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Abstract — Touchless fingerprint recognition technologies based on smartphones
can be considered selfie biometrics, in which a user captures images of his or her
own biometric traits by using the integrated camera in a mobile device (here re-
ferred to as selfie fingerprint biometrics). Such systems mitigate the limitations of
leaving latent fingerprints, dirt on the acquisition device released by the fingers, and
skin deformations induced by touching an acquisition surface associated to a touch
ID-based system. Furthermore, the use of the integrated camera to perform bio-
metric acquisition bypass the need of a dedicated fingerprint scanner. With respect
to touch-based fingerprint recognition systems, selfie fingerprint biometrics require
ad hoc methods for most steps of the recognition process. This is because the im-
ages captured using smartphone cameras present more complex backgrounds, lower
visibility of the ridges, reflections, perspective distortions, and nonuniform reso-
lutions. Selfie fingerprint biometric methods are usually less accurate than touch-
based methods, but their performance can be satisfactory for a wide variety of secu-
rity applications. This chapter presents a comprehensive literature review of selfie
fingerprint biometrics. First, we introduce selfie fingerprint biometrics and touch-
less fingerprint recognition methods. Second, we describe the technological aspects
of the different steps of the recognition process. Third, we analyze and compare the
performances of recent methods proposed in the literature.

1 Introduction

Smartphones are a type of handheld mobile computer and are widely used all over
the world to store sensitive data and to access a wide range of distributed services.
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Therefore, these devices require strong authentication mechanisms for properly
managing access to local data and distributed information. For this reason, some
recent smartphones possess integrated sets of sensors specifically designed for bio-
metric acquisition, such as fingerprint scanners [17]; illumination systems, optics
and cameras for ocular biometrics [39]; and devices for acquiring three-dimensional
face samples [1]. In this context, fingerprint-based systems are particularly promis-
ing due to their high accuracy and their acceptance by users. However, not all current
smartphones include a dedicated fingerprint scanner, whereas almost every smart-
phone includes a digital camera. Due to recent advances in the speed, resolution, and
dynamic range of the digital cameras embedded in smartphones, selfie fingerprint
biometrics is attracting increasing interest.[3].

Touchless fingerprint recognition technologies possess important advantages
with respect to systems based on traditional touch-based scanners: i) the absence
of elastic skin deformations, since the finger is not pressed onto any surface; ii) the
absence of latent fingerprints left on the sensor; iii) the absence of dirt on the ac-
quisition surface introduced by the touch-based acquisition process; and iv) faster
capture of biometric data [16]. However, as shown in Fig. 1, the touchless finger-
print images acquired using the cameras integrated in smartphones can present sev-
eral nonidealities in comparison to samples acquired using touch-based fingerprint
scanners, as follows:

e such an image has a more complex background, including the skin of the finger,
instead of containing only the ridge pattern as classical contact-based samples
do;
the illumination is not constant in all regions of the finger in the image;
the fingerprint image contains reflections, reducing the contrast of the ridge pat-
tern;

o the sample resolution varies because the distance from the finger to the camera
is not constant among different acquisitions, thus the application of the most
commonly used fingerprint recognition algorithms (designed for samples with a
standard resolution of 500 pixels per inch) becomes difficult;

e in many cases, the fingerprint image presents perspective distortions caused by
uncontrolled rotations of the finger in three-dimensional space because no pins
or references for finger positioning are provided during the acquisition process;

e the ridge pattern may not be sufficiently distinguishable in all regions of the
fingerprint due to the limited depth of focus of the optics; and

e the sample may present motion blur.

Due to the aforementioned nonidealities, the accuracy of selfie fingerprint bio-
metrics is currently inferior to that of traditional touch-based technologies [11, 16].
Selfie fingerprint biometric techniques require specifically designed algorithms for
most steps of the recognition process.

