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ABSTRACT Nowadays there is an high number of IoT applications that seldom can interact with each
other because developed within different Vertical IoT Platforms that adopt different standards. Several
efforts are devoted to the construction of cross-layered frameworks that facilitate the interoperability among
cross-domain IoT platforms for the development of horizontal applications. Even if their realization poses
different challenges across all layers of the network stack, in this paper we focus on the interoperability
issues that arise at the data management layer. Specifically, starting from a flexible multi-granular Spatio-
Temporal-Thematic data model according to which events generated by different kinds of sensors can be
represented, we propose a Semantic Virtualization approach according to which the sensors belonging to
different IoT platforms and the schema of the produced event streams are described in a Domain Ontology,
obtained through the extension of the well-known Semantic Sensor Network ontology. Then, these sensors
can be exploited for the creation of Data Acquisition Plans by means of which the streams of events can
be filtered, merged, and aggregated in a meaningful way. A notion of consistency is introduced to bind the
output streams of the services contained in the Data Acquisition Plan with the Domain Ontology in order to
provide a semantic description of its final output.When these plansmeet the consistency constraints, it means
that the data they handle are well described at the Ontological level and thus the data acquisition process
over passed the interoperability barriers occurring in the original sources. The facilities of the StreamLoader
prototype are finally presented for supporting the user in the Semantic Virtualization process and for the
construction of meaningful Data Acquisition Plans.

INDEX TERMS Interoperability in IoT domain, ETL operations, semantic consistency.

I. INTRODUCTION
According to Gartner Inc. [1] in 2020 more than 20 billion
physical or social sensors will be in use worldwide which pro-
duce large, complex, heterogeneous, structured and unstruc-
tured data that can be profitably used for generating a wide
plethora of services. Dealingwith the vast amount of data pro-
duced by the things, their varying capabilities, and generating
useful services, is around the biggest conceptual and techno-
logical challenges of our time [2]. This challenge is further
exaggerated by the typical ills of early-stage technology that
lead to the production of different IoT platforms (more than
600 according to a recent survey [3]) and standard formats
(e.g. OMANGSI 9/10 [4] and ETSI oneM2M [5]) in different
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contexts of use that rarely are able to collaborate each other.
By exploiting these platforms, many ‘‘vertical’’ applications
can be easily developed in different fields (e.g. environment
monitoring [6], healthcare service [7], transportation and
logistics [8], smart cities [9], smart homes [10]). However,
these solutions are characterized by the use of hardware and
software of a specific industry and the interoperability with
other platforms is rarely supported. This means that if we
have an application for monitoring the energy consumption in
a Smart Home platform and one for environment monitoring
in a Smart City platform there is no easy way to combine
them in the scope of a new added-value application, like for
example determining the levels of the internal heater relying
on the weather forecast for the next hours. This lack of
interoperability prevents the emergence of broadly accepted
IoT ecosystems [11]. A recentMcKinsey study [12] estimates

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 176141

https://orcid.org/0000-0003-1949-2992
https://orcid.org/0000-0003-2514-4070
https://orcid.org/0000-0001-5701-0080
https://orcid.org/0000-0001-7382-1107


S. Valtolina et al.: Ontology-Based Consistent Specification of Sensor Data Acquisition Plans in Cross-Domain IoT Platforms

that a 40% share of the potential economic value of the
IoT directly depends on interoperability gaps among IoT
platforms.

These technological barriers also have negative impact on
the business opportunities, especially for small innovative
enterprises, which cannot afford to offer solutions across
platforms.

To overcome these limitations, a number of European
Projects are currently under development with the purpose
of generating infrastructures among heterogeneous platforms
that facilitate the development of ‘‘horizontal’’ IoT applica-
tions that exploit sensors, actuators and infrastructures made
available by different platforms. Even if their realization
poses different challenges across all layers of the network
stack, we wish to focus on those that arise at the data manage-
ment layer. First, data can be represented in different formats
(e.g. CSV, XML, JSON) and present different structures for
representing the same kind of information. Second, data can
be represented at different spatial and/or temporal granulari-
ties (e.g. temperatures per hour in a room versus temperatures
per day in a geographical area), and according to different
thematic (data about traffic jams vs data about pollution).
Moreover, as remarked in [13], [14], data can be incomplete
and need to be enhanced by considering contextual infor-
mation that can be acquired by knowledge bases and other
information sources. Last but not least, data might have vari-
ous semantics, including units of measurement (temperatures
in Celsius or Fahrenheit degrees), accuracy, mathematical
constructs, sensor types and properties and more.

All these issues, that are common in any situation in which
we wish to integrate heterogeneous information systems, are
further exacerbated from the variability of the available plat-
forms, the variability of the sensors adopted for the devel-
opment of IoT applications, and the lack of a well accepted
IoT standard ontology. Variability refers to the several tech-
nologies with which sensors and infrastructures are realized
and also to the protocols adopted for the transmission of the
events and the operating systems and languages with which
applications can be realized in each platform.

Moreover, information sources can change over time or
provide vast amount of raw and heterogeneous data, possibly
redundant, which need to be managed and processed in an
understandable manner. Therefore, developing a common
fixed schema or single Ontological descriptions are not fea-
sible.

Only few approaches (like OpenIoT [15] and an extension
of Orion Context Broker [16]) exploit ontologies (like the
Semantic Sensor Network ontology [17] and the IoT-Lite
ontology [18]) for characterizing the semantics of the data
produced by sensors. Recently, ETSI is working on the devel-
opment of the SAREF Ontology (w3id.org/saref) and
making it a standard in different contexts of use. However,
they provide strategies for describing the semantics of the
events generated by sensors but no support is provided for
enabling services to semantically integrate and manipulate
heterogeneous data. Even if many approaches have been

proposed for Ontology extraction and Ontology matching,
they are difficult to apply in the context of sensor data where
the creation of an ontology for the description of the sensors
and its mapping can require much more time than the life of
the IoT applications developed on top of the used platforms.

To tackle these issues, in this paper we propose to use a
Domain Ontology for a given domain and to adopt a semantic
annotationmechanism according to which the sensor schema
components are mapped with the concepts of the Domain
Ontology. This Ontology is developed by the domain experts
that starting from standard IoT Ontologies (e.g. IoT-Lite
ontology [18] and the SSN ontology [17], [19]) include con-
cepts and relationships that are usually adopted in a specific
IoT domain.

The sensor schema is the structure of data as a blueprint
of how the sensor is constructed and retrieves data. The
schema can be extracted from the data produced by sensors
even when these data are represented according to different
formats (e.g. JSON, CVS, or XML) and can be formed by
different attributes that describe the generated events.

The sensor schema is represented relying on a flex-
ible multi-granular Spatio-Temporal-Thematic (STT) data
model.

Key point of the model is that the three dimensions
are optional as well as the properties of the thematic in
order to handle sensors that only produce single-simple
measurements (e.g. temperatures) or structured events (e.g.
list of tweets with the associated properties) along with
their time-stamps and locations. This design choice has
been taken to properly handle situations in which the sen-
sors are not equipped for associating to the observations
the spatio-temporal coordinates and the thematic aspects.
However, this information and other metadata can be added
to the events during the acquisition process. For example,
the knowledge of the gateways in charge of the tempera-
ture sensors in a given zone of a city can be exploited for
aggregating the temperatures relying on the gateway and
assigning its location and current time as spatio-temporal
dimensions.

The semantic annotation between the sensor schema and
the Domain Ontology is partial in the sense that we can-
not guarantee that the Ontology is always able to perfectly
describe any kind of sensors. However, by means of Data
Acquisition Plans (DAPs), it is possible to integrate differ-
ent information on the sensors events that make them valid
w.r.t. the adopted Domain Ontology (see a simple example
in Figure 6). A DAP is a dataflow organized according to a
direct acyclic graph where starting nodes represent sensors
(either physical and/or social) that should be used for a certain
analysis and can belong to different IoT platforms, internal
nodes are ETL (Extraction, Transform andLoad) services that
can be exploited for filtering, integrating, and aggregating the
streams produced by the sensors according to a certain logic.
The final node of the graph represents the output stream that
is obtained by the combination of the services on the source
streams and can be exploited for conducting an analysis or
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for the actuation of a given behavior (e.g. turn off the internal
heater).

A DAP is considered sound when the events that it han-
dles are expressed according to the same spatio-temporal
granularities. Moreover, the integration with data taken from
external sources (e.g. databases, Ontologies) and the ETL
services used in the plan are correctly specified. When these
conditions are met, the plan can be executed without errors.

We cannot however guarantee that the semantics of the
produced events arewell-defined. For this purpose a Semantic
Virtualization process is executed.
This process consists in the annotation of the sensor

schema and the output of each data acquisition service con-
tained in the DAP with the concepts and properties occur-
ring in the Domain Ontology. In this way, the consistency
of the output stream produced by the services w.r.t. the
Domain Ontology can be checked. Since the application of
the services can alter the schema of the incoming streams
(e.g. by introducing new properties or modifying the STT
dimensions or transforming its properties) it is possible that
non consistent streams become consistent. Therefore, it is
important to check the consistency property for each service
contained in a Data Acquisition Plan and, especially for the
final output stream. Starting from the identified mapping
between the schema of the sensors and the properties of the
Domain concepts, it is possible to generate individuals of
the Ontology that provide a semantic representation of the
original sensors. Moreover, also individuals can be generated
for representing the schema generated by the application of
the services within a DAP. These individual can be considered
instances of the Ontology and a common JSON representa-
tion can be provided for the events generated by the sensor.

When no mismatches are identified between the schema
of the final output stream and the Ontology, populated with
instances for the description of the DAP, we argue that the
plan is ‘‘consistent’’ w.r.t. the Ontology, that is, it is well
described at the semantic level. However, we also give the
chance to work with DAPs that are not consistent. Indeed,
the semantics of the final output stream can be fixed after-
wards (when events are stored in a Datawarehouse or in the
Cloud) or asserted by the experts that develop the plan. The
instances introduced in the Domain Ontology (for modeling
the sensors and the data acquisition services) can be exploited
for generating transformation rules from the external repre-
sentation to the internal one. When the mapping is consistent,
the transformation lead to an uniform representation of the
sensor events which are exposed to applications according to
a well-defined semantics

A Web application, named StreamLoader, has been devel-
oped for the specification of the Data Acquisition Plans, for
the verification of their consistency w.r.t. a Domain Ontology
and their execution in a cluster of machines where the data
produced by cross-domain sensors are collected by means of
the Apache Kafka communication protocol. The DAPs are
automatically translated in a Apache Spark Streaming script
for being executed in a distributed environment in order to

easily scale to the number of sensors and the events they
generate. This language has been chosen because it permits
to handle both stream and stored data. However, the DAP can
be easily translated also in other frameworks. StreamLoader
is equipped with an interactive environment that supports
the user in charge of handling events to discover the sensors
useful in a given situation, specify the adequate Data Acqui-
sition Plan for extracting, filtering, integrating, aggregating,
(eventually) storing, analyzing the events coming from the
identified sensors, and visualizing the results. Once, the user
is satisfied of his work, he can check the consistency w.r.t. the
Domain Ontology to verify that the semantics of the outcome
is well described. Then, the DAP is automatically translated
in a Apache Spark Streaming script that becomes a client of
Apache Kafka for the acquisition of streams of heterogeneous
sensor data.

The contributions of the paper are thus:

• Decoupling of the STT model adopted by a specific
platform for the representation of the data produced by
its sensors and a Domain Ontology. In this way, different
semantic characterizations are possible depending on the
context of use of the sensors.

• Definition of a Semantic Virtualization process accord-
ing to which the sensor schema is semantically charac-
terized with the concepts of a given Domain Ontology.
This characterization can be partial and can be enhanced
by means of a DAP.

• Semantic characterization of an entire data acquisition
process in order to verify whether the semantics of the
information manipulated by means of a DAP is consis-
tent w.r.t. the adopted Domain Ontology. When the DAP
is consistent we can argue that the produced data are well
described by the Ontology.

• Development of a tool that supports the user in the cre-
ation and validation of DAPs w.r.t. the adopted Domain
Ontology. The obtained DAP is then translated in Spark
streaming and executed in a cluster of machines.

The reminder of the paper is organized as follow. Section II
introduces a motivating scenario and the high level archi-
tecture that is exploited for the Semantic Virtualization of
the sensors and the specification of Data Acquisition Plans.
Section III introduces the multi-granular STT data model that
is used for modeling the information coming from the sensors
and the different kinds of services that can be exploited for the
manipulation of the sensor event streams. Moreover, the Data
Acquisition Plan for our running example is presented along
with the conditions for stating its soundness. In Section IV
the characteristics of the Domain Ontology are introduced
pointing out the representation of the STT dimensions and
of the spatio-temporal granularities. The consistency of an
event stream that adheres to the STT data model w.r.t. the
Domain Ontology is discussed in Section V. Then, this notion
is extended in Section VI to an entire Data Acquisition Plan
and an algorithm is presented for the semantic description of
the plan. Section VII describes the main characteristics of the
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FIGURE 1. The LHD factor, the zones of the city of Milano, and the thresholds for HD.

