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Abstract The parton distribution functions (PDFs) which
characterize the structure of the proton are currently one
of the dominant sources of uncertainty in the predictions
for most processes measured at the Large Hadron Collider
(LHC). Here we present the first extraction of the proton
PDFs that accounts for the missing higher order uncertainty
(MHOU) in the fixed-order QCD calculations used in PDF
determinations. We demonstrate that the MHOU can be
included as a contribution to the covariance matrix used for
the PDF fit, and then introduce prescriptions for the compu-
tation of this covariance matrix using scale variations. We
validate our results at next-to-leading order (NLO) by com-
parison to the known next order (NNLO) corrections. We
then construct variants of the NNPDF3.1 NLO PDF set that
include the effect of the MHOU, and assess their impact on
the central values and uncertainties of the resulting PDFs.

The search for new physics at present [1] and future [2] high-
energy colliders, and specifically at the LHC, has turned from
the mapping of the energy frontier to the exploration of the
precision frontier: looking for subtle deviations from Stan-
dard Model predictions. In this endeavor, an accurate esti-
mate of uncertainties associated with these predictions is cru-
cial. At present, these uncertainties have two main origins.
The first is the missing higher order uncertainty (MHOU)
from the truncation of the QCD perturbative expansion. The
second is related to knowledge of the structure of the colliding
protons, as encoded in the parton distributions (PDFs) [3].
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PDFs are extracted by comparing theoretical predictions
to experimental data. Currently, PDF uncertainties only
account for the propagated statistical and systematic errors
on the measurements used in their determination. However,
the same MHOU which affects predictions at the LHC also
affect predictions for the various processes that enter the
PDF determination. These are currently neglected, perhaps
because they are believed to be generally less important than
experimental uncertainties. However, as PDFs become more
precise, in particular thanks to ever tighter constraints from
LHC data [4], MHOUs in PDF determinations will eventu-
ally become significant. Already in recent PDF sets making
extensive use of LHC data, such as NNPDF3.1 [5], the shift
between PDFs at next-to-leading order (NLO) and the next
order (NNLO) is sometimes larger than the PDF uncertainties
from the experimental data.

Here we present the first PDF extraction that systemati-
cally accounts for the MHOU in the QCD calculations used
to extract them. MHOUs are routinely estimated by varying
the arbitrary renormalization μr and factorization μ f scales
of perturbative computations [1], though alternative methods
have also been proposed [6–8]. Our inclusion of the MHOU
in a PDF fit involves two steps: first we establish how theo-
retical uncertainties can be included in such a fit through a
covariance matrix [9,10], and then we find a way of comput-
ing and validating the covariance matrix associated with the
MHOU using scale variations [11]. By producing variants of
NNPDF3.1 which include the MHOU, we are then able to
finally address the long-standing question of their impact on
state-of-the-art PDF sets. A detailed discussion of our results
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is presented in a companion paper [12], to which we refer for
full computational details, definitions, proofs and results.

Assuming that theory uncertainties can be modeled as
Gaussian distributions, in the same way as experimental sys-
tematics, then the associated theory covariance matrix Si j
can be expressed in terms of nuisance parameters

Si j = 1

N

∑

k

Δ
(k)
i Δ

(k)
j , (1)

where Δ
(k)
i = T (k)

i − T (0)
i is the expected shift with respect

to the central theory prediction for the i-th cross-section,
T (0)
i , due to the theory uncertainty, and N is a normalization

factor determined by the number of independent nuisance
parameters. Since theory uncertainties are independent of the
experimental ones, the two can be combined in quadrature:
the χ2 used to assess the agreement of theory and data is
given by

χ2 =
Ndat∑

i, j=1

(Di − T (0)
i )(S + C)−1

i j

(
Dj − T (0)

j

)
, (2)

with Di the central experimental value of the i-th datapoint,
and Ci j the experimental covariance matrix. More details of
the implementation of the theory covariance matrix in PDF
fits may be found in Refs. [9,10].

