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Skin substitutes are epidermal, dermal or complete bilayered constructs, composed by natural or synthetic
scaffolds and by adherent cells such as fibroblasts, keratinocytes or mesenchymal stem cells. Silk fibroin is a
promising polymer to realize scaffolds, since it is biocompatible, biodegradable, and exhibits excellent mechanical
properties in terms of tensile strength. Moreover, fibroin can be added of others components in order to modify
the biomaterial properties for the purpose. The aim of this work is to prepare silk fibroin films for adipose-derived
stem cell (ADSCs) culture as a novel feeder layer for skin tissue engineering. Pectin has been added to promote
the protein conformational transition and construct strength, while glycerol as plasticizer, providing biomaterial
flexibility. Eighteen formulations were prepared by casting method using fibroin, pectin (range 1-10% w/w), and
glycerol (range 0-20% w/w); films were characterized by Fourier transform infrared spectroscopy and differential
scanning calorimetry assay, to select the optimal composition. A stable fibroin conformation was obtained using
6% w/w pectin, and the best mechanical properties were obtained using 12% w/w glycerol. Films were sterilized,
and human ADSCs were seeded and cultured for 15 days. Cells adhere to the support assuming a fibroblastic-like
shape and reaching confluence. The ultrastructural analysis evidences typical active-cell features and adhesion
structures that promote cell anchorage to the film, thus developing a multilayered cell structure. This construct
could be advantageously employed in cutaneous wound healing or where the use of ADSCs scaffold is indicated
either in human or veterinary field.

The development of skin substitutes dates back
to 1975, when Rheinwald and Green (1) cultured
keratinocytes on a layer of lethally irradiated 3T3 murine
fibroblasts. Currently, this method remains the most
reliable and widely used for in vitro keratinocyte culture,
but some concerns are emerging about their safety (2-5).
To overcome these limits, Sugiyama et al. (6) proposed
the use of human irradiated adipose-derived stem cells
(ADSCs) as a feeder cell layer: results showed that the
morphology of irradiated stem cells was similar to 3T3,
and both cell lines (stem and 3T3 cells) expressed genes

promoting keratinocyte proliferation. Other researchers
also showed that non-irradiated ADSCs can boost
epithelialization, angiogenesis (7), capillary density
and granulation thickness of transplanted cell-enriched
collagen sponges (8). Altman et al. (9) observed that
ADSCs, once seeded on acellular dermal matrix and
applied on murine wound, spontaneously differentiated
along vascular endothelial, fibroblastic and epidermal
epithelial lineages and significantly improved wound
healing; moreover, cells localize at implantation site.

Current cutaneous substitutes are epidermal, dermal or
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complete bilayered constructs seeded with keratinocytes,
fibroblasts or both, respectively. Skin substitutes are
composed by natural or synthetic scaffolds and must
lead cells to tissue reconstruction. Commercial skin
grafts are principally collagen-based matrices, such as
hydrogels, sponges or lattices. Other natural materials
(e.g. chitosan, fibrin and hyaluronan) are commercialized,
but further clinical data are needed for FDA approval
(10). A promising natural polymer is represented by silk
fibroin, because of its peculiar biocompatibility (11),
biodegradability (12), tensile strength and versatility (13).
Besides textile industry, silk fibroin has been employed as
suture material for centuries (14) and, more recently, in
several biomedical fields as in hydrogels, membranes or
scaffolds for regenerative medicine (13, 15-23).

The silk fibroin, usually extracted from the silkworm
(Bombyx mori) cocoons, can assume three molecular
conformations: Silk II (~-sheet structure), stable and
water-insoluble; Silk I (a mixture of random coil,
a-helix and ~-tum), metastable and water-soluble; Silk
III (a-helix structure at the water/air interface) (24,
25). The native silk fibroin is purified from sericin by
the de-gumming process, and has a predominant Silk
II structure. De-gummed fibers of silk fibroin can be
used as they are or can be regenerated in order to obtain
an aqueous fibroin solution. The regenerated fibroin is
then processed in different ways to produce adequate
scaffolds (13, 20, 26-28). The regenerated silk fibroin,
in aqueous solution or as scaffold, mainly presents Silk
I form. Since the Silk II conformation is a fundamental
condition for the employ of silk fibroin in regenerative
medicine, it is mandatory to promote the conformational
transition from Silk I to Silk II by treating the Silk I form
with organic solvents (such as methanol or ethanol) (29­
31), mechanical stress, temperature change or presence
of other polymers, such as alginate, polyethylene
glycole, chitosan, pectin (24,32), and glycerol(33). The
pectin, a natural polysaccharide polymer constituting
the plant cell wall, has been recently employed for
several biomedical applications, including drug and
gene delivery, wound healing and tissue engineering;
in particular, pectin hydrogels were used for bone
tissue regeneration, as prosthetic nucleus pulposus
substitutes or as wound healing patches (34). Glycerol
is a plasticizer and has been added to fibroin by Lu et al.
(33) to obtain insoluble and flexible films, improving
their mechanical properties when compared with pure
silk fibroin films;