This chapter is organized as follows. Section 2 describes the biometric recog-
nition process of selfie fingerprint biometrics from a technological point of view,
focusing on each step of the computational chain individually. Section 3 presents a
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Fig. 1 Examples of fingerprint images of the same finger acquired using a touch-based sensor
(a) and a smartphone camera (b). The touchless acquisition performed with a smartphone camera
presents a more complex background, nonuniform illumination, and out-of-focus regions.

performance analysis of state-of-the-art technologies. Finally, Section 4 concludes
the work.

2 Biometric recognition process

Several studies in the literature have proposed touchless fingerprint acquisition
systems based on a single camera [20, 35], multiple cameras [12, 24, 30, 46],
or mobile devices (e.g., smartphone cameras) [4, 5, 42]. Recognition algorithms
for touchless fingerprint samples can consider either two-dimensional images or
three-dimensional models. While methods based on three-dimensional models can
achieve a higher recognition accuracy than methods based on two-dimensional im-
ages can, they usually require complex acquisition setups, which are difficult to
integrate into smartphones [11].

Selfie fingerprint biometric methods typically consider a single two-dimensional
image, which can present the same nonidealities exhibited by touchless samples
acquired using any digital camera. For this reason, many existing algorithms can
be successfully applied to fingerprint images acquired using smartphone cameras
as well as to samples acquired using other touchless devices. In addition, with re-
spect to touchless systems based on a single camera or multiple cameras, mobile
devices represent a more compact solution since all hardware and software com-
ponents necessary to perform a correct acquisition are integrated in a single piece
of equipment (e.g., a camera, focus assessment and correction functionalities, an
illumination source, and a processing architecture).
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Fig. 2 Outline of the fingerprint recognition process using images acquired with a smartphone

camera.

The recognition procedure in selfie fingerprint biometrics usually consists of four
steps: i) acquisition, ii) segmentation, iii) enhancement, and iv) feature extraction
and matching. In addition, the recognition procedure can also include a quality as-
sessment, a liveness detection, and a step for mitigating the nonidealities of touch-
less fingerprint sensors. Fig. 2 shows a schema of the recognition process in selfie

fingerprint biometrics.
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Fig. 3 Examples of fingerprint images captured using a smartphone camera under controlled (a)
and uncontrolled (b) conditions. In images acquired under controlled conditions, the background
is easier to remove, and the ridge pattern is more visible and less affected by noise. However,
controlled acquisition setups are less usable than uncontrolled setups are and require a higher level
of cooperation from the user.

2.1 Acquisition

During the acquisition process, the biometric trait of interest is presented to the
acquisition sensor, and a biometric sample is obtained. In the case of selfie fin-
gerprint biometrics, one or more fingers are presented to the integrated camera
of a smartphone, and the collected sample is a two-dimensional image. The ac-
quisition methods presented in the literature feature important differences in terms
of the techniques applied to control the finger positioning, illumination and back-
ground. Fingerprint images acquired under controlled and uncontrolled conditions
present important differences in terms of quality. In particular, acquisition proce-
dures in which the finger positioning, illumination and background are controlled
can achieve better-quality images than uncontrolled acquisition techniques. How-
ever, controlled acquisition setups require a higher level of cooperation from the
user. As an example, Fig. 3 shows fingerprint images of the same finger captured
using a smartphone camera under controlled and uncontrolled conditions.

Several acquisition methods based on smartphone cameras are available. In the
majority of cases, the camera parameters (focal distance, aperture of the diaphragm,
and exposure time) are computed automatically by the acquisition software pro-
vided by the operating system, and the operator captures the fingerprint image as
soon as the fingertip is within the field of view of the camera. The existing acqui-
sition methods can be classified according to the number of fingers considered and
the acquisition constraints applied (in terms of controlled or uncontrolled finger po-
sitioning and background). Specifically, it is possible to distinguish five classes: i)
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single fingerprints with controlled finger positioning, controlled background and il-
lumination conditions; ii) single fingerprints with uncontrolled finger positioning
but controlled background and illumination conditions; iii) single fingerprints with
uncontrolled finger positioning, uncontrolled background and illumination condi-
tions; iv) multiple fingerprints with controlled finger positioning but uncontrolled
background and illumination conditions; and v) multiple fingerprints with uncon-
trolled finger positioning, uncontrolled background and illumination conditions.