The choice of nuisance parameters Δ
(k)
i used in Eq. (1) to

estimate a particular theoretical uncertainty is not unique,
reflecting the fact that such estimates always have some
degree of arbitrariness. Here we focus on the MHOU, and
choose to use scale variations to estimate Δ

(k)
i . A standard

procedure [1] is the so-called 7-point prescription, in which
the MHOU is estimated from the envelope of results obtained
with the following scales
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where kr = μr/μ
(0)
r and k f = μ f /μ

(0)
f are the ratios of

the renormalization and factorization scales to their central
values. Varying μr estimates the MHOU in the hard coeffi-
cient function of the specific process, while the μ f variation
estimates the MHOU in PDF evolution.

In order to compute a covariance matrix, we must not
only choose a set of scale variations, but also make some
assumptions about the way they are correlated. We do this
by, first of all, classifying the input datasets used in PDF fits
into processes as indicated in Table 1: charged-current (CC)
and neutral-current (NC) deep-inelastic scattering (DIS),
Drell–Yan (DY) production of gauge bosons (invariant mass,
transverse momentum, and rapidity distributions), single-jet
inclusive and top pair production cross-sections. Note that
this step requires making an educated guess as to which cross-
sections are likely to have a similar structure of higher-order
corrections.

Table 1 Classification of datasets into process types

Process type Datasets

DIS NC NMC, SLAC, BCDMS, HERA NC

DIS CC NuTeV, CHORUS, HERA CC

DY CDF, D0, ATLAS, CMS, LHCb (y, pT , Mll )

JET ATLAS, CMS inclusive jets

TOP ATLAS, CMS total + differential cross-sections

Next, we formulate a variety of prescriptions for how to
construct Eq. (1) by picking a set of scale variations and
correlation patterns. A simple possibility is the 3-point pre-
scription, in which we vary both scales coherently (thus set-
ting k f = kr ) by a fixed amount about the central value,
independently for each process. More sophisticated prescrip-
tions vary the two scales independently, but by the same
amount, and assume that while μr is only correlated within a
given process, μ f is fully correlated among processes. This
assumption is based on the observation that μ f variations
estimate the MHOU in the evolution equations, which are
universal (process-independent), though it is an approxima-
tion given that the evolution of different PDFs is governed
by different anomalous dimensions, which do not necessarily
share the same MHO corrections.

We then proceed to the validation of the resulting covari-
ance matrices at NLO. We use the same experimental data and
theory calculations as in the NNPDF3.1 αs study [13] with
two minor differences: the value of the lower kinematic cut
has been increased from Q2

min = 2.69 GeV2 to 13.96 GeV2

in order to ensure the validity of the perturbative QCD expan-
sion when scales are varied downwards, and the HERA Fb

2
and fixed-target Drell-Yan cross-sections have been removed,
for technical reasons related to difficulties in implementing
scale variation. In total we then have Ndat = 2819 data points.
The theory covariance matrix Si j has been constructed by
means of the ReportEngine software [14] taking as input
the scale-varied NLO theory cross-sections Ti (k f , kr ), pro-
vided by APFEL [15] for the DIS structure functions and by
APFELgrid [16] combined with APPLgrid [17] for the
hadronic cross-sections.

Since for the processes in Table 1 the NNLO predic-
tions are known, we can validate the NLO covariance matrix
against the known NNLO results. For this exercise, a com-
mon input NLO PDF is used in both cases. In order to validate
the diagonal elements of Si j , which correspond to the over-
all size of the MHOU, we first normalize it to the central
theory prediction, Ŝi j = Si j/T

(0)
i T (0)

j . Then we compare

in Fig. 1 the relative uncertainties, σi =
√
Ŝi i to the rel-

ative shifts between predictions at NLO and NNLO, δi =
(T (0),nnlo

i − T (0),nlo
i )/T (0),nlo

i , for each of the Ndat = 2819
observables. In all cases, δi turns out to be smaller or com-
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Fig. 1 The relative uncertainties σi (9-point prescription) on the 2819
datapoints used in the PDF fit, compared to the known NLO-NNLO
relative shifts δi in theory prediction

parable to σi , showing that this prescription provides a good
(if somewhat conservative) estimate of the diagonal theory
uncertainties.

The validation of the full covariance matrix including cor-
relations is more subtle. We first diagonalize Ŝi j , by finding
the (orthonormal) eigenvectors eai which correspond to posi-
tive eigenvalues (sa)2: these define a subspace S orthonormal
to the large null subspace. The dimension NS of S depends on
the total number of independent scale variations, the number
of processes, and the correlation pattern. Its determination is
nontrivial, and it requires computing firstly the total number
of distinct scale variations for any pair of processes, i.e., the
total number of vectors Δ(k) in Eq. (1), and secondly deter-
mining the full set of linear relations between them in order to
establish how many of them are independent (see Ref. [12]).

