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Abstract

Continuous, accurate, and real-time smartphone-based localization is a promising technology for supporting inde-
pendent mobility of people with visual impairments. However, despite extensive research on indoor localization
techniques, localization technologies are still not ready for deployment in large and complex environments such as
shopping malls and hospitals, where navigation assistance is needed most. We identify six key challenges for accu-
rate smartphone localization related to the large-scale nature of the navigation environments and the user’s mobility.
To address these challenges, we present a series of techniques that enhance a probabilistic localization algorithm.
The algorithm utilizes mobile device inertial sensors and Received Signal Strength (RSS) from Bluetooth Low En-
ergy (BLE) beacons. We evaluate the proposed system in a 21,000 m? shopping mall that includes three multi-story
buildings and a large open underground passageway. Experiments conducted in this environment demonstrate the
effectiveness of the proposed technologies to improve localization accuracy. Field experiments with visually impaired
participants confirm the practical performance of the proposed system in realistic use cases.
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1. Introduction

Accurate localization is fundamental to enable smartphone-based turn-by-turn navigation assistance for people
with visual impairments in complex large-scale real-world indoor scenarios. While some of the existing localization
techniques advertise accurate positioning capabilities, they are often evaluated in controlled scenarios only. Thus, it is
unclear whether current localization algorithms for mobile navigation can be successful for blind navigation assistance
in building-scale real-world scenarios such as complex public facilities and commercial buildings.

When we consider localization systems for turn-by-turn navigation in real-world scenarios for people with visual
impairments, the requirements are quite daunting. We identify six key challenges for accurate localization related
to the large-scale nature of the navigation environments and the user’s mobility, which are often overlooked in the
research literature.

(1) Accurate and Continuous Localization. It is critical to achieve both accurate and continuous localization when
giving turn-by-turn instructions to people with visual impairments. Preliminary tests have shown that a localization
accuracy of about two meters is desirable to provide timely turn-by-turn guidance, especially at decision points such as
corridor intersections or entrances. A higher localization error could lead a person with visual impairment through the
wrong door or cause collisions with the environment. While probabilistic localization algorithms are designed to deal
with a certain level of noise, many approaches can fail catastrophically when the fidelity of the current state estimate
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degrades. Remedies to such failures (e.g., modifications to the state sampling process [1, 2]) have been proposed,
but such approaches can cause the location estimates to jump around discontinuously. There is no tolerance for such
instability when guiding people with visual impairments.

(2) Scaling to Multi-Story Buildings. Previous methods for localizing users with a smartphone have primarily
focused on 2D floor plans [3]. However, most buildings in metropolitan areas are multi-story buildings. In particular,
in public facilities such as shopping centers or subway stations, people constantly transition from floor to floor and
from building to building. It is therefore crucial to localize users across floors and during floor transitions. To the best
of our knowledge, work addressing accurate localization over multi-story buildings has been limited.

(3) Signal Bias Adaptation at Scale. Different mobile devices observe different receiver signal strength (RSS) values
from the same signal transmitter at the same location due to differences in the reception sensitivity of the underlying
radio hardware. Previous works have addressed this issue [4—6] by estimating a signal strength offset value. However,
in real-world applications, the number and strength of observable transmitters, e.g., beacons, changes dynamically
over time. There is limited prior work addressing this challenge, i.e., varying RSS values over multiple devices in
dynamic situations.

(4) Scaling to Large Numbers of Measurements. As the size of deployment grows to building-scale proportions,
the computational costs of regression algorithms for accurately mapping between locations and RSS observations
grow prohibitively expensive to run in real-time with current smartphone resources. Efficient methods are needed to
accelerate the computation of localization for building-scale environments.

(5) Detecting Motion for Different Walking Profiles. Localization accuracy can be improved by factoring in the
user’s movement information, e.g., step detection from the inertial sensor data. However, different pedestrians may
have more or less accentuated steps, and therefore it is possible that for some users steps are frequently missed. This
situation can cause noticeable errors in localization.

(6) Observed Signal Delay. Based on our observations, the RSS values detected and reported by mobile device
operating systems tend to be delayed, i.e., they describe a stale state of the system, referring to moments in the past.
These delayed data affect the accuracy of localization, especially when the user is moving.

Contributions. To deal with the aforementioned challenges within a unified framework, we use a probabilistic local-
ization algorithm as our foundation and enhance it with a series of novel innovations. This paper is an extension of
our prior work [7], in which we addressed the first four challenges by the following technical innovations:

1. Localization Integrity Monitoring introduces an internal state machine that enables the system to be softly
reinitialized during failures.

2. Floor Transition Control relies on changes in barometric pressure and RSS values to regularize localization
during elevator or escalator use.

3. Adaptive Signal Calibration uses a Kalman filter to incrementally estimate signal offsets.

4. Fast Likelihood Computation is achieved through the use of a set of locally trained truncated regression models.

In this extension, to further improve the localization system, we consider the remaining two issues, which are related
to user mobility and temporal delay in measurements, with two additional extensions:

5. Probabilistic Motion State Detection determines a user’s motion state on the basis of a probability to alleviate
the impact of errors in motion state detection.

6. Time Sensitive Observation Modeling adjusts the estimated location and the RSS observation model considering
the temporal delay in the RSS measurements.

We implement the localization system and perform a thorough evaluation with data collected in a large and com-
plex indoor environment composed of three multi-story buildings and a broad underground pedestrian walkway. To
quantitatively validate the reliability of our method, we collected ground truth localization data using a Light Detec-
tion and Ranging (LIDAR) sensor. On the basis of this data, we evaluate the effect of our proposed enhancement
modules. We also evaluate the localization accuracy in experiments with visually impaired participants in the same
testing environment. The localization system is integrated into a turn-by-turn navigation application on iOS devices,
and we evaluate localization error while the participants are traversing the environment with the aid of the navigation

app.



2. Related Work

2.1. Indoor Localization

Indoor localization has been extensively studied for the past two decades [8—12]. Among various indoor local-
ization techniques, localization based on the RSS of wireless signals such as WiFi or Bluetooth is one of the most
popular approaches [8, 13, 1, 14, 15] due to its use of off-the-shelf mobile devices, potential for high accuracy, and
relatively low infrastructure cost.

