
An ASP Approach to Generate Minimal Countermodels
in Intuitionistic Propositional Logic

Camillo Fiorentini
Department of Computer Science, University of Milan, Italy

fiorentini@di.unimi.it

Abstract
Intuitionistic Propositional Logic is complete
w.r.t. Kripke semantics: if a formula is not intu-
itionistically valid, then there exists a finite Kripke
model falsifying it. The problem of obtaining con-
cise models has been scarcely investigated in the
literature. We present a procedure to generate min-
imal models in the number of worlds relying on An-
swer Set Programming (ASP).

1 Introduction
Intuitionistic Propositional Logic (IPL) has the finite model
property w.r.t. Kripke semantics: if a formula G is not valid
in IPL, then G can be falsified in a finite (Kripke) model
K; we call K a countermodel for G. In many of the proof-
search strategies for IPL (see [Dyckhoff, 2016] for a review),
whenever the search for a derivation of a formula G fails,
a countermodel for G is provided. A countermodel can be
understood as a “certificate” witnessing the non-validity of
the formula G, thus countermodels can be used for diagnosis,
to analyze why some property fails or to fix errors in for-
mal specifications. This methodology has been successfully
applied to Property-Based Testing (PBT), where the user de-
fines a property that the code to be checked is expected to
fulfill and the PBT engine generates test cases to validate it;
failing cases (countermodels) detect flaws and are exploited
to amend the code (see, e.g., [Cheney et al., 2016] for an ap-
plication to αProlog). In this perspective, it is critical that
countermodels are minimal so as to convey a plain and con-
cise representation of non-validity. For classical logics, var-
ious notions of minimality have been introduced, aiming at
reducing the domain of interpretations (e.g. [Lorenz, 1994])
or the interpretation of predicates (e.g. [Niemelä, 1996;
Bry and Yahya, 2000]). For modal and description logics,
a semantic notion of minimality based on subset-simulation
has been proposed in [Papacchini and Schmidt, 2011; 2014],
where terminating procedures to build minimal models for
some of the logics between K and S5 are presented.

Here we aim at minimizing the size of countermodels,
measured by the number of worlds: a countermodel K for
G is minimal if no countermodel for G has size less then
the size of K (thus, if G is not classically valid, the min-
imal countermodel only contains a world). This issue has

been scarcely investigated in the literature, where the empha-
sis is mainly on derivations, and countermodels are often ob-
tained as a byproduct (see, e.g., [Pinto and Dyckhoff, 1995;
Corsi and Tassi, 2007; Negri, 2014; Claessen and Rosén,
2015]). Also the known refutation calculi for IPL, namely the
calculi designed to prove the non-validity of formulas (see,
e.g., [Skura, 2011]), do not focus on the size of countermod-
els. More relevant to this issue are the proof-search proce-
dures described in [Galmiche and Larchey-Wendling, 1999;
Larchey-Wendling et al., 2001; Svejdar, 2006; Ferrari et al.,
2013; 2015; Fiorentini and Ferrari, 2017], which yield models
having depth bounded by the goal formula; however, mini-
mality of countermodels is not ensured. One might naively
guess that it is always possible to shrink a given counter-
model, for instance by using the filtration techniques dis-
cussed in [Chagrov and Zakharyaschev, 1997]; actually, it is
unlikely that such a general method exists (see Sec. 3).

To tackle the problem, we propose a quite different strat-
egy, based on model generation: given a goal formula G, we
try to build a countermodel for G by a model-search proce-
dure guided by semantics. A naive implementation of the pro-
cess immediately blows-up and, even for small goal formulas,
model generation is not terminating; thus, we need a clever
formalization of the problem. Following [Goré and Thomson,
2012; Goré et al., 2014], worlds of models are represented by
sets W of atomic subformulas H of G (namely: H is either
a propositional variable or H = ¬A or H = A → B) sat-
isfying some closure properties. The first selected set W is
a putative world falsifying G. To get a well-defined Kripke
model, we have to guarantee that atomic subformulas of G
not belonging to W are not valid in W . For instance, if
A → B 6∈ W , we need a world Z such that Z is a successor
of W (namely, W ⊆ Z) and Z witnesses the non-validity
of A → B in W (namely, A holds in Z and B does not
hold). This triggers a saturation process which successfully
ends when all the needed witnesses have been generated, thus
yielding a countermodel for G.

We formalize the problem in Answer Set Program-
ming (ASP) [Baral, 2010], a form of declarative program-
ming based on the stable model semantics (answer sets),
which enables to solve hard search problems in a uniform
way [Dantsin et al., 2001]. We define an ASP program ΠG

such that an answer set of ΠG corresponds to a countermodel
for G; if no answer exists, there is no countermodel for G,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1675

meaning thatG is valid (in IPL). To compute answer sets, we
exploit the Potassco tool clingo [Gebser et al., 2011]. The
minimization of models is delegated to clingo; however, it
is critical to encode the problem so that even the first com-
puted model is small, otherwise the minimization engine gets
stuck. Differently from other declarative formalisms, ASP al-
lows for a quite modular formalization; as outlined in Sec. 4,
the generator can be easily extended to deal with intermediate
logics where the frame conditions can be expressed in ASP,
such as Gödel-Dummett logic [Dummett, 1959] and Here and
There logic [Pearce, 1997]. The implementation is available
at author’s home page.

