 2006). Therefore, dAAE(λ1,λ2,λ3) was calculated as: 

229 dAAE(λ1,λ2,λ3) = 2 ∙
AAE(λ1,λ2) ‒ AAE(λ2,λ3)

ln (λ3/λ1)

230 where λ1<λ2<λ3. 

231 It is noteworthy that several dAAE were calculated using different λ combinations. Finally, 

232 dAAE(450,635,880) was selected as it responded well to absorption spectral variations. The 450-880 

233 nm range was preferred to 370-950 nm interval in order to limit the possible bias reported by Zotter 

234 et al. (2017) at the shortest wavelength of 370 nm and because =880 nm is the reference  used 

235 by the Aethalometer to retrieve eBC concentration. In addition, AAE calculated using also 370 nm 

236 did not show a response to specific aerosol types as significant as the one obtained when using 450 

237 nm. 

238 Aerosol absorption coefficients corrected for multiple scattering and adjusted for different 

239 wavelengths were also used to calculate the Single Scattering Albedo (SSA), representing the 

240 fraction of light extinction that is scattered. In the present work, SSA was retrieved at 450, 525, and 

241 635 nm as SSA(λ)=σs(λ)/σe(λ). 

242 As pointed out by some authors (e.g. Moosmüller and Chakrabarty, 2011; Costabile et al., 2013; Ealo 

243 et al., 2016; Titos et al., 2017) also the SSA wavelength dependence might be useful to give hints of 
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244 variations in aerosol size and composition, as it responds to both physical and chemical properties. 

245 Specifically, dSSA/dλ can serve as an indicator of the aerosol type especially at sites where Saharan 

246 dust transport events are detected (Collaud Coen et al., 2004; Yang et al., 2009; Costabile et al., 

247 2013; Romano et al., 2019). For instance, Valenzuela et al. (2015) exploited spectral SSA to 

248 distinguish between so-called dust or non-dust periods, i.e. periods influenced or not by advections 

249 of aerosol from the Sahara desert. 

250 Single Scattering Albedo Ångström Exponent (SSAAE) was also computed following Moosmüller and 

251 Chakrabarty (2011):

252 SSAAE(λ1,λ2)=SAE(λ1,λ2)-EAE(λ1,λ2) 

253 Indeed, as σs(λ)≈s·λ-SAE  and  σe(λ)≈e·λ-EAE (where s and e are constants), it follows:

254 SSA(λ) =
σs(λ)
σe(λ) ≈

s
e ∙

λ ‒ SAE

λ ‒ EAE =
s
e ∙ λ ‒ (SAE ‒ EAE) =

s
e ∙ λ ‒ SSAAE

255 Since extinction is usually dominated by scattering, SSAAE is likely the difference between two 

256 quantities (SAE and EAE) with comparable values. For this reason, in most cases SSA is expected to 

257 have a weak wavelength dependence and high uncertainties; therefore, it was not taken into 

258 account here. Opposite, the single scattering co-albedo SSCA=1-SSA=σa(λ)/σe(λ) has a wavelength 

259 dependence which can be represented by the Single Scattering Co-Albedo Ångström Exponent 

260 (SSCAAE) (Moosmüller and Chakrabarty, 2011), here computed  as

261 SSCAAE(λ1,λ2)=AAE(λ1,λ2)-EAE(λ1,λ2) 

262 It is noteworthy that co-albedo wavelength dependence does not depend on the relative 

263 contribution of absorption to extinction but only on the difference in their wavelength dependence. 

264 Moreover, being EAE comparable with SAE in most cases, SSCAAE is sensitive to both particle size 

265 (via EAE) and composition (through AAE), thus it is itself a combination of intensive optical 

266 properties describing different aerosol characteristics. 

267 SSAAE shows the same features too but the range of variability of its absolute values is small 

268 compared to SSCAAE for typical atmospheric conditions (i.e. SSA>0.5); thus, in this work SSCAAE was 

269 preferred as more effective in discriminating aerosol with different characteristics detected during 

270 specific episodes (see Section 4.1). 

271 For all optical parameters calculated with two wavelengths, the widest Nepehlometer λ range (450-

272 635 nm) was used to avoid extrapolation of σs(λ) from 635 nm to 880 nm. Indeed, calculations 
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273 performed with other couples of wavelengths (450-525 and 525-635) did not show significantly 

274 different features; the upper limit at 880 nm was considered for dAAE calculation only. 

275 For the sake of clarity, Table 1 reports a synthesis of the optical parameters used in this work and 

276 their definitions.