StreamLoader system and provides some details on the GUI
facilities developed for supporting the users in the verification
of the soundness and consistency of a plan. Some experi-
mental results are reported in Section VIII and Section IX
discusses related work in sensor data acquisition techniques,
ETL visual facilities, and IoT Ontologies. Finally, Section X
concludes.

II. MOTIVATING SCENARIO AND ARCHITECTURE
In this section we outline a scenario that points out the issues
that we wish to face with our tool. Then, the overall architec-
ture of our system is described.

A. MOTIVATING SCENARIO
Suppose that the major of Milano wishes to evaluate the
Human Discomfort (HD) in the different zones of the city
(depicted in Figure 1(b)) due to excessive heat and humidity.
His meteorologists started from the Humidex Factor [20] and
proposed a formula that takes into account also the mood of
people gathered by considering the tweets exchanged in the
city zones. The formula is:

HD = [T + A+ (0.555 · (H − 10))] · STweet + LHD

where, A is the accuracy of the identified temperature T (both
expressed in ◦C), H is the humidity degree (expressed in
hPa), LHD is a local correction factor that takes into account
the position of each zone within the area of Milano (the LHD
factors are depicted in Figure 1(a)), and STweet is the per-
centage of tweets containing the words hot , heat , and sweat
among those exchanged in a given zone. This formula should
be evaluated every hour when the maximal temperature in the
area of Milano is greater than 20oC and the values are used
to evaluate the level of alert (Figure 1(c)).

Suppose now that in the area of Milano there are many sen-
sors that can be exploited for the computation of HD, but the
sensors belong to different IoT platforms and return the events
using different formats, and with different spatio-temporal
granularities. A first platform contains sensors of type T1 to
gather the temperatures every 10 minutes in Celsius degree
with an accuracy of the retrieved value of more or less
3 degrees (their JSON format is reported in Figure 2(a)).

FIGURE 2. Formats of the events generated by the sensors in the zones of
Milano.

A second platform contains: i) sensors of type T2 for gather-
ing the temperatures every 20 minutes in Fahrenheit degree
with the XML format in Figure 2(b) (but no geo-spatial
location is provided and they act only during spring 2019);
and, ii) sensors of typeH1 generate the events about humidity
every 30 minutes with the CSV format in Figure 2(c). Finally,
a third platform is equipped with sensors of type TW1 that
generate every minutes the list and the total number of tweets
that are exchanged in a given zone of the city in the CSV
format in Figure 2(d).

The information needed for computing HD is thus present
in the three platforms (and in the metadata associated with
their sensors) but need to be acquired, normalized, integrated
and elaborated before being ready for the computation. For
example the events of sensors of type T1 presented in Figure 2
has to be enriched with information about the accuracy of the
gathered temperature, as well as the events of other sensors
need to be integrated with other information about their spa-
tial, temporal and thematic dimensions.With this goal, a Data
Acquisition Plan should be defined that can be applied to the
streams of events that are generated by the different sensors in
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FIGURE 3. StreamLoader architecture.

order to produce the information required for the computation
ofHD. First, the schema of the sensors needs to be mapped to
an internal datamodel in which, when available, the temporal,
spatial and thematic dimensions are pointed out. This guar-
antees the adoption of a common model within our system
(though at this level we cannot guarantee the adoption of
the same semantics). Then, some services are composed for
filtering, combining, aggregating and enhancing the sensors
events in order to lead to the specific calculus interested in
the analysis.

B. ARCHITECTURE
In order to guarantee the behavior illustrated in themotivating
scenario, we will exploit the general architecture depicted
in Figure 3. In our architecture we assume the presence
of a cross-platform middleware that exposes the sensors
made available by the different architectures. The middle-
ware offers facilities for sensor discovery and maintenance
of queues of currently available sensors with their schema
structure and information about spatio-temporal granularity.

Semantic Virtualization is the process through which the
physical and social sensors are associated with the Stream-
Loader services and described by means of the adopted
Domain Ontology. Specific wrappers are then realized for
transforming the input formats (e.g. CSV, XML, JSON) of the
sensors of a given type in a JSON representation conforming
to our STT data model. Our service is able to detect the type
of format used by available/registered sensors of a gateway
and handles them through a Publish-Subscribe system that
is present in the cross-platform middleware. For each sen-
sor, when available, the middleware reports the frequency at
which events are generated, the spatial coordinates covered
by the sensors, and the produced thematic. This information
is used for the retrieval of the most adequate sensors for a

given kind of analysis and for establishing the kinds of data
sources that can be exploited for enriching the sensors events.

StreamLoader offers a set of different ETL (Extraction,
Transform and Load) services for the data acquisition process
that can be exploited by the user in the definition of the Data
Acquisition Plan (DAP). These services can be composed in
order to work on the events made available from the sensors
through the virtualization process and leads to establish the
flow of events that need to be stored or analyzed. The com-
position process is guided by means of the Ontological model
that gives feedback on the quality of the obtained stream of
events.

In our architecture new services can be added quite easily.
The designer has to decide whether the new service will work
on each single event (non-blocking service) or on windows
of events (blocking service) and produce the corresponding
code and applicability conditions. The new service will be
made available/invokable for the data acquisition process.
The whole system is executed on a cluster of machines and
results are stored on a database in order to be subsequently
analyzed.

III. OVERVIEW
In this section we detail our model for the representation of
the sensor event according to the STT dimensions and discuss
the developed data acquisition services. We remark that each
service should produce values according to our model. This
is an important feature for the verification of the consistency
of the service output w.r.t. the Domain Ontology (that will be
discussed in the remainder of the paper).

A. EVENT DATA MODEL
Relying on the concepts of temporal and spatial granulari-
ties, we exploit the concept of event, that is an instance of
a thematic aspect associated with a spatio-temporal gran-
ularity [21]. Granularities are used for identifying correla-
tions among events produced by different sensors and for
imposing consistency constraints in the composition of sen-
sor events produced by heterogeneous devices. Since some
sensors might not be adequately equipped for associating all
the required contextual information of a given concept of
the Domain Ontology (e.g. a sensor can only provide a real
number representing the temperature), or the time/location
where the event has been generated, all the dimensions of a
given event are considered optional in our data model as well
as the properties of the thematic.

Further metadata (e.g. unit of measure, precision) can be
associated with the event during the acquisition process. The
possibility offered through this model to represent the STT
dimensions generated by the sensors is somehow a ‘‘seman-
tic’’ information extracted from data. For example a gateway
in charge of a set of temperature sensors disseminated in a
given zone of a city can calculate the average temperature and
assign the time/location this observation refers to. However,
this kind of semantic can be directly desumed by the events
generated from the data and their formats and needs to be
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FIGURE 4. Graphical representation of temporal granularity.

validated from the domain experts (as we will discuss in the
following sections).

1) SPATIAL, TEMPORAL AND THEMATIC DIMENSIONS
In our work, we consider the definition of temporal and
spatial granularities adopted in [21], [22]. Temporal and spa-
tial granularities are mapping functions from an index set
IS to the power sets of the temporal and spatial domains,
respectively. The temporal domain is represented as a pair
(IN,≤), where IN is the set of natural numbers representing
the set of time instants and ≤ is a relation order on IN. The
spatial domain contains geometric objects represented in one
or two dimensions (e.g. points, lines, and regions).1 Exam-
ples of temporal granularity include second, minute, day
with the usual meaning adopted in the Gregorian calendar,
whereas, meter, kilometer, feet, yard, zone and
city are examples of spatial granularities. Let GT and GS
denote a set of time and spatial granularities.

A granule is a sub set of a domain corresponding to a
single granularity mapping, that is, given a granularity G and
an index i ∈ IS, G(i) is a granule of G that identifies a
subset of the corresponding domain. Figure 4(a) shows this
property in case of temporal granularities. Granules of the
same granularity are disjoint, so there are no granule overlap-
ping. Figure 4(b) shows a violation of this definition while
Figure 4(c) presents another violation: non-empty temporal
granules preserve the order of the temporal domains. Each
non-empty granule of a granularityG is represented bymeans
of the ‘‘textual representation’’ as a label (e.g. a label for
day can be in the form mm/dd/yyyy). Granules are used to
specify the valid spatio-temporal bounds on attribute values.

Different granularities provide different partitions of their
domains because of the diverse relationships that can exist
among granularities, depending on the inclusion and the over-
lapping of granules [21], [22]. A granularity G is said to be

1Points are modeled by two coordinates; lines by a list of points, regions
by their boundary lines.

FIGURE 5. Graphical representation of spatial granularity.

finer than a granularityH , denotedG � H , if for each index i,
there exists an index j s.t. G(i) ⊆ H (j) [23].

For example, temporal granularity second is finer than
minute, and granularity month is finer than year.
Likewise, spatial granularity zone is finer than city.
Figure 5 shows different four granularities that are in
the finer-than relationship. Indeed, zone � city �
province � region. In the example, the zone/granule
z1 is a part the city/granule Milan which in turn is a
part of the province/granule MilanProvince and of the
region/granule Lombardy. Besides spatial and temporal
information, a semantically rich sensor network would pro-
vide thematic information for discovering and analyzing sen-
sor events. Thematics represent the type of event that is
generated by a sensor.

Examples of thematic are temperature, humidity,
wind speed, etc. In the following, T H represents the set
of thematics.

2) TEMPORAL AND SPATIAL TYPES AND VALUES
Starting from basic domains (like int, real, boolean),
denoted by Di, we consider structured types, like records and
lists, represented according to the JSON format. The set of
types is denoted by T and is used for the representation of the
thematic properties. Let A be a set of labels, the set of legal
values V for the types T is inductively defined as follows:
• if d ∈ Di and a ∈ A, then (a : d) ∈ V;
• if d1∈D1,. . ., dn∈Dn anda∈ A,(a : [d1,. . ., dn])∈V;
• if {d1, . . . , dn}⊆V and a∈A, (a : [d1, . . . , dn]) ∈ V;
• if (a1 : d1) ∈ V, . . . , (an : dn) ∈ V with ai 6= aj (i 6= j),
then (a1 : d1, . . . , an : dn) ∈ V .

Given a type τ ∈ T , a spatial granularity GS ∈ GS ,
and a temporal granularity GT ∈ GT , we denote with:
SpatialGS (τ ), a spatial type; TemporalGT (τ ), a temporal type,
and Spatio-Temporal(GT ,GS )(τ ) a spatio-temporal type [21].
Their legal values are defined as partial functions that

map each granule i ∈ IS (or pair of granules (i, j) for
spatio-temporal types) to the legal values for τ .
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3) STT EVENTS AND STREAM DATA MODEL
Relying on the temporal and spatial granularities, we are now
ready to present the concept of event. Our definition covers
different kinds of events that can be associated with the STT
dimensions. In the definition⊥ denotes amissing component.
Definition 1: (Event Type). Let τ ∈ T be a type, GT ∈

GT ∪ {⊥} a temporal granularity, GS ∈ GS ∪ {⊥} a spatial
granularity, and th ∈ T H ∪ {⊥} a thematic. An Event Type,
denoted Event th

〈GT ,GS 〉
(τ ), can be:

• if GT = GS = ⊥, a list of pairs 〈th, τ 〉.
• if GT = ⊥ and GS 6= ⊥, a partial function that maps
GS -granules (referred to by their indices) to pair 〈th, τ 〉
(SpatialGS (〈th, τ 〉)).

• if GT 6= ⊥ and GS = ⊥, a partial function that maps
GT -granules to pair 〈th, τ 〉 (TemporalGT (〈th, τ 〉)).

• if GT 6= ⊥ and GS 6= ⊥, a partial function
that maps (GT ,GS )-granules to pair 〈th, τ 〉(Spatio-
Temporal(GT ,GS )(〈th, τ 〉). �

Example 1: Consider the scenario introduced in
Section II-A. In this scenario we can identify four types of
events generated by sensors as follows:
• T1: Event{temperature}

〈10 minute,point〉(temperatureVal :
real}).

• T2: Event{temperature}
〈20 minute,⊥〉 ({temperatureVal :

real}).
• H1:Event

{humidity}
〈30 minute,point〉({humidityVal : real}).