2 Minimal Countermodels in IPL
We consider the propositional language L based on a denu-
merable set of propositional variables V and the connectives
¬, ∧, ∨, →. Let A be a formula. By Sf(A) we denote the
set of all subformulas of A. The size of A, denoted by |A|, is
the number of symbols occurring in A. A (Kripke) model is
a triple 〈P,≤, V 〉, where 〈P,≤〉 is a finite poset and V (the
evaluation function) is a monotone map P → 2V , namely:
w ≤ w′ implies V (w) ⊆ V (w′); elements of P are called
worlds. The forcing relation
⊆ P × L is defined as usual:

w
 p iff p ∈ V (w), where p ∈ V
w
 ¬A iff ∀w′ ≥ w, w′ 1 A
w
 A ∧B iff w
 A and w
 B
w
 A ∨B iff w
 A or w
 B
w
 A→ B iff ∀w′ ≥ w, w′
 A implies w′
 B.

Note that
 is monotone, namely: w
 A and w ≤ w′ im-
plies w′
 A. If Γ is a set of formulas, by w
 Γ we mean
w
 A for every A ∈ Γ. A formula G is valid in IPL iff, for
every model K and world w of K, w
 G. Thus, to certify
thatG is not valid (in IPL) we can exhibit a modelK contain-
ing a world w such that w 1 G; we callK a countermodel for
G. We aim at representing worlds of K by means of proper
subsetsW of Sf(G). To avoid redundancies, we consider sets
W only containing subformulas H of G of the form H ∈ V
or H = ¬A or H = A → B; we call H an atomic sub-
formula of G and by At(G) we denote the set of all atomic
subformulas of G. By ClG(W) we denote the smallest set
satisfying the following properties, where −(¬A) = A and
−A = ¬A if A 6= ¬B:

• W ⊆ ClG(W) ⊆ Sf(G).
• C = A ∧ B ∈ Sf(G) and {A,B} ⊆ ClG(W) implies
C ∈ ClG(W).

• C = A∨B ∈ Sf(G) and {A,B}∩ClG(W) 6= ∅ implies
C ∈ ClG(W).

• C = A → B ∈ Sf(G) and {−A,B} ∩ ClG(W) 6= ∅
implies C ∈ ClG(W).
• C = ¬¬A ∈ Sf(G) and A ∈ ClG(W) implies C ∈

ClG(W).
• C = ¬(A∧B) ∈ Sf(G) and {−A,−B}∩ClG(W) 6= ∅

implies C ∈ ClG(W).
• C = ¬(A ∨ B) ∈ Sf(G) and {−A,−B} ⊆ ClG(W)

implies C ∈ ClG(W).

T = S → X ∨ ¬¬p where:
S = (X → D)→ D X = ¬¬p→ p D = ¬¬p ∨ ¬p
At(T) = { p, ¬p, ¬¬p, X, X → D, S, T }

W0 = ∅ W5 = {X → D, T }
W1 = {X → D} W6 = {X, S, T}
W2 = {S} W7 = {¬¬p, X → D, S, T }
W3 = {T} W8 = {¬p, X, X → D, S, T }
W4 = {X, T} W9 = { p, ¬¬p, X, X → D, S, T }

Figure 1: The formula T and the related p-worldsW0, . . . ,W9

• C = ¬(A → B) ∈ Sf(G) and {A,−B} ⊆ ClG(W)
implies C ∈ ClG(W).

By induction on formulas, we can prove that:

(P1) W ⊆ Z implies ClG(W) ⊆ ClG(Z).

(P2) w
W implies w
 ClG(W).

A setW ⊆ At(G) is a p-world (possible world) iff it satisfies
the following closure properties:

(C¬) ¬A ∈ W =⇒ A 6∈ ClG(W)

(C→) (A→ B ∈ W) ∧ (A ∈ ClG(W))=⇒ B ∈ ClG(W)

(CAt) H ∈ At(G) ∩ ClG(W) =⇒ H ∈ W .

In the ASP representation, we limit ourselves to use p-worlds
as candidate worlds of countermodels; as shown in the ex-
amples, this considerably reduces the number of subsets of
At(G) to be considered in model generation.

Example 1 Let T be the non-valid formula defined in Fig. 1
(T is equivalent to Nishimura formula N9, see Ex. 7). Then:

• Z0 = At(T) satisfies the closure properties (C →)
and (CAt), but not (C¬), since ¬¬p ∈ Z0 and ¬p ∈
ClT (Z0).

• Z1 = {S, T} satisfies (C¬) and (CAt), but not (C→),
since T ∈ Z1, S ∈ ClT (Z1) and X ∨ ¬¬p 6∈ ClT (Z1).

• Let Z2 = {¬p,X → D,S, T}. Since −(¬¬p) = ¬p ∈
Z2, then X ∈ ClT (Z2). This implies that Z2 satisfies
(C¬) and (C→) but not (CAt).