Aside from RSS-based methods, various other localization techniques based on RFID [16], UWB radios [17],
ultrasound [18], efc. have been developed. Most of these approaches require specialized hardware for either the
infrastructure or the user, and sometimes both. Image-based localization methods (e.g., [6]) are promising, but they
are not robust enough in scenes having few visual features and frequent appearance changes. Recently, Channel
State Information (CSI) [19, 20] and Fine Timing Measurement (FTM) [21] have been investigated to achieve a
higher accuracy (~1m) localization with WiFi than RSS-based methods. Unfortunately, these approaches are still not
available on commodity smartphones and WiFi access points, and therefore cannot yet be applied for our envisioned
use case.

RSS-based localization methods can be divided into two categories: fingerprint-based or model-based. Fingerprint-
based localization is the prevalent solution to achieve and guarantee better accuracy [8, 22, 13, 1, 6]. It is usually con-
ducted in two phases: an offline training (site-survey) phase to collect RSS data labeled with correct locations and an
online operating phase to estimate the location of a user’s mobile device. Model-based methods assume a propagation
model of radio waves to estimate RSS at various locations. For this purpose, the log-distance path loss model is widely
used [23, 24]. Although model-based methods require much less training data than fingerprint-based methods, they
are also less accurate, particularly in non-line-of-sight conditions. To reduce site-survey effort, localization methods
relying on fingerprint database construction by unsupervised learning or crowdsourcing have recently been proposed
[24-26]. However, they are less accurate than fingerprint-based methods and insufficient for applications with high
accuracy requirements.

WiFi fingerprinting has been widely studied for indoor localization using the RSS of WiFi signals, as access points
(APs) are ubiquitous in most environments [8, 13, 1, 12]. However, WiFi coverage is not tuned to provide accurate
localization, and WiFi AP positioning depends on environment wiring constraints and connectivity requirements.

As an alternative, Bluetooth-based localization has gained prominence following the introduction of the Bluetooth
Low Energy (BLE) protocol standard and the commercialization of off-the-shelf BLE beacons [27, 15, 28]. Compared
to WiFi APs, BLE beacons are small, low-cost ($5-20 per device), and have low power consumption. Thus, they can
be battery-powered and placed with fewer constraints than WiFi APs. This way the signal coverage can be controlled
in order to achieve uniform and more accurate localization. Also, the RSS from BLE beacons are accessible on most
commodity smartphone operating systems (iOS and Android), while WiFi scanning is currently prohibited on iOS
devices.

To further improve the localization accuracy achieved by RSS fingerprint-based methods, recent approaches have
performed fusion between RSS-based localization and the user motion model [11]. The fusion algorithms are used
to integrate RSS fingerprint-based methods and the movement of a user that is obtained by applying pedestrian dead
reckoning (PDR) methods to data from sensors embedded on a mobile device [29, 30]. This way, it is possible to
produce more accurate localization from noisy observations. The particle filter is one of the most successful sensor
fusion algorithms for localization [13, 1], due to its excellent extendability and ease of implementation. This approach
is also suitable for indoor navigation because it is based on state space modeling and can estimate unobservable vari-
ables, e.g., user’s walking direction, which are important for navigation. Because of these advantages, we adopt this
approach as our base localization framework. Details of our implementation of the particle filter algorithm are pre-
sented in Section 3. Although the proposed technical innovations are designed on top of our specific implementation,
since we followed a typical particle filter-based scheme as our foundation, the proposed innovations can also be used
to enhance similar existing systems. For the same reason, other improvements on the base localization scheme, i.e.,
improvements in the motion model, the observation model, and the particle filter algorithm, can be further integrated
with our localization system to achieve better average performance.



2.2. User Mobility and Temporal Delay in Observations.

In our previous work [7], we proposed four technical innovations that enhance a particle filter-based localization
algorithm to enable the scaling of smartphone-based localization to building-scale environments. This article proposes
two additional technical innovations that address problems in user motion detection and delay in RSS observations
to improve the localization accuracy. To contextualize these additional technical innovations, we review the most
relevant related works below.

Pedestrian dead reckoning estimates a user’s displacement on the basis of stride length estimation. For stride length
estimation, offline calibration methods [30, 1] or online calibration methods utilizing a map [31] or the fusion with
wireless fingerprints [32] have been proposed. While the algorithms used in these methods are different, most methods
commonly rely on step detection. Step detection can work reliably if a user moves with a steady gait. However, the
displacement estimation can become unreliable when the user’s motion profile changes, e.g., a user moves with lower
acceleration changes. A recent study [33] found significantly larger step counting error for blind walkers than for
sighted walkers through analysis of a data set collected from the two groups. Considering such studies is important to
achieve practical indoor navigation for people with visual impairments. To take into account the unique characteristics
of blind walkers, we utilize a non-deterministic motion state detector to alleviate the effects of errors in motion state
detection.

Delay in RSS observations on a smartphone is an existing but less targeted problem. We are aware of one related
work [34] that addresses a problem in which outdated RSS values remain in WiFi fingerprints for a while due to the
long duration of WiFi scans. While the characteristics of BLE fingerprints and WiFi fingerprints are different [15],
handling delay in reported BLE RSS values on a smartphone is also essential to improve the localization performance,
especially when a user is moving. Our work deals with the issue by considering an average delay in RSS reporting
and the dependence of reported RSS values on the past locations.

2.3. Navigation Assistance for People with Visual Impairments

Prior research investigated various indoor navigation approaches to support people with visual impairments [35,
36]. Among these, smartphone-based turn-by-turn navigation systems using BLE beacons provide accurate naviga-
tion assistance, feature an off-the-shelf infrastructure, and are easy to deploy [37—42]. Turn-by-turn navigation is a
guidance method that orients a user towards a destination through sequential vocal messages. These messages can be
announcements of distances, action instructions, and additional contextual information (e.g., nearby points of interest).

NavCog [39, 40] is a turn-by-turn smartphone-based navigation assistant for people with visual impairments that
uses the RSS fingerprints of BLE beacons to localize the user. In its first iteration, NavCog used the k-nearest neigh-
bor algorithm to perform the localization on a simplified space representation consisting of one-dimensional edges.
Follow-up work [41] improved the approach by fusing the PDR and RSS-based localization. While the simplified
space representation used in these seminal approaches was designed to ease the deployment workload, it had limited
pose estimation and localization capabilities, which makes it unsuitable for navigation in complex environments. To
enable navigation assistance for people with visual impairments in large-scale environments such as multi-story shop-
ping malls, NavCog3 [42, 7] is designed to rely on a location tracking method on two-dimensional floor maps that
exploits not only the user’s position but also the heading direction. Sato et al. [42] focused on the user interface and
usability of the navigation assistant, while in this work, we present the technical details of the localization method and
innovations that enable high-level indoor localization accuracy suitable for navigating people with visual impairments
in building-scale environments.