The aim of this work is to prepare silk fibroin films
for ADSCs culture as a novel feeder layer for skin tissue
engineering. Pectin has been added to promote the protein
conformational transition and construct strength, while
glycerol as plasticizer, providing biomaterial flexibility.

MATERIALS AND METHODS

Preparation and sterilization ofsilk fibroin films
The fibroin solubilization was performed as reported by

Chlapanidas et al. (35): briefly, cocoons of Bombyx mori were
degummed in autoclave, dried at room temperatureand treated
with a solution of Ca(N03)2 (75% w/v) in methanol. After
filtering under vacuum, the solution was dialyzed, and the final
concentrationof aqueous silk fibroinsolutionwas 5% w/v.

Pectin powder (Pectine Industrie, Italy) was solubilized in
deionized water under stirring at 80°C, while glycerol (Fluka,
Germany) was diluted 1:1 in water; silk fibroin, pectin and
glycerolwere mixed under soft stirring, cast into molds (8.5 ern

diameter) to guaranteesolventevaporation(60°C,6 hours) (32).
Eighteen films were obtained using different fibroin-pectin­
glycerol ratios reported in Table 1: the first group of films (A-F
films, Group 1, see Table 1) is composed by fibroin and pectin
only, with a pectin concentration between I and 10% w/w. In
the second and the third group (G-N and O-T films, Group 2
and Group 3, respectively, see Table 1) glycerol is added at
concentration 1-10%and 2-20% w/w respectively, and for each
formulation the ratio pectin:glycerol is 1:1 (for Group 2) or 1:2
(for Group3).Twofilmformulations were selectedand sterilized
by three methods:moist heat (autoclave, 121°Cfor 20 minutes),
dry heat (l60°C for 20 minutes) and gamma irradiation (at 20
and 60 kGy). A microbial test was performed after sterilization
processes: films were incubated for 7 days in DMEM medium
(Euroclone,Italy) at 37°C, 5% CO2: after this period, 5mLof the
supernatantwere insertedinto adequateflaskand analyzedusing
BacT/ALERT 3D systemto detect bacteria and fungi.

Fourier Transform Infrared Spectroscopy and Differential
Scanning Calorimetry analysis

Before and after sterilization, films were analyzed by
, Fourier Transform Infrared Spectroscopy (FTIR) on a Broker

Alpha-E spectrometer equipped with a Mlkacle" attenuated
total reflection Diamond crystal cell in reflection mode.
Backgroundmeasurementswere taken twice with an empty cell
and subtracted from the sample readings. The FTIR spectra in
the absorbance mode were obtained in the spectral regions of
50D-3500cm-1• Each spectrum of the samples was acquired by
accumulationof 32 scans with a resolutionof 4 cm',

Samples were also analyzed by Differential Scanning
Calorimetry(DSC)usinga MettlerTA30differentialcalorimeter.
Thermalscanningwas carried out on 3mg of each sample under
nitrogen atmosphere (temperature range: lOoC-500°C, rate:
lOoC/min).

Cell culture
Asampleof adiposetissue(about50mL),collectedfromone

informed subject, was suspended in phosphate buffered saline
(PBS)(Euroclone)withpenicillin/streptomycin 1% (Euroclone),
put into a sterile box, and forwarded to the laboratory at a
temperatureof 4°C. Adipose tissue was digested as reported by
Faustini et al. (36), using a collagenaseconcentrationof 0.02%
w/v (Sigma, USA) for one hour; cells were then centrifugedand
washed twice with PBS. Stromal vascular fraction was plated
on plastic surface(10.000 cell/ern") in DMEMlFl2 (Euroclone),
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10% fetal bovine serum (ThermoFisher, USA), 1% penicillin!
streptomycin and 1% Amphotericin B (Euroclone); adherent
stem cells were expanded till the 3rd passage. Films were cut in
Iem'-squares and cells were then cultured on the prepared films
(20,000 cells/em- of film) for 15 days at 37°C, 5% COl'