The set At(T) contains 7 elements, giving rise to 27 = 128
subsets, but only 10 of them are p-worlds, namely the sets
W0, . . . ,W9 displayed in Fig. 1. 3

This representation is close to [Goré and Thomson, 2012],
with some tweak. We treat ¬ as a primitive connective (thus,
¬p is not an abbreviation for p → ⊥) and, in the definition
of ClG(W), negated formulas are analyzed according to the
constructive interpretation of ¬. This reduces the number of
p-worlds; for instance, in Ex. 1 we keep out p-worldsW such
that p ∈ W and ¬¬p 6∈ W .

Let P be a set of p-worlds; by K(P) we denote the model
〈P,≤, V 〉 such that ≤ coincides with the subset relation ⊆
and, for everyW ∈ P , V (W) = W ∩ V . In generalW does
not coincide with the set of atomic subformulas of G forced
at W . For instance, it might happen that A → B 6∈ W , but

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1676

W2:

W6:

W8:

W7:

W9: p

The model K(Q1) W0:

W2:

W6:

W8:

W7:

W9: p

The model K(Q2)

Figure 2: T -saturated sets and the related models

there is no Z ∈ P witnessing that W 1 A → B, namely:
W ≤ Z and Z
 A and Z 1 B. To get a close correspon-
dence between membership and forcing we introduce the no-
tion of G-saturation. A set of p-worlds P is G-saturated iff,
for everyW ∈ P , the following saturation properties hold:

(S1) for every ¬A ∈ At(G) \ W , there is Z ∈ P such that
W ⊆ Z and A ∈ ClG(Z).

(S2) For every A → B ∈ At(G) \ W , there is Z ∈ P such
thatW ⊆ Z and A ∈ ClG(Z) and B 6∈ ClG(Z).

Example 2 (Ex. 1 cont) The sets below are T -saturated:

Q1 = {W2, W6, W7, W8, W9 } Q2 = Q1 ∪ {W0}

For instance, we have X = ¬¬p → p 6∈ W2 and (S2)
is matched by setting Z = W7. The models K(Q1) and
K(Q2) are displayed in Fig. 2; for each world Wk, we list
the propositional variables in Wk. In both models, for ev-
ery H ∈ At(T), Wk
 H iff H ∈ Wk (see next lemma),
accordinglyW2 1 T . 3

Lemma 1 Let P be aG-saturated set. For everyW ∈ P and
A ∈ Sf(G),W
 A in K(P) iff A ∈ ClG(W).

Proof: Let K(P) = 〈P,≤, V 〉,W ∈ P and A ∈ Sf(G); we
prove the lemma by induction on |A|; we only detail some
representative case. Let A = ¬B (thus ¬B ∈ At(G)). If
¬B 6∈ ClG(W), then ¬B 6∈ W hence, by (S1), there is Z ∈
P such that W ⊆ Z and B ∈ ClG(Z). By (IH), Z
 B;
sinceW ≤ Z , we concludeW 1 ¬B. Conversely, letW 1
¬B. Then, there is Z ∈ P such that W ≤ Z and Z
 B;
by (IH), B ∈ ClG(Z). Since Z satisfies (C¬), ¬B 6∈ Z .
SinceW ⊆ Z , we get ¬B 6∈ W and, by (CAt), we conclude
¬B 6∈ ClG(W). Let A = B0 ∨ B1. IfW
 B0 ∨ B1, then
W
 Bk, with k ∈ {0, 1}. By (IH), Bk ∈ ClG(W), which
implies B0 ∨ B1 ∈ ClG(W). Conversely, if B0 ∨ B1 ∈
ClG(W), then Bk ∈ ClG(W), with k ∈ {0, 1}. By (IH),
W
 Bk, henceW
 B0 ∨B1. �

Lemma 2 Let K = 〈P,≤, V 〉 be a model and G a formula.
Then, there exist a G-saturated set Q and a surjective map
φ : P → Q such that, for every w ∈ P and A ∈ Sf(G),
w
 A iff A ∈ ClG(φ(w)).

Proof: Let φ be the map from P to 2At(G) defined as

φ(w) = { H ∈ At(G) | w
 H }

and w ∈ P ; we prove that:

(1) for every A ∈ Sf(G), w
 A iff A ∈ ClG(φ(w)).

(2) φ(w) is a p-world.

Since w
 φ(w), by (P2) we get w
 ClG(φ(w)), and this
proves the if part of (1). Conversely, let A ∈ Sf(G) such
that w
 A; by induction on |A| one can easily show that
A ∈ ClG(φ(w)), and this proves (1). Let ¬A ∈ φ(w); then
w
 ¬A, hencew 1 A. By (1),A 6∈ ClG(φ(w)), hence φ(w)
satisfies (C¬). The proof that φ(w) matches both (C→) and
(CAt) is similar, and this concludes the proof of (2). Let Q
be the φ-image of P ; we check thatQ satisfies (S1) (the proof
for (S2) is similar). Let w ∈ P and let ¬A ∈ At(G) \ φ(w).
By (CAt), ¬A 6∈ ClG(φ(w)) hence, by (1), w 1 ¬A. There
is z ∈ P such that w ≤ z and z
 A; by (1), A ∈ ClG(φ(z)).
Since φ(z) ∈ Q and φ(w) ⊆ φ(z), (S1) follows. �

A G-saturated set Q is complete iff Q contains a p-world
W such that G 6∈ ClG(W). By |Q| we denote the cardinality
of Q; the size |K| of a model K is the number of its worlds.