277

Parameter name Definition Symbol

Single Scattering Albedo σs(λ)/σe(λ) SSA(λ)

Single Scattering co-albedo σa(λ)/σe(λ)=1-SSA(λ) SSCA(λ)

Scattering Ångström Exponent -ln[σs(λ1)/σs(λ2)]/ln(λ1/λ2) SAE(λ1,λ2)

Absorption Ångström Exponent -ln[σa(λ1)/σa(λ2)]/ln(λ1/λ2) AAE(λ1,λ2)

Extinction Ångström Exponent -ln[σe(λ1)/σe(λ2)]/ln(λ1/λ2) EAE(λ1,λ2)

Absorption spectral curvature 2[AAE(λ1,λ2)-AAE(λ2,λ3)]/ln(λ3/λ1) dAAE(λ1,λ2,λ3)

Single Scattering co-albedo Ångström 

Exponent
AAE(λ1,λ2)-EAE(λ1,λ2) SSCAAE(λ1,λ2)

278 Table 1 Intensive optical parameters used in this work.
279

280 3.3 Optical source apportionment

281 To further confirm the identification of aerosol types (see Section 4.1.2), the well-known 

282 Aethalometer model (for detail see e.g. Sandradewi et al., 2008) was applied to estimate the fossil 

283 fuel (FF) and biomass burning (BB) contributions to the measured absorption coefficient. Indeed, 

284 the availability of multi-wavelength absorption coefficients by the AE33 allowed the apportionment 

285 of such contributions using AAE(FF)=0.9 and AAE(BB)=1.68, as suggested by Zotter et al. (2017) when 

286 site-specific values are lacking.

287
288 4 Results and Discussion

289 In the following, a detailed analysis of temporal patterns for intensive optical properties taken into 

290 account for aerosol classification is reported. 

291
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292 4.1 Temporal patterns of aerosol intensive optical properties – episodes and aerosol types 

293 identification

294 Temporal patterns of 1-h averaged SSCAAE(450,635), SAE(450,635), AAE(450,635), 

295 dAAE(450,525,635), and dAAE(450,635,880) are shown in Figure 1. High time-resolution temporal 

296 behaviour for multi-wavelength scattering, absorption coefficients, and SSA, together with 

297 concentration of chemical components and particle number in different size ranges can be found in 

298 the Supplementary Material.

299 As discussed in Section 3, SSCAAE is sensitive to both particle size and composition, thus very high 

300 or low values are likely indicative of aerosol with particular properties. During the CARE experiment, 

301 SSCAAE had a median value of 0.2 and the 5th and 95th quantiles equal to -0.1 and 1.2, respectively. 

302 Interestingly, in some periods SSCAAE values appeared significantly higher than the median value 

303 for the campaign; three events with SSCAAE(450,635) values larger than 1 occurred on 3-6 February 

304 (hereafter referred to as first episode), 24-25 February (hereafter referred to as second episode), 

305 and for a few hours in the afternoon of February 26th (hereafter referred to as third episode). 

306 Temporal patterns of SAE, AAE, and dAAE calculated with two λ triads (exploring different 

307 wavelength ranges) were analysed to look for different responses of these intensive properties 

308 among the three events during which SSCAAE was almost the same.
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309

310 Figure 1 Temporal patterns of SSCAAE(450,635), SAE(450,635), AAE(450,635), dAAE(450,635,880), 

311 and dAAE(450,525,635) during the CARE campaign.

312

313 Comparing several intensive optical properties (Figure 1), it was evident that the three episodes 

314 identified via SSCAAE temporal pattern represented events with different characteristics. In 

315 particular, SAE had significant lower values during the first two events and AAE was low in the period 

316 3-6 February, higher during the second episode, and reached its absolute maximum in 

317 correspondence to the last one. The absorption spectral curvature dAAE(450,635,880) resembled 

318 the AAE(450,635) pattern, whereas dAAE(450,525,635) was not sensitive to the event occurring 

319 between February 24th and 25th. 

320 In the next sections, episodes detected looking at intensive optical parameters will be analysed in 

321 detail in order to distinguish the aerosol origin and physical-chemical characteristics responsible for 
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322 the observed features in optical properties. In particular, periods characterised by advection-

323 dominated and local sources-dominated aerosols will be addressed with the aim of checking the 

324 effectiveness of SSCAAE as the key parameter to quickly identify the presence of specific aerosol 

325 events.

326

327 4.1.1 Advection-dominated aerosol types

328 As already mentioned, the first episode was characterised by high SSCAAE values especially between 

329 February 3rd and 6th. As shown in Figure 1, SAE(450,635) was low (below 0.5), indicating the 

330 predominance of large particles. Moreover, SSA(λ) was quite high (above 0.8) and exhibited a 

331 negative wavelength dependence (Figure S4) thus further suggesting a significant contribution of 

332 particles with large diameters, as also reported by Takemura et al. (2002) for desert dust and sea 

333 salt (with a weaker wavelength dependence). During this period σa(λ) was low (see Figure S3) and 

334 AAE(450,635) was small (about 1.3), thus suggesting that the absorption spectral behaviour was 

335 dominated by Black Carbon (BC) contribution from local fresh traffic emissions, typically associated 

336 to AAE=1, as also shown by Costabile et al (2019). Finally, both dAAE(450,525,635) and 

337 dAAE(450,635,880) were lower than the campaign average, confirming a weak wavelength 

338 dependence of the absorption coefficient. 