• TW1: Event
{tweet}
〈minute,zone〉({tweets : list(string),

numTweets : int}).
This representation of the event type of each sensor is

exploited for modeling the events generated by the sensors
in our uniform JSON format that is used for simplifying their
processing. Note that the temperatures in T1 are expressed in
Celsius, where those in T2 are expressed in Fahrenheit, and
the notationpoint indicates the event geo-position (latitude,
longitude). �
Relying on the events, we can characterize an event stream.
Definition 2: (Event Stream). Let τ ∈ T be a type, GT ∈

GT ∪ {⊥} a temporal granularity, GS ∈ GT ∪ {⊥} a spatial
granularity, th ∈ T H ∪ {⊥} a thematic, [ts, te] a temporal
interval, and S a set of spatial values. An event stream is a
6-tuple

〈GT ,GS , th, [ts, te], S,Event th〈GT ,GS 〉(τ )〉

where: if GS 6= ⊥ then GS � GranS (S), and if GT 6= ⊥ then
GT = GranT (ts) = GranT (te). �

An event stream describes thus a sequence of events that
is associated with meta information related to the interval in
which the flow is acquired and the STT dimensions (when
available). The meta information is exploited for imposing
the integrity constraints on the produced events.
Example 2: Consider the event type associated with the

sensors of type TW1.
The event streams of each zone of Milano produced in the

year 2019 can be characterized by 〈minute,zone,tweet,
[‘‘1/1/2019-00:00′′,‘‘1/1/2020-00:00′′], {z1, . . . ,z9},

Event{tweet}
〈minute,zone〉({tweets:list(string),num-Twe-

ets:int})〉, where {〈‘‘15/05/2019-12:00′′,z1,tweet,
{tweets:[’today is very hot’, ’In my home there is much
heat’],numTweets:2}〉, 〈‘‘15/05/2019-12:01′′,z1,tweet,
{tweets:[’a nice day forme’,’hot,hot,hot’, ’I am walking’],
numTweets:3}〉, 〈‘‘15/05/2019-12:02′′,z1,tweet,
{tweets:[’I amsweat’,’It’s hot inhere’], numTweets:2}〉
is a stream of legal values. �

B. DATA ACQUISITION SERVICES
Several services can be devised for processing and combining
the streams produced by the sensors that adopt the event
stream model. Other services are provided for manipulating
the streams (for filtering, transforming, aggregating, compos-
ing and for event detection). Stream manipulation services
are classified in non-blocking and blocking services. In the
remainder of the section we discuss and detail the developed
services whose formal specification is sketched in Table 1.

In the presentation we use the following notations.Prop(o)
denotes the set of properties occurring in o, whereas
GranT (o)/GranS (o) represents the temporal/spatial granular-
ity of o and T ype(a, s) denotes the type domain of property a
in the event stream s. Other services are provided for manip-
ulating the streams (for filtering, transformation, aggrega-
tion and composition, and event detection). Each service is
characterized by several parameters that are exploited for the
verification of the DAP soundness and consistency.

1) NON-BLOCKING SERVICES
These services are applied on each single event and thus do
not require to maintain caches.

The filter service allows one to remove events that do
not adhere to a condition cond expressed on the values of the
event stream s. cond is a boolean expression on the properties
specified in the schema of the stream s.

The enrich service allows the inclusion of extra infor-
mation to the stream according to a knowledge base KB
or the Domain Ontology or static information sources. The
binding between the current event and one of these sources is
realized through the join predicate pred . This service is par-
ticularly important for enriching the events with contextual
information that are local to where the event is generated (for
example for associating the local correction factor LHD in
the computation ofHD). The spatio-temporal granularity of s
needs to be compliant with the one adopted in KB for a sound
enrichment of the event stream. The virtual-property
service allows the inclusion of a new property p to the schema
of s according to the specification spec. spec is an arithmetic
expression for determining the value of p relying on the values
of the properties of s. The transform service applies the
transformation function trans on the properties a1, . . . , an of
events in s. At the current stage the following transformation
functions have been considered: i) for changing the unit of
measure (e.g. from yards to meters) or geographical coordi-
nates (from one standard to another one); ii) for checking that
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TABLE 1. Data acquisition services.

data conform to given validation rules (e.g. dates conform-
ing to given patterns); iii) for changing the case of letters.
However, further functions can be easily integrated in our
framework.

2) BLOCKING SERVICES
Blocking operators require to maintain a cache of events for
a temporal interval t . At the end of the interval, the events
collected in the cache are processed by the operator and
the obtained result produced to the upcoming operators. The
blocking operators are marked with a B in Table 1.
The aggregation service aggregates the events

of s on the properties a1, . . . , an and applies the
aggregation function op ∈ {count,avg,sum,min,
max} on the other properties. The temporal granularity of t
needs to be compatible with the one of s. Moreover, the prop-
erties a1, . . . , an need to be included in those appearing in s.
The union service allows the union of the events produced
by different sensors in the same time window and produces a
new stream of events of thematic th′. Indeed, in this case the
user can specify whether the generated sequence of events
has a new thematics or maintain one of those of the incoming
streams. The join service creates a correspondence among
the events of two streams when their temporal and spatial
granularities are identical and the join predicate pred is
verified. The evaluation of the join is window-based, that is,
it is executed on the events collected from the two streams
in the temporal interval t and produce events of thematic
th′. The trigger-on/off service activates/deactivates the
production of events from a stream {s1} when a condition
cond is verified on the events collected from s in the time
interval t . We remark that the stream s1 can be the result of
the applications of different data acquisition services whose
thematics is th′.

The convert service applies a coercion function cf for
changing the spatio-temporal granularity of the stream s. The
temporal/spatial granularities tg and sg should be coarser than
the one used in s. Coercion functions [22] can be classified
into three categories: selective, aggregate, and user-defined
coercion functions. Selective coercion functions are first,

last, proj(index), main, and all. Coercion function
proj(index), for each granule in the coarser granularity,
returns the value corresponding to the granule of position
index at the finer granularity. Coercion function first
and last are the obvious specializations of the previous one.
Coercion functionmain, for each granule in the coarser gran-
ularity, returns the value which appears most frequently in the
included granules at the finer granularity. Coercion function
all, for each granule in the coarser granularity, returns the
value which always appears in the included granules at the
finer granularity if this value exists, the null value otherwise.
Functions are min, max, avg, and sum corresponding to the
well-known SQL aggregate functions. User-defined coercion
functions (named UDF) are services that can be dynamically
loaded and preserve the relationships among granularities.

C. DATA ACQUISITION PLAN
A Data Acquisition Plan is a directed acyclic graph that
represents the flow of operations on sensor data. This rep-
resentation helps the user on composing services in order to
transform, aggregate, filter and store information. For depict-
ing the concepts connected with the DAP, we use graphical
blocks whose meaning in reported in Table 2.
Definition 3: (A Data Acquisition Plan). A Data Acquisi-

tion Plan is a direct acyclic graph DAP = (V ,E), where V
is a set of vertices representing sensors (Vs), data acquisition
services (Vop), and destination (Vd ), andE represents the flow
of events that adheres to our model. �

We are now ready for the construction of the DAP for
computing the human discomfort of our motivating example.
Example 3: First, all the temperatures measured by the

sensors of type T1 and T2 are taken. Before computing the
union of the observed temperatures, we need to convert them
to the same spatio-temporal granularity, the same unit of
measure, and include the accuracy. Thus, on the streams
produced by sensors of type T1 the following services are
invoked:

(enrich) t11 =∝
O
accuracy t1

(convert) t21 	
1 hour
hour,zone (t

1
1 , avg)
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TABLE 2. Sensors, services, nodes, and edges representation.

By exploiting the Domain Ontology the accuracy and zone
of the sensors are included in the stream. Then, by exploit-
ing the relationship between the point and zone spatial
granularities and the relationship between the 10 minute
and 1 hour temporal granularities, the average temperature
is computed for each hour and zone. Therefore, the event
type stream of t21 is (hour, zone, temperature,
{temperatureVal:real, accuracy:real}).

Similar behavior is followed for the streams produced
by sensors of type T2 with the exceptions that: i) the tem-
perature values are expressed in Fahrenheit and need to be
transformed; ii) the spatial dimension is missing and can be
included bymeans of the data contained in the Domain Ontol-
ogy; and iii) temperatures are collected every 20 minutes.

(transform) t12♦
temperature
far2celsius t2

(enrich) t22 =∝
O
zone t

1
2

(convert) t32 	
1 hour
hour,zone (t

2
2 , avg)

(hour,zone,temperature, {temperatureVal:
real}) is the event type stream of t32 . Since the STT
dimensions of t32 and t21 are the same, the union of
the generated events is possible by the invocation t13 =
∪
1 hour,temperature({t21 , t

3
2 }).We remark that the types produced

by the two kinds of sensors are different (accuracy is
missing in t32 ). Therefore the value 0.0 is associated for this
property to the events of t32 because its type is real. At this
point we can enrich the stream t13 with the local correction
factor LHD (that are specified for each zone of Milan –
see Figure 1(a)) by means of the service t23 =∝

table(lhd)
zone

t13 . The resulting type is (hour,zone,temperature,
{temperatureVal:real, accuracy:real, lhd:
real}).

For what concern the humidity, we need to exploit the rela-
tionship between the point and zone spatial granularities
and the relationship between the 30 minute and 1 hour
temporal granularities to enhance the stream with the zone
and compute the average humidity per hour and per zone.
Similar behavior should be adopted for associating the zone
to the streams about humidity an aggregating at the hour
granularity. For what concern the humidity, we need
to exploit the relationship between the point and zone
spatial granularities and we need to enrich it with information
about the timestamp. Then, we need to compute the average
humidity per zone. By contrast, for the tweets we need to
select those containing the terms hot, heat and sweat and add
a virtual property containing the number of selected tweets.

(convert) h11 	
1 hour
hour,zone (h1, avg)

(enrich) h11 =∝
O
hour h1

(filter) tw1
1 = σ (tw1, like(tweets, ‘‘.*hot*.′′)||

like(tweets, ‘‘.*heat*.′′)||

like(tweets, ‘‘.*sweat*.′′))

(virtual property) tw2
1 = ]tw1

1
〈numPos,COUNT (tweets)〉

(hour,zone,humidity,{humidityVal:real})
is the event type stream of h11, whereas the event
type stream of tw2

1 is (minute,zone,tweet,
{tweets:list(string), numTweets:int, num
PosTweets:int}).

At this point the information about temperature, humid-
ity and tweets are organized according to the same
spatio-temporal granularities and can be joined to obtain the
terms of the formula and a virtual property can be included
in the resulting stream for storing the value of the human
discomfort for each hour.

(join) hd11 = h11 FG
1 hour,humanDisc
h11.zone=tw

2
1.zone

tw2
1

(join) hd21 = hd11 FG
1 hour,humanDisc
hd11 .zone=t

2
3 .zone

t23

(virtual property) hd31 = ]hd21
〈hd, (numPos/numTweets)

∗(temperature+ accuracy+

(0.555 ∗ (humidity− 10)))+ lhd〉

(hour,zone,humanDisc,{temperatureVal:real,
accuracy:real,lhd:real, humidityVal:real,
tweets: list(string), numTweets:int, hd:
real}, numPosTweets:int) is the event type stream
of hd31 .
The process for the calculation of the human discomfort is

triggered only when the maximal temperature in Milan in the
last hour is greater than 20o Celsius. Supposing to use only the
sensors of type T1 for the trigger, the events produced by these
sensors need to be converted to thehour time granularity and
city spatial granularity. The following two services are thus
invoked:

(convert)t13 = 	
1 hour
hour,city(t1,max)
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FIGURE 6. Graph representation of the running example’s data acquisition plan.

(trigger on)hd = ⊕ON,1 hour,humanDisc(t13 , {hd
3
1 }, )

temperature > 20

Therefore, the process for the calculation of the stream hd31
is activated only when the trigger condition is verified in the
last hour. The event type of the final stream is the same of
hd31 . A graphical representation of this Data Acquisition Plan
is reported in Figure 6. The figure points out the flows of
events that are generated by the physical and social sensors
and those produced by the application of the different ser-
vices. Different symbols are used for representing physical
and social sensors (bold circles), services (rectangles with
rounded corners, the triangle for representing the event trigger
and the corresponding action, and the thin rectangles for
representing the union/join services) and the destination node
(bold double line circle). �

In the graph representation of a DAP, we can specify
constraints for obtaining sound execution. Given a DAP =
(V ,E), the following functions are used: deg−(v) represents
the number or edges incoming in v ∈ V , whereas deg+(v) is
the number of outgoing edges from v.
Definition 4: (A Sound Data Acquisition Plan). Let

op1, . . . , opn be the services used in a Data Acquisition Plan
DAP = (V ,E).2 DAP is sound when: i)Vs 6= ∅, |Vd | = 1;
ii)∀v ∈ Vs, deg−(v) = 0, ∀v ∈ Vd , deg+(v) = 0; and iii)
for each opi, vi ∈ Vop, deg−(vi) corresponds to the number
of input streams for opi, each parameter required by opi is
correctly specified, and the conditions reported in Table 1 are
verified on the events of the incoming edges. �

IV. DOMAIN ONTOLOGY
The STT data model so far presented allows one to produce
events whose correctness is left to the user in charge of
its creation. To support the user in this activity, a Domain
Ontology is included within our system for each supported
domain. The purpose of the adopted ontology is to guarantee
that the properties specified for a given concept (in a certain
domain) actually occur in the events produced by the sensors

2For the sake of simplicity, the service opi corresponds to vertex vi.

and that the final events (i.e. those generated at the end of
the Data Acquisition Plan) are compliant with the spatial,
temporal and thematic conceptsmade available in the adopted
Domain Ontology. When this requirement is met we can say
that the generated events are consistent w.r.t. the Domain
Ontology.

