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Abstract

Neuroendocrine neoplasms (NENs) are traditionally considered as a single group of rare malignancies that originate 
from the highly spread neuroendocrine system. The clinical management is complex due to the high heterogeneity of 
these neoplasms in terms of clinical aggressiveness and response to the therapy. Indeed, a multidisciplinary approach 
is required to reach a personalization of the therapy, including cancer rehabilitation. In this review, we discuss the 
possibility to adopt a precision medicine (PM) approach in the management of NENs. To this purpose, we summarize 
current knowledge and future perspectives about biomarkers and preclinical in vitro and in vivo platforms, potentially 
useful to inform clinicians about the prognosis and for tailoring therapy in patients with NENs. This approach may 
represent a breakthrough in the therapy and tertiary prevention of these tumors.

Introduction

Neuroendocrine neoplasms (NENs) are a group of 
neoplasms derived from the neuroendocrine system, 
expressing markers of neuroendocrine differentiation, 
such as chromogranin A (CgA), synaptophysin and 
neuron-specific enolase (NSE), as well as several hormones 

(1). Although surgery remains the cornerstone of 
treatment for localized tumors, most patients with NENs 
are diagnosed once metastases have occurred. These 
patients require a chronic medical management defined 
through a multidisciplinary approach. The main factors 
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that currently play an important role in establishing the 
treatment are substantially the grade and the stage of 
the tumor, the anatomic site of origin and the presence 
of a functioning syndrome. However, clinical efficacy 
of current treatment strategies is limited by the high 
biological heterogeneity of these neoplasms in the 
clinical aggressiveness and response to the therapy (2). 
In this context, a precision medicine (PM)-based strategy, 
through the biomarker-driven approach and preclinical 
models, could be helpful for the management of  
NENs (Fig. 1).

Biomarkers in PM for NENs

Tissue biomarkers, routinely used in the clinical practice, 
have a diagnostic role in verifying the neuroendocrine 
phenotype (CgA, synaptophysin and NSE), determining 
the grade (Ki-67 and mitotic count) and discriminating 
between functioning (secreting serotonin, insulin, 
gastrin, glucagon, VIP, somatostatin, catecholamines, 
PTHrp, ACTH, GH, ADH, calcitonin, GNRH, CRH, etc.) or 
non-functioning tumors (3). However, currently available 
neuroendocrine phenotype markers have some limitations 
in the diagnostic phase when dosed in the blood. Despite 
being long identified as the most relevant NEN-related 

serum marker, the utility of circulating CgA is limited for 
the diagnosis of NEN. CgA assays still lack standardization, 
thus limiting not only clinical management but also the 
comparison between different analyses. Moreover, the test 
specificity is hampered by non-oncological causes, such as 
benign diseases and iatrogenic conditions (proton pump 
inhibitors and histamine type-2 receptor antagonists), 
and by the fact that a variety of non-NEN malignancies 
are characterized by increased CgA levels (4, 5, 6). Another 
limitation of CgA assays is the sensitivity that ranges 
between 32 and 92% and is dependent on the type of 
NEN, the functional status and the size of the tumor (3). 
Circulating NSE is also not relevant for the diagnosis of 
NEN, being not actively secreted but released by tumor cells 
with an intense cytolysis in poorly differentiated NEN (4). 
Conversely, the 24 h urinary 5-hydroxyindoloacetic acid 
(5-HIAA) has a potential diagnostic utility as all markers 
of functioning endocrine syndromes. 5-HIAA is increased 
in typical carcinoid syndrome, and therefore, represents a 
crucial marker, particularly in ileal NENs associated with 
carcinoid syndrome where the sensitivity and specificity 
can reach 85 and 100%, respectively (4).

In addition to diagnostic biomarkers, another area 
of interest for NENs includes the research of biomarkers 
with a prognostic value. Ki-67 index and mitotic count 
are routinely used to determine the tumor grading and 

Figure 1
Overview of available biomarker-driven 
approaches and preclinical models for the 
development of PM in NENs. CgA, 
chromogranin A; NEN, neuroendocrine 
neoplasm; NSE, neuron-specific enolase; 
PDX, patient-derived xenograft; PET-CT, 
positron emission tomography/computed 
tomography; PRRT, peptide receptor 
radionuclide therapy; SSAs, somatostatin 
analogs; sVEGFR-2/3, soluble VEGF 
receptor-2/3; zPDX, zebrafish PDX. 
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cell proliferation rate. While Ki-67 index has a prognostic 
role in gastroenteropancreatic (GEP)-NENs, relatively less 
data support the same use for bronchial NENs (7, 8). The 
mitotic count has been shown to be prognostic in most 
of the NENs (9, 10). Elevated CgA and NSE levels are 
associated with poor progression-free survival (PFS) and 
overall survival (OS) in NENs. In addition, NSE expression 
is usually elevated in poorly differentiated NENs (11).