339 All these data together were suggestive of a sea salt advection episode; indeed, sea salt aerosol is 

340 generally characterised by quite large particles (from 0.5 to tens of micrometres – Ramachandran, 

341 2018) and it does not typically contribute to σa(λ) wavelength dependence due its negligible 

342 absorption coefficient. The attribution to a desert dust event (that can show similar SAE values) was 

343 excluded as higher AAE values are typically observed for this aerosol type (as explained in the 

344 following).

345 The sea salt transport episode identified through optical parameters was confirmed by particle 

346 number in different size ranges and chemical composition data.

347 Total particle number in the ranges 1 µm<da<2.5 µm and 2.5 µm<da<10 µm - that will be referred 

348 to as intermodal and coarse fractions, respectively - was calculated. From February 3rd to February 

349 6th a large increase in number concentration of the intermodal and coarse fractions was observed 

350 in agreement with the indication given by SSA wavelength dependence and consistently with results 

351 shown by Costabile et al. (2019).
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352 During the sea salt episode, particle number concentrations in the intermodal and coarse size 

353 fractions were higher and sub-micrometric/intermodal ratio was lower (both ofone order of 

354 magnitude) than in the rest of the campaign. It is noteworthy that during the period 3-6 February 

355 three sub-events were identified due to significant differences in aerosol properties. Indeed, the 

356 ratio of intermodal/coarse fractions was similar to previous days until the late afternoon of February 

357 3rd (even though concentration of super-micrometric aerosol is already high), it subsequently 

358 peaked in the evening of February 4th and increased again in late morning in February 5th. It is 

359 noteworthy that these sub-events can also be detected by a more detailed analysis of SSCAAE, 

360 exhibiting a first small peak contemporary to the period of stable intermodal/coarse on February 

361 3rd, and two periods with values higher than 1 interrupted by a minimum corresponding to low SSA 

362 values and an increasing number concentration of sub-micrometric particlescompared to the one 

363 in intermodal and coarse size fractions (Figure S8).

364 A focus on chemical composition can be seen in Figure 2, that represents temporal patterns of Na, 

365 Mg, Cl, V, Ni and S concentrations measured by PIXE analysis on PM2.5 streaker samples. 

366

367

368 Figure 2 Concentrations of Na, Mg, Cl, V, Ni, and S in PM2.5 during the CARE campaign.
369

370 The sea salt advection episode (see Figure 2) was characterised by a simultaneous increase in Na, 

371 Cl, and Mg concentrations - reaching 1158, 2518, and 362 ng/m3, respectively - compared to average 

372 values of 92, 38, and 33 ng/m3 detected during the rest of the campaign. Sea salt aerosol fresh 

373 emissions are typically identified through diagnostic ratios for bulk sea water (Seinfeld and Pandis, 

374 1998), e.g. Cl/Na (1.8) and Mg/Na (0.12). It has to be noted that sea salt Cl in aerosol particles can 

375 be depleted due to heterogeneous reactions with other compounds occurring in the atmosphere 
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376 (Seinfeld and Pandis, 1998), whereas Mg and Na are not involved in these processes; as a 

377 consequence, the Cl-to-Na ratio measured in sea salt aerosol can be lower than the one calculated 

378 based on bulk sea water composition, while Mg-to-Na ratio is maintained. As Na and Mg can be 

379 originated by multiple sources (e.g. sea salt, crustal material, industrial processes), when using the 

380 above mentioned diagnostic ratio only the contribution to the concentration of these elements due 

381 to sea salt should be taken into account. In this work, the elemental concentration was assessed by 

382 PIXE, therefore the concentration of sea salt Na (ssNa) was calculated following Diapouli et al. 

383 (2017). During the first episode, the ssNa-to-Na ratio was on average 0.95±0.04, therefore the total 

384 Na concentration was used to calculate diagnostic ratios, to avoid further uncertainties related to 

385 assumptions in the ssNa calculation. In the first sub-event (February 3rd) Mg-to-Na ratio (0.16±0.08) 

386 was fairly in agreement with the expected value of 0.12 while Cl-to-Na ratio was much lower 

387 (0.06±0.02) than the one expected for fresh sea salt. The diagnostic ratios were thus suggesting that 

388 aged sea salt particles impacted on the sampling site and that Cl was likely depleted by atmospheric 

389 reprocessing during the plume transport (Seinfeld and Pandis, 1998). Indeed, on February 3rd 

390 (afternoon) peaks in V, Ni, and S concentrations - well known tracers for ship emissions (Viana et al. 