For the design of the Domain Ontology we take into
account two of the most notable works in this field, the
IoT-Lite ontology [18] and the SSN ontology [17], [19] from
which IoT-Lite ontology is derived.

Then, these ontologies are aligned with other foundational
ontologies in order to make spatial, temporal and thematic
commitments explicit by using further concepts and rela-
tions for better explaining their intended meaning. They have
been chosen as the upper ontologies because they have onto-
logical frameworks and concepts (e.g. qualities, temporal
entities, units of measurements, geospatial positions info)
that are needed for making our Domain Ontology consistent
w.r.t. the STT model. Figure 7 depicts the concepts of the
ontologies integrated in our Domain Ontology and the main
relationships between them. For example, DOLCE-UltraLite
(DUL) [24] introduces the concept of DUL:Amount that is
used to identify and specify the type of a value (real, inte-
ger, listString, etc). qu:QuantityKind, and qu:Unit
derives from QU3 and they provides, respectively, informa-
tion about instances for thematic values and measurement
units (Celsius, Fahrenheit, kilometers, etc). Time4 is used
to label temporal instants or interval while Geo5 introduces
the class Geo:Point that is necessary in order to define
latitude and longitude. Two new classes, used to represent
instances coming from social sensors and characteized by
the prefix do: in the Domain Ontology, have been intro-
duced without taking into consideration any other existing
ontologies: do:Facebook and do:Twitter. The ontol-
ogy obtained by the integration of these components can
be further extended by domain experts with concepts and

3http://purl.oclc.org/NET/ssnx/qu/qu-rec20
4http://motools.sourceforge.net/timeline/timeline.html
5http://www.w3.org/2005/Incubator/geo/XGR-geo-ont/
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FIGURE 7. Relationships between the ontologies that compose our Domain Ontology.

relationships specifically tailored for representing peculiar
characteristics of a given domain of interest. In our graph-
ics we use standard notations for representing our Domain
Ontology and its instances. Specifically, dashed rectangles
represent instances, whereas dashed lines are used for linking
related instances according to a given relation. The dashed
circle is used for modeling the data value linked to an instance
and created by the data property assertion hasDataValue.
I(C) denotes the set of instances of class C, and C1 v C2
denotes that C1 is subclass of C2.
In the following we discuss the ontological representation

of the STT dimensions included in our Domain Ontology.

A. SPATIAL DIMENSION
The spatial dimension provides information regarding the
sensor location, in terms of either a geographical reference
system or named location. According to the specification
of classes of the IoT-Lite ontology, the spatial information
can be modeled using the class iot-lite:Coverage that
acknowledges that a location can be related to the coverage
of an IoT device (i.e. a temperature sensor inside a room has
a coverage of that room).

The property hasPoint of the iot-lite:Coverage
class states its location by using the geo:Point class and
its latitude and longitude properties. By contrast, to specify
that a location is a country, a region, a province, a city, etc
new subclasses of the class iot-lite:Entity (subclass
of iot-lite:Coverage) are inserted in the Ontology.
The spatial granularity GS of a location is specified through

a relation of order among the individuals of the subclasses
of the class iot-lite:Entity and is guaranteed by the
unary association isPartOf that, for instance, can be used
for describing that a province is a part of a region that, in turn,
is a part of a country. The spatial granularity GS can be also
specified by using the association hasSystemReference
between the class iot-lite:Entity and the class Geo-
SubdivisionStandard that we defined for instantiating
concepts concerning Standard Geographical Administrative
Subdivisions. A possible instance of this class can be used
for referring to the International Standard for country codes
and the ISO 31666 codes for their subdivisions. This stan-
dard defines the codes for the names of countries, dependent
territories, special areas of geographical interest, and their
principal subdivisions (e.g., provinces or states).

In the IoT-Lite ontology, the classiot-lite:Coverage
is then associated to the classes: iot-lite:Rectangle,
iot-lite:Polygon, and iot-lite:Circle in order
to represent the coverage area. Instances of the class
iot-lite:Rectangle are used for describing that the
coverage is made up by giving two geographical points
(instances of the class geo:Point) which are the opposite
corners of a rectangle. Instances of the class iot-lite:-
Polygon describe that the coverage is made up by link-
ing several geographical points by straight lines. Finally,
instances of the class iot-lite:Circle specify that
the coverage of a sensor is a circle with the center in a

6www.iso.org/iso/home/standards/country_codes.htm
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FIGURE 8. Twitter sensor of type TW1.

geographical point and with a given radius. The radius is
specified by using the class iot-lite:Radius that has
to be then associated with an unit of measure (instance of the
class qu:Unit for indicating that the value of the radius is
expressed in meter, kilometer, feet, yard, etc.).

For specifying the relation of order among different units
of measurement (i.e. meters vs kilometers or minutes vs
hours), the class qu:Unit can be linked to the class
qu:SystemOfUnits that represents the concept of ‘‘sys-
tem of units’’. This concept is defined as set of base units and
derived units, together with their multiples and sub-multiples,
defined in accordance with given rules, for a given system
of quantities. For example, the most widely used systems of
quantities and system of units are the International System of
Quantities (ISQ) and the International System of Units (SI).
Example 4: In our running example we wish to represent

a Domain Ontology for evaluating the human discomfort
in differ zones of Milano. With this aim, domain experts
have specified a Domain Ontology with a set of classes and
relationships useful to detect human discomfort events. For
modeling the spatial dimension, we wish to represent the
single points where the sensors are located, the zones of
Milano and the entire city. Moreover, we wish to model the
finer-than relationships existing among these granularities.

Figure 8 reports an example of spatial dimension instanti-
ation for a sensor of type TW1 of our running example.

In this case the Twitter sensor is located in zone 1 of
Milano (instance of the new class do:zone we inserted
as subclass of the class iot-lite:Entity) whose
shape is rounded by using a circle (instance of the class
iot-lite:Circle). The Circle coverage is made up by
giving the location of the sensor as the center of the circle
(e.g. a geo point instance of the class geo:Point) and the
radius as a DataProperty. The granularity is specified
though the properties isPartOf that connect the instances
z1,Milano andLombardia of the new classesdo:zone,

do:city and do:region we introduced in the Domain
Ontology. The other zones in Milano are represented in a
similar way through the class iot-lite:Polygon for
modeling the vertices delimiting each area. �

B. TEMPORAL DIMENSION
The temporal dimension in sensor events and its observation
and/or measurement data are used for describing attributes
such as time zone and measurement timestamp.

For modeling such concepts, the ontology is integrated
with the Timeline Ontology [25] that extends OWL-Time
with various temporal concepts such as Instant,
Interval, and Interval relationships. In detail,
we are interested in two main subclasses of Temporal Entity:
tl:Instant and tl:Interval. The instances of the
class tl:Instant are used for describing instants of time,
and the instances of the class tl:Interval are used for
specifying intervals by means of which we describe that a
sensor gathers events from time t1 to time t2 by means
of the properties Interval starts and Interval
finishes of the class tl:Proper Interval subclass
of the class tl:Interval.
As with the iot-lite:Coverage, through the associ-

ation between the temporal entities and the class qu:Unit,
it is possible to specify the granularity of the detected time
(day, hour, minute, second) and evaluate their relation-
ships. The temporal dimension t ∈ T of events coming from
a sensor at a granularity GT , is strictly related to the instant
(the timestamp) of gathering of the feature of interest we want
to monitor in an event such as temperature, humidity, etc.
This information is modeled by using an instance of the class
tl:Instant.
Example 5: Figure 9 describes an instance of the temporal

dimension associated with a sensor. In this case, the sensor
of type T2 is linked to a timestamp used for describing the
instant of time to which the specified sensor refers (instance
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FIGURE 9. Temporal dimension of sensor of type T2 .

of the class ttl:Instant). The other sensors of our moti-
vating scenario are linked to instances of the same class for
describing their timestamps. �
Through the property hasMeasurementPropertywe

can link a sensor to the class ssn:ResponseTime, sub-
class ssn:MeasurementProperty (v iot-lite:
Property) of the SSN ontology for specifying the time of
sampling. Therefore, the concept ‘‘response time’’ is used for
describing the granularity at which events are generated.
Example 6: In our motivating example, a sensor of type

T2 gathers temperature every 20 minutes. This situation is
described in Figure 9 by introducing an instance of the class
ssn:ResponseTime. An instance of the class qu:Unit
is then used for specifying the time granularity minute. �

C. THEMATIC DIMENSION
This dimension refers to the type of events that are observed
and is described by a record of property-values pairs. We use
this representation because the single observation can be
enriched by other information that can be directly generated
by the sensor or added during the data acquisition process.

In our ontology a thematic is an instance of the class
qu:QuantityKind of the IoT-Lite ontology, and is used
for describing the meaning of the values dispatched by a
sensor. The abstract classifier qu:QuantityKind repre-
sents the concept of ‘‘kind of quantity’’ that is defined as
‘‘aspect common to mutually comparable quantities’’ [26].
A quantity is defined as a characteristic of a phenomenon,
where it has a magnitude that can be expressed as a number
(i.e. the degree of a thermometer) and a reference (i.e. the
temperature). Through the instances of this class we are
able to represent the kind of values gathered by a sensor
such as temperature, humidity, wind speed, etc.
Quantities of the same kind (e.g. the values gathered by two
thermometers) have the same quantity dimension. However,
quantities of the same dimension are not necessarily of the
same kind (e.g. sensors T1 and T2 in our running example
gather the temperatures using two different units of mea-
surement: Celsius and Fahrenheit). For this reason

a sensor associated with a given theme (e.g. temperature)
can be linked to an instance of the class qu:Unit for
specifying the unit of measure of the detected values (e.g.
Celsius for a temperature).
In order to model the event type of a sensor, the class

iot:Metadata is used. Its instances model the data type
of the entity whose thematic is observed. As an example, for
the representation of a temperature value, an instance of the
class iot:Metadata is linked to the instance of the sensor
by means of a hasMetadata link. The instance of the class
iot:Metadata is then linked to an instance of the class
DUL:Amount for expressing its domain.
In some contexts of use, the events gathered by sensors are

coupled with some measurement properties that characterize
their thematic. Measurement properties (e.g. accuracy,
range, precision of ssn:Property) identify observ-
able characteristics of a sensor’s events or ability to make
observations. Specifically, these properties can refer to: i)
the observed characteristics of the measurement or; ii) other
information that can be used for a given kind of analysis (e.g.
the number of tweets related to high temperature).

The first kind of properties can be modeled in the
SSN ontology by means of the classes: ssn:Accuracy,
ssn:DetectionLimit, ssn:Frequency, ssn:La-
tency, ssn:MeasurementRange, ssn:Precision,
ssn:Resolution, ssn:Drift, ssn:Sensitivi-
ty and ssn:Selectivity v ssn:Measurement-
Property. The second kind of properties can be modeled
by introducing new classes in the Domain Ontology.
Example 7: Figure 10 shows how sensors of type T1 are

semantically described by the class ssn:SensingDevice
and whose thematic areas are modeled by the instance
temperature of the class qu : QuantityKind. A sen-
sor gathers temperature values in Celsius (instance of the
class qu : Unit) and it is then linked to an instance of the
class iot : Metadata for modeling the temperature data
type. Moreover the sensor of type T1 presents a measurement
property for reporting the accuracy of the retrieved value
(more or less 3 Celsius degrees), which is expressed bymeans
of an instance of the class ssn : Accuracy. The instances
of the class qu : Unit are used for specifying the unit of
measurement (Celsius) of the accuracy.

In the Ontology we describe sensors of type T1 after the
application of operations of the Data Acquisition Plan as
described in Section III-C.

As indicated in Figure 11 the sensors of type TW1 deal
with the Twitter thematic. This concept is modeled by using
the Tweets instance of the class qu:QuantityKind. The
data type associated to these sensors is a list of strings (tweets)
modeled by an instance of the class iot:Metadata. The
set of properties of the retrieved tweets, that is, the total
number of tweets, and the number of positive tweets (i.e.
those that contain the terms hot , heat , and sweat) is mod-
eled by the instances of the subclasses do:NumTweets and
do:NumPosTweets of a new class do:TwitterPropv
ssn:MeasurementProperty. Two properties are linked
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FIGURE 10. Thematic dimension of sensor of type T1.

to the sensor of type TW1 that are used for modeling the
number of tweets and the number of positive tweets. In a
similar way, we can introduce the instance HumanDisc for
representing the thematic Human Discomfort and its proper-
ties required for the computation of the formula. �
In this Section we defined a Domain Ontology able to

describe each STT dimension discussed before. In this phase
we are able to semantically characterize the information pro-
duced by every sensor into the dimensions provided by our
Syntactic Data Model in order to generate transformation
rules that generate instances and links in the Domain Ontol-
ogy for the representation of the sensor and of its schema.

V. EVENT STREAM CONSISTENCY W.R.T. DOMAIN
ONTOLOGY
To guarantee that the event stream

M = 〈GT ,GS , th, [ts, te], S,Event th〈GT ,GS 〉(τ )〉

gathered by a sensor specified according to Definition 2 is
consistent w.r.t. a given Domain Ontology O, we need to
verify the exact match of its spatial, temporal and thematic
dimensions with the related concepts expressed in O. We
remark that a Domain Ontology contains a set of classes and
relationships considered valid by the experts of such domain.