Other studies have been focused on the research of 
prognostic biomarkers between members of PI3K-AKT-
mTOR pathway (12). In this context, the overexpression 
of mTOR protein has been suggested as a negative 
prognostic factor (13). In pancreatic NENs mutations in 
PI3K–AKT–mTOR pathway genes have been reported in 
15% of patients. These genetic alterations seem to confer 
worse prognosis than other mutations linked to NENs 
(14). Genetic alterations of TSC2 have been reported in 
8% of pancreatic NENs and resulted to be associated with a 
reduced OS (15). On the other hand, although loss of 10q, 
the region containing PTEN, was present in about 30% 
of pancreatic NENs (16) and mutations in PIK3CA/PTEN 
have been found in 22% of poorly differentiated NENs, 
no prognostic value has been reported for these genetic 
modifications (17, 18). Indeed, given the complexity 
of this pathway, increased by the cross-talk with other 
molecular signaling, further studies are needed to get 
new insights into the prognostic role of its genetic and 
molecular alterations.

A great interest in the research of NEN biomarkers is 
represented by the identification of predictors of tumor 
response to the medical therapy. Although Ki-67 and 
mitotic count are currently used in the decision making 
of NENs treatment, technical issues about measurement 
of these parameters and tumor heterogeneity may 
weaken their predictive role (19). In addition, none of 
conventional circulating biomarkers have shown a high 
predictive accuracy (20). However, recent studies have 
investigated the potential predictive role of therapeutic 
response to current anti-cancer therapy for several 
biomarkers in NENs. These biomarkers are grouped on the 
basis of therapeutic interventions as follows:

•• Somatostatin analogs (SSAs) and peptide receptor 
radionuclide therapy (PRRT): Although most clinicians 
agree that the presence of somatostatin receptors 
(SSTRs) should be verified before treatment with 
SSAs is initiated (21), only few studies showed that 
SSTR expression can predict the response to the 
therapy with SSAs in NENs (22, 23, 24). However, in 
CLARINET and PROMID trials, showing a significant 

delay in disease progression after treatment with 
SSA, SSTR scintigraphy was positive in 100 and 86% 
of enrolled patients, respectively (25, 26). One of the 
most clinically relevant therapeutic innovation in 
NEN has been the development of PRRT through the 
use of SSAs labeled with beta-emitting radionuclides, 
in patients with unresectable grade 1 or 2 NENs and 
high SSTR expression (27). In these cases, nuclear 
medicine imaging, such as scintigraphy with 111Indium 
pentetreotide (OctreoScan®) or 99mTcEDDA/HYNIC-
octreotate and positron emission tomography (PET) 
with 68Ga-labeled radioligands, has some predictive 
ability in determining the functional response.

•• mTOR inhibitors: Although in several clinical studies, 
no valid biomarker has been identified so far to predict 
response to mTOR inhibitors, such as everolimus, few 
preclinical studies have recently explored mechanisms 
involved in the resistance to mTOR inhibitors. These 
data would be useful in future for the identification 
of predictive biomarkers. Besides KRAS and PIK3CA 
mutations, that conferred resistance to everolimus 
therapy (28), it has been showed that loss of PTEN and 
LKB1 with activation of c-Myc decreased sensitivity to 
treatment with mTOR inhibitors in pancreatic NEN 
cell lines (29). Evidence collected on human bronchial 
NEN primary cultures suggested that lower expression 
of mTOR, p70S6K, AKT and ERK1/2 could be predictive 
markers of resistance to mTOR inhibitors (30). Other 
genetic alterations correlated with resistance to 
everolimus therapy, such as the FGFR4-G388R single 
nucleotide polymorphism (31).

Given that mTOR inhibition reduced VEGF-A 
secretion in three murine GEP-NEN cell lines (32), it has 
been proposed that levels of this cytokine could measure 
the response to everolimus (33). However, circulating 
VEGF-A in NEN patients treated with everolimus has 
not shown a clear predictive value yet. The tumor 
uptake of 89Zr-bevacizumab, a radioactive-labeled 
VEGF-A antibody, diminished during everolimus 
treatment in patients with well-differentiated NENs. 
Therefore, serial 89Zr-bevacizumab PET might be useful 
as an early predictive imaging-based biomarker for the 
treatment with everolimus or other drugs targeting 
VEGF system in NEN patients (33).