3. Proposed Localization Model

We now describe the underlying probabilistic framework for state estimation using the particle filter. We first give
a sketch of the base particle filter model for localizing a user with smartphone sensors and a BLE beacon network. The
basic concepts introduced here will help to contextualize the key technical innovations introduced later in Section 4.



3.1. Particle Filter
The particle filter is an efficient algorithm for continuously estimating a user’s location [2, 13, 1]. Let ¢ be an
index of time, z, be the user’s state (e.g., 2D location), r, be the sensor measurements (e.g., RSS values from multiple
transmitters), u, be the control input (e.g., the user’s movement obtained from inertial measurements), and m be the
map. The particle filter approximates the posterior of a user’s state conditioned on all previous measurements r;., and
inputs u ., by a finite set of samples (particles) {zi
particles.
Three steps are iteratively performed in the algorithm:
1. Predict each particle’s state by using the motion model p (zz,-1, u;, m), which describes the relationship be-
tween the user’s previous state z,_; and current state z, given the control input u;,.
2. Compute each particle’s importance weight by using the observation model p (r,|z,), which describes the likeli-
hood of the observed signal strength measurements r, at user’s state z;.
3. Resample particles with replacement from a predicted particle set according to the importance weights.

| t}1L=1’ where [ and L correspond to the index and the total number of

3.2. Motion Model
The motion model p (z;|z;-1,u;, m) predicts the user’s location using sensory information (e.g., sensors on the

user’s smartphone). We model this distribution using Gaussian random variables where the predicted location of the
user (xy, y;), under the control input u, = (s;, 0,)7, can be written as:

X = Xpm1 + Sy €08 (0 + )AL + £, (la)

Vi = Y1 + v sin (6, + )AL + &y (1b)
The motion state of the user s; is an indicator function (i.e., user is moving: s, = 1 or stopped: s; = 0), 6, is the
orientation of the smartphone, and 6; is the offset of the orientation between the user and the smartphone. v, is
the velocity of the user and At is the time step between ¢t — 1 and ¢. The cosine and sine represent the direction of
displacement of the user location for At on the x-y plane. The user’s motion state s, can be detected by thresholding
the standard deviation of the magnitude of acceleration in a short time window [43]. The attitude of the smartphone
can be obtained by integrating the smartphone’s IMU sensor data (i.e., accelerometer and gyroscope data). &, and &,
correspond to perturbation noise to x; and y, with zero mean Gaussian random variables. The 67 and v, are estimated
through particle filtering by incorporating them into a state vector as z; = [x;, y;, v, 6°]7.

3.3. Observation Model

The observation model p (r;|z;) describes the likelihood of the sensor measurements r, given the user’s state z,.
Our method assumes that BLE beacons are installed densely in the environment, similar to [15]. The observation
model is learned from training data, as a function that maps position to RSS. Formally, we are given a set of training
samples D = {( x,, ”n)}nN:p where x,, is the input (location) and r, is the output (RSS), and N is the number of training
samples. We apply kernel ridge regression [44] to predict RSS given a vector of location x, as

p(x) = mx) + k(K + D)™ (r = m(X)), 2

where k. is the vector of the kernel function between x.. and each training point, K is the matrix of the kernel function
relating each pair of points, o, is a regularization parameter, and m(x.) is an explicit prior on the mean function. The
mean function m(x.) is computed using the well-known log-distance path loss model [45]:

m;i(x) = —10n;log (d(x, b)) + A, 3
where d(x, b;) is the physical distance between position x and BLE beacon b;, n; is the decay exponent, and A; is
the path loss at the reference distance of 1 m. The variance of the output, 0'[2, is separately estimated as a position-
independent constant for each BLE beacon b;. As a result, the RSS for the i-th beacon is modeled by

Priglxs) = Nrigi pilxe), o). “

The likelihood model, given all of the RSS values from multiple beacons, is obtained from the product of single

beacon likelihood terms. We use only the top K RSS signals to accelerate computation time. Formally, let r, =

(Fips---sTKas---»7ys)" be the values of an RSS vector in descending order. The observation model with a limited
number of beacons can be written as

K
pirix) = [ | prake)”, )

i=1
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where M is the total number of observed beacons, K is the number of beacons used for localization, and « is a
smoothing coeflicient to prevent the likelihood model from overconfident estimates due to dependencies between
rig [2].

3.4. Initial Pose Estimation

When the localization algorithm starts tracking, it must identify the initial pose, including the location and orien-
tation. We use the Metropolis-Hastings algorithm [46] to draw samples from p(x;|r;) (equivalent to sampling from
p(r|x;) when p(x,) is assumed to be uniform) to estimate the location. To compute the initial orientation, we use
the smartphone magnetometer and GPS receiver, but a very large variance is placed on the distribution to account for
uncertainty.

4. Proposed Technical Innovations

The base particle filtering framework described above is sufficient to localize a user in ideal situations. However,
in real-world scenarios, the system can fail catastrophically and drain smartphone computing resources if key issues
are not taken into consideration. This section introduces key technical innovations based on insights from real-world
use cases that enable us to scale smartphone-based localization to very large (building-scale) environments.

4.1. Localization Integrity Monitoring

The Localization Integrity Monitoring (LIM) module observes whether the localization is working as expected and
switches the behavior of the system in times of uncertainty. Specifically, we implement a state machine to monitor
the integrity of localization to control how sensor inputs are used by the localization algorithm. Figure 1 shows a
diagram of the state machine, which consists of four states: unknown, locating, tracking, and unreliable. The state
starts from unknown and changes depending on the RSS vector input r,. After a first RSS vector input is given, the
state changes to locating, in which the localization system begins initialization. The locating state is repeated until
the uncertainty of the current location decreases below a certain level. Once initialized, the state transits to tracking.
If the uncertainty remains high, the locating state returns to unknown. In the tracking state, the localization system
tracks the user’s state by means of the particle filter.

The important issue here is the reaction of the system when the tracking state changes to the unreliable state.
Formally, let X;;., and Xy, be a set of particles approximating the belief distribution p(x;|r;.;,u;.;) and a set of particles
drawn from p(x;|r;), respectively. The set of particles Xy;.; is obtained as the filtered states by the particle filter and
Xy can be obtained by generating samples using the method in Section 3.4. Abnormality is measured as the ratio of
the maximum likelihood given Xj;., and the maximum likelihood given X, which is formally defined as

max p(ry|x;)

X €Xy 1

a(Xz|1:z, tht’ r) = (6)

)rc,rg)l(),‘(, p(rix)

The numerator and denominator take similar values when the device location is successfully tracked. Otherwise,
the numerator is much smaller than the denominator because the region with high likelihood is not covered with
the tracked particles. As a result, an abnormal situation can be detected by checking whether a(Xj., Xy, r;) takes
an exceedingly small value, e.g., 0.01. When an abnormal situation is detected, the locating state changes to the
unreliable state. The role of the unreliable state is to buffer the decision to revert the state to unknown. When an
abnormal situation is subsequently detected during the unreliable state, the state moves to unknown. In this state, the
localization system stops updating the unreliable belief distribution conditioned by past inputs and restarts localization
from the initialization.