391 2009) - were also registered. These chemical fingerprints confirmed that this first sub-event 

392 corresponded to the impact of a plume of aged and polluted marine aerosol. 

393 An increase in SSCAAE and peaks in Cl, Na, and Mg concentrations characterised the second sub-

394 event (February 4th). The Cl/Na and Mg/Na ratios were 1.79±0.75 and 0.14±0.01, respectively, i.e. 

395 comparable to diagnostic ratios for fresh sea salt. In this episode no significant contribution from 

396 anthropogenic components (e.g. V, Ni, EC) was observed, thus indicating the advection of clean 

397 marine air mass to the sampling site. 

398 On February 5th, a third SSCAAE peak was registered and the aerosol characteristics were similar to 

399 the previous period but for smaller Cl/Na ratio (0.88±0.38) and concentrations of S, V, and Ni, thus 

400 indicating the aging of the sea salt aerosol reaching the CARE site. 

401 In between the second and third peak, a decrease in SSCAAE (Figure 1), SSA (Figure S4), and 

402 concentrations of typical sea salt components together with increases in EC and σa(λ) accounted for 

403 a temporary predominance of local urban emissions, as further confirmed by a corresponding 

404 decrease in wind speed (not shown). 

405 The assignment of the observed properties to the advection of marine aerosol was also supported 

406 by back trajectory analysis (see Figure S9). 
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407 The SSCAAE peak (Figure 1) registered between February 24th and 25th highlighted the second 

408 episode, when low SAE(450,635) (below 0.5) and high AAE(450,635) (above 1.5) were also observed. 

409 In addition, a different response by dAAE(450,635,880) and dAAE(450,525,635) was recorded with 

410 high and low values, respectively, thus pointing at the smaller absorption spectral curvature at 

411 longer wavelengths compared to the shorter ones. In the literature, SAE with values comparable to 

412 zero have often been reported as an indication of desert dust detected at the studied site (e.g. 

413 Andreae et al., 2002; Yang et al., 2009; Costabile et al., 2013; Ealo et al., 2016; Titos et al., 2017; 

414 Lihavainen et al., 2017; Horvath et al., 2018; Romano et al; 2019). Indeed, SAE is linked to particle 

415 size (as described in Section 3) and desert aerosol is generally characterised by a large-sized particle 

416 contribution greater than in typical urban background PM. Advection events of desert aerosol have 

417 usually been associated to AAE significantly larger than one (in the range 1.2-3.5 – Collaud Coen et 

418 al., 2004; Fialho et al., 2006; Yang et al., 2009; Lee et al., 2012; Costabile et al., 2013; Lihavainen et 

419 al., 2017; Romano et al., 2019), in contrast to sea salt aerosol (exhibiting similar SAE but lower AAE). 

420 Moreover, it has been shown (e.g. Collaud Coen et al., 2004; Yang et al., 2009) that a non-negligible 

421 SSA wavelength dependence and more specifically negative SSAAE values, can be attributed to the 

422 predominance of large particles, usually associated with desert dust. 

423 All these considerations, together with the combined temporal patterns of different optical 

424 properties (see Figures 1, S2, S3, S4) were suggestive of an episode of desert dust transported to 

425 the CARE sampling site between February 24th and 25th. To confirm the hypothesis of a Saharan dust 

426 transport, size-segregated particle number and chemical composition were also investigated. The 

427 sub-micrometric/intermodal ratio showed a sharp decrease compared to days close in time and 

428 concentration of dust elemental tracers  showed a huge increase (Figure 3) (Nava et al., 2012; Gobbi 

429 et al., 2019).
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430

431 Figure 3 On the left: concentrations of Al, Si, and Fe in PM2.5. On the right: Ratio of sub-
432 micrometric/intermodal particle number. The period represented refers to the Saharan dust 
433 episode.
434 Back-trajectory analysis evidenced that the air mass reaching the CARE site during the night 

435 between February 24th and 25th had passed over the Sahara desert at ground level on February 22nd 

436 and then reached the sampling site after crossing the Mediterranean at higher altitudes (see Figure 

437 S10). 

438
439 4.1.2 Local sources dominated aerosol types

440 Another feature shown by SSCAAE was a narrow peak on February 26th afternoon (Figure 1), when 

441 smoke was seen by researchers working at the CARE site. Indeed, around 13:00 (LT) a large amount 

442 of smoke was noticed at Stadium Caracalla and at 18:00 (LT)  smoke was smelled at Terme di 

443 Caracalla, nearby the CARE sampling site. 

444 As shown in Figure 1, during this episode AAE(450,635) reached its highest value indicating the 

445 presence of relatively small particles (SAE was about 1) with an absorption wavelength dependence 