•• Antiangiogenic therapies: Sunitinib is a multi-targeted 
tyrosine kinase inhibitor. Among tissue biomarkers, 
low Ki-67 and pAKT expression correlated with a better 
response to sunitinib in NENs (34). The predictive 
role of circulating levels of VEGF, soluble VEGF 
receptors (sVEGFR-2 and sVEGFR-3), IL-8 and stromal  
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cell-derived factor (SDF)-1α, have been analyzed in 
patients with pancreatic NEN and carcinoid tumors 
treated with sunitinib. Baseline level of sVEGFR-2 
resulted more elevated in patients with pancreatic 
NEN and longer OS (35), as previously reported in 
NEN patients treated with pazopanib, another tyrosine 
kinase inhibitor (36). In carcinoid patients low pre-
treatment IL-8 levels were associated with longer PFS 
and OS. In addition, low baseline concentrations of 
sVEGFR-3 and SDF-1α were associated with longer PFS 
and OS in both pancreatic NENs and carcinoid tumors 
patients (35). A significant increase from baseline of 
VEGF, IL-8 and SDF-1α, and a decrease in sVEGFR-2 
and sVEGFR-3 were observed in patients with 
NENs at the end of the first cycle of treatment with  
sunitinib (35).

Bevacizumab, a VEGF monoclonal antibody, is 
another targeted therapy used in advanced NENs. 
In patients with metastatic or unresectable NEN, the 
decrease in blood flow and blood volume observed 
through perfusion CT during treatment with 
bevacizumab and everolimus correlated with RECIST 
response (37). However, larger prospective studies are 
needed for validation of these potential predictive 
biomarkers.

•• Standard chemotherapy: Ki-67 has been proposed for 
selecting patients for chemotherapy in NENs due to the 
direct association between tumor grade and response 
(38). However, clinically useful threshold for Ki-67 
has not well defined (38). Other predictive biomarkers 
have been currently identified for cytotoxic drugs. In 
pancreatic NENs, a positive OctreoScan® was predictive 
of an objective response to streptozocin/5-fluorouracil/
doxorubicin (39). Moreover, it has been reported that 
MGMT promoter methylation status and protein 
deficiency were associated with a better response rate 
to alkylating agents (40, 41). In pheochromocytomas 
and paraganglioma patients with SDHB mutations 
showed a higher risk for developing metastatic disease, 
but they responded better than non-mutation carriers 
to the therapy with cyclophosphamide, vincristine 
and dacarbazine (42).

In the last years, due to a better understanding of molecular 
mechanisms involved in the development of NENs (43) 
and advances in the technologies, a new generation 
of biomarkers and multiple assays have been recently 
developed. Preliminary data are available in NENs:

•• Circulating tumor cells (CTCs) could provide prognostic 
information in real time and in terms of tumor 

progression and OS in NENs (44, 45). Patients with a 
negative CTC count showed a better prognosis in terms 
of PFS and OS as compared to patients with ≥1 CTC. 
In addition, a >50% reduction of CTCs count after the 
treatment was associated with a better outcome (45). 
Therefore, CTC detection could be also an attractive 
method to monitor disease progression and response 
during the treatment. In addition, the molecular 
characterization of isolated CTCs might have clinical 
relevance for therapeutic decision making through the 
identification of specific molecular targets (45). SSTRs 
have been recently measured in CTCs isolated from 
patients with GEP-NENs (46). This could be useful in 
future for the selection of patients to treat with SSAs or 
PPRT. A recent study showed that CTC copy number 
alteration may represent a new predictor of response 
to chemotherapy in patients with small-cell lung  
cancer (47).

•• Circulating tumor DNA (ctDNA) consists of short 
nuclear fragments (~166 bp) released in the blood 
from apoptotic or necrotic tumor cells. ctDNA analysis 
can be potentially useful for NEN management. It 
has been observed that the ctDNA levels rise during 
tumor progression, whereas decline after therapy. 
In this way, ctDNA levels surveillance could guide 
drug treatment and provide a more comprehensive 
representation of the mutational landscape of the 
NEN, as recently reported in few anecdotal reports (48, 
49). In addition, changes in allele frequencies over 
time could reflect subclonal evolution, supplying the 
opportunity to adjust the therapy in order to overcome 
newly developing resistance. Finally, it has been noted 
an upward trend in ctDNA concentration earlier than 
current biomarkers, useful for an earlier prediction of 
disease recurrence (50).