4.2. Floor Transition Control

The Floor Transition Control (FTC) module seamlessly bridges the estimated location of the user from a source
floor to a target floor to reduce localization failure related to floor transitions. To apply the localization algorithm
in multi-story environments, we need to introduce transitions between two-dimensional floors into the localization
algorithm. We denote the floor on which a user is as f; and augment the location vector x; as x; = (x;, y;, f3)".
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Figure 1: State machine in localization integrity monitoring.

We also define a subset of states called floor transition areas that include staircases, escalators, and elevators.
When the motion model predicts the user’s state, floor to floor transitions can only occur at a floor transition area. In
cases where the user’s location is estimated to be on an escalator, the motion model adds a constant velocity motion
to the user’s state to model the passive movement of the user carried by the escalator without taking any steps.

We propose a multi-modal observation model to allow seamless transitions between floors. The standard observa-
tion model defined above becomes unstable when transiting from floor to floor because the number of visible beacon
signals can be very sparse in that situation (e.g., due to elevator walls blocking BLE signal). To reduce the risk of
increased error during floor transition, we use the smartphone barometer in addition to beacon RSS to actively update
the user’s location. Although barometer readings alone are known to be very noisy [47], they can be used in con-
junction with RSS to detect floor changes. The barometer can be used to detect changes in height by thresholding the
standard deviation of estimated height over a short period of time.

Formally, let variable ¢, denote a detected floor change (i.e., changing: ¢, = 1 or not changing: ¢; = 0) and Ay
be floor transition areas including stairs, escalators and elevators. We introduce a conditional motion model and a
modification to the observation model to take into account changes in floors. Speciﬁcally, we introduce p(x;|x;—1, ¢;)
and p(c¢|x,) into the particle filter. In the motion model, the location of a particle xt , is moved to the closest point in
Ar with a probability max(0, p4, — ine Ar w(x,)), where py, is an acceptable lower limit for p(x; € Ar|c; = 1). In the
observation model, detected height changes are used to update the weights of the particles as

wi(xppe; = 11x})
Zé:] Wr(xi()p(cz = 1|xi(),
where p(c; = 1|x;) is the likelihood of x, given ¢; = 1, which satisfies that p(c; = l|x; € Ar) < p(c; = l|x, € Ar).

In addition to obtaining reliable estimates of location at all times, predictive location estimates (before the user
arrives at a location) are desired so that the navigation application can issue instructions as early as possible. Further
enhancements to the floor transition module can be achieved by exploiting the observation model of BLE beacon RSS
observations. In addition to the sampling of the floor variable in the motion model, the floor variable is selectively
sampled by the observation model when a floor change is detected (c¢; = 1). More specifically, the floor variable is
drawn according to the likelihood of the observation where variables, except for the floor, are fixed:

£~ plrlflxh, ®)
where xﬁ’\f denotes the location of the I-th particle except for the floor variable f. This sampling scheme improves

the response of the estimated location to actual floor transitions. In practice, this allows us to localize the user a few
seconds before the actual floor arrival and gives us enough time to notify the user.

(N

[
Wt(xz) —

4.3. Adaptive Signal Calibration

The Adaptive Signal Calibration (ASC) module adjusts the device RSS offset with a time-series filtering algorithm
modified for a truncated observation vector. A basic approach for adjusting signal offset can be implemented by
minimizing the distance in RSS space between two devices with respect to an RSS offset [5, 6]. We pose a similar
optimization problem to calibrate for offsets in signal reading but apply the updates in an online manner using a
lightweight time-series filter based on the Kalman filter [2]. This approach also enables automatic adaptation to the
uncertainty in the offset estimation due to dynamical changes in the number of observed beacons.

Formally, we denote RSS r;; of device i at time step 7. To differentiate the RSS observed during training time
and test time, we use the notation rA for the training time signal and r as the test time signal. We denote the
current predicted mean of RSS y;(x;) i in shorthand notation as HUis. We assume that at test time, there will be an offset



introduced to the RSS due to a different device being used (e.g., a different iPhone) or some global changes to the
signal environment (e.g., weakening of the beacon signal strength). Formally, we assume
B
=Tt ©)
where r{ is the signal strength offset at time ¢.
Since the observation model p(r{‘tlx,) =N (rlAt, Hiss o-izt) is Gaussian, we can denote the test time observation model
as

K
prPIO, 10y = [_] NG i + 10,02, (10)
i=1
where the mean of the Gaussian has been modified by the latent offset value r;.

The number of visible beacons can vary across time steps, so computing the full likelihood can be expensive when
many beacons are visible. We can truncate the number of terms in the likelihood product by setting a small value for
K and taking a product of the K largest RSS signals. Taking this truncation into account, we can properly estimate the
true distribution from this truncated distribution in the following way. Extracting the largest subset rf(lzK) from the

original RSS vector rB(1 M we can see that the values of rB(1 are generated from a truncated distribution with a lower
limit. The largest value in the discarded value, r2 1< L1, can be such a lower limit. Let Nt,(rft; iy + 17 0'12 Tk < r
be the truncated probability distribution for rr with a lower limit value rﬁ 11, By approximating this truncated
distribution to a normal distribution with the same mean and variance, the observation model for rB(1 K) incorporated
with the effect of truncation q(rB E0x,, r{) can be approx1mated by
B(1:K
g, 1) ITN@pMH4 ) (i
where ,u + r{ is the mean and 0' ; is the variance for the truncated distribution of r
The above moments can be obtarned as follows [48]:
' é(air)
L= Mgt O, 12a
Hiy = Hig i D(ay,) ( )
2
" ) ai,t¢(ai,t) ¢(ai,z)
oci=07 1+ - s 12b
@ T T 0 T\ T= ) (120)

where a;;, = [rg e Wiy + r)]/oir. ¢(a) and O(a) are the probability distribution function and the cumulative
probability function of a standard normal distribution N(a; 0, 1).
By transforming the term on the right in (11), the probability distribution of r{ conditioned on r,

obtained as p(r)|x;, r f 1y = N (r0;7°,09%), where 7° is the mean and 2 is the variance calculated by
-1
K K
— -1 — /
meop ) ot () e
, o ;
i=1 it i=1
By considering this probability distribution as the observation process of r?, and assuming its state transition
probability as a normal distribution with the mean r° | and the variance o, i.e., p(rf|r® ) = N(r0;r% |, 0™?), the r,
can be estimated using the linear Kalman filter [2] Let the mean and the variance of the posterior of r{ be rtI . and o)