446 stronger than the one of BC. This was likely due to the presence of Brown Carbon (BrC) and it was 

447 consistent with the presence of combustion-generated emissions. As reported in Figure 4, a sharp 

448 increase in the biomass burning tracer BBOA was observed during the event (Figure 4); it is 

449 noteworthy that the concomitant occurrence of AAE(450,635) and dAEE(450,635,880) peaks 

450 reinforced the attribution to a short fire episode characterised by absorbing particles with a stronger 

451 absorption at shortest wavelengths. The Radon temporal pattern (Figure S11) revealed that the fire 

452 episode occurred during well-mixed atmospheric condition (low Radon values) while soon after a 

453 strong atmospheric stability affected the monitoring site thus promoting the pollutants 

454 accumulation (high Radon values and BBOA peak). 
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455

456 Figure 4 Temporal patterns of AAE(450,635), dAAE(450,635,880), and BBOA concentration during 
457 the biomass burning event of February 26th, 2017.
458

459 The central part of the CARE campaign (from February 11th to 22nd) was characterised by 

460 atmospheric stability (see Figure S11), with low wind speeds and clear sky. During this period, high 

461 σa(635) values (>50 Mm-1) especially in the evening were recorded. Low SSA(635) values (very often 

462 below 0.8), SSCAAE(450,635)<0.65 and mean SAE(450,635) and AAE(450,635) values of 1.33±0.19 

463 and 1.57±0.23, respectively, were observed. These aerosol characteristics pointed at a mixture of 

464 local emissions from traffic rush hours and biomass burning used for domestic heating. Indeed, the 

465 SAE and AAE values indicated a dominance of small particles with quite a strong absorption 

466 wavelength dependence, as the one caused by BrC. In the central period of the campaign wind 

467 speed was low (average±standard deviation: 1.46±0.89 m/s) suggesting a major role of local aerosol 

468 sources. 

469 Multi-wavelength high-time resolved absorption coefficient data were used to perform an optical 

470 source apportionment through the well-known Aethalometer model (see Section 3). The two 

471 sources considered in the model (fossil fuels - FF and biomass burning - BB) should give the highest 

472 contributions at 880 nm and 450 nm (i.e. the longest and the shortest wavelengths used here for 

473 aerosol absorption properties) due to the different absorption spectral dependence of aerosol 

474 particles emitted by FF and BB. Therefore, σa(880)(FF) and σa(450)(BB) were taken as representative 
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475 parameters for periods dominated by traffic and biomass burning emissions, respectively, as also 

476 confirmed by the similarity in temporal patterns of HOA and BBOA (Figure 5). 

477

478  

479 Figure 5. Top panel: Temporal patterns of σa(880)(FF) and HOA concentration. Bottom panel 

480 Temporal patterns of σa(450)(BB) and BBOA concentration. Absorption coefficients were averaged 

481 over 1 hour to match OAs time resolution. Only data in the central part of the campaign (February 

482 11-22) are represented.

483

484 Increased concentration of EC and HOA, typically associated to traffic emissions, were detected as 

485 well (Figures S6 and S7). 

486 In Figure 6 diurnal cycles of number concentration for ultrafine particles (less than 0.1 µm in size, 

487 UFPs) and for particles in the size range 0.1-1 µm during working days are shown; as expected, UFPs 

488 peaked during traffic rush hours, confirming that the dominant contribution during these hours was 

489 given by very small particles from fresh vehicular emissions. In addition, particles in the 0.1-1 µm 

490 size fraction showed similar peaks but remained higher during the night, probably due to the effect 

491 of emissions from domestic heating combined with the daily evolution of the boundary layer height. 

492
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493  

494 Figure 6 Diurnal variation (normalised, in local time) of particle number concentration for UFPs and 

495 particles in the 0.1-1 µm size fraction. Data refer to the central part of the campaign (February 11-

496 22).

497
498 4.2 Graphical aerosol classification schemes

499 Some aerosol classification schemes based on the combination of aerosol properties will be 

500 presented in the following with the aim of providing graphical tools that can be useful to quickly 

501 distinguish specific events out of a complex dataset comprising optical variables.

502 Ranges of intensive optical properties allowing to best discriminate among aerosol types identified 

503 during the CARE campaign were derived based on the comprehensive analyses previously reported. 

504 In 

505 Table 2 ranges of the optical parameters used to classify each type are listed; all the reported 

506 conditions should be met in order to robustly identify different aerosol types.

507 In this work, six main aerosol types were classified. The identification of aerosol particles originated 

508 by vehicular traffic and biomass burning during the atmospheric stable period (see Section 4.1.2) 

509 was the most difficult task as the intensive optical properties were not sufficient to discriminate the 

510 two aerosol types. Therefore, the information retrieved by the Aethalometer model (see Sections 3 
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511 and 4.1.2) was added to identify periods when aerosol was dominated by traffic or biomass burning 

512 emissions.