•• miRNAs are endogenous small non-coding RNAs 
that control post-transcriptional eukaryotic gene 
expression. Their tissue and blood levels have been 
associated to prognosis and prediction of therapeutic 
outcome in several cancers. As reported by Zatelli 
et al., few evidences are currently available about the 
prognostic potential of miRNAs in NENs and they 
are limited to their tissue expression in lung NENs, 
pancreatic NENs, medullary thyroid cancer and 
pheochromocytoma (51).

•• NETest is a multianalyte liquid biopsy procedure 
that measures the circulating expression level of 51 
genes involved in cancerogenesis, cell proliferation, 
signaling, secretion and metastasis formation through 
a peripheral blood real-time polymerase chain reaction. 
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This procedure has been tested in GEP and pulmonary 
NENs. The NETest provides with high sensitivity (85–
98%) and specificity (93–97%) information about the 
diagnosis, completeness of surgical resection and the 
presence of residual disease in patients with NENs. 
This test can also predict the therapeutic efficacy of 
SSAs and PRRT (52). Moreover, NETest is standardized, 
reproducible and is not influenced by age, gender, 
ethnicity, fasting or proton pump inhibitors (53).

•• OncoTreat is an innovative platform based on the 
systematic prioritization of anti-cancer drugs. The 
rationale of OncoTreat starts from the ability of drugs 
to invert the expression profile of master regulator 
proteins, whose coordinated activity is necessary for the 
modulation of tumor check points (54). OncoTreat was 
set up in a cohort of 212 patients with GEP-NEN. In the 
first phase, a transcriptome analysis identified several 
master regulator proteins that include key regulators 
of neuroendocrine lineage progenitor state and 
immunoevasion. In the second phase, a prioritization 
of small molecules was performed by a transcriptome 
analysis aimed at identifying which molecules 
were able to invert the activity of GEP-NEN master 
regulator proteins in H-STS cells, a cell line derived 
from GEP-NEN patient (55). Interestingly, results of 
this study lead FDA to approve the Investigational 
New Drug Application for entinostat in GEP-NENs 
(54). Therefore, OncoTreat appears to be a promising 
strategy for the development of PM applications, 
ideally complemented by preclinical models to predict 
which drugs a patient will respond to.

The promising role of preclinical models 
in PM

Although the biomarker-driven approach is contributing 
to the evolution of tailored therapies for some tumors, 
the characterization of the genetic and molecular profiles 
of tumor cells does not often translate into a successful 
clinical outcome, due to the spatial and temporal 
heterogeneity of these cells (56). Several preclinical 
models have been indicated as promising platform for 
the development of PM applications, able to capture the 
heterogeneous nature of human cancers. For instance, 
short-term primary culture cells derived from solid 
tumors, also known as ex vivo, have gained significant 
importance in personalized cancer therapy (57). Recently, 
a human platform technology called CANscript™ has 
been developed to predict the response to anti-cancer 

drugs in patients with head and neck squamous cell 
carcinoma and colorectal cancer. Thin tumor sections 
were cultured ex vivo, on grade-matched tumor matrix 
support in a medium addicted with autologous patient 
serum and treated with selected drugs. Then, the clinical 
response was predicted from several parameters detected 
on ex vivo cultures, by a sophisticated machine-learning 
trained algorithm, showing a 100% sensitivity and 92% 
specificity (58).

Nowadays, patient-derived xenografts (PDXs) in mice 
represent the most robust and investigated experimental 
platform for the development of PM applications (59). 
To generate PDXs, solid tumors, collected after surgery or 
biopsy procedures, are inoculated as pieces or single-cell 
suspensions subcutaneously into the flank or in the same 
organ, as the original tumor of the animal. Several mouse 
strains, having different degrees of immunosuppression 
are currently available for these studies (60). Although 
an engraftment-associated selection has been reported, 
PDXs preserve the histological organization, the 
genetic and epigenetic mutational profile and the gene 
expression patterns, as in the patient counterpart. PDXs 
have showed also a high potential in predicting drug 
response to pharmacological treatments, as demonstrated 
in colorectal cancer (61). PDXs have been recently used 
to perform co-clinical studies, in which patient-derived 
tumor cells, isolated from a patient enrolled in a clinical 
trial, are implanted into immunocompromised mice 
that are subsequently treated with the same drugs of 
the patient to emulate clinical response (62). Compared 
to conventional phase I/II clinical trials, PDX-based 
co-clinical studies have the advantage of analyzing and 
integrating preclinical and clinical data in a real-time 
manner. This aspect is crucial to study mechanisms of 
drug resistance and to explore the therapies that can be 
administered to the patient (60).