For what concern the thematic dimension, this means that,
in order to be consistent, the properties specified in the
streams should be conceptualized as classes and links in
advance in the Domain Ontology by the experts.

The general idea is to enable domain experts to include
different kinds of constraints into the Domain Ontology in
order to represent only concepts that are relative in their
context of use. To do it, we can include restrictions on the
mandatory occurrence of properties and on the verification of
logical formulas on the Ontological instances. For instance,
we can require that the unit of measure used by a thermometer

should be present in the stream and that when more than
one observation occurs, information about the accuracy of the
gathered temperature is also reported. These restrictions have
effects only on the consistency of the produced events.

At the ontology level, the existential restriction, denoted
with ∃, can be used for this purpose with the meaning that
‘some values from’ (or ‘at least one’) respect the condition.

An existential restriction describes the class of instances
that have at least one kind of relationship along a specified
association to an instance of a specific class. For example,
in order to impose the presence of the accuracy for each
gathered temperature, the following constraint should be
specified: ∀ instance of the class ssn:SensingDevice
having an association qu:QuantityKindwith an instance
of the class Temperature, an association ssn:-
MeasurementProperty exists with an instance of the
class ssn:Accuracy. In other words,the experts require
that sensors of type T1 for being consistent should have a
measurement property ssn:Accuracy. Analogously, they
can require that sensors of type TW1 need to be bound with
an instance of TwitterProp that contains the total number
of tweets and positive ones.

A sensor is ‘‘not consistent’’ w.r.t. the Domain Ontology if
it is not consistent with any of the STT dimensions according
to the following definitions.
Definition 5: (Spatial Consistency). Given a sensor s

instance of the class ssn:SensingDevice that generates
a event streamM,M is spatially consistent w.r.t. DO if:
1) GS corresponds to an instance isp of the classes

geo:Point, iot-lite:Rectangle,
iot-lite:Polygon, or iot-lite:Circle,
and an association exists between s and isp; or,

2) GS corresponds to an instance is of the class
iot-lite:Entity v iot-lite:Coverage at
the granularity GS . �
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FIGURE 11. Thematic dimension of sensor of type TW1.

Example 8: Consider the situation described in Exam-
ple 4 and depicted in Figure 8. A sensor of type TW1 is
spatially consistent because its location is described by an
instance of the class iot-lite:Entity that is a part of
a city (Milano) thus fulfilling the relation of order defined by
the granularity GS . �
Definition 6: (Temporal Consistency). Given a sensor s

instance of the class ssn:SensingDevice that generates
a event streamM,M is temporally consistent w.r.t. DO if:

1) GT is specified in M and s is linked to a times-
tamp described by means of an instance of the class
tl:Instant at the temporal granularity GT and s is
linked to an instance of the class ssn:Response-
Time that produces the stream at the granularity GT ;

2) the time interval [ts, te] is specified in M and an
instance of the class tl:Proper Interval exists
inDO such that the interval described by the properties
Interval starts and Interval finishes
contains [ts, te];

3) GT is specified through a link between the instance of
the class ssn:ResponseTime with an instance of
the class qu:Unit for specifying the unit of measure
and by the subsequential link to the instance of the class
qu:SystemOfUnits. �

Example 9: Consider the situation described in Example 5
and Example 6 and depicted in Figure 9. A sensor of type
T2 is temporally consistent because the timestamp of the
data coming from the sensor is described by an instance
of the class tl:Instant. Moreover, the sensor is also
linked to an instance of the class ssn:ResponseTime that
specifies that the temperature is acquired every 20 minutes.
The instance of qu:Unit specifies the time granularity
Minute. �

Definition 7: (Thematic Consistency). Given a sensor s
instance of the class ssn:SensingDevice that generates
a event streamM,M is thematic consistent w.r.t. DO if:

1) s is linked to an instance ith of the classqu:Quantity-
Kind through the link
hasQuantityKind that corresponds to th;

2) for each property p belonging to the data type τ asso-
ciated to the sensor s, p is described by means of an
instance of the class iot:Metadata which is in turn
associated at an instance of the class DUL:Amount for
expressing its domain, or p is linked to an instance of
the class ssn:MeasurementProperty by means
of an association hasMeasurementProperty. �

Example 10: Consider the situation depicted in Figure 10
and in Figure 11. T1 and TW1 are thematically consistent
w.r.t. the adopted Domain Ontology because these instances
are linked to instances of the qu:QuantityKind class for
representing their thematic, they are linked to instances of
the class iot:Metadata for modeling the data type and
in turn are linked to instances of the class DUL: Amount
for describing the corresponding domains. T1 is also linked
to the unit of measurement Celsius as foreseen in the DO.
Moreover, both sensors provide a complete semantic descrip-
tion of the properties as specified in the Domain Ontology.
In fact, T1 and TW1 present the connections with proper mea-
surement propertiesssn:Accuracy anddo:NumTweets
and do:NumPosTweets. �
Finally, we can specify that an event stream is consistent

only if it is temporally, spatially and thematically consistent
according to the adopted Ontology.
Definition 8: (Consistent Specification). The event stream

M is consistent if it is temporally, spatially and thematically
consistent w.r.t. DO. M is partially consistent if at least one
of the dimensions is consistent. �
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Example 11: Let DO be the Domain Ontology. Consider
the situation described in Example 2, and their ontology
characterization partially described in Examples 4,5, 6 and 7,
and depicted in Figures 8, 9, 10 and 11. Sensors of type
T1 and TW1 are spatially, temporally and thematic consistent
w.r.t.DO because for each retrieved event, the streams report
data about the position, the timestamp, the temperature plus
the accuracy in case of T1 or the list of tweets and the
related number of tweets and number of positive tweets in
case of TW1, as specified by domain experts in the DO.
Sensors of type T2 are temporally consistent w.r.t. O but
they are not spatially and thematic consistent because spatial
coordinates are missing and the thematic dimension does
not report information about the unit of measurement and
the accuracy. Finally, Sensors of type H1 are thematic and
spatially consistent w.r.t. DO, but temporally inconsistent
because temporal coordinates are missing. �

This definition of consistency allows the generation of
a mapping between the temporal and spatial dimensions
adopted in the event streams and the Domain Ontology and
also of a mapping between the properties specified for a given
thematic and the concepts of the Domain Ontology. These
mappings are then exploited in the Semantic Virtualization
process of the physical and social sensors for transforming
the events from the sensor specific formats to an internal rep-
resentation. This internal representation, when is consistent
w.r.t. the Domain Ontology, allows interoperability among
the events generated by sensors of different IoT platforms.

VI. VERIFICATION OF DAPS CONSISTENCY
In the previous sections we presented the data acquisition
services and we identified an approach for verifying the con-
sistency of their output w.r.t. the adopted Domain Ontology.

A Data Acquisition Plan is a composition of such services
and can be represented as a graph that specifies the flow of
operations on sensor data. This representation helps the user
on composing services in order to transform, aggregate, filter
and store information. According to the Definition 4, a Data
Acquisition Plan is considered sound if: i) the number of input
streams is equal to inputS; ii) the required parameters are
specified; and iii) its conditions conds can be evaluated on
the input stream s and are verified.

We are now able to acquire streams for which someone
of the Spatio-Temporal-Thematic dimensions are not spec-
ified or are specified but are not consistent according to
Definition 8. This is particular useful in order to flexibly
adapt to different situations and to post-pone the inclusion
of the STT dimensions according to extra knowledge that is
present in the Domain Ontology or in other sources. However,
we provide here the notion of a consistent Data Acquisition
Plan which is a sound plan where the ontology O and the
event model associated with the destination node of the graph
are consistent according to Definition 8.
Definition 9: (A Consistent Data Acquisition Plan). Let

G = (V ,E) be a sound Data Acquisition Plan according
to Definition 4, M and O be the event model and ontology

generated for the destination node. G is consistent if: GT 6=
⊥, GS 6= ⊥, andM is consistent w.r.t. O. �
This definition allows the applications of operations that

are not consistent w.r.t. the Domain Ontology, but can pro-
duce final results that are consistent with it. Therefore,
the data acquisition services can change the semantics of the
data and make them compliant with the adopted Ontology.
Example 12: The Data Acquisition Plan described in

example represented on Figure 6 is sound according to Defi-
nition 4. Moreover, the event type of the last instruction (hd)
is consistent w.r.t. our Domain Ontology. �
Internal nodes of a Data Acquisition Plan can thus be not

consistent (or only partially consistent) w.r.t. the Domain
Ontology. This allows the generation of a flexible tool
that is able to handle heterogeneous streams that do not
perfectly match the constraints imposed by the Domain
Ontology.

In the remainder of the section we first introduce the
operations required for the description of the event schema
produced by each data acquisition service at the ontological
level. Then, an algorithm is presented that starting from a
sound Data Acquisition Plan, populates the instances of the
Domain Ontology for its description, and determines whether
its output is consistent.

A. AUXILIARY SENSORS IN THE DOMAIN ONTOLOGY
Once a Data Acquisition Plan is considered sound (according
to Definition 4), we wish yo check its consistency w.r.t. the
Domain Ontology (Definition 8).

With this aim, at the Ontological level we need to describe
each service (that can be applied to the streams produced
by the sensors) as an auxiliary sensor, instance of the class
ssn:SensingDevice. An auxiliary sensor receives one
or more incoming streams and produces a single stream
whose schema, that is compliant with the STT model, can be
made in correspondence with the concepts and relationships
available in the Domain Ontology. Also for these auxiliary
sensors we can check the consistency w.r.t. the Domain
Ontology.
Example 13: Consider the situation depicted in Figure 10

and in Figure 11, T11 and TW21, described in Example 3,
present ontological schema similar to those depicted in the
figures. In this case, the two sensors are examples of auxiliary
sensors generated as result of the Data Acquisition Plan,
which properties depend on the applied operator and on the
streams of the incoming sensors (either physical or social).
Instances are included in our Domain Ontology to represent
such data acquisition services and then check the consistency
on the resulting Ontology. �
An auxiliary sensor is obtained in two steps. First, a new

sensor j is generated (either by cloning the incoming sensor i
or by generating a new one). Then, the new instance and its
links are modified or other links are added in order to comply
to the operator specification. These operations are specified
bymeans of the simple primitives reported in Table 3. Starting
from an instance i of the class ssn:SensingDevice,
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TABLE 3. Primitives for updating Ontology instances.

these operations introduce new instances and links in the
Ontology (when the conceptualization allows it).

The only exception to this general rule is the treatment
of the filter and trigger services. In the first case,
we simply need to clone the incoming sensor and no further
operations are required, while in the other case we need to
clone and check if a trigger condition is verified. In both cases
the schema of the incoming sensor is the same produced as
output.

By contrast, for the other services (transform,
enrich,virtual property,aggregation,union,
join and convert) the operations reported in Table 4 need
to be applied.

For the services enrich and virtual property,
new instances of the class a are added in the ontology O
in order to model the new properties that are inherited by
other sensors (by using the enrich service) or created as
new virtual properties (by using the virtual property
service). The service transform enables to change the
units of measurement of the sensor properties a according
to the function trans or it applies a transformation by exe-
cuting a specific code. The service aggregation creates
a new auxiliary sensor whose values are gathered according
to a new time value defined by a new instance of the class
ssn:ResponseTime with a new unit of measure. The
service join creates a new auxiliary sensor whose properties
are the union of the properties of the two input sensors a ∈
Prop(s1)∪Prop(s2) whereas the service union allows us to
union the events produced by different sensors and generates
a new thematic (instance of the class qu : QuantityKind)
and collect all properties of the input sensors. Finally,
the service convert simply changes the temporal or spatial
dimension according to the target granularity specified in
input.
Example 14: Example 3 presents two auxiliary sensors T11

and TW21 generated by sensors of type T1 and TW1. T11 is
created by applying an enrich service. As result of the
application of this service, the instance T1 is cloned in T11
and a new link hasMeasurementProperty is added for
connecting the auxiliary sensor to an instance of the class
ssn : Accuracy for modeling the accuracy property. In
the same way, TW21 is cloned by TW1 as result of the appli-
cation of a virtualProperty service. Two new links
hasMeasurementProperty are added for connecting
the new auxiliary sensor to new instances of the class do:
NumTweets and do:NumPosTweets used for reporting
the number of tweets and positive tweets.

Now, consider the situation described in Example 3.
The final formula used for calculating the human discom-
fort is based on the creation of the auxiliary sensor HD31
which thematic HumanDisc is an instance of the class
qu:QuantityKind. The auxiliary sensor is in turn linked
to instances of the class iot:Metadata for modeling the
associated data type temperatureVal, humidityVal,
TweetsList and hd, and to instances of the class
ssn:MeasurementProperty for modeling the mea-
surement properties that characterize the thematic (i.e.
accuracy, numTweets, numPos and lhd). Once the
final auxiliary sensor HD31 is generated, its consistency w.r.t
Definition 8 is checked. As result we can say that the sensor
of type HD31 is consistent w.r.t. the Domain Ontology O that
we have described in the previous examples. �

B. A CONSISTENT DATA ACQUISITION PLAN
Starting from the operations reported in Table 3 for the rep-
resentation of each single service at the ontological level, we
here discuss the algorithm for populating the instances of the
Domain Ontology with the information about a Data Acqui-
sition Plan and for verifying whether it is also consistent.