513

Aerosol 
Type

SSCAAE
(450,63

5)

SAE
(450,635)

AAE
(450,635)

dAAE
(450,635,880)

dAAE
(450,525,635)

SSA
(635)

σa
(450)(BB) 

σa
(880)(FF

)
Dust >0.6 <0.4 >1.5 >1.6 <0.2 >0.8 - -
Sea >0.6 <0.4 <1.5 <1.7 <0.2 >0.8 - -
Polluted 
marine 0.6-0.9 0.3-0.8 <1.5 1.0-1.5 -1.0-0.0 >0.9 - -

Fire >0.8 >0.7 >1.8 >2.0 >0 - - -
Traffic <0.2 - - - - <0.85 - >8
BB <0.65 - - - - - >20 -

514

515 Table 2 Ranges of optical parameters useful to classify aerosol types. σa is given in Mm-1. Note that 

516 “dust” stands for desert aerosol; “sea” and “polluted marine” stand respectively for the first sub-

517 event and the second and third sub-events of the sea salt aerosol advection episode; “fire” stands 

518 for the short biomass burning episode; “traffic” indicates periods dominated by traffic emissions; 

519 “BB” indicates periods dominated by the contribution of biomass burning for residential heating.

520

521 Together, the polluted and the clean marine air masses advected to the sampling site occurred in 

522 7.9% of the cases (i.e. whole CARE dataset); desert dust data covered 2.7% of the cases; data 

523 referring to the fire event were 0.3% of the cases; traffic and biomass burning data represented 

524 20.6% and 17.2% of the cases, respectively.

525

526 Table 3 reports ranges of AAE, SAE, and SSA that were used in previous studies to classify aerosol 

527 types. Indeed, AAE and SAE were the most commonly employed parameters, usually combined to 

528 assess aerosol origin. In some works, information about SSA was added to help the distinction.

529

Reference
Columnar/

in situ 
properties

Wavelengths 
(nm) Aerosol type AAE SAE SSA

Dust >1.5 <0.5 -

Biomass burning 0.5-2 1-2 -
Bahadur 

et al., 
2012

Columnar 
(AERONET) 440, 675

Urban fossil <1.5 0.5-2 -
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Dust >1.5 <1
Coated large 

particles <1 <1.5 -

OC dominated >1.5 >1.5 -

Cazorla et 
al., 2013

Columnar 
(AERONET) 440, 675

EC dominated <1 >1.5 -
Dust >2 <0.2 -

Large particle/low 
absorption mix <1 <1 -

Strong BrC >2 >1.5 -

Cappa et 
al., 2016 In-situ 532, 600 (AAE)

450, 550 (SAE)

BC dominated 1.0-1.5 >1 -
Dust 2 <0.5 >0.85

Marine >2 <0.5 > 0.95
BC dominated <1.5 >2 <0.8

Costabile 
et al., 
2013

In-situ 467, 660 (SSA 
at 530 nm)

Brown carbon >2.5 0.5-2 >0.9
Biomass burning <2 1-3 <0.85

Dust >1.5 <1 -
Polluted marine 0.9-1.4 0.7-1.7 -

Schmeisse
r et al., 
2017

In-situ 450, 700
Remote marine 0.5-1.5 <1 -

Continental 
polluted 1-1.5 >1.4 -

Dust >2 <-0.2 -
Romano 

et al., 
2019

In-situ 470, 660
Marine <1.2 <0 -

Dust 1.0-3.0 0.0-0.4 0.88-
0.96

Biomass burning 1.1-2.3 0.8-1.7 0.82-
0.91

Rupakheti 
et al., 
2019

Columnar 
(AERONET)

440-870
(EAE instead 

of SAE, SSA at 
675 nm)

Urban/Industrial 0.6-1.3 0.8-1.6 0.89-
0.96

Dust >1.5 <0.4 >0.8
Sea <1.5 <0.4 >0.8

Polluted marine <1.5 0.3-0.8 >0.9
Fire >1.8 >0.7 -

Traffic <1.7 >0.7 <0.85

This study In-situ 450, 635 (SSA 
at 635 nm)

BB >1.5 >1.0 -
530

531 Table 3 AAE, SAE and SSA values used to classify aerosol types in literature works and this study.

532

533 Table 3 shows that AAE and SAE values used in this study are generally in agreement with literature 

534 values; differences may be due to the wavelengths used in the calculation of intensive optical 

535 properties, as well as to the fact that columnar or in-situ properties are employed. It has to be noted 

536 that episode-discriminating values reported in Table 2 are in principle wavelength-dependent, thus 

537 they are expected to be different if other wavelengths are employed for the calculation of intensive 
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538 optical properties. Moreover, they may differ depending on the location and season, due to the 

539 mixing of pure aerosol types with local emissions, that could affect optical properties. Therefore, in 

540 the perspective of using such approach in monitoring networks, it is strongly suggested to perform 

541 a preliminary study to check the most suitable ranges of optical variables. Nevertheless, graphical 

542 frameworks presented in the following can serve as guides to identify possible episodes simply 

543 observing where data are located in each plot. 