For the 5 processes in Table 1, and the 9-point prescription,
we find NS = 28, while for the simpler 3-point prescription
NS = 6. We then compute the NS projections δa of the NLO-
NNLO shifts δi along each eigenvector, and compare them to
the square root of the corresponding eigenvalues, sa . Finally
we compute the length |δmiss

i | of the remaining component
of the vector δi that lies in the null subspace of Ŝ.

The validation can be considered successful if the angle
θ = arcsin(|δmiss

i |/|δi |) is small, meaning that the NNLO-
NLO shift lies substantially within the subspace S estimated
by the scale variations, and furthermore if |δa | � |sa |,
so that the size of the shift along each eigenvector is cor-
rectly estimated by the corresponding eigenvalue. Using
the 9-point prescription, for individual processes we find
θ = 3◦, 14◦, 22◦, 32◦, 16◦ for top, jets, DY, NC and CC
DIS respectively. For the complete dataset with the same
prescription we find θ = 26◦.

The projected shifts and eigenvalues are compared in
Fig. 2. The size of the eigenvalues generally falls as the pro-
jected shifts get smaller. For the six largest eigenvectors the
eigenvalue is always larger than the shift and, in all but two
cases, of very similar size to the shift. The seventh eigen-
value is smaller than, but of the same order as, the shift,
while the eighth eigenvalue significantly underestimates the

Fig. 2 The square root eigenvalues sa of the theory covariance matrix
Ŝi j computed using the 9-point prescription, and the projections δa of
the NNLO-NLO shift vector δi on the eigenvectors. The length |δmiss

i |
of the component of δi lying in the null subspace of Ŝi j is also shown

shift. However, given that the eighth eigenvalue is already
one order of magnitude smaller that the first, this means that
most of the shift is well described by the theory covariance
matrix, and somewhat overestimated by it in just a few cases.
We conclude that the validation is successful: remarkably, the
pattern of correlations of theory shifts in a 2819-dimensional
vector space is well captured by just 28 nuisance parameters.

Adding the theory covariance matrix Si j to the experi-
mental covariance matrix Ci j , while increasing the diagonal
uncertainty on each individual prediction, also (and perhaps
more importantly) introduces a set of theory-induced corre-
lations between different experiments and processes, even
when the experimental data points are uncorrelated. This is
illustrated in Fig. 3, showing the combined experimental and
theoretical (9-point) correlation matrix: it is clear that sizable
correlations appear even between experimentally unrelated
measurements.

We can now proceed to a NLO global PDF determination
with a theory covariance matrix Si j computed using the 9-
point prescription. From the point of view of the NNPDF
fitting methodology, the addition of the theory contribution
to the covariance matrix does not entail any changes: we
follow the procedure of Ref. [18], but with the covariance
matrix Ci j now replaced by Ci j + Si j , both in the Monte
Carlo replica generation and in the fitting. In Table 2 we show
some fit quality estimators for the resulting PDF sets obtained
using only the experimental covariance matrix, alongside the
theory covariance matrix with two different prescriptions.
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Fig. 3 The combined experimental and theoretical (9-point) correla-
tion matrix for the Ndat cross-sections in the fit

Table 2 The centralχ2 per datapoint and the average uncertainty reduc-
tion φ for the 3-point and 9-point fits

C C + S(3pt) C + S(9pt)

χ2 1.139 1.139 1.109

φ 0.314 0.394 0.415

In particular, we show the χ2 per datapoint and the φ

estimator [18], which gives the ratio of the uncertainty in the
predictions using the output PDFs to that of the original data,
averaged in quadrature over all data. The quality of the fit is
improved by the inclusion of the MHOU, with the 9-point
prescription performing rather better than 3-point. Interest-
ingly, φ only increases by around 30% when one includes
the theory covariance matrix, much less than the 70% one
would expect taking into account the relative size of the
NLO MHOU and experimental uncertainties. This means
that in the region of the data, taking the MHOU into account
increases the PDF uncertainties only rather moderately. This
suggests that the addition of the MHOU is resolving some of
the tension between data and theory, so that the larger overall
uncertainty is partly compensated by the improved fit qual-
ity, though of course the highly correlated nature of theory
uncertainties also plays a role in reducing their impact.