Given a sound Data Acquisition Plan DAP = (V ,E) and
a Domain Ontology O, we need to create a binding between
the schema of the sensors occurring in DAP and the concepts
ofO. The user carries out this activity by means of aWeb tool
for specifying a mapping between the properties of the sensor
schema and the concepts of the Ontology (details of the GUI
are in Section VII).
Once the sensors have been mapped to the Domain Ontol-

ogy, the Data Acquisition Plan is visited in post-order starting
from the destination node, and for each service the operations
reported in Table 4 are applied to provide their representation
at the ontological level. These activities are automatically
executed and do not require any human interaction and lead
to the introduction of the ontology instances for representing
the Data Acquisition Plan. The user can check the consistency
of each service by means of the graphical interface. At this
point it is possible to check the consistency of the entire Data
Acquisition Plan DAP according to the following definition.
Definition 10: (A Consistent Data Acquisition Plan). Let

DAP = (V ,E) be a sound Data Acquisition Plan according
to Definition 4, M and O be the event model and Ontology
generated for the destination node. DAP is consistent if:
GT 6= ⊥, GS 6= ⊥, andM is consistent w.r.t. O. �
Example 15: Figure 12 reports the graph representation

of the Data Acquisition Plan discussed in Example 3 anno-
tated with the consistency of the initial flows produced by
the sensors and of the streams produced by the application
of the internal services. The triple (Y/N,Y/N,Y/N) is used
to denote whether the stream is spatially, temporally, and
thematically consistent w.r.t. the adopted Domain Ontology.
The triple is reported within the rounded rectangles denoting
services for representing that the consistency of the stream
produced by the service. Note that, in this case, even if
some services are not consistent, the entire DAP is consistent
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TABLE 4. Instructions for modifying the Ontology Instances according to the service.

because the last stream (hd) is consistent w.r.t. our Domain
Ontology. �

Starting from the consistency of the sensors adopted in a
Data Acquisition Plan, it is possible to determine the consis-
tency of its services and of the produced final stream without
the need to verify the consistency conditions as specified by
the following lemma.

Lemma 1: LetMb1 , . . . ,Mbn be the event data models of
the incoming streams to a service op and Ob be the ontology
before the application of op. Let Ma be an event data model
and Oa be the ontology after the application of op. The
following statements hold:
• if op = filter, then n = 1 and Oa = Ob, and the
consistency w.r.t Oa is the same of Ob.
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FIGURE 12. Evaluation of consistency of the running example’s data acquisition plan.

• if op ∈ {enrich,virtualProperty} and Mb1 is
consistent w.r.t Ob, then Ma loses the thematic consis-
tency w.r.t. Oa.

• if op = convert and the thematic of s is t , the consis-
tency w.r.t Oa is the same of Ob.

• if op = union and the thematics of s1 and s2 are th′,
the consistency w.r.t Oa is the same of Ob. �

This lemma can be easily demonstrated for induction by
taking into account the specification of each single data
acquisition service.

VII. THE StreamLoader PROTOTYPE
The facilities so far described have been implemented in the
context of the StreamLoader system. In [27] we have shown
the algorithm for translating the obtained DAP in Spark
streaming and reported some experiments on the scalability
and efficiency of the obtained script. This system is specifi-
cally tailored for domain experts that need to develop differ-
ent kinds of analysis on streams of events produced by sensors
belonging to cross-domain platforms. Since domain experts
are usually not computer experts, specific attentions have
been devoted to create easy to use interfaces that support them
in monitoring and manipulating the flow of events coming
from heterogeneous sensors by means of Data Acquisition
Plans that easily adapt to their mental model. In the design
of the interface we adopted the participation design princi-
ples [28], [29] that require to involve users with different
backgrounds (in our case meteorologists, computer scien-
tists, sociologists) to identify the critical components to be
included in the graphical interfaces for the creation of sound
and complete Data Acquisition Plans. The key concept is to
involve domain experts in activities for mapping and trans-
lating their professional knowledge into proper vocabularies,
notations, and suitable visual structures of navigation among
interactive systems interface elements. In our context of use,
the purpose is to obtain a system that allows the domain
experts to focus on the analysis of data-flows rather than on
technical details related to the configuration of software and
hardware components and on the development of code.

By following these principles a group of 3 independent
people have been enrolled with whom we organized different
meeting for the design and development of the StreamLoader
interface.

The main goal of these meetings was to evaluate the
validity-in-practice of the systems features in order to extend,
amend, or eventually recommend improvements. In the
remainder of the section we discuss the user interfaces
obtained through this work for the Semantic Virtualization
of the sensors and for the verification of the consistency of
the Data Acquisition Plans.

A. SEMANTIC VIRTUALIZATION
The GUI interface supports the user in the Semantic Virtu-
alization of a sensor. This service is particularly important
because it handles different formats according to which each
sensor produces events and for mapping its schema to the
concepts of the Ontology.

We remark that our flexible model allows us to handle also
streams that do not completely adhere to STT organization
of the information. Specifically, the GUI supports users to
manually establish relations between the sensor schema and
the classes of the Domain Ontology. The web mapping editor
offers three distinctive features:

• a function for reading and visually presenting the sensor
schema regardless of their formats (e.g. JSON, CVS,
or XML);

• a point-and-click interface for reducing the mapping
activities efforts;

• an Ontology-driven mapping approach, where the user
can link each entry of the sensor schema to an instance
of the ontology class. The user can select an existing
instance, by means of a drop-down menu, or can create
a new instance.

The user-defined mapping provides for each sensor a seman-
tic description at the Ontological level through which its
consistency can be evaluated according to Definition 8. At
this stage, the user can describe at a semantic level the data
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FIGURE 13. StreamLoader GUI used for mapping the spatial dimension of the event stream of the sensor of type T1 to the
corresponding concepts in the domain ontology.

coming from a sensor and can map its attributes to the
concepts of the Domain Ontology. For example, if the sen-
sor provides a simple timestamp in a traditional format
‘‘DD/MM/YY HH:MM:SS:MS’’ or in any other format,
by using the interface in Figure 13, the user detects the
attribute and maps it to the proper class retrieved by the
ontology.
Example 16: Figure 13 shows a screen-shot of the

GUI used for mapping the STT dimensions of a sensor
schema to the instances of the ontology classes. Specifically
in Figure 13 a), the JSON representation of the sensor schema
of type T1 (whose event type is depicted in Figure 13 b) is
mapped to instances of our Domain Ontology. In Figure 13
e), the user has specified themapping about the spatial dimen-
sion, the result of which corresponds to the one presented
in Figure 8. The interface is dynamically created relying
on the information gathered from the sensor schema (e.g.
as reported in Figure 13 c)) or from the Ontology (e.g. see
Figure 13 d)). �
When the virtualization process is concluded the service

is included in a publish-subscribe system and made available
to be used for the specification and monitoring of new Data
Acquisition Plans, as discussed in the remainder. Moreover,
the provided mapping is stored and considered when other
sensors of the same type need to be semantically virtualized.
In this way, we simplify this process.

B. DATA ACQUISITION PLAN SPECIFICATION
As shown in Figure 14 the interface for the Data Acquisition
Plan specification is composed of a left sidebar menu. The
menu offers the following functionalities: project, for the
management of the data acquisition projects (create, delete,

save, and open projects); source, for selecting and discovering
sensors from which event streams can be acquired; service,
for selecting one of the services in Table 1; destination for
specifying the repository where the resulting stream should
be stored. By clicking on each of them, a modal menu appears
through which it is possible to select icons to be included in
the main canvas. Moreover, connections can be drawn in the
canvas among the services, the sensors and the destination
nodes.

When the icon is placed in the canvas its border is colored
in red to represent the fact that the user needs to specify
parameters to obtain a sound specification. Once the parame-
ters are specified, the associated conditions are evaluated and,
when it is sound, the border of the icon is colored in blue.
The border color becomes green when also the consistency
constraints are met.

At the bottom of the canvas, a horizontal tab menu area
appears when icons (e.g. services or connections) are double-
clicked. Relying on the type of element, it shows different
buttons and information and is used to define the name of
the services, the type of sensors, the filtering conditions, and
the trigger condition. It also provides the event types that are
processed and the conditions for being sound and consistent.
The consistency of the STT dimensions of each node is
provided by the 3 icons (a point for the spatial dimension,
a clock for the temporal dimension, a tag for the thematic
dimension) on the right hand side of the horizontal tab menu
header. When the consistency is met, the icon is colored
green, otherwise is colored red. The consistency of the entire
Data Acquisition Plan is shown in the top right border of
Figure 14 by means of a traffic light (green is consistent,
yellow is partially consistent, red is not consistent).
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FIGURE 14. Main screen of the web application.

FIGURE 15. Join tab menu.

As specified in Section III-B several services are provided
by the interface for processing and combining the stream
produced by the sensors. During the creation of the Data
Acquisition Plan, the interface implements the control of
soundness and shows the identified errors. These messages
support the user in the development of sound and consis-
tent Data Acquisition Plans. In the remainder we describe
the icons and the horizontal tab menus for the Join and
virtualProperty services. The Join service corre-
sponds to the SQL JOIN and the associated icon has two
incoming edges and a single outgoing edge. It easily allows
the join between the different attributes of the schema coming
from the ingoing streams (see for example the join service
named join1 in Figure 14). By clicking on the icon the
horizontal tab menu in Figure 15 is shown in the bottom of
the canvas that consists of two sections: Settings and Schema.
The former contains the name associated with the join ser-

FIGURE 16. Virtual property tab menu.

vice, the type of join (inner, left, right, full join), the temporal
windows according to which the join is evaluated, the gener-
ated thematic, and the join predicate. By means of the add
and remove buttons an user can add/remove conditions to
the join predicate.

The latter provides the stream event type that is produced
as the result of the join execution. We remark that the domain
type of the join result is composed by the union of the prop-
erties of the incoming streams (even if the user can decide
which properties should be made available to the outgoing
service). Property names are disambiguated relying on the
names of the incoming services (when needed).

ThevirtualProperty service allows the user to create
a new property based on arithmetic expression.

As shown in Figure 16 at the bottom of horizontal tab
(virtualProperty tab) a list of all the properties (from all the
ingoing sensors) is provided. In a text area the user can create
a function using the mathematical operators (+, -, *, /), using
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FIGURE 17. Data Acquisition Plan for the running example realized with the provided GUI.

brackets and by adding the properties of the incoming streams
by just clicking on the property names shown in the list.
Before applying the calculation, the user is asked to give a
name to the new (virtual) property. The function calculated
in the text area is the Human Discomfort formula of our
motivating scenario (see Section II-A).
The second tab (Schema tab) is used to show all the event

type that is generated by the service. In this tab the user can
check whether the included virtual property is also described
at the Ontological level.
Example 17: Figure 17 shows the Data Acquisition Plan

that is created for our running example and corresponds to
the plan of Example 3. Note that the shapes of the icons are
colored in blue or green depending on the consistency of the
operator w.r.t. the Domain Ontology and that the traffic light
in the top right corner is green because the Data Acquisition
Plan is consistent w.r.t. Definition 10. �

VIII. EXPERIMENTAL VALIDATION
We conducted a set of experiments for evaluating the impact
of the use of an Ontology in the validation activities. Since
the DAPs are translated in Spark Streaming scripts we have
considered their executions locally on a single machine and
on clusters of 5 nodes. We use virtual machines that reside on
an Ovirt Datacenter (https://www.ovirt.org/) that
are equipped with Ubuntu 16.04 LTS (GNU/Linux 4.4.0-96-
generic x86_64), 8GB RAM, 2 core processor, 250 GB HDD
and 2799.202 MHz CPU clock speed. In each cluster, a node
acts as master and the others as slaves.

The first experiment was devoted to investigate the effects
of validation w.r.t. the size of the Domain Ontology. Indeed,
during validation new instances are introduced in the Domain
Ontology and we have measure the time required for check-
ing the validity of the DAP that takes into account the
time required for introducing in the Domain Ontology the
instances representing the virtual sensors. In the second

experiment we have exploited the semantic characterization
of sensors for specifying translation rules that allow us to
map the sensor data available in a specific IoT platform in
our data model (based on JSON) that is semantically labeled
with the concepts of the Domain Ontology. Finally, we have
considered some scenarios and tried to model the correspond-
ing Domain Ontology. Then, some DAPs have been realized
and their consistency checked w.r.t. the developed Ontology.
In the remainder of the section we discuss such experiments.