BI:K) can be

t\t ’
respectively. By iteratively updating rj and O—rl = on the basis of the Kalman filter for each particle, the RSS offset can
be estimated under location uncertainty. As a result of this extension, the state vector in the particle filter is augmented

by additional variables as
(-xtvyl’fl" Vl7 t’ ;p [‘Z)T (14)

4.4. Fast Likelihood Computation

The Fast Likelihood Computation (FLC) module decomposes the regression model into a set of many local re-
gression models to speed up the computation of the predicted values of RSS given a location. The number of beacons
deployed in very large buildings can reach into the hundreds or even thousands. In order to build an accurate regres-
sion model, the fingerprinting process (i.e., measuring RSS at various points in the building) may result in dozens
or hundreds of thousands of measurements. Serious computational issues can arise when the number of fingerprint



points reaches this level of magnitude. In the observation model described in Section 3.3, the nonparametric regres-
sion based on a kernel function has a computational complexity time of O(N) for predicting RSS given a location. The
computation grows linearly with the number of fingerprint points N. This is clearly not practical because the particle
filter must perform an O(N) operation for every observation, every particle, and every beacon considered. Therefore,
it is necessary to reduce the computational complexity of RSS prediction for large areas.

To mitigate this computational complexity issue, we split the regression model into small parts—local models—in
input (location) space. For each local model, the computational complexity becomes O(N;p), where Ny, is the average
number of training data assigned to each local model by splitting. Ny, is much smaller than the total number of
fingerprint points N. At test time, we find the top Mg, local models closest to the current location estimate x; and use
their kernel-weighted average to compute the predicted values of RSS, similar to [49]. The computational complexity
to predict the value of RSS can be reduced from O(N) to O(NgpMyp). The My, is typically selected as a small natural
number, e.g., My, = 3, to reduce the computational complexity as much as possible. In our implementation, the input
space is split by the k-means clustering algorithm in the training phase.

4.5. Probabilistic Motion State Detection

When the localization accuracy is sufficiently improved, a slight detection failure of a user’s motion state s, can
result in noticeable localization error of a few meters. Therefore, improving the motion state detection helps to reduce
large localization error cases. In general, the motion state s, is deterministically detected by thresholding the standard
deviation of the magnitude of acceleration, o**° [43]. In real use cases, the localization system occasionally falls into
a situation where the user’s motion state is misclassified when a user walks very slowly or steps on soft flooring, e.g.,
a mat or carpet. On the other hand, false detections have a negative effect on navigation because an estimated location
becomes unstable even when the user is not moving. Decreasing the threshold value, therefore, does not resolve the
situation.

As an alternative to the deterministic motion state detection, we propose probabilistic motion state detection. We
construct a motion state detector that determines a user’s motion state s, for each particle according to a probability
distribution p(s;|0c**°) depending on the standard deviation. Specifically, we utilize a sigmoid function, ¢(c**) =
L/(1 + exp(—ke(0™° — 05))), as the probability distribution function p(s; = 1|o**) (shown in Fig. 2), where o{5 is
the 0*“° value of the sigmoid’s midpoint and k. is the steepness of the curve. k. is determined by the threshold value
o and the corresponding function value ¢y, := ¢(05°) as well as o;. A moving state (s, = 1) is sampled with the
probability of ¢(0**®), otherwise, a stopped state (s, = 0) is sampled. The probabilistic motion state detection allows
us to generate a moderate population of moving and stopped particles even in the case that the standard deviation is
an intermediate value somewhat less than o7 and motion detection tends to be uncertain.

4.6. Time Sensitive Observation Modeling

The time synchronized assumption of the observation model (Section 3.3), in which the RSS measurement r, is
time synced with the user’s state z,, is only true when the user stops or moves very slowly. Since the RSS is computed
by summing the power over a short time interval, the RSS value is actually dependent on a short history of the user’s
state, for example, the trajectory of the user in the last second. When the user moves very slowly, the past trajectory is
essentially a single location and thus allows us to assume temporal synchronization in our model. However, when the
user moves at a fast pace, we must take into account the fact that the RSS value reported by the smartphone is actually
a ‘stale’ or ‘time-averaged’ measurement taken over a very recent history of user states. If we do not take into account
the temporal delay in the measurements, it will result in a consistent lag in localization accuracy when the user moves
quickly.

We consider two methods to mitigate the localization errors due to the delay in the measurements. The first
method predicts a latest location from slightly stale observations, and the second one modifies the observation model
to depend on locations for the last few seconds.

Method 1: Short-Time Location Prediction

The time increment At between the two time indices ¢ and ¢ + 1 is determined by the interval between two con-
secutive BLE beacon observations. Due to the interval At, an element of an RSS vector r;, i.e. the RSS value for a
beacon r;;, can be reported with a delay up to Az. Assuming that each element of the RSS vector is received almost
evenly in the interval, the RSS vector can be regarded as being delayed A¢/2 on average. Therefore, the estimated
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Figure 2: Probability function for probabilis- Figure 3: A schematic representation of the state space model with different observation models.
tic motion state detection. Location, input, and RSS vectors are displayed.

location x, at a current time index ¢ given all previous measurements r., points to a location Az/2 before the actual
current location. We compensate for the delay in the time index by predicting the location of the user at a near future
time index ¢ + 1/2 rather than using the outdated location x,,. We denote the predicted location at time index ¢ + 1/2
given all previous measurements and inputs as x,.1,2. The x,.1/2, can be computed from the location, velocity, and
orientation in the filtered particles {zi| t}le , by using the motion model (Section 3.2).
Method 2: Observation Model with Delay

According to our observations of RSS values reported by a smartphone operating system (i0S), RSS values re-
ported at a certain moment reflect not only the device position at that moment but also the positions of the device in
the past one or several seconds. With this method, we consider this effect by modifying the observation model so that
it depends on the positions in the past several seconds. Figure 3 compares the observation model without delay (a) and
with delay (b) regarding the dependency of an RSS vector on location vectors. For simplicity, only location, input, and
RSS vectors are depicted; other variables are not shown. Formally, let x;_7., be the history of the location in the past
few time indices (x,_r, ..., X;), where T represents a delay time window. In the observation model (Section 3.3), we
model the RSS for the i-th beacon by a Gaussian distribution with the mean y;(x;) and the variance 0'1.2. Assuming that
a reported RSS value is smoothed by a moving average filter, the observation model for the i-th beacon considering
the delay can be obtained by replacing its mean with the moving average of u;(x;) given the past location history, as

1 T
W) = ;ui(xm. (15)

The RSS model for the i-th beacon can be modified to p(ri|x,—1./) = N(ris; pui(xi-1:), 0'1.2). To evaluate this likelihood,
we extend the state vector z; in the particle filter so that it stores not only the latest location x, but also the location
history x,_r..