In acquisition set-ups discussed in class i), images are acquired under laboratory
conditions; supports are used to position the smartphone, dedicated illumination
setups are used, and the user is required to place his or her finger on a flat surface
[6].

In acquisition methods discussed in ii), constraints on the position of the finger
are reduced but the background and illumination conditions are controlled [42, 44].
In these setups, the operator (who may also be the owner of the fingerprint) holds
the device, while the software installed on the smartphone automatically captures
the image. The LED of the smartphone is used as a flashlight to enhance the details
of the fingerprint and the contrast with the background, making it easier to segment
the region of interest in the image.

In acquisition set-ups discussed in iii), the constraints are further reduced; conse-
quently, such methods must cope with various uncontrolled backgrounds captured
under both indoor and outdoor conditions [36]. There are publicly available datasets
of fingerprint images captured under both indoor and outdoor conditions with con-
trolled and uncontrolled backgrounds [40, 21].

While most smartphone-based acquisition procedures focus on a single finger at
a time, the acquisition methods discussed in iv) use multifinger acquisition setups
that require previously defined procedures for positioning the fingers [4]. In such
an acquisition procedure, a translucent guide is superimposed on the screen of the
device to help the user both in correctly positioning the fingers and in capturing im-
ages with a constant distance between the fingers and the camera, thereby ensuring
a fixed resolution.

The acquisition set-ups discussed in v) need to overcome all possible nonideal-
ities of the samples due to an unconstrained acquisition setup. There is a publicly
available database of fingerprint samples acquired using smartphones consisting of
images collected without any constraints on position, illumination, background, fo-
cus, or the number of fingers [22]. These fingerprint images present high variability
since they were acquired using different cameras and acquisition software.

2.2 Segmentation

The purpose of the segmentation step is to separate the biometric trait of interest
from other information in the sample. In the case of selfie fingerprint biometrics, this
step aims to extract the region corresponding to the ridge pattern of the last phalanx.
The proposed segmentation approaches in the literature can be divided into those
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based on samples acquired in controlled i) or uncontrolled ii) backgrounds. While
in the first case, it is often possible to use general-purpose segmentation approaches,
in the second case, it is necessary to consider additional challenges, such as the
properties of the skin color or the presence of out-of-focus regions.

An example of a lightweight method for images acquired with controlled back-
grounds is to threshold the red channel of the image to detect the region in which
the finger is present [42]. Adaptive thresholding techniques can be applied to color
as well as grayscale images [44]; for example, a background subtraction method can
be used in combination with a thresholding technique based on the skin color [4].

Segmenting images with uncontrolled backgrounds require methods that are
more complex than those based on controlled backgrounds. For example, an al-
gorithmic segmentation approach that consists of a preliminary training step and
subsequent refinement steps for background removal is described in [25]. The pre-
liminary training step collects information related to the distribution of the skin
pixels in the RGB color space. The first refinement step builds a look-up table using
the color distribution information and performs a color-based segmentation to de-
termine whether the pixel belongs to the finger region or not. The second refinement
step exploits the frequency information and computes a second segmentation mask
by assuming that the regions of the image that do not correspond to the finger are
out of focus and therefore contain only limited information at low frequencies. The
last step combines the color- and frequency-based results using a region growing
algorithm.

Algorithms for skin color detection can also be applied to segment images with
uncontrolled backgrounds. A well-known method for skin detection used for seg-
menting touchless fingerprint images acquired using smartphones is mean shift seg-
mentation. In this method, several segments, each corresponding to a different re-
gion of the image, are compared against a fixed reference image to correctly estab-
lish which region depicts the finger [23].