Lemma 3 Let K be a countermodel for G. There exists a
complete G-saturated set Q such that |Q| ≤ |K|.

Proof: Let Q and φ be as asserted in Lemma 2. By hypothe-
sis, there exists a world w of K such that w 1 G; this implies
G 6∈ ClG(φ(w)), hence Q is complete. By surjectivity of φ,
we get |Q| ≤ |K|. �

A countermodel K for G is a minimal countermodel for G
iff there is no countermodel K′ for G such that |K′| < |K|.
A complete G-saturated set Q is minimal if there exists no
complete G-saturated set Q′ such that |Q′| < |Q|. We state
the main results of this section:

Theorem 1 Let G be a formula.

(1) If G 6∈ IPL, then there exists a complete G-saturated
set.

(2) IfQ is a completeG-saturated set, thenK(Q) is a coun-
termodel for G.

(3) If Q is a minimal complete G-saturated set, then K(Q)
is a minimal countermodel for G.

Proof: Point (1) follows by Lemma 3, Point (2) by Lemma 1.
Finally, let us assume that Q is a minimal complete G-
saturated set and, by absurd, K(Q) is not minimal. Then,
there is a countermodel K′ for G such that |K′| < |K(Q)| =
|Q|. By Lemma 3, there is a complete G-saturated set Q′
such that |Q′| ≤ |K′|. Thus, |Q′| < |Q|, against the hypothe-
sis that Q is minimal, hence K(Q) is minimal. �

Example 3 (Ex. 2 cont) The T -saturated setsQ1 andQ2 are
complete (T 6∈ W2), hence bothK(Q1) andK(Q2) are coun-
termodels for T . Moreover, Q1 is minimal, hence K(Q1) is a
minimal countermodel for T . 3

By Theorem 1, to build a countermodel for a goal formula
G, we have to search for a complete G-saturated set Q; each
W ∈ Q corresponds to a world of the countermodel andW

A iff A ∈ ClG(W), for every A ∈ Sf(G). To get a minimal
countermodel, we have to minimize |Q|.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1677

3 ASP Implementation
We describe an ASP program ΠG to generate a minimal coun-
termodel for a goal formula G. According with the ASP
paradigm (see e.g. [Baral, 2010]), ΠG is a Prolog-like pro-
gram consisting of two components Goal(G) and Gen:

• Goal(G) is a set of ground facts representing the specific
instance of the problem related to the goal G;
• Gen encodes the model search algorithm.

A solution to ΠG = Gen∪Goal(G), called answer set, corre-
sponds to a countermodel for G; if ΠG has no answers, then
no countermodel for G exists, hence G is valid (in IPL). We
exploit the ASP solver clingo [Gebser et al., 2012]. By
Theorem 1, a countermodel is identified by a complete G-
saturated set P . Worlds of P are selected from the available
p-worlds by applying the choice rules (Chr) and (Chw). Rule
(Chr) chooses a p-world w0 such that G 6∈ ClG(w0), which
is nominated to be the root of the countermodel (namely, the
minimal world w.r.t. ≤); w0 will be the world of the counter-
model falsifying G. Whenever a new world w is selected, the
saturation conditions (S1) and (S2) are checked to test that
formulas ¬A and A → B not belonging to w have the re-
quired witnesses; if this is not the case, new worlds are added
by the choice rule (Chw). If the saturation process success-
fully ends, we get a G-saturated set, namely a countermodel
for G. Then, the minimization engine of clingo searches
for models having fewer worlds, until an optimum answer is
found. We present the relevant sections of the program; we
assume that G is the goal formula and N = |At(G)|.
Encoding Goal(G) of the Goal Formula G
To encode G, we introduce the set of new atoms A =
{a(0), . . . , a(N − 1)}, each corresponding to an atomic sub-
formula of G. We call LA the language based on A, and this
is the language used by the generator. The user has to settle
a 1-1 map ψ : A → At(G); by ψ? we denote the homomor-
phic extension of ψ toLA 1. The map ψ is encoded by a set of
ground facts using the following predicates, where a(k) ∈ A,
p ∈ V and A ∈ LA:

count atoms(M) iff M = |At(G)|
at to PV(a(k), p) iff ψ(a(k)) = p

def(a(k), A) iff ψ(a(k)) = ψ?(A)
goal(A) iff ψ?(A) = G.

We assume that, for every 0 ≤ k ≤ N − 1, Goal(G) con-
tains either one definition at to PV(a(k), p) or one defi-
nition def(a(k), A), where in A only atoms a(j) such that
j < k occur; in the latter case, we write a(k) := A.

Example 4 The formula T in Fig. 1 has 7 atomic subformu-
las, thus A = {a(0), . . . , a(6)}. We set (7→ represents ψ?):

a(0) 7→ p a(1) := ¬a(0) 7→ ¬p a(2) := ¬a(1) 7→ ¬¬p
a(3) := a(2)→ a(0) 7→ X
a(4) := a(3)→ a(2) ∨ a(1) 7→ X → D
a(5) := a(4)→ a(2) ∨ a(1) 7→ S
a(6) := a(5)→ a(3) ∨ a(2) 7→ T // goal

This is translated by the following ground facts:

1Namely: ψ?(a(k)) = ψ(a(k)); ψ?(¬A) = ¬(ψ?(A));
ψ(A1 �A2) = ψ?(A1)� ψ?(A2) for � ∈ {∧,∨,→}.

count_atms(7). at_to_PV(a(0),p).
def(a(1),neg(a(0))). def(a(2),neg(a(1))). ...
def(a(6), imp(a(5),or(a(3),a(2)))). goal(a(6)).