5. Performance Evaluation

We evaluated the proposed localization system in a real-world environment: a shopping mall spanning three
multi-story buildings and an underground public space that connects them. We first describe the experimental settings
(environment and data collection) and evaluate the overall impact of the proposed improvements on the localization
accuracy of the system. We then perform ablative evaluations of the proposed improvements. Specifically, for each
improvement, we compare the localization accuracy of the complete system against a version of the localization ap-
proach with the selected improvement removed. The primary focus of this experiment is to investigate the effect of the
proposed technical innovations, and not the accuracy of the base algorithm itself. Indeed, the proposed technical inno-
vations are not necessarily limited to our specific base localization scheme; they can also be applied to similar systems
in order to address specific problems in smartphone-based blind navigation in large and building-scale environments.
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Figure 4: Floor maps of the experimental site from the basement to the 4th floor. Blue dots indicate beacon locations.

5.1. Experimental Settings

5.1.1. Environment

Figure 4 shows the floor maps of the experimental site. The testing environment covers three buildings: 1) a
building with four floors and one basement, 2) a building with three floors and one basement, and 3) a building with
four floors and one basement. The basement floors of these buildings are connected through an underground public
pedestrian walkway. The total area of the experimental site is about 21,000 m?. We extracted the information on
accessible areas and floor transition areas (escalators and elevators) from the floor plans. A total of 218 beacons were
installed in this environment, with about a distance of about 5—10 m between beacons, to enable indoor localization.

5.1.2. Data Collection

To evaluate our localization system, we collected fingerprint data and test data using the data acquisition equipment
described below. Note that we collected both fingerprint and test data during business hours in which the shopping
facilities were open. Thus, the evaluation conditions reflect the real-world use case, as the data were affected by
crowds traversing the testing environment.
Data Collection Equipment: To reliably evaluate the localization accuracy, especially in situations where the user is
moving, it is important to reduce human error in assigning ground truth locations to fingerprints and test data. Manu-
ally labeling all collected data with actual location information is a long and error-prone process, so we automated the
data collection and ground truth assignment procedures using dedicated data collection equipment. Figure 5 shows
our equipment, which is composed of the following items:

e a Velodyne VLP-16 LIDAR to record a point cloud of the surrounding environment.

e an Xsens Mti-30 Inertia Measurement Unit (IMU) to compensate for rotational movement of LIDAR during
data collection.

e an Apple iPhone 6 smartphone to collect embedded sensor data and Bluetooth RSS data.

e an Apple iPhone 7 smartphone to collect embedded sensor data and Bluetooth RSS data for evaluation of
adaptive signal calibration.

e alaptop computer cabled to other components to simultaneously record LIDAR, IMU, and smartphone data.

The collected data were later processed to reconstruct the measurement positions with a three-dimensional SLAM
algorithm based on point cloud registration using Normal Distribution Transformation (NDT) [50, 51]. We then
tested and validated the collected data by confirming that the projection of the registered point cloud onto a ground
plane was in good agreement with the floor plans of the environment.

Fingerprint Collection: We collected fingerprints at roughly 1-meter intervals throughout the environment. The
data acquisition equipment was fixed to an electric wheelchair (WHILL Model A') during fingerprint collection to

lh‘ctp ://whill.us/model-a-personal-mobility-device-personal-ev
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Figure 5: Data acquisition equipment. Figure 6: Basement floor fingerprint collection sequences.

keep the movement of the equipment stable, with one experimenter controlling the movement of the wheelchair. We
collected one sequence for each floor, per building, and three sequences for the underground public area, for a total of
17 sequences and 17,745 data samples. As an example, Fig. 6 shows the fingerprint positions on the basement floor.
Test Data Collection: In contrast to the fingerprint data, which only included pairs of locations and respective RSS
vectors, our test data included additional sensor data used for the localization. We collected a time-series of iPhone
sensor data (accelerometer, attitude, barometric pressure, heading, and BLE RSS data) with correct location labels.
Even though the use of SLAM made it easier to assign correct location labels to test data, SLAM lacks semantic
information (such as the time a user reached a target floor using an escalator or an elevator), which is important
to evaluate performance. This additional information was input externally using a smartphone. For the testing, we
collected three distinct datasets:

1. Static: On a single floor, walk along one route. Stop every 4—10 m for about fifteen seconds. (11,028 seconds,
with iPhone 6)

2. Walk: On a single floor, walk along one route, from the starting point to the end point. (8,274 seconds, with
iPhone 6)

3. Walk with Floor Transition: Walk along one route, from the starting point to the end point. A floor transition
takes place using a vertical transportation device, i.e., escalator or elevator. (2,477 seconds, with iPhone 6 and
iPhone 7)

To evaluate the performance of the localization with different smartphones, the “Walk with Floor Transition”
dataset 3) was collected with two different devices at the same time. Note that the second device (iPhone 7) has
different signal receiving characteristics from the first device (iPhone 6), which is also the fingerprint collection
device. On the devices, the update frequencies of the accelerometer, attitude, barometric pressure, and heading data
are about 100 Hz, 100 Hz, 1 Hz, and 50 Hz, respectively. The report interval of BLE RSS readings is 1 second, and
localization errors are calculated for each RSS update.