Skin detection algorithms may also rely on thresholding channels of the image
in color spaces other than the most frequently used RGB color space. Fingerprint
segmentation in images acquired using smartphones with uncontrolled backgrounds
can be performed by thresholding the magenta (M) channel in the CMYK color
space [40] or by thresholding a combination of channels in the YCbCr and HSV
color spaces [2].

Recently, deep learning and convolutional neural networks (CNNs) are being
increasingly used for a wide variety of signal and image processing applications,
including the extraction of relevant information from biometric samples [7]. CNNs
can also be successfully applied to segment touchless fingerprint images with un-
controlled backgrounds [5].

In the case of acquisitions with multiple fingers, it is possible either to separate
the fingers such that they can be individually matched or to perform multimodal
sample-level fusion [37] by treating each multifinger acquisition as a single biomet-
ric sample [5]. The separation of different fingers can be performed by estimating
the boundaries between the fingers using edge detectors [4].
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2.3 Enhancement

The enhancement step aims to reduce noise and improve the distinguishability of
the distinctive characteristics of a biometric trait. In the case of selfie fingerprint
biometrics, the enhancement step is performed in most of the systems and has the
purposes of improving the visibility of the ridge pattern and removing unnecessary
details in the image. There are two main classes of enhancement techniques ap-
plicable to touchless fingerprint images acquired using smartphones: i) those that
enhance the visibility of the ridges using reduced computational resources and ii)
schemes that aim to obtain an enhanced representation of the ridge pattern that is as
similar as possible to touch-based samples. As an example, Fig. 4 shows a touch-
less fingerprint image captured with a smartphone camera and the corresponding
enhanced representation with minutiae features [33] extracted using a commercial
software designed for touch-based samples [34].

Enhancement schemes based on enhancing the visibility of the ridges use well-
known image processing algorithms, such as Wiener filtering [36] and adaptive his-
togram equalization [44] are applied to perform fast computations and enhance the
visibility of the ridges.

Schemes aiming to obtain a representation of the ridge pattern similar to touch-
based samples are more computationally expensive and usually incorporate two
tasks: noise reduction and enhancement of the ridge pattern. The noise reduction
task can be performed by applying a median filter [42], followed by histogram
equalization [40], and a band-pass filter tuned to the frequency of the ridges [4],
or a processing sequence consisting of a Wiener low-pass filter, a top-hat filter, and
histogram equalization [31]. The visibility of the ridge pattern can be enhanced by
means of an adaptive binarization procedure [42], an unsharp masking algorithm
followed by local histogram normalization [40], or a set of Gabor filters tuned ac-
cording to the local frequency and orientation of the ridges [31].

The proposed schemes may also perform the enhancement step as one single task.
As an example, a bank of wavelets can be used to estimate the phase congruency
of the frequency response and to extract the local regions of the image with higher
phase congruency, which are then identified as parts of the ridge pattern [2].

2.4 Feature extraction and matching

The feature extraction step aims to extract a digital representation of unique fea-
tures from a biometric sample (called a template), while the purpose of matching
is to compute a similarity or dissimilarity score between two or more templates
(called a matching score or a distance, respectively). In the case of selfie fingerprint
biometrics, the methods in the literature can be classified according to the used fea-
ture sets: i) Level 1 features, ii) Level 2 features, and iii) learned features. Level 1
features are global characteristics of the ridge pattern [33]. Level 2 features are local
characteristics describing certain formations of the ridges, namely, ridge endings or
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Fig. 4 Example of a touchless fingerprint image captured with a smartphone camera (a) and the
corresponding enhanced representation (b). This figure shows that commercial software [34] can
successfully extract the minutiae features [33] from an enhanced touchless fingerprint representa-
tion.

bifurcations, also called minutiae [33]. Learned features cannot be classified as per-
taining to Level 1 or Level 2 since they are automatically learned from training data;
they can be extracted using a variety of computational intelligence techniques, such
as artificial neural networks, support vector machines, CNNs, deep neural networks
and dictionary-based techniques [18].