544 After identification and selection of the events, data with 5-min resolution were represented in 

545 some graphical schemes. In Figures 7 and 8, the left panel represents data classified as a particular 

546 aerosol type according to the methodology described above, whereas the right panel shows the rest 

547 of the data (not classified). Data points belonging to different aerosol types are distinguished using 

548 different symbols.

549

550 4.2.1 AAE vs SAE plot

551 AAE vs. SAE plot was originally developed in literature for data retrieved from the AERONET network 

552 (Russell et al., 2010) and then refined by Cazorla et al. (2013). Other authors (e.g. Cappa et al., 2016; 

553 Romano et al., 2019) applied the same methodology to in-situ ground-based data. The graphical 

554 classification scheme in Figure 7 is the AAE vs SAE plot, colour-coded by SSA(635) following Costabile 

555 et al. (2013). 

556

557  
558 Figure 7 AAE vs SAE plot colour-coded by SSA(635). On the left: data related to an aerosol type. On 
559 the right: all the remaining – i.e. non classified – data. Different symbols represent data of identified 
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560 aerosol types. BB stands for biomass burning. Note that “ship” stands for the polluted marine event 
561 and “fire” for the short biomass burning event.
562

563 As expected from the values reported in the look-up table (Table 2), when representing episodes in 

564 a plane, the corresponding data points are placed in different areas. It can be noted that “ship”, 

565 “sea”, “dust” and “fire” data are largely not mixed with non-classified data in the respective plot 

566 areas, as emerges also from Figure 7 (right panel), where some zones of the graph are not covered 

567 by points. Points classified as “ship” or “sea” (i.e. marine air masses) are the majority of data in the 

568 area defined by (SAE<0.8 and AAE<1.5); they were considered together since they are mixed in the 

569 graphical scheme. “Traffic” and “BB” points, although not completely overlapped, are also mixed 

570 with each other, reflecting the mixture of local sources contributing to atmospheric aerosol during 

571 the central part of the experiment.

572 The AAE vs SAE plot together with the third coordinate (SSA) helped in the visual discrimination of 

573 episodes, even though no ideal SAE, AAE, and SSA ranges were found to correctly classify the first 

574 sea salt advection (dominated by ship emissions) without the combined use of SSCAAE and dAAE, 

575 that allowed to distinguish this aerosol sub-type. 

576 Therefore, a detailed analysis of temporal patterns of different intensive optical properties 

577 (especially SSCAAE) gives a more complete set of information which can be used to distinguish all 

578 the events that may have occurred during a campaign. Moreover, for more complex mixtures of 

579 aerosol from different sources (when atmospheric stability occurs), the additional information from 

580 high-time resolved extensive optical properties is necessary to separate the dominant contribution.

581

582 4.2.2 SSCAAE vs dAAE plot

583 The second graphical framework proposed is a SSCAAE vs dAAE plot (Figure 8), colour-coded by 

584 SSA(635). As far as the authors know, no other study has used a similar scheme to distinguish 

585 episodes and aerosol types. 
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586

587 Figure 8 SSCAAE vs dAAE plot colour-coded by SSA(635). On the left: data related to an aerosol type. 
588 On the right: all the remaining – i.e. non classified – data. Different symbols represent data of 
589 identified aerosol types. BB stands for biomass burning. Note that “ship” stands for the polluted 
590 marine event and “fire” for the short biomass burning event.
591

592 This new scheme (Figure 8) confirmed the potential of SSCAAE as a key parameter for episodes 

593 identification. Indeed, except for urban aerosol, all the other aerosol types were characterised by 

594 SSCAAE(450,635)>0.5. The combination with dAAE(450,635,880) helped to discriminate events, 

595 since this parameter responds to non-uniform absorption spectral dependence that can be different 

596 for episodes with similar SSCAAE values. For instance, this was the case of “sea” and “fire” aerosol 

597 types, characterised respectively by mean SSCAAE(450,635) equal to 1.16±0.18 and 1.05±0.17 and 

598 mean dAAE(450,635,880) of 1.25±0.21 and 2.65±0.39, respectively.

599 Also in this case episodes are placed in different regions of the plane and some areas are not well 

600 covered by data points when considering only non-classified data (Figure 8 – right). In this graphical 

601 framework some aerosol types (in particular “dust”, and to a less extent “fire”) show an almost 

602 linear relationship between SSCAAE and dAAE. Finally, local-sources dominated periods are 

603 characterised by an almost λ-independent co-albedo (SSCAAE  0) and by an increase in the 

604 absorption spectral curvature as the contribution of biomass burning emissions increases compared 

605 to the one from vehicular traffic. 