5.2. Overall Localization Error

We measured the overall localization accuracy on a global dataset comprising data from the three datasets collected
with iPhone 6: 1) “Static”, 2) “Walk”, and 3) “Walk with Floor Transition”. The comparison of localization errors
between the base localization algorithm without any improvements and our localization system with all improvements
is shown in Fig. 7, where (a) shows the localization error on the horizontal axis and the cumulative distribution of the
error on the vertical axis. The localization error is calculated as Euclidean distance in (x,y) space. Figure 7b shows
the 5th percentile, 25th percentile, median, 75th percentile, and 95th percentile error. We also mark the mean as a red
point. Although the median error of both the base algorithm (1.6 m) and our system (1.3 m) shows a small difference,
in large error cases, the base algorithm without the improvements performed significantly worse than our proposed
system. In particular, the 95th percentile error decreased from 12.9 m to 3.4 m with our system, resulting in a mean
accuracy improvement from 3.0 m to 1.5 m. These values indicate that our system can manage localization much
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Figure 7: Overall localization error.

better in critical cases, which makes it a better approach for real-world applications. In the following sections, we
assess the impact of the six enhancements to localization: (1) Localization Integrity Monitoring, (2) Floor Transition
Control, (3) Adaptive Signal Calibration, (4) Fast Likelihood Computation, (5) Probabilistic Motion State Detection,
and (6) Time Sensitive Observation Modeling.

5.3. Localization Integrity Monitoring

The effect of the localization integrity monitoring module is evident in situations in which a large number of
particles in the particle filter fail to approximate the probability distribution of the localization state. This may happen
when the user’s movement model diverges from the expectation and the resulting errors accumulate. To assess the
effect of the localization integrity monitoring module in this case, we evaluated the localization error with and without
the module using the test dataset 2) “Walk”. Figure 8 plots the effects of the localization integrity monitoring module,
where (a) is the cumulative distribution of localization error and (b) is an example time series of localization error.
In Fig. 8a, we can see that the large localization error is reduced by applying the localization integrity monitoring
module, although the amount of improvement is smaller compared to the preliminary version [7] due to the overall
improvement of the system. To investigate the effect of the localization integrity monitoring module, one example
time series that includes catastrophic failures in localization is extracted in Fig. 8b. The localization error both with
and without localization integrity monitoring is the same until around 20 s after localization starts, after which the
localization error without localization integrity monitoring hits a peak and gradually decreases to the initial level. In
contrast, the localization integrity monitoring module manages to re-initiate the localization before the error peak, and
thus provides a higher localization accuracy.

We assessed the continuity of the tracked trajectories obtained by our localization system. As an intuitive metric
to measure the continuity, we compare the traveled distance between the ground truth and the estimated trajectories.
The traveled distance becomes longer when location estimates jump around excessively. For relative evaluation, we
also measured the traveled distance obtained by a naive approach for improving robustness [1] in which a small
fraction (10 %) of the particles in the particle filter are sampled from incoming RSS measurement and mixed into
the particles (hereafter, referred to as “’the mix approach”). Compared to the travel distance of the ground truth
trajectories (6784 m), the estimated trajectories by our approach and by the mix approach were 6893 m (1.6 %
increase) and 7007 m (3.3 % increase), respectively. Figure 8c shows one of the most prominent examples of the
trajectories obtained by our approach and by the mix approach. The mix approach sometimes causes the location
estimates to jump around discontinuously as shown in Fig. 8c, which makes the traveled distance excessively long.
In contrast, the localization integrity monitoring approach is able to provide more consistent location estimates while
reducing catastrophic failures.

5.4. Floor Transition Control

We compare (i) the localization system without the floor transition control module and (ii) the system comple-
mented with our floor transition control module (Section 4.2). We compute the localization error on the test dataset
3) “Walk with Floor Transition” with iPhone 6, which contains routes that include the use of escalators or elevators.
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Figure 9: Effect of Floor Transition Control.

The goals of the floor transition control module are to a) relocalize the user correctly upon leaving the elevator and b)
notify the user of the floor change in time (about five seconds before actually reaching the floor). Because the floor
transition control impacts the localization only around floor transitions, we evaluated the errors in a short period (five
seconds) after floor transition is finished.

Figure 9 depicts the effect of the floor transition control on the localization, where (a) shows the cumulative
distribution of the localization error for a short period of time (5 seconds) after floor transition and (b) shows times
when the localization system detected the arrival to the target floor with respect to the actual arrival. The arrival time of
the elevator to the target floor was annotated at the moment the elevator doors started to open. A negative value means
that the localization on the floor happened before the actual arrival to the target floor, while a positive value means
that the device has been detected on the target floor after the actual arrival. Considering the voice navigation assistant
use case, it is preferred that the application notices the arrival to the target floor a few seconds before the actual arrival
because it takes few seconds to notify a user of the arrival and next actions to perform by voice instructions.

In Fig. 9a, the localization error with the floor transition control is visibly better than without floor transition
control. This is further backed up in Fig. 9b, which shows that the floor transition control module detected that the
device had reached the target floor an average of five seconds before the actual arrival, which is the desired result.
In contrast, without floor transition control, the average moment at which the floor transition is detected ranges from
about two seconds before to five seconds after reaching the target floor.

5.5. Adaptive Signal Calibration

We evaluate the localization with and without the adaptive signal calibration on the test dataset 3) “Walk with
Floor Transition” that was recorded by two different devices. For simplicity, we denote the device for fingerprint
collection (Apple iPhone 6) as “A” and the other device (Apple iPhone 7) as “B”. Figure 10 plots the effect of the
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Figure 11: Effect of Fast Likelihood Computation.

adaptive signal calibration on localization error, where (a) is the cumulative error distribution and (b) is a boxplot to
compare statistical values of device A, device B without adjustment, and device B with adjustment. Compared to the
previous two modules that significantly impact a limited part of the data, this module moderately reduces localization
error across the whole sequence, as seen in Fig. 10a. To investigate this effect in detail, we compare the error obtained
by device B and device A in Fig. 10b. As shown, this module reduces the error of device B to the level of error
obtained by device A which has no RSS offset.

5.6. Fast Likelihood Computation

We evaluate the impact of the fast likelihood computation on computation times and localization error. We run
the localization system with and without this enhancement on an Apple iPhone 6 smartphone. Figure 11 plots the
effect of the fast likelihood computation module, where (a) indicates the time required to process one second of input
and (b) indicates the cumulative localization error. We investigated the input space partitioning with four different
settings: Ny, = 330, 181,97,47. The top My, = 3 local models are used to predict RSS values. The other parameters
that affect computational times were set to fixed values (L = 300 and K = 10). The average elapsed time decreased by
77 percent (from 0.77 s to 0.18 s) thanks to the computational efficiency improvement (Fig. 11a). At the same time,
the localization error does not show any increase (Fig. 11b). With this improvement, the localization system achieved
a sufficiently small computational burden to run flawlessly on a commodity smartphone device.