Level 1 features are typically designed for touchless fingerprint samples but can
also be applied to images acquired using smartphone cameras. There are methods
for extracting feature vectors that describe the ridge orientation flow using Gabor
filters [19] and methods for extracting singular points from touchless fingerprint
samples [8].

Most of the methods in the literature adopt feature extraction and matching tech-
niques pertaining to Level 2. Minutiae-based feature extractors and matchers can be
directly applied to touchless fingerprint images acquired using smartphones [6, 27].
However, most of the methods in the literature extract minutiae-based features from
enhanced ridge pattern images to achieve better accuracy. To extract and match
minutiae-based features, commercial biometric recognition software tools designed
for touch-based samples are widely used, with satisfactory results [42, 4, 2]. Further-
more, the minutiae-based feature extractor and matcher included in the Biometric
Image Software of the National Institute of Standards and Technology (NIST) [47]
can also be applied to enhanced representations of ridge patterns [36]. While not
designed for images captured using mobile devices, a minutiae matcher specifically
designed for touchless fingerprint images [14] can also be used for fingerprint im-
ages acquired using smartphone cameras. Local features other than minutiae points,
such as scale-invariant robust features [44], can also be extracted from enhanced
representations of ridge patterns.
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In recent studies pertaining to learned feature representation, the feature extrac-
tion and matching steps have been performed using computational intelligence ap-
proaches, with promising results. In particular, it is possible to use scattering net-
works to extract features and use a random forest classifier to perform the biometric
matching [40]. A similar technique using a scattering network and a machine learn-
ing classifier is presented in [32]. A competitive coding algorithm and a residual
network can also be used in conjunction with a matcher based on the Hamming
distance between templates [5].

2.5 Quality assessment

In the quality assessment step, a score value is estimated for each image or local
region to represent its ability to be processed by the biometric system with satis-
factory results. In the case of selfie fingerprint biometrics, quality estimation can be
achieved through three main classes of methods, as follows: i) estimating the global
image quality, ii) estimating the quality of local regions, or iii) estimating the focus
quality for real-time applications. Methods for estimating the global image quality
can be used to reject samples with out-of-focus regions or due to low visibility of
the ridge pattern due to poor illumination. Methods for estimating the quality of
local regions can be used to discard poor-quality regions of a sample during the
feature extraction process. Methods for estimating the focus quality can be used to
implement autofocusing methods specifically designed for selfie fingerprint biomet-
rics. Fig. 5 shows an example of a fingerprint image in which different regions have
different levels of quality.

There are several quality assessment approaches for touchless fingerprint acqui-
sitions pertaining to global image quality estimation. Such methods are typically
designed for systems based on either a single camera [13] or multiple cameras
[49, 9, 45], but most of them can also be applied to images captured with smart-
phone cameras. In any case, quality assessment methods trained on images acquired
using smartphones can achieve higher accuracy for selfie fingerprint biometrics than
methods trained on other types of samples, such as touchless fingerprint images ac-
quired with other kinds of cameras. As an example, the global image quality can be
assessed by evaluating the symmetry of the local gradients in the image in combi-
nation with a focus estimator [26].

Methods for estimating the local image quality can use sets of features based on
the autocorrelation of the fingerprint pattern in the spatial and frequency domains
[27] and can also use additional features related to the intensity level of each pixel,
the orientation of each local region, and the high-frequency information of the image
[28].

Quality assessment methods designed for the real-time selection of correctly fo-
cused images are able to run in real time on devices with limited computational
power, such as smartphones. For example, a fast and efficient focus estimator ana-
lyzes the density and sharpness of the edges in the image [42].
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Fig. 5 Example of the quality assessment of a touchless fingerprint image captured using a smart-
phone. The figure shows that different regions offer different levels of visibility of the ridge pattern
and are therefore associated with different quality values.