Characterization ofcell culture
After cell culture, silk fibroin cell seeded films were treated

with 2% glutaraldehyde (Sigma) for 30 min at room temperature,
then 2% glutaraldehyde and cacodylate buffer (Sigma) O.IM for
30 min at 4°C, and finally washed with cacodylate buffer O.lM.
Samples were dehydrated using a graded ethanol series (from
30% to 100%) (Carlo Erba, Italy), freeze-dried, critical point
dried, sputter coated with gold and analyzed using a scanning
electron microscope (JEOL JSM-6380LV) operating at low
vacuum degree, 20 kV, retrodiffused electron signal.

Moreover, samples were first fixed with 2.5% glutaraldehyde
in cacodylate buffer O.IM ph 7.4, then with osmium tetroxide
(Sigma) 0.1% and finally dehydrated with alcohol scale. Films
were included in Epon 812/Araldite resin (Sigma) before being
sectioned using Ultracut S Ultramicrotome. The thin sections
were treated with Toluidine Blue staining (Sigma) and observed
under an optical microscope, while the ultrathin sections were
observed for transmission electron microscopy with a JEOL
JEM 1200 EX instrument.

RESULTS

molecular conformation. Considering the Amide I peak
obtained from FTIR spectra, a wavenumber of ~1650
em:' was related to Silk II, while a wavenumber of~1625
em- 1 corresponded to Silk I form. Among A-F groups, A
and B films presented the Silk I conformation (Table I);
increasing pectin concentration, the Amide I peak shifted
to lower frequencies and then remained unchanged in the
case of films containing 6%, 8% and 10% pectin (D-F
films, respectively) (Table I).

These results indicated that the fibroin conformational
transition was obtained using 6% of pectin, and the same
behavior was observed for the second and third group of
films (Table 1). The FTIR spectrum ofQ film (4% pectin)
presented the characteristic absorption bands of both
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Fig. 1. Differential scanning calorimetry (DSC) patterns of
different representative silk fibroin films.

Film Fibroin Pectin Glvcerol Amide I peak (em")

A 99 I 0 1648.93

- B 98 2 0 1648.53
Cl. C 96 4 0 1628.79=Q D 94 6 0 1625.51..c E 92 8 0 1625.58

F 90 10 0 1625.83
G 98 I 1 1647.99

M H 96 2 2 1647.44
Cl. I 92 4 4 1630.68=Q L 88 6 6 1627.86..
c M 84 8 8 1627.33

N 80 10 10 1626.45
0 97 1 2 1648.00

.., P 94 2 4 1647.80
Cl. Q 88 4 8 1644.30 and 1627.00=Q R 82 6 12 1626.29..c S 76 8 16 1626.02

T 70 10 20 1625.69

The eighteen different films had different
characteristics according to pectin and glycerol content.
Films composed by fibroin and pectin only resulted rigid,
fragile and they broke during mold removal; the presence
of glycerol improved film elasticity and resistance. FTIR
and DSC analysis were carried out to evaluate the fibroin

Table 1. Weight/weight percentage composition of silk fibroin
films and wavenumber ofAmide I peak.
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Fig. 2. Adipose-derived stem cel/s cultured on Rfibroinfilm: a) SEM image; b) light microscopy microphotograph ofafilm transversal
section showing the eel/ layer, Toluidine Blue Staining, magnification 20x; c) and d) TEM images ofafilm transversal section showing
the cell attachment organized in multilayer, bar in c): 2 um; bar in d): 1 um .

conformations, index of a conformational transition in
place (Table I).

The results of DSC analysis were reported in Figure
I: increasing pectin concentration, the endothermic event
offibrin degradation shifted to higher temperatures (from
285°C for B film to 292°C for D film) and the exothermic
event of fibroin crystallization (215°C) vanished;
moreover, increasing pectin concentration, an exothermic
event occured at 242°C. Adding glycerol, an endothermic
peak compared at 235-240°C and this phenomenon was
even more evident in the case of films composed by
pectin:glycerol in ratio 1:2.