Preclinical models for PM in NENs

Several preclinical models have been recently developed 
in NENs (Fig. 1) with relevant advantages and potential 
application in the clinical management of this tumor 
(Table 1).

In vitro models

Although human immortalized NEN cell lines have 
significantly contributed to the study of pathways 
involved in carcinogenesis and the screening of 
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compounds with antitumor activity and related drug 
resistance mechanisms (63), they have some limitations, 
such as the accumulation of genetic changes over time in 
culture and the lack of cellular heterogeneity. In addition, 
some NEN cell lines do not display well-differentiated 
neuroendocrine phenotype or have a very low expression 
of some key receptors for drug treatment (such as SSTRs). 
In this context, experimental data obtained from NEN 
cell lines should be carefully validated with primary 
cell cultures derived from NEN patients (64), even if 
establishment of these cells could be difficult, due to the 
low proliferation rate of NEN cells. In the context of PM, 
the main advantage of primary tumor cell culture is the 
possibility to evaluate the potential efficacy of several 
antitumor compounds in a short time, through a system 
where intratumor heterogeneity and the original genetic 
signature of the tumor are preserved (57). NEN primary 
cell cultures could also be used to perform preliminary 
preclinical studies for the identification of novel druggable 
molecular targets.

Powerful in vitro platforms, which can facilitate the 
development of PM strategies, have been recently set 
up using 3D patient-derived organoid cultures also in  

NENs (65). Organoids can be cultured from a small 
sample size, derived from needle biopsy and generated 
from different areas of the tumor in order to better mimic 
genetic and phenotypic heterogeneity of the tumor (66). 
These models could serve as a platform to combine high-
throughput drug screening and genomic analysis on 
patient-derived tumor samples, thus offering a unique 
opportunity to stratify and identify efficacious therapies 
for individual patients.

In vivo models

NEN-PDX murine models of MTC (67) and high-grade 
pulmonary NENs (68) have been used in preclinical 
research to investigate the efficacy of experimental anti-
cancer drugs. NEN-PDX murine models recapitulate 
some peculiarity of tumors in patients. For instance, the 
gastric neuroendocrine carcinoma PDX model GA0087 
has showed a metastatic behavior supported by the 
high expression of VEGF-A as in patients with gastric 
NEC (69). A genomewide analysis on a PDX model of 
neuroendocrine prostate cancer in mice has showed that 
CBX2 and EZH2, members of the polycomb group family 

Table 1 Advantages and limitations of NEN preclinical models.

Advantages Limitations

Immortalized cell lines •	 Unlimited lifespan
•	 Easy to handle and manipulate
•	 Large number of cells
•	 Study of pathways involved in 

carcinogenesis and preliminary drug 
screening

•	 Lack of cellular heterogeneity
•	 Accumulation of genetic changes over time
•	 Loss of well-differentiated neuroendocrine 

phenotype

Primary cultures (2D and 3D 
organoids)

•	 Fast procedure
•	 Identification of novel molecular targets 

and drug screening

•	 Possible loss of tumor heterogeneity
•	 Difficulties in the culture establishment due to 

the low proliferation rate of NENs
Murine patient-derived 

xenografts
•	 Realistic heterogeneity of tumor cells
•	 Preservation of genetic and epigenetic 

characteristics of primary tumor
•	 Preclinical drug screening and co-

clinical trials
•	 High prognostic and predictive 

potential

•	 Large number of tumor cells
•	 Long time to establish 
•	 Immunosuppressed animals limit a realistic 

tumor microenvironment
•	 Difficulties to generate mouse xenograft 

models able to metastasize
•	 Possibility of engraftment-associated selection 
•	 Low engraftment rate for NENs