2.6 Liveness detection

Liveness detection methods aim to distinguish biometric samples of real biomet-
ric traits from possible presentation attacks against the sensor [15]. In the case of
selfie fingerprint biometrics, this step aims to distinguish real fingers from synthetic
artifacts consisting of heterogeneous materials, printouts, and the images shown on
electronic devices. Selfie fingerprint biometrics is a recently emerging research field,
and there are only a few studies in the literature on methods for liveness detection
that are applicable to touchless samples acquired using smartphones.

It is possible to estimate the presence of a spoofing attack based on frame se-
quences of fingers. In particular, it is possible to analyze the pattern of the reflection
of the material while a finger is gradually moving in front of the camera under the
light emitted by the integrated LED of the smartphone and then to estimate the edge
density of the fingerprint image [41].

Liveness estimation can also be performed on the basis of a single fingerprint
image acquired by a smartphone camera. Various texture descriptors (local binary
patterns, dense scale-invariant feature transforms, and locally uniform comparison
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image descriptors) can be used by a support vector machine to distinguish between
real and fake fingerprints [43].

Although some methods have not been tested on images captured using a smart-
phone, there are liveness detection algorithms based on single touchless fingerprint
images that could also be evaluated for images acquired using mobile devices. As
an example, the method presented in [48] extracts local binary pattern features and
computes gray-level co-occurrence matrices to classify each image as real or fake
by means of a feedforward neural network classifier.

2.7 Mitigation of nonidealities of touchless fingerprint sensors

This step aims to mitigate the nonidealities of fingerprint images captured with a
smartphone (as mentioned in Section 1). Several methods in the literature include an
additional processing step with the purpose of mitigating one or more nonidealities
of the captured samples. The methods proposed in the literature can be classified
according to their goal: i) normalizing the fingerprint images to a previously defined
resolution, ii) reducing perspective distortions due to uncontrolled rotations of the
finger during acquisition (Fig. 6), or iii) applying surface distortions to increase the
compatibility between touchless samples acquired using smartphones and touch-
based fingerprint images.

Methods based on normalizing the images aim to mitigate one of the most impor-
tant nonidealities, namely, the uncontrolled resolution of the fingerprint images due
to the absence of pins or references for finger positioning, which help to maintain
a constant distance between the finger and the camera among different acquisitions
[11]. The resulting nonconstant resolution of the samples prevents the direct use
of most of the state-of-the-art minutiae-based fingerprint matching methods, such
as the NIST BOZORTH3 software [47], which evaluates the Euclidean distances
between pairs of minutiae points. To overcome this problem, studies on touchless
fingerprint recognition systems normalize the image resolution to approximately
500 pixels per inch by assuming a constant size for each finger [35]. Other studies
have normalized the image resolution by assuming that the ridge frequency is con-
stant for each finger [42]. There are also more complex scaling methods that iden-
tify the thick valley between the intermediate phalanges and proximal phalanges for
scaling the image accordingly [36].

To alleviate the presence of perspective distortions due to uncontrolled rotations
of the finger during acquisition, existing methods estimate the rotations of the finger
and apply rigid transformations to each fingerprint sample. In particular, the rotation
angles of the finger can be estimated using trained neural networks and then used
to compute a frontal view image of the fingerprint by rotating a three-dimensional
finger model through the estimated angle [10]. Other approaches estimate finger ro-
tations by evaluating the position of the core point and the contour of the finger [26],
or apply a correction to the yaw angle of the finger as estimated from its silhouette
[42].
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Fig. 6 The angles of rotation of a finger.

Most methods in the literature pertaining to surface distortions require multi-
view acquisition systems [38] or three-dimensional models [11]. Single fingerprint
images acquired using smartphone cameras can also be matched with touchless to
touch-based fingerprint images using multi-siamese networks [29].