A. EXECUTION TIME FOR VALIDATION AND EFFECT ON
THE SIZE OF THE DOMAIN ONTOLOGY
By considering the Domain Ontology that we have used
throughout the paper, we have considered a set of DAPs of
different sizes and calculate the average time for checking
their validity w.r.t. the Domain Ontology. The required time is
reasonable for a web application and grows linearly with the
side of the DAP. Moreover, since new instances are included
in the Domain Ontology we have evaluated the size of the
Ontology (in terms of bytes) for the considered DAPs. The
size of the Ontology increase of an average of 600 byte for
each virtual sensor present in the DAP. For the DAP with
50 nodes, the Ontology size has increased of 30 KB.

B. APPLICATION OF TRANSLATION RULES FOR THE
CONVERSION OF SENSOR DATA INTO THE STT DATA
MODEL ANNOTATED WITH SEMANTIC CONCEPTS
When data produced by sensors of a given platform do
not adhere to our STT data model, a transformation pro-
cess should be applied that takes into account the Seman-
tic Virtualization described in Section VII-A. This process
can be executed producer-side (PS), i.e. in the environment
of the platform before sending the data to our platform,
or consumer-side (CS), i.e. data are transmitted through the
Kafka client in the same format as they are generated and
then translated in the internal format directly on the Apache
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Spark cluster. A set of different experiments have been con-
ducted in order to understand how the system behaves with
the introduction of the transformation phase. The data set
for this experiments have been downloaded in csv format
from the (ARPA) (the Lombardy Regional Meteorological
Agency).7 Specifically, we get temperature and humidity data
from sensors in Milan.

The DAPs contain both non-blocking and blocking ser-
vices at increasing complexity. The first one (named store)
is a simple DAP that reads data from a sensor and store
the obtained value in a file every 3 sec. The second one
(named aggregation) applies an aggregation on the con-
sidered events and the aggregated events are stored in the
file every 6 sec. The last one (named join) computes the
join between two streams every 6 sec. and is the most com-
plicated experiment because tuples from different sources
need to be collected and different transformation should be
applied before performing the Join according to the specific
time window. For the first two DAPs we have considered a
single flow of 10 million events, whereas for the last one
we have considered two flows of 10 millions events each. In
our tests the Apache Kafka Server runs in one of the worker
of our cluster of machines. In the store and aggregate
experiments the Kafka clients run on the same machine of
the Kafka Server while in the join experiment, we need to
have two different Kafka Producers that generate data on two
different topics. For this reason one Kafka Producer runs on
the same machine of the Apache Server and the second one
runs on one of the cluster worker.

These experiments aim at discovering the cost of per-
forming the transformation before or after the transmission
of the data. By means of the experimental activity we can
point out some interesting observations. Before discussing
the results on Processing Time, Scheduling Delay and Total
Delay of each test we need to give a look to the diagram on
Figure 18. This diagram reports the number of tuples that
are transmitted every second in the PS and CS environments
by Apache Kafka. From the diagram is quite evident that
in our setting the application of transformations ‘‘producer’’
side has negative effectiveness on the number of records
produced every second. The average rate in the PS approach
is around 24.000 tuples while in the CS we have an average
size of 55.000 records. This means that the CS approach
generates more than the double of tuples per second. This is
probably caused by the introduction of computation in order
to transform the raw data into the internal data model.

For what concern the join experiment, the average
number of data per second is exactly the double in both
approaches: 48.000 tuples per second for the PS approach and
110.000 tuples per second in the CS approach.

1) PROCESSING TIME
The Processing Time is the time required to compute
all the jobs of a given batch of data, end to end.

7http://www.arpalombardia.it/siti/arpalombardia/meteo/richiesta-dati-
misurati/Pagine/RichiestaDatiMisurati.aspx

FIGURE 18. Average number of generated tuples per second.

FIGURE 19. Processing Times of the considered DAPs.

Figures 19(a) and 19(b) show the performance of the PS
and CS approach for the store experiment. The interesting
result is that the cluster execution has, in both approaches,
worse performance than the local execution. Locally, the Pro-
cessing Time lasts 32 ms in the PS approach and 47 ms in
the CS, while in the cluster execution the Processing Times
are 46 ms for PS and 63 ms for CS. Spark script executes a
simple operation. The time it takes to route the execution of
the operation through the machines of the cluster worsens the
performances. In this case we can see that in the CS execution
the Processing Time are higher than the PS, but if we take the
batch size presented in Figure 18 into account, we can see that
the amount of data to process is more than the double.

In the aggregate and join operations (blocking opera-
tors) we have better Processing Times. If, in case of aggrega-
tion (Figure 19(c) and Figure 19(d)) we have an improvement
of more than a second (from 2,8 to 1,5 sec. in the PS approach
and form 6,6 to 4,6 sec. in the CS approach), in case of
join (Figure 19(e) and Figure 19(f)) we have a remarkable
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FIGURE 20. Scheduling Delay of the considered DAPs.

improvement (from 16,5 to 5,70 sec. in the PS approach and
from 20,1 to 7,9 sec. in the CS approach).

2) SCHEDULING DELAY
In the store experiments (Figures 20(a) and 20(b)) there are
no remarkable differences both for PS and CS approaches in
local and cluster execution. The average Scheduling Delay
is around 1,5 ms for the PS approach and 1,8 ms for the
CS approach. The main differences are shown in the other
two tests. In case of aggregation, Scheduling Delay in the PS
approach is around 405 ms locally and 1,5 ms in the cluster
while in the CS approach the local Scheduling Delay is more
than 2 min. and the local is close to 1 min. If we take a look at
the graph represented in Figures 20(c) and 20(d) we can see
how the trend of the Scheduling Delay in the PS approach is
similar to a constant in the cluster case and in the local case
is more floating, while in the CS approach the graph tends to
grow constantly, especially in the local case.

The interesting point is given with the execution of the
join experiments. As shown in Figures 20(e) and 20(f),
the Scheduling Delay of the local execution in the PS is
smaller that the cluster execution in the CS approach (the
highest value in our experiments are 390 sec. for the PS
local approach and 580 seconds for the CS cluster approach).
Another feature to notice is that in the cluster execution of the
PS approach the Scheduling Delay is almost constant while
in all the other cases the Scheduling Delay is represented as
an increasing function.

3) TOTAL DELAY
Figure 21 provides details about the Total Delay for every
experiments we conducted. Total Delay is composed of

FIGURE 21. Total Delay for every experiment and for the approaches.

Processing Time and Scheduling Delay and as we can see the
store experiment gives the best results in the CS approach
by taking more the half of the time of the PS approach
either in the local and cluster mode. For what concern the
aggregation Total Delay is quite similar to every experi-
ment we have conducted. The local execution takes the same
time in both approaches (7 min. and 30 sec.) while in the
cluster execution there is more than 1 min. of improvement
of CS approach w.r.t. the PS one.

The join experiment is the one that introduces the main
differences between the two approaches. If we consider
the difference of the local and cluster execution, in both
approaches the cluster execution gives the better results. For
what concern the difference between the PS and CS approach
we can see that also the local execution of the join is sensibly
better than the execution in cluster mode of the CS approach
(770 sec. compared to 1200 sec.). The best performances are
the ones provided by the execution in a Cluster with the PS
approach. It takes 670 sec. to join 20 million tuples.

C. MODELING OF ONTOLOGIES FOR SPECIFIC DOMAINS
AND VERIFICATION OF DAPS
In order to test how much is easy to apply the developed
approach in other contexts, we have considered two other
scenarios (behinds the one described in the paper) in which
we wish to develop DAPs that are controlled by means of a
Domain Ontology. This requires from one side to extend the
Domain Ontology with the concepts adopted in the consid-
ered scenario and to develop DAPs for the considered sce-
nario guided by the corresponding Domain Ontology. In the
reminder we report the lesson learned in these activities.

We have considered scenarios of water consumption and
monitoring of the level of pollution in the zones of Milano.

1) SCENARIO 1: WATER CONSUMPTION
A clerk of the environment office of the Milano municipality
wants to monitor the water consumption in Milano. If it is
greater than 100 cubic metre, and the average value of the
temperature is greater 25, then a warning is sent to the mayor.
The operator selects the 20 sensors spread inMilano for mon-
itoring the water consumption and 10 sensors for checking
the temperature. Each sensor takes data every 3 hours. The
operator creates a DAP in which he has to:
• convert each stream at a greater spatial granularity,

176164 VOLUME 7, 2019



S. Valtolina et al.: Ontology-Based Consistent Specification of Sensor Data Acquisition Plans in Cross-Domain IoT Platforms

• unify the streams of each sensor that monitors the water
consumption/temperature,

• join the obtained two streams in a single flow,
• trigger the notification to theMayor only when the water
consumption is greater than 100 cubic meter, and the
temperature is greater 25 Celsius degree.

2) SCENARIO 2: MONITORING OF THE LEVEL OF
POLLUTION
An operator of the municipality wishes to monitor the pol-
lution level in a specific area (z2) of Milano in order to
warn population of possible risks, for example related to
the possibility to cause an asthma attack to children with
respiratory problems.

The operator selects three sensors of a specific area
z2 to gather the PM10 value, the nitrogen dioxide (NO2)
value, and the ozone (O3) value according to the following
spatio-temporal granularities:

• the PM10 sensor retrieves data every hour,
• the NO2 sensor retrieves data every 20 minutes,
• the O3 sensor retrieves data every 30 minutes,
• the spatial dimension is missing in all three sensors.

The index of the air quality is calculated as the average of the
two worst polluting substances. The following steps should
be considered in the developed DAP:

• apply a convert operator on each sensor for calculating
the average value for each hour;

• enrich the three stream in order to add the spatial dimen-
sion;

• join the three streams for generating a single flow and
at the same time granularity, include a virtual property
‘‘air quality’’ that is calculated as the average of the two
worst values that appear at the same time in the previous
three streams;

• Trigger a notification only when the maximal the air
quality index is greater than 150.

In these scenarios, the Domain Ontology (presented in the
paper) needs to be modified for dealing with their peculiar
thematics. For the application of the modifications we have
asked to two Knowledge Engineers experts in the consid-
ered domains to modify the ontology in order to accommo-
date the new additional requirements. We have monitored
the activities of the two engineers in order to assess the
level of difficulty to create the required concepts (classes –
if required, object property, data property, individuals and
their relationship) in the Domain Ontology using Protégé
and the clarity of each of the processes to create these use
cases.

Both experts found quite easy the creation of individuals of
the STT dimensions and inking with their respective concepts
in the two scenario. However, linking each individual with
its property, in case of thematic granularity, requires some
time and a little bit of effort because different objects and
data properties should be linked with the Unit and Meta-
Data. Expert ‘‘A’’ mentioned that instance of ‘‘amount’’ is

not intuitive and required elaboration. However, both experts
agree on the intuitiveness of the overall organization of the
Ontologies.

Finally, we have evaluated the content and structure of
the obtained Domain Ontologies in terms of clarity and
accomplishment to the intended goals. The results obtained
by the two experts are quite equivalent and cover all the main
requirements in the considered scenarios.

Once the developed Ontologies were ready, we asked three
volunteers to develop the aforementioned DAPs with our
interface. They were instructed on how to use our inter-
face and on the specific domain. They were able to easily
identify the required sensors that are disseminated in the
different zones of Milano and correctly applying the ser-
vices for changing the granularities of the produced streams
and aggregating the data and applying the corresponding
functions. Actually they found the information about the
spatio-temporal granularities and the invalidity information
(due to use of streams at different spatio-temporal granulari-
ties) provided by the interface particular useful for modifying
their DAPs andmake themworkable in lesser time.Moreover,
the presence of the constraints on the thematic of the final
stream particularly useful for double checking the correctness
of the entire DAP.

IX. RELATED WORK
Recent projects and tools in sensor network research area
have focused their efforts on how to integrate events gen-
erated in raw and heterogeneous formats by means of a
common semantics able to describe their meanings, the lack
of which imposes barriers to interoperability among het-
erogeneous sensors. In the IoT domain, users are primarily
interested in understanding the meaning of combined streams
that can lead to the detection of significant events instead of
raw data flows. Nevertheless, sensors provide raw data that do
not contain any additional description ormetadata and require
specialized knowledge andmanual effort for their meaningful
combination.

To tackle this problem, several solutions [14], [30]–[32]
using Linked Data Principles have been proposed [33]. They
use strategies that aim at integrating sensor-data through
Semantic Web technologies in order to publish data streams
in an enriched and standardized way, so that they can be
accessed and consumed by external applications. One of the
key factors of these strategies is the possibility to describe the
semantics of the sensor data according to three dimensions:
Spatial, Temporal and Thematic (STT). Spatial metadata pro-
vide information about the sensor location, in terms of either
a geographic reference system, local reference, or named
location. Temporal metadata provide information about the
time instant or interval when the sensor data are captured.
Thematic metadata describe the meaning of the data-streams
captured by the sensors (temperature, humidity, wind speed,
and so on). All these metadata play an essential role in man-
aging sensor data and provide more meaningful descriptions
and enhanced access to sensor data.