606 The SSCAAE vs dAAE plot and AAE vs SAE plot are useful to provide a first hint about episodes and 

607 aerosol typologies. Nevertheless, 2D plots areas do not correspond uniquely to different aerosol 

608 types; especially aerosol mixtures impacted by local sources are not distinguishable from not 
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609 classified data, since zones where the two populations are located in the plots overlap. This is a 

610 limitation of 2D plots when plotting all data (both classified and unclassified) together as urban 

611 aerosol mixtures produce a cloud of points comprehending both traffic- and biomass burning-

612 related emissions. In complex situations, it is the separate study of temporal patterns of all the 

613 intensive optical parameters (SSCAAE, SAE, AAE, and dAAE) that can provide further information to 

614 distinguish aerosol with different origins. 

615

616 Conclusions

617 Aerosol physical-chemical and optical properties measured at high time resolution during the CARE 

618 experiment were analysed to classify different aerosol types, both from advection episodes and by 

619 local source emissions.

620 In particular, this study was focused on multi-wavelength optical properties measured by 

621 widespread on-line instrumentation (i.e. Nephelometer, Aethalometer, and MAAP). It has to be 

622 noted that, when analysing such kind of data, attention has to be paid to their interpretation and 

623 elaboration, since they require non-negligible corrections to take into account biases due to the 

624 filter matrix (e.g. for the Aethalometer) and for truncation effects (for the Nephelometer). 

625 In this work, scattering and absorption coefficients were employed to obtain several intensive 

626 optical parameters. At the CARE monitoring site, the wavelength dependence of the co-albedo 

627 (SSCAAE) was the most effective parameter in discriminating between aerosol particles dominated 

628 by air masses advection or influenced by local emissions; SSCAAE can be, therefore, a good 

629 candidate to be tested in similar studies in the future. Nevertheless, even exploiting the high time 

630 resolution, only a combination of several optical properties led to a better classification of different 

631 aerosol types. Chemical composition and size distribution data were employed to confirm the 

632 advection episodes and aerosol types identified by the optical parameters. Due to difficulties in 

633 disentangling local source emissions impacting on aerosol properties in atmospheric stagnant 

634 conditions, the well-known Aethalometer model was applied which helped in identifying the 

635 contribution of traffic and biomass burning to the absorption coefficient measured at different 

636 wavelengths.

637 Graphical classification schemes developed in this work represented useful tools to get a first 

638 classification of aerosol particles based on optical intensive parameters for specific aerosol 

639 advection events. At the same time, this work clearly showed that a more robust aerosol 
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640 classification can be obtained by observing temporal patterns of optical parameters. Although based 

641 on the analysis of few episodes, the complete aerosol chemical speciation and the availability of 

642 number size distributions confirmed the nature of the episodes detected by optical parameters.

643 The methodology here applied can be replicated at any site to generate specific look-up tables or 

644 using the one reported in this work at sites with similar characteristics; this approach can be useful 

645 to discriminate in near-real-time between pollution vs. natural sources-driven high PM events in 

646 environmental monitoring networks using optical parameters only. Of course, this procedure is 

647 much simpler than e.g. the methodology officially accepted by the European Commission (see e.g. 

648 Querol et al., 2019) to estimate the African dust outbreaks but provides hints also on the impact 

649 from other aerosol sources.
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SUPPLEMENTARY MATERIAL

Figure S1 Linear regression analysis performed to determine the factor Ccorr used to correct AE33 
data; numbers in brackets are 95% confidence intervals of regression parameters.



Figure S2 Temporal pattern of multi-wavelength scattering coefficient during the CARE campaign.

Figure S3 Temporal pattern of multi-wavelength absorption coefficient during the CARE campaign.

Figure S4 Temporal pattern of multi-wavelength single scattering albedo during the CARE 
campaign.



Figure S5 Temporal pattern of particle number concentration in sub-micrometric, intermodal and 
coarse size fractions during the CARE campaign. concentrations are normalised to the average 

value of each fraction during the experiment.

Figure S6 Temporal pattern of EC and OC concentration during the CARE campaign.

Figure S7 Temporal pattern of BBOA, HOA, andOOA concentrations during the CARE campaign.



 

Figure S8 Temporal patterns of SSCAAE(450,635) (left) and size-segregated particle number 
concentration normalised on the campaign average (right) during the sea salt aerosol advection 

episode.



 

Figure S9 Back trajectory analysis related to the sea salt aerosol advection.



Figure S10 Back trajectory analysis related to the Saharan dust advection.



Figure S11 Temporal pattern of 222Rn concentration during the CARE campaign.