To evaluate the influence of different composition
on film sterilization and cell attachment, R (fibroin 82%,
pectin 6%, glycerol 12% w/w) and T (fibroin 70%, pectin
10%, glycerol 20%) films were selected for further
analysis. Rand T films were sterilized by moist heat, dry
heat and gamma irradiation. Dry heat sterilization was
not applicable for silk fibroin because films appeared
hard, dry and yellowish (data not shown), while the
other two methods of sterilization could be exploited. All

films stand the sterility test by BacT/ALERT 3D system
(data not shown). Moreover, the sterilization, both steam
sterilization and gamma rays, did not induce fibroin
degradation because the same peaks were appreciated
by FTIR analysis (-1622 cm-! after steam sterilization,
-1623 ern" after 20kGy sterilization and -1624 em:' after
60kGy sterilization). However, after gamma radiation
a less energy was requested for fibroin degradation: in
fact, the DSC analysis shows the endothermic peak at
- 288°C after steam steriliazation, - 287°C after 20kGy
sterilization and -288°C after 60kGy sterilization, but the
energy was higher after autoclave sterilization than after
irradiation with both of the doses.

The results of cell culture on silk fibroin films were
reported in Figure 2. Silk fibroin films maintained their
structural integrity until the end of cell culture. The
morphological investigations showed that cells adhered
to the support, with a fibroblast-like shape and reached
confluence (Figure 2a). Adhesion of cells occurred
without film penetration, since it did not show porosity.
Toluidine Blue staining indicated that cells adhered to
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both Rand T films, but the best adhesion was observed
using R film (Figure 2b). The ultrastructural analysis on
R film suggested the presence of adhesion molecules
that promoted cell anchorage to the film, forming a
multilayered cell structure (Figure 2c); moreover, typical
active-cell features as nuclei, mitochondria, rough
endoplasmic reticulum, lysosomes and vacuoles were
observed (Figures 2c and 2d).

DISCUSSION

Silk fibroin films were thecnological characterized
and, according to FTIR and DSC analysis, a stable fibroin
conformation was obtained using pectin in concentration
of 6% w/w. Up to this pectin concentration, silk fibroin
conformation is unchanged: probably, a maximum
number of sites for pectin-fibroin interaction is saturated
at 6% pectin concentration. The best results, in terms of
elasticity and resistance, were obtained in presence of
glycerol in order to reach a pectin/glycerol ratio of 1:2.
Moreover, the DSC analysis has shown an exothermic
event at ~240°C associated to pectin degradation and
connected to the formation of new links, such as cross­
linking or cyclization (37, 38). After adding glycerol, an
endothermic peak appeared at -240°C: this peak is similar
to that ofpectin degradation, but ofopposite nature, and it
is probably due to the molecular interation between pectin
and glycerol; in fact, this pectin-glycerol interaction
phenomenon is even more evident in the case of films
composed by pectin:glycerol in ratio 1:2.

The steam sterilization process can be useful for silk
fibroin films: several authors have applied moist heat
sterilization whithout any appreciable fibroin alteration
(16, 17,39-41). On the other side, Lawrence et al. (25)
observed that the sterilization with autoclave increased Silk
II structure because hydrostatic pressure increases elastic
modulus and then crystalline structure content; saturated
vapor environment decreases the Tg of silk fibroin, that
combined with high temperature increases fibroin chain
movement. Moreover, our results indicate that after
gamma radiation a less energy was requested for fibroin
degradation, probably due to a peptide bond weakening.
Kojthung et al. (42) evaluated that gamma radiation
reduces silk fibroin tensile strength, molecular weight,
and B-sheet content: this effect is more pronounced by
increasing radiation intensity. On the other side, George et
al. (43) observed that gamma radiation is the most suitable
method for the sterilization of silk fibroin films for corneal
tissue engineering.

Finally, the presence of pectin could enhance the cell
adhesion because it mimics the polysaccharide structure
of the extracellular matrix. In fact, pectin improves
osteoblasts adhesion and proliferation on porous poly-

lactic-co-glycolic acid matrix (44), promotes murine
fibroblast and human muscle cell growth (45), improves
the biocompatibility ofmedical devices (46, 47). Munarin
et al. (48) obtained an injectable vehicle composed by
pectin microspheres suitable for bone tissue regeneration.
On the other hand, Lu et al. (34) observed that the glycerol
concentration of 30% w/w was necessary to obtain
adequate silk fibroin films for fibroblast cell culture.
Our results indicate that the concentration of 12% w/w
guarantees the adipose-derived stem cell adhesion.

In conclusion, the fibroin casting method with pectin
and glycerol confers stability to fibroin structure and
elasticity to the films. For these reasons, fibroin films
are promising supports for ADSCs culture as feeder
layer during the production of bioengineered skin. This
construct could be advantageously employed in cutaneous
wound healing or where the use of ADSCs scaffold is
indicated in both human and veterinary field.
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