Zebrafish patient-derived 
xenografts

•	 Small number of tumor cells for the 
implant

•	 Possibility to implant high number of 
embryos 

•	 Real-time visualization
•	 Fast model for the analysis of tumor-

induced angiogenesis and migration
•	 Lack of an acquired immune system in 

embryos and larvae
•	 High engraftment rate
•	 Preclinical drug screening and co-

clinical trials
•	 High predictive potential

•	 Difficulties in orthotopic implantation
•	 Difficulties in long-term analyses
•	 Several organs or systems are still developing 

in embryos
•	 Little knowledge about the maintenance of 

tumor microenvironment in zebrafish
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of transcriptional repressors, are upregulated, as in patients 
with this disease (70). PDXs of pancreatic NEN can develop 
resistance to everolimus. In this study, the inhibitor of the 
mTOR pathway sapanisertib showed a potent antitumor 
effect also on everolimus-resistant PDXs, leading to the 
suggestion of a new alternative pharmacological strategy 
for everolimus-resistant NEN (71). However, the use of 
murine NEN-PDX models is very limited in the research 
of PM strategies probably due to the rarity of NENs, 
the limited size of post-surgical samples for most of  
these tumors and the low rate of successful tumor 
engraftment (72).

Recently, zebrafish PDX (zPDX) has been suggested 
as promising platform for the development of PM 
applications (73, 74). Fior and collaborators have 
demonstrated that zPDX has a strong predictive 
potential in patients with colorectal cancer treated with 
chemotherapy and biological therapy (74). In this respect, 
we have recently set up a NEN-zPDX platform, based on 
the injection of red fluorescent labeled NEN cells into the 
subperidermal cavity of Tg(fli1a:EGFP)y1 zebrafish embryos 
(73, 75). This transgenic line, expressing the enhanced 
green fluorescent protein (EGFP) in the endothelial 
cells of the entire vascular tree, offers the possibility to 
estimate the proangiogenic potential and the metastatic 
behavior of injected tumor cells derived from each patient 
tissue. In addition to the advantages due to the intrinsic 
features of the zebrafish model, as the high fecundity, the 
outer fertilization and the optical transparency, our PDX 
platform can overcome some general drawbacks of murine 
engraftment procedure. Although mouse is considered 
the gold standard for PDXs, several limitations have been 
reported, such as the large number of tumor cells to be 
implanted (about 1 million for each animal) and the long 
time required for the implantation (from several weeks 
to months), the need of immunosuppressed animals to 
avoid transplant rejection and the difficulties to generate 
mouse xenotransplant models able to metastasize (76). 
We have demonstrated that NEN PDXs can stimulate 
angiogenesis in zebrafish embryos within few days and 
without the need of immunosuppression, because the 
adaptive immune response is not completely developed 
during the early development of zebrafish (73). Compared 
to mouse tumor models, in which the spread of tumor cells 
cannot be analyzed in real time after the transplantation, 
the transparency of zebrafish embryos allows to follow 
in real time the invasive behavior of fluorescent-labeled 
tumor cells (73). Besides, in zebrafish model, the 
possibility to study the effects of small tumor implants  
(100 cells/embryo) resulted particularly suitable for 

NENs, where post-surgical availability of tumor cells 
is often limited. Interestingly, the success of NEN cells 
transplantation in zebrafish embryos resulted to be 
extraordinary higher compared than that reported for 
murine PDXs (72).

In the near future, additional studies will be 
fundamental to clarify if NEN zPDXs and NEN patients 
might have similar response to the available therapeutic 
options, as recently reported for colorectal cancer (74). 
These studies could be supported by the versatility of 
zebrafish embryos in drug screening. Indeed, because of 
the permeability of zebrafish embryos to small molecules, 
a number of compounds can be added directly to the 
embryo water, whereas larger or not water-soluble 
molecules need to be injected into the body of the 
embryo to ensure drug uptake. The effects of antitumor 
compounds on tumor-induced angiogenesis, invasiveness, 
metastatic dissemination and tumor cell proliferation can 
be easily evaluated by epifluorescence microscopy and 
confocal microscopy within 3 days after implantation.

Conclusions

Several biomarkers are routinely used for the classification 
of NENs and are currently relevant for the treatment 
selection. Although several prognostic and predictive 
biomarkers, which could support tailoring therapies have 
been recently identified (Fig. 1), most of them are far from 
being routinely adopted in clinical practice and further 
insights are needed.

Few available preclinical in vitro and in vivo models, 
derived from NEN patient cells, have provided first 
evidences of preserving molecular and behavioral features 
of the original NEN. The most promising preclinical 
platforms for PM in NENs are PDXs in mice and zebrafish 
embryos (Fig. 1). However, additional studies are needed 
to analyze the predictive potential of these innovative 
tools, as well as their translatability into the clinical 
practice, in order to improve the survival and quality of 
life in patients with advanced NENs.
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