3

Encoding Gen of the Model Generator
To represent the 2N subsets of A, we rely on binary repre-
sentation of natural numbers. Let 0 ≤ k ≤ 2N − 1 and let
(k)2 = bm bm−1 · · · b1 b0 be the binary representation of k;
then, w(k) is the set of atoms a(i) such that bi = 1. For in-
stance, w(0) is the empty set and, since (13)2 = 1101, w(13)
represents the set {a(0), a(2), a(3)}. Membership and inclu-
sion can be efficiently implemented, using the built-in arith-
metical and logical operators. Indeed, the following prop-
erties hold, where ’:’ is the integer division, ’%’ the mod-
ulo, ’∼’ the bitwise negation, ’|’ the bitwise disjunction and
(−1)2 = 11111 . . . :

a(i) ∈ w(k) iff (k : 2i) % 2 = 1

w(k) ⊆ w(m) iff (∼ (k)2) | (m)2 = (−1)2

Properties characterizing p-worlds can be represented using
the aggregate #count. The expression

#count{ X : P(X) } = k

is satisfied iff the set of t such that P (t) holds has cardinality
k. To express that a set w(k) satisfies (C→), we introduce
the predicate closedIMP/1 defined by the following rule:

atSet (w) iff w ⊆ A
belongsClosG (A,w) iff A ∈ ClG(w)

closedIMP(W) :- atSet(W),
#count{ At : member(At,W), def(At,imp(A1,A2)),

belongsClosG(A1,W),
not belongsClosG(A2,W) } = 0.

Thus, closedIMP(w) holds iff w ⊆ A and the set of at
such that at ∈ w and at := A1 → A2 and A1 ∈ ClG(w)
and A2 6∈ ClG(w) has cardinality 0; accordingly, w sat-
isfies (C →). The definition of predicates closedNEG/1
and closedAT/1, corresponding to the properties (C¬) and
(CAt) respectively, is similar. We can characterize p-worlds
by introducing the predicate pworld/1 and the defining rule:
pworld(W) :-

closedNEG(W), closedIMP(W), closedAT(W).

We describe how p-worlds are selected and turned into worlds
of the countermodel; worlds are identified by the predicate
world/1. Firstly, we have to choose the root of the counter-
model, designated by the predicate root/1. To this aim, we
introduce the following choice rule (Chr):
{ root(W) : pworld(W),

not belongsClosG(G,W) } = 1 :- goal(G).

The rule has a cardinality constraint in the head 2: it forces the
existence of exactly one rootw0 such thatw0 is a p-world and
G 6∈ ClG(w0), with G the encoding of the goal formula. We
also need the defining rule ‘world(W) :- root(W)’ stating
that the root is a world (the first world inserted into the coun-
termodel). Every chosen world must satisfy the saturation
properties (S1) and (S2) and this might require the selection
of new worlds. Let w be a p-world and at ∈ A; w is a self-
witness for at iff one of the following properties holds:

2Cardinality constraints in the head do not require #count.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1678

w(32):

w(104):

w(122):

w(116):

w(125): p
w(125) a(0), a(2), a(3),

a(4), a(5), a(6)
w(122) a(1), a(3), a(4)

a(5), a(6)
w(116) a(2), a(4), a(5), a(6)
w(104) a(3), a(5), a(6)
w(32) a(5)

Figure 3: Countermodel for T (see Ex. 5)

(p1) at := ¬A1 and A1 ∈ ClG(w);

(p2) at := A1 → A2 and A1 ∈ ClG(w) and A2 6∈ ClG(w).

Such a relation can be easily encoded by the predicate
selfWitn/2:
selfWitn(W, At) :- %(p1)

def(At, neg(A1)), belongsClosG(A1,W).
selfWitn(W, At) :- def(At, imp(A1,A2)), %(p2)

belongsClosG(A1,W), not belongsClosG(A2,W).

Let w be a world and at := ¬A1 or at := A1 → A2 such that
at 6∈ w. A p-world w1 is a w-witness for at, expressed by
witn(w, at, w1), iff w ⊂ w1 and w1 is a self-witness for at.
If the world w is not a self-witness for at, we select a p-world
w1 such that witn(w, at, w1) holds. Since we are interested
in small models, we require thatw1 is unique, namely: if both
witn(w, at, w1) and witn(w, at, w2) hold, then w1 = w2.
Witnesses are selected by the following choice rule (Chw):

le(w1, w2) iff w1 ⊂ w2

negOrImp(at) iff at := ¬A1 or at := A1 → A2.
{ witn(W,At,W1) :

pworld(W1), le(W,W1),
selfWitn(W1, At) } = 1 :-

world(W), negOrImp(At),
not member(At,W), not selfWitn(W,At).

The selected witnesses are promoted to worlds by the rule
‘world(W) :- witn(_,_,W)’. If an answer set is found,
the selected worlds constitute a complete G-saturated set,
hence a countermodel forG. Finally, we instruct the solver to
search for solutions minimizing the number of worlds, com-
puted by the predicate countWorlds/1:
countWorlds(M) :- #count{ W : world(W) } = M.
#minimize { M : countWorlds(M) }.