VOLUME 7, 2019 176165



S. Valtolina et al.: Ontology-Based Consistent Specification of Sensor Data Acquisition Plans in Cross-Domain IoT Platforms

In our work we do not require that sensors produce events
that adhere to a pre-defined Ontology. By contrast, we allow
sensors to produce events according to their own properties
and schema. Then, when they are included in our system,
individuals are included in the Domain Ontology for their
semantic description.

Key point of our solution is that we do not force to have
a complete description of the sensor schema w.r.t. to the
Domain Ontology in order to be able to treat also events that
are not totally described by the Domain Ontology. In these
cases the user is informed by means of our graphical inter-
faces and can decide whether to maintain the selected sensors
or choose other kinds of sensors.

In the remainder, we discuss other related work that are
organized according to the following topics: IoT Ontologies
and semantic interoperability, projects in the IoTDomain, and
graphical interfaces for ETL operations.

A. IOT ONTOLOGIES AND SEMANTIC INTEROPERABILITY
With the development of semantic sensor networks, a number
of ontologies describing the streams coming from the sensors
have been brought forth in the past years. These ontologies
rely on two different methodologies that it is possible to
adopt for describing the semantics of the sensor data. The
first one aims at describing sensor data through a mapping
between the data-schema of the sensors with concepts and
relations specified in the ontology. Instead, in the second
methodology the ontology is used for annotating the data gen-
erated by sensors. An important example of the first type of
semantic description regarding sensor networks ontologies,
is provided by the Semantic Sensor Network (SSN) Incubator
Group from W3C [17]. The SSN Incubator Group’s pur-
pose is to develop ontologies for sensor networks and search
for appropriate methods for enhancing available standards
with semantic technologies. As a result of the efforts of this
group, the Semantic Sensor Network (SSN) ontology [19]
was defined in order to describe sensor data according to their
capabilities, the measurement processes and the resultant
observations. The SSN ontology facilitates the enrichment
and the semantic fusion of the sensor data, since it allows
us to publish the streaming data and also integrate them
with other related data sets. Sometimes, SSN ontology is
not able to provide all the semantics needed by a specific
domain context, and thus additional ontologies are often
required such as IoT-Lite [18] and DOLCE-UltraLite [24]
ontology. On the other side, the SSN Incubator Group also
worked for developing a methodology to perform semantic
annotations over the data generated by sensors following
the standards defined by the Open Geospatial Consortium
(OGC). These standards help describe observed phenomena
such as space, time, and theme. In addition to the SSN Incu-
bator Group’ work, other works investigated methods and
techniques for semantic annotating IoT devices and services,
and their messages and data. An example of such approaches
is described in [34] that proposes a data annotation architec-
ture for semantic applications in virtualized Wireless Sensor

Networks (WSN). The paper describes a WSN virtualization
architecture based on data annotation and an ontology that
extends the SSN ontology. In [34] the authors develop a
Domain Ontology based on the SSN ontology for enabling
a fire monitoring semantic application to receive annotated
data and, along with a reasoner, to infer knowledge. Another
framework, named Semantic SensorWeb [35], annotates sen-
sor data and provides situational awareness. The annotation is
done using spatial, temporal and thematic metadata. In [32],
the authors use their own SenMESO ontology for annotation,
which is a combination of various Domain Ontologies cov-
ering the sensor data and features of interest. Finally, in [14],
the AnnotationOntology (SAO) has been specifically thought
for handling real-time semantic annotations of data streams
in dynamic environments. By using the SAO, it is possible
to describe a data stream and a timeline instance to link
the segment description with the time extent of a temporal
entity representing the data stream. One flaw in adopting a
semantic annotation for describing sensor data relies on its
limited interoperability that aims at focusing on sensors one
by one, rather than specifying a common semantics about
their data. When a user annotates a data stream, he/she loses
the focus on how to synchronize the schema of the flow
under examination with the other data to integrate according
a common knowledge base. Moreover, these solutions are too
much domain-specific oriented, and their use of protocols
such as Sensor Web Enablement (SWE) [36] that is difficult
to setup. A better idea is to adopt a shared ontology to use
for mapping each sensors schema according to their spatial,
temporal and thematic dimensions. To do it, for ensuring
interoperability, instead to create a Domain Ontology from
scratch it is better to reuse efforts and background knowledge
acquired during the design of existing ontologies already in
IoT domain. This solution allows users to focus on semantic
interoperability between the data flows coming from sensors
by specifying the three dimensions according to which to
discover significant events, instead of focusing to find the
concepts that better describe the knowledge at the base of the
ontology.

In our work we do not propose a new Ontology but we
rely on the SSN and IoT-lite Ontologies. As discussed in [2]
the current attempts to develop new Ontologies for the IoT
use as backbone the SSN Ontology and provide specific
extensions for their context of use. In our Ontology specific
concepts have been introduced for the representation of the
different spatio-temporal granularities and their relationships.
Moreover, further concepts can be included in the Ontology
depending on the context in which it is used. For addressing
the requirements of our running scenario, we have included
concepts for representing meteorological events (e.g. tem-
perature, humidity, winds) and information extracted from
Tweets. Then, in order to facilitate the interoperability among
cross-domain IoT platform, sensors made available by the
platforms go through a Semantic Virtualization process that
allows to clarify the meaning of their properties. A ‘‘soft
bridge’’ is thus created among the sensors offered by dif-

176166 VOLUME 7, 2019



S. Valtolina et al.: Ontology-Based Consistent Specification of Sensor Data Acquisition Plans in Cross-Domain IoT Platforms

ferent platforms for the definition of Data Acquisition Plans
required by the user. This means that if the user wishes to
develop another analysis in the context of another Domain
Ontology a new ‘‘soft bridge’’ can be easily specified.

B. PROJECTS IN THE IOT DOMAIN
Recent projects in smart city area (VITAL project, X-GSN,
Xively, FIT [37], Hi Reply and OpenIoT [15], Spitfire [38]
and iCore [39]) have focused their efforts on developing
solutions for dealing with: (i) data acquisition (ii) semantic
interoperability, and (iii) real-time data analysis and event
detection. To mitigate the heterogeneity of data acquired
by sensors, these projects use semantic technologies able to
provide a uniform access to IoT data, through the use of
semantic models such as the SSNOntology. Also other recent
projects such as CityPulse [40] and The Amsterdam Smart
City (ASC) [41] or the prototype proposed in [42] aim at pro-
viding a resource data mapping via a linking semantic layer
that use or extend the SSN Ontology. Specifically, they pro-
vide a set of real-time data analytics tools to provide strategies
for data federation, data aggregation, event detection, quality
analysis and decision support. These projects offer a set of
services that facilitates easy access to data and operations
that can be applied over the collected data. All cited projects
aim at investigating how to use Semantic Web principles and
available technologies for integrating sensor data in order to:
i) extract domain knowledge (ontologies, data sets and rules)
in specific contexts; ii) combine domain knowledge; iii) align
and adapt IoT services; iv) make the domain knowledge
interoperable by using semantic web methodologies and best
practices; and, v) support IoT application development by
means of semantic web technologies.

In the same direction are moving other projects specifi-
cally tailored for addressing the issue of IoT cross platform
interoperability (e.g. the recently approved H2020 projects
INTER-IoT [2], CREATE-IoT, and ACTIVAGE).

Overcoming such challenges will lead to solutions
that provide interoperability among data coming from
cross-platforms and a uniform guideline to the domain users
who are responsible for monitoring significant events in spe-
cific contexts of use.

Despite the big challenges that these projects are address-
ing, many are the challenges that still need to be faced.
First, no specific support is provided for dealing with the
spatio-temporal granularities and the different unit of mea-
sures with which sensor data are produced. Taking into
account these aspects are, from our point of view, really
relevant for reasoningwith streams of events produced by het-
erogeneous sensors. Moreover, the proposed environments
can be exploited only by ICT-specialists because require the
development of codes for the acquisition and manipulation of
sensor data streams. By contrast, the GUI environment that
we propose along with the services that are made available
and the controls on the soundness and consistency of the
developed Data Acquisition Plans allow also domain experts
to develop plans and monitor their execution.

C. ETL OPERATIONS AND INTERACTIVE VISUAL
INTERFACES
Dataflow design systems supporting a wide range of
operations have been proposed in different contexts depend-
ing on the kinds of data to handle (structured and semi-
structured). In [43]–[45] there is a good treatment of ETL
(Extract, Transform, Load) operations at the conceptual level
for feeding a Data warehouse. Moreover, approaches for the
semi-automatic generation of ETL operations depending on
the user needs and context of use are proposed in [46]. In
data management, ETL operations are usually coupled with
graphical visual dataflows for helping the user in the iden-
tification of the original data sources, the application of the
operations for extracting, cleaning, transforming and combin-
ing their data. Once the ETL specification is completed, some
strategies are proposed for the optimization of the dataflow
and for the efficient execution of the loading schedule. These
approaches have been mainly developed for producing rela-
tional data to feed conventional Data Warehouse System.
In [47] an approach is presented for feeding arbitrary target
sources (either relational or based on a NoSQL system).
Commercial systems like for example Talend Studio, Stream-
Base Studio, Waylay.io offer graphical interfaces for design-
ing workflows and dataflows as graphs of connected nodes
representing tasks and data-sources. While Talend works on
static data coming from fixed data-sources, StreamBase and
WayLay can receive and analyse continuous data streams
and are specifically designed for IoT. These environments
provide rich user interface support for the full application
life cycle, spanning feed integration, application modeling,
development, data streams recording/playback, testing, and
debugging. Anyway these are mainly desktop-based systems
and in some cases conditions can be only created by adopting
strategies based on programming languages paradigms (as
for StreamSQL in StreamBase Studio) or by personalizing
existing templates with well-defined trigger policy (as in
Waylay.io). Visual queries are other examples of solutions
for assisting users to extract information from databases in
an intuitive, visual and natural approach, making informa-
tion systems comprehensive and efficient for a wide range
of applications. SmartVortex Visual Query System [48] is a
typical applicationwhere the visual strategy of querying takes
the form of drawings or graph. Also in this case the expected
users have limited competence for managing data streams but
they wish to express basic queries with little efforts and no
competence in coding.

What is missing in these visual approaches is a strategy for
specifying the semantic of the gathered data. In order to com-
bine and handle heterogeneous data we need to understand
the data type, when they are acquired and where. In order
words, we need to know the data before handling them. In our
idea, the final environment has to allow users to acquire
data according to their STT dimensions by exploiting a
Domain Ontology able to check the correspondence between
the dimensions adopted in the streams with those specified
by the domain experts. The system has to be designed for
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simplifying the developing of data extraction and integra-
tion facilities. For this reason, the environment has to be
simply used for the specification of the dataflow but also
for monitoring its execution and for achieving or maintain-
ing the semantic consistency of the dataflow in presence of
on-line modifications. In this way, semantic poor data can
be extended and integrated during the design of the dataflow
to monitor, in order to adhere to a semantic model able to
effectively describe sensor data according to their spatial,
temporal and thematic dimensions.

X. CONCLUSION AND FUTURE WORK
In this paper we have addressed the issue of the Semantic
Virtualization of sensors belonging to cross-domain IoT plat-
forms and to generate Data Acquisition Plans that can be
soundly executed and that adhere to the constraints speci-
fied within a Domain Ontology. For this purpose, we have
identified a flexiblemulti-granular STT datamodel according
to which the schema of heterogeneous sensors belonging to
cross-domain IoT platforms can be easily transformed by
using standard wrapping tools.

Then, the user can apply a Semantic Virtualization process
according to which the sensors and the schema of the events
they generate are semantically described at the ontological
level by means of instances of the Domain Ontology the
user wishes to use for conducting a given kind of analysis.
This process is carried out by taking into account the STT
dimensions according to which the events generated by the
sensors are produced and has the purpose to move towards
the adoption of a common semantics of the sensor event
streams. However, the description can be partial to deal with
situations in which sensors are not equippedwith the facilities
for associating the STT dimensions specified in the model.
Conditions are specified for guaranteeing the consistency of
a sensor relying on the consistency of the STT dimensions
of the produced events. At this point the user can generate
Data Acquisition Plans in which new information is asso-
ciated with the events produced by the sensors and filter,
join aggregation and transformation services can be specified.
The result of the application of each service produces a new
stream whose consistency can be evaluated w.r.t. the Domain
Ontology for its semantic characterization.

The proposed solution allows the creation of ‘‘soft
bridges’’ among the sensors belonging to cross-domain
IoT platforms for the definition of Data Acquisition Plans
required by the user. This means that if the user wishes to
develop another analysis in the context of another Domain
Ontology a new ‘‘soft bridge’’ can be specified. The main
characteristics of the StreamLoader prototype system are
finally discussed. To be best of our knowledge this is the
first system for the specification of sound and consistent Data
Acquisition Plansw.r.t. a givenDomainOntology specifically
tailored for the IoT context. We are currently working on the
evaluation of the usability of the proposed interfaces.

Another research direction concerns the analysis of
non-consistent Data Acquisition Plans in order to identify
similarities and manually or automatically propose Ontology

evolution in order to adhere to new requirements emerged in
the domain. Finally, we wish to combine approaches for the
semi-automatic Semantic Virtualization of sensors with our
GUI environment.
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