In Fig. 4 we compare at Q = 10 GeV the gluon and quark
singlet PDFs obtained at NLO with and without a theory
covariance matrix, normalized to the latter. We also show the
central NNLO result when the theory covariance matrix is
not included. Three features of this comparison are apparent.
First, when including the MHOU, the increase in PDF uncer-
tainty in the data region is quite moderate, in agreement with
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Fig. 4 The gluon and quark singlet PDFs from the NNPDF3.1 NLO
fits without and with the MHOU (9-points) in the covariance matrix at
Q = 10 GeV, normalized to the former. The central NNLO result is
also shown

the φ values of Table 2. Second, the NLO-NNLO shift is fully
compatible with the overall uncertainty. Finally, the central
value is also modified by the inclusion of Si j in the fit, as
the balance between different data sets adjusts according to
their relative theoretical precision. Interestingly, the central
prediction shifts towards the known NNLO result, showing
that, thanks to the inclusion of the MHOU, the overall fit
quality has improved.

Finally, in Fig. 5 we compare the dependence of the fit
results on the specific choice of prescription for Si j , specifi-
cally for the 3- and 9-point cases, normalized to the latter. In
general the two results are consistent, but results with the 3-
point prescription have somewhat smaller uncertainties and,
more importantly, their central value is closer to that when
the MHOU is not included (see Fig. 4), so that the improved
agreement between the NLO and full NNLO noted in Fig. 4
would be mostly lost if the 3-point prescription were adopted,
providing further confirmation for preferring the 9-point pre-
scription.
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Fig. 5 Same as Fig. 4 for the gluon, comparing the 3-point and 9-point
prescriptions as a ratio to the latter

It is important to understand that the meaning of PDFs and
their uncertainties changes once the theory covariance matrix
is included: so the error bands e.g. in Fig. 4 have a different
meaning according to whether the theory covariance matrix is
included. When it is included, PDF uncertainties account for
data and methodological uncertainties, but also for MHOUs.
Also, their central values now optimize the agreement with
data based on a χ2 which includes MHOUs.

The usage of these PDFs is accordingly different. Firstly,
they should be combined with hard cross-sections which also
include MHOU. The MHOU on the prediction and the PDF
uncertainty (now also including MHOUs) should be com-
bined in the standard way (i.e. in quadrature), since with a
universal PDF it is not possible to keep track of the cor-
relations (which surely exist) between MHOU in processes
used for PDF determination, and the MHOU in the predic-
tion itself. This neglected correlation is likely to be a small
effect in most situations [12], and it leads to a conservative
uncertainty estimate. Second, it is important to keep in mind
that MHOUs in the theory prediction must be included in
the computation of the χ2 when assessing the agreement of
these PDFs with new data, since, as we have seen, their cen-
tral value is shifted as a consequence of the inclusion of the
MHOUs.

In summary, we have presented the first global PDF anal-
ysis that accounts for the MHOU associated with the fixed
order QCD perturbative calculations used in the fit. The inclu-
sion of the MHOU shifts central values by an amount that is
not negligible on the scale of the PDF uncertainty, moving
the NLO result towards the NNLO result. PDF uncertain-
ties increase moderately, because of the improvement of fit
quality due to the rebalancing of datasets according to their
theoretical precision. For this to be effective, the correla-
tions in Si j play a crucial role. These correlations are rather
more extensive than those related to experimental system-

atics, since all different measurements of the same process
are correlated through their common MHO corrections, and
different processes are correlated through MHO corrections
to perturbative evolution. A more accurate treatment of these
correlations (especially those related to perturbative evolu-
tion) will be the subject of future studies.

Our results pave the way towards a fully consistent treat-
ment of MHOU for precision LHC phenomenology. The
NLO results presented here will be upgraded to NNLO, facil-
itated by tools such as the APPLfast grid interface to the
NNLOJET program [19]. We thus anticipate that the upcom-
ing NNPDF4.0 PDF set will be able to fully account for
MHOU both at NLO and NNLO, as well as other sources of
theory uncertainty, such as those related to nuclear correc-
tions [10,20].
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