To run the program ΠG:
clingo generator.lp goal.lp

where the files generator.lp and goal.lp encode the
components Gen and Goal(G) respectively. To display the
solutions, we introduce the following auxiliary predicates:
countAtSets/1: number of subsets of At(G);

countPW/1: number of p-worlds;
succ/2: successor relation between worlds;

forces/2: forcing relation on prop. variables.

Example 5 (Ex. 4 cont) We get the following answer set:
countAtSets(128) countPW(10) root(w(32))
countWorlds(5) forces(w(125),p)
succ(w(32),w(104)) succ(w(32),w(116))
succ(w(104),w(122)) succ(w(104),w(125))
succ(w(116),w(125)) OPTIMUM FOUND

D4 = (p1 → p2) ∨ (p2 → p1) ∨ (q1 → q2) ∨ (q2 → q1)

a(0) 7→ p1 a(1) 7→ p2 a(2) 7→ q1 a(3) 7→ q2 a(4) 7→ p1 → p2
a(5) 7→ p2 → p1 a(6) 7→ q1 → q2 a(7) 7→ q2 → q1

w(0):

w(120): q2 w(180): q1 w(210): p2 w(225): p1

Answer 1

w(0):

w(123):
p1
p2
q2

w(165):
p1
q1

w(222):
p2
q1
q2

Answer 2

w(0):

w(90):
p2
q2

w(165):
p1
q1

Answer 3

Figure 4: Countermodels for D4 (see Ex. 6)

It corresponds to the minimal countermodel displayed in
Fig. 3 (isomorphic to the one in Fig. 2). In the table we list
the atoms contained in each world; the atom a(6), encoding
the goal formula T , does not belong to the root w(32). 3

Example 6 Let D4 be the goal formula in Fig. 4, having 8
atomic subformulas. We have 49 p-worlds out of 28 = 256
subsets of At(D4). The generator computes three answer
sets, corresponding to the models in Fig. 4. The first solu-
tion (Answer 1) has 5 worlds and it is not optimal. Then, the
solver finds a solution with 4 worlds (Answer 2), finally an
answer with 3 worlds (Answer 3), which is optimal. 3

The previous example shows that in general a minimal
countermodel for G cannot be obtained by shrinking a given
countermodel for G. Indeed, the minimal countermodels for
the formula D4 in Fig. 4 are isomorphic to the bottom model:
there is a root, not forcing any propositional variable, and two
maximal worlds (w.r.t. ≤), each of them forcing exactly two
propositional variables. The top model K1 in Fig. 4 has four
maximal worlds, each of them forcing one variable. Using the
standard filtration techniques [Chagrov and Zakharyaschev,
1997], there is no way to overlap or delete some of the maxi-
mal worlds inK1 and get a 3-world countermodel forD4 (the
solver had to discard the maximal worlds chosen to build K1

and to select new ones). Standard proof-search procedures,
such as the ones mentioned in the Introduction, build coun-
termodels isomorphic to or bigger than K1; indeed, to falsify
D4, at least four distinct maximal worlds are generated, one
for each disjunct of D4. Moreover, the computed maximal
worlds have in general a “maximal forcing” (either exactly
3 variables or exactly 1 variable are forced), not matching
the intermediate circumstance here required (exactly 2 vari-
ables are forced). We have tested two provers designed to
reduce redundancies in proof-search, and both fail to build a
minimal countermodel for D4: STRIP [Larchey-Wendling et
al., 2001], based on structural sharing, yields a countermodel
having 6 worlds (4 of which are maximal), the prover pre-
sented in [Fiorentini and Ferrari, 2017], implementing a for-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1679

N1 = p N2 = ¬p
N2n+3 = N2n+1 ∨N2n+2

N2n+4 = N2n+3 → N2n+1

a(0) 7→ p1 a(1) 7→ ¬p1
a(k) :=

(a(0) ∨ · · · ∨ a(k − 1))
→ (a(0) ∨ · · · ∨ a(k − 2))

goal: a(0) ∨ · · · ∨ a(8)

Figure 5: Minimal countermodel for N17 (drawn with Graphviz)

ward proof-search strategy, outputs a 5-world countermodel
isomorphic to K1.

Example 7 Let us consider the one-variable formulas Ni of
the Nishimura family [Chagrov and Zakharyaschev, 1997]
defined in Fig. 5, which are not valid in IPL. ForN17, having
9 atomic subformulas, we have 29 = 512 subsets of At(N17)
and only 10 p-worlds. The first answer corresponds to the
countermodel in Fig. 5, which is isomorphic to the standard
“tower-like” minimal countermodel for N17. 3

We have also performed some experiments on the non-
valid formulas of Intuitionistic Logic Theorem Proving
(ILTP) Library [Raths et al., 2007]. For each tested formula
G, Table 1 reports the number of atomic subformulas, the
number of p-worlds, the optimum (size of the minimal coun-
termodel) and the CPU time required to compute it 3. In all
the cases, the number of p-worlds is considerably smaller
than the number of subsets of At(G): if we worked on all
the subsets of At(G), instead of restricting ourselves to p-
worlds, or we used a naive generation algorithm, the compu-
tation would not terminate even with these small formulas.
For all the formulas, the minimal countermodel has 2 worlds
and coincides with the first answer; with bigger instances,
there is no answer within 60 secs. The algorithm is very effi-
cient on Nishimura formulas (see Ex. 7); this depends on the
fact that the number of p-worlds essentially coincides with
the size of the minimal countermodels.