5.7. Probabilistic Motion State Detection

We evaluate the effect of the probabilistic motion state detection on the whole dataset collected with iPhone 6.
Because the dataset was collected in a large testing environment over several periods of time, it includes some cases
in which motion states tend to be overlooked, e.g., walking slowly or on a carpet in a movie theater. The threshold
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value for motion state detection o is set to 0.5 g, where 1 g = 9.8 m/ s2. The standard deviation of the acceleration
is calculated over a window of 0.8 s. For the cumulative distribution function, we set o to 0.°/2 and ¢y, to 0.95,
and k. is calculated from these values. Figure 12 plots the effect of the probabilistic motion state detection on the
localization error. Localization error larger than about two meters is slightly reduced thanks to the decrease in error
corresponding to failure of motion state detection for a couple of seconds, which results in the 95th percentile error
decrease from 3.8 m to 3.4 m and the 99th percentile error decrease from 6.0 m to 4.9 m.

5.8. Time Sensitive Observation Modeling

We evaluate the effects of the time sensitive observation modeling methods on localization by using the “Walk”
dataset collected in the environment. On iOS, the interval between two consecutive BLE beacon notifications is one
second; therefore, the At is set to one second. On the basis of a preliminary experiment to determine the response
of RSS values to position changes on an iPhone 6, we set the delay time window 7 to two through this experiment.
Figure 13 compares the localization error achieved under four different settings: without time sensitive observation
modeling, with Method 1 (Short-time Location Prediction), with Method 2 (Observation Model with Delay), and
with both Method 1 and Method 2. The localization error becomes smaller in the order as written above. To clearly
understand the effect of the time sensitive observation modeling methods, we decompose the localization error in the
moving direction (Fig. 14a) and the transverse direction (Fig. 14b). The moving directions are calculated from the
trajectories of ground truth locations when the locations are changing faster than 0.1 m/s. A positive value of the
localization error in the moving direction means the estimated location is ahead of the ground truth location, while a
negative value means the estimated location is behind it. The localization error in the transverse direction is defined
such that a positive value indicates the estimated location is on the right side of the ground truth location and a negative
value indicates the left side. In Fig. 14a, the mean localization error in the moving direction is improved from —0.7 m
(without time sensitive observation modeling) to —0.1 m (with Method 1 and Method 2), which means that the delays
in the estimated locations are compensated as desired. As a subsequent effect, both the 5th percentile and the 95th
percentile error in the transverse direction are improved about 0.6 m with time sensitive observation modeling (both
Method 1 and Method 2), as shown in Fig. 14b.

6. Evaluation with Users

We integrated our localization system in a turn-by-turn navigation application [42] and then evaluated the lo-
calization accuracy while actual users with visual impairments traversed the experiment field with the navigation
application. The localization and navigation results in this user experiment were obtained with the previous version
of the localization system [7].
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6.1. Method

We recruited ten participants (4 m/6 f) with visual impairments (6 legally blind and 4 low vision) aged from 33 to
54 (M=44, SD=5.9) years. One participant brought her guide dog while the others used white canes while navigating
with the system. During the study, participants were asked to navigate three fixed routes in the shopping mall (as
shown in Fig. 15): 1) from the area in front of the subway station on the basement floor to a movie theater on the 3rd
floor (177 m), 2) from the movie theater to a candy shop on the 1st floor (54 m), and 3) from the candy shop back to the
subway station. The total number of turns in these routes was 26. Note that each route included a transition between
floors via an elevator. All participants were asked to wear a waist bag with the phone attached to it in order to free
their hands from holding the phone during navigation, which is important for users with visual impairments as their
hand is often occupied holding a cane or a guide dog’s leash. An experimenter followed close behind all participants
and videotaped them with a camera. We visually annotated participants’ actual location every second, except for when
they were inside an elevator. We also annotated their turn performance, i.e., whether they successfully made a turn
without the experimenter’s help.

Moving direction error [m]

(a) Localization error in the moving direction
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Figure 14: Effect of Time Sensitive Observation Modeling on localization error decomposed in two directions.
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Figure 15: Three routes for the navigation experiment.

6.2. Results and Discussion

We evaluate the localization error between users’ actual locations and corresponding estimated locations. The
number of annotated location points is 7,641 from all routes for all participants. We obtained 1.7 m mean localization
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Figure 16: Localization error and turn performance.

error and 3.2 m localization error at the 95th percentile during navigation. We also investigate the performance of
navigation relying on our localization system. Of the 260 turns in total (26 turns per participant), 243 turns (93.5%)
were successful without the experimenter’s help. These results demonstrate that the proposed system can provide
actual visually impaired users with location information sufficient for navigation.

To examine the impact of the localization error on the turn performance, we plot the localization error at the
turns, the count of turn results (success or fail), and the rate of success divided into 0.5-m intervals (see Fig. 16).
Note that a success in the 5.5-6.0 m range was counted because the participant was eventually able to return to the
navigation route after walking for a while, although the navigation error caused by the large localization error made
the participant turn far before the corner.

We discuss the findings from the experiment conducted with the previous version of the localization system and
the benefits of the technical innovations introduced in this paper. Figure 16 shows that the turn success rate does not
change much when the localization error is lower than 3 m. This confirms our initial intuition that the localization
error in the range of about two meters is appropriate for turn-by-turn navigation assistance for people with visual
impairments. However, recent research highlights that environment [52-54] and user performance [55] may also
influence navigation assistance requirements, and therefore further investigations may be needed.

On the other hand, the turn success rate drops with localization error larger than 3 m. Therefore, to improve the
navigation performance on top of the speech-based navigation system, reducing large error values has a profound
effect. These findings obtained with the prior version of the localization system highlight the benefit of the additional
extensions presented in Sections 4.5 and 4.6 that improved the extreme localization error values, as shown in Sections
5.7 and 5.8.

7. Conclusion

To enable automated turn-by-turn indoor navigation assistance for individuals with visual impairments, a local-
ization system that can achieve high levels of accuracy in building-scale real-world environments is essential. In this
paper, we considered challenges for accurate localization related to the large-scale nature of the environments and the
user’s mobility. To address these challenges within a unified framework, we designed and implemented a localization
system that enhances a probabilistic localization algorithm with a series of innovations in order to achieve accurate
real-time localization We performed a series of experiments with ground truth data collected in a large indoor en-
vironment composed of three multi-story buildings and an underground passageway. The experimental evaluations

validated the effect of the enhancement modules to improve the localization accuracy and provide real-time navigation

capabilities in real-world scenarios. Specifically, the mean localization error decreased from 3.0 m to 1.5 m. We also
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evaluated the practical performance of the system in a study with visually impaired participants and found that the
proposed localization system helps their independent mobility.
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