4 Conclusion
We have presented an ASP program to generate minimal
countermodels for non-valid formulas in IPL. Our approach
is inspired by [Goré and Thomson, 2012; Goré et al., 2014]
with significant differences. Indeed, Goré&al. aim at defining
an efficient procedure to test the validity of a goal formula G
in IPL (which is a PSPACE-complete problem). To this aim,
they build a model KG such that G is valid iff KG is not a
countermodel for G. Worlds ofKG are represented by proper
sets of atomic subformulas ofG and, to get an efficient imple-
mentation, they exploit BDDs (Binary Decision Diagrams).
Here, we deal with a harder problem, since we focus on min-
imal countermodels for G (and KG in general is not small).

3Tests were conducted on a standard machine with a 3.0GHz In-
tel Core(TM)2 Duo CPU and 3.5GB memory,

Goal formula Subsets p-worlds Opt. CPU time
G of At(G) (in sec.)

SYJ207+1.002 32768 1280 2 11.85
SYJ208+2.002 8192 694 2 6.85
SYJ209+1.005 32768 921 2 11.50
SYJ210+1.004 65536 776 2 14.95
SYJ211+1.001 32768 534 2 7.21
SYJ212+1.005 65536 975 2 15.32

Table 1: Some tests on ILTP Library [Raths et al., 2007]

Accordingly, we use a different encoding (for instance, ¬ is
a primitive connective) and a different generation algorithms
(we start from a p-world falsifying G and we saturate it by
adding the required witnesses).

The program ΠG is quite general and modular; indeed,
it can be immediately extended to deal with propositional
super-intuitionistic logics based on Kripke semantics, pro-
vided that the frame conditions can be captured by the ASP
language. An example is the Gödel-Dummett logic GD, ob-
tained by adding to IPL the axiom schema (A→ B)∨ (B →
A) and semantically characterized by linear frames. We can
build countermodels in GD by adding to ΠG the following
constraint (lin):
:- world(W1), world(W2), W1 <> W2,

not le(W1,W2), not le(W2,W1).

This rule forbids the existence of two worlds w1 and w2 such
that w1 6= w2 and w1 6⊂ w2 and w2 6⊂ w1. Accordingly,
ΠG ∪ {(lin)} is an ASP program to generate minimal coun-
termodels in the logic GD. Other examples of intermediate
logics that can be covered by extensions of ΠG are: the logic
of bounded depth, the logic of bounded branch, the Here and
There logic, closely connected with ASP [Pearce, 1997]. The
crucial point is that frame conditions can be freely composed;
for instance, if (bd3) encodes the condition “the model has
depth at most 3”, the program ΠG ∪ {(lin), (bd3)} computes
linear countermodels for G having depth at most 3. We re-
mark that standard provers do not enjoy this modularity; in
general it is not even obvious how to extend a prover for IPL
so as to cover the mentioned logics.

We defer to future work an in-depth classification of the
frame conditions that can be expressed in ASP. We also plan
to investigate (multi)-modal and temporal logics, also consid-
ering other notions of minimality, such as the ones discussed
in [Papacchini and Schmidt, 2011; 2014].

Acknowledgments
I am grateful to the reviewers for their valuable suggestions.
This work has been partially funded by the INdAM-GNCS
project 2018 “Metodi di prova orientati al ragionamento au-
tomatico per logiche non-classiche”.

References
[Baral, 2010] Chitta Baral. Knowledge Representation, Rea-

soning and Declarative Problem Solving. Cambridge Uni-
versity Press, 2010.

[Bry and Yahya, 2000] François Bry and Adnan H. Yahya.
Positive unit hyperresolution tableaux and their applica-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1680

tion to minimal model generation. J. Autom. Reasoning,
25(1):35–82, 2000.

[Chagrov and Zakharyaschev, 1997] Alexander V. Chagrov
and Michael Zakharyaschev, Modal Logic. Oxford Uni-
versity Press, 1997.

[Cheney et al., 2016] James Cheney, Alberto Momigliano,
and Matteo Pessina. Advances in Property-Based Testing
for αProlog. In TAP, volume 9762 of LNCS, pages 37–56.
Springer, 2016.

[Claessen and Rosén, 2015] Koen Claessen and Dan Rosén.
SAT modulo intuitionistic implications. In M. Davis et al.,
editors., LPAR-20, Proceedings, volume 9450 of LNCS,
pages 622–637. Springer, 2015.

[Corsi and Tassi, 2007] Giovanna Corsi and Gabriele Tassi.
Intuitionistic logic freed of all metarules. J. Symb. Log.,
72(4):1204–1218, 2007.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expres-
sive power of logic programming. ACM Comput. Surv.,
33(3):374–425, 2001.

[Demri et al., 2014] Stéphane Demri, Deepak Kapur, and
Christoph Weidenbach, editors. IJCAR 2014, Proceedings,
volume 8562 of LNCS. Springer, 2014.

[Dummett, 1959] Michael Dummett. A propositional calcu-
lus with denumerable matrix. J. Symbolic Logic, 24(2):97–
106, 1959.

[Dyckhoff, 2016] Roy Dyckhoff. Intuitionistic decision pro-
cedures since Gentzen. In Advances in proof theory, vol-
ume 28 of Progr. Comput. Sci. Appl. Logic, pages 245–
267. Birkhäuser/Springer, [Cham], 2016.

[Ferrari et al., 2013] Mauro Ferrari, Camillo Fiorentini, and
Guido Fiorino. Contraction-free linear depth sequent cal-
culi for intuitionistic propositional logic with the subfor-
mula property and minimal depth counter-models. J. Au-
tom. Reasoning, 51(2):129–149, 2013.

[Ferrari et al., 2015] Mauro Ferrari, Camillo Fiorentini, and
Guido Fiorino. An evaluation-driven decision procedure
for G3i. ACM Trans. Comput. Log., 16(1):8:1–8:37, 2015.

[Fiorentini and Ferrari, 2017] Camillo Fiorentini and Mauro
Ferrari. A forward unprovability calculus for intuitionis-
tic propositional logic. In R. A. Schmidt and C. Nalon,
editors, TABLEAUX 2017, volume 10501 of LNCS, pages
114–130. Springer, 2017.

[Galmiche and Larchey-Wendling, 1999] Didier Galmiche
and Dominique Larchey-Wendling. Structural sharing and
efficient proof-search in propositional intuitionistic logic.
In P. S. Thiagarajan et al., editors, Advances in Computing
Science - ASIAN’99, Proceedings, volume 1742 of LNCS,
pages 101–112. Springer, 1999.

[Gebser et al., 2011] Martin Gebser, Benjamin Kaufmann,
Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Marius Thomas Schneider. Potassco: The Potsdam An-
swer Set Solving Collection. AI Commun., 24(2):107–124,
2011.

[Gebser et al., 2012] Martin Gebser, Roland Kaminsk, Ben-
jamin Kaufmann, and Torsten Schaub. Answer Set Solving
in Practice. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan and Claypool Publishers,
2012.

[Goré and Thomson, 2012] Rajeev Goré and Jimmy Thom-
son. Bdd-based automated reasoning for propositional bi-
intuitionistic tense logics. In B. Gramlich et al., editors,
IJCAR 2012, Proceedings, volume 7364 of LNCS, pages
301–315. Springer, 2012.

[Goré et al., 2014] Rajeev Goré, Kerry Olesen, and Jimmy
Thomson. Implementing tableau calculi using bdds: Bd-
dtab system description. In Demri et al. [2014], pages
337–343.

[Larchey-Wendling et al., 2001] Dominique Larchey-
Wendling, Dominique Méry, and Didier Galmiche.
STRIP: Structural Sharing for Efficient Proof-Search. In
R. Goré et al., editors, IJCAR 2001, Proceedings, volume
2083 of LNCS, pages 696–700. Springer, 2001.

[Lorenz, 1994] Sven Lorenz. A tableaux prover for domain
minimization. J. Autom. Reasoning, 13(3):375–390, 1994.

[Negri, 2014] Sara Negri. Proofs and countermodels in non-
classical logics. Logica Universalis, 8(1):25–60, 2014.

[Niemelä, 1996] Ilkka Niemelä. A tableau calculus for min-
imal model reasoning. In P. Miglioli et al., editors,
TABLEAUX ’96, Proceedings, volume 1071 of LNCS,
pages 278–294. Springer, 1996.

[Papacchini and Schmidt, 2011] Fabio Papacchini and Re-
nate A. Schmidt. A tableau calculus for minimal modal
model generation. Electr. Notes Theor. Comput. Sci.,
278:159–172, 2011.

[Papacchini and Schmidt, 2014] Fabio Papacchini and Re-
nate A. Schmidt. Terminating minimal model generation
procedures for propositional modal logics. In Demri et al.
[2014], pages 381–395.

[Pearce, 1997] David Pearce. A new logical characterisation
of stable models and answer sets. In J. Dix et al., editors,
Non-Monotonic Extensions of Logic Programming, pages
57–70, Berlin, Heidelberg, 1997. Springer Berlin Heidel-
berg.

[Pinto and Dyckhoff, 1995] Luis Pinto and Roy Dyckhoff.
Loop-free construction of counter-models for intuitionis-
tic propositional logic. In Behara et al., editor, Sym-
posia Gaussiana, Conference A, pages 225–232. Walter de
Gruyter, Berlin, 1995.

[Raths et al., 2007] Thomas Raths, Jens Otten and Christoph
Kreitz. The ILTP problem library for intuitionistic logic.
J. Autom. Reasoning, 31:261–271, 2007.

[Skura, 2011] Tomasz Skura. Refutation Systems in Propo-
sitional Logic. In D. Gabbay et al., editors, Handbook of
Philosophical Logic, volume 16, pages 115–157. Springer,
Dordrecht, 2011.

[Svejdar, 2006] Vı́tezslav Svejdar. On sequent calculi for
intuitionistic propositional logic. Comment. Math. Univ.
Carolinae, 47(1):159–173, 2006.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1681