3 Performance analysis

Compared to traditional touch-based systems, touchless fingerprint recognition sys-
tems based on less-constrained acquisitions usually exhibit a reduction in accu-
racy [12] because the lower acquisition constraints result in an increase in the
distances between samples belonging to the same user. Among touchless finger-
print recognition systems, selfie fingerprint biometric systems often use the least-
constrained acquisition procedures, and therefore, such systems currently achieve
lower recognition accuracy compared to fingerprint recognition systems based on
more-constrained touchless acquisition devices.

Most studies in the literature use private biometric databases collected by the au-
thors. To the best of our knowledge, there are only two publicly available databases
of fingerprint images acquired using smartphones:

e The IIITD SmartPhone Fingerphoto Database v1 (ISPFDv1) [21] is composed of
5100 images captured from 128 fingers using an iPhone 5 with autofocus turned
on and without any integrated or external illumination source. The images, rep-
resenting both indoor and outdoor conditions, were collected without the use of
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Table 1 Overview of fingerprint recognition methods using a smartphone camera

DB size
Ref. (Ind./ Acquisition Methodology Accuracy
Samp.)
Single device, indoor acquisition, Gabor filtering, minutiae extraction
60/ . . L EER =4.12%
[26] uniform background, manual focus and matching algorithms for touch- . X
1200 (single device)
assessment based samples
220 Muldple devices, indoor acquisi- o\ norcial software for touch- EER = 4.66%

ol 1350 tion, uniform background, fixed po-

sition, controlled illumination based samples (single device)

Median filtering, adaptive binariza-

82/ Multiple devices, indoor acquisi- _. . EER =19.1%
[42] . X tion procedure, commercial soft- . .
492 tion, uniform background o . (multiple devices)
ware for touch-based samples
EER = 16.9%
Multiple devices, indoor and out- . (aHA san.lples, multiple
27] 100/ door acquisition, unconstrained Commercial software for touch- devices);
2100 ’ based samples EER =5.81%
background - .
(high-quality samples,
multiple devices)
EER = 3.74%
100/ Multiple devices, indoor and out- Wiener filtering, minutiae extrac- (indoor, single device);
[36] 1800 door acquisition, unconstrained tion and matching algorithms for EER =2.04%
background touch-based samples (outdoor, single device,
~60% FTA)
[44] 50/ Single device, indoor acquisition, Adaptive histogram equalization, EER =3.33%
150 uniform background SUREF features, nearest neighbors  (single device)

Single device, indoor and outdoor Median filtering, histogram equal- EER = 3.65%

[40] ;?gg acquisition, constrained and uncon- ization, unsharp masking, scatter- (indoor with outdoor
strained background ing network, L1 distance matching, single device)
33/ Multiple devwes,'r_ransluc'ent guide Band—p‘ass‘ filter, local hlstogram FAR = 0.01% @
[4] on screen, fixed distance, indoor ac- normalization, commercial soft-
275 . . N FRR = 1%
quisition, uniform background ware for touch-based samples
1500/ Single device, indoor acquisition, “Avelet filtering, phase congru- ppp ) gg

ency, commercial software for

[2] strai :
3000 unconstrained background touch-based samples

(single device)

Multiple devices, indoor and out-
5] 230/ door acquisition, unconstrained Competitive coding, CNNs, cosine EER = 35.48%
3450 background, uncontrolled position distance (multiple devices)
and illumination

Notes: Ind. = Number of individuals; Samp. = Total number of samples; EER = Equal error rate; FTA = Failure to
enroll; FAR = False acceptance rate; FRR = False rejection rate; SURF = Speeded Up Robust Features; CNN =
Convolutional neural network.

pins or references for the finger positioning, and have a resolution of 8 megapix-
els.

e The IIITD Unconstrained Fingerphoto Database (UNFIT) [22] is composed of
3450 images captured from 230 fingers using 45 distinct smartphones and dif-
ferent acquisition software. The images represent both indoor and outdoor con-
ditions, were collected without the use of pins or references for the finger posi-
tioning, and have resolutions ranging from 8 to 16 megapixels.
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Table 1 presents an overview of the fingerprint recognition methods for images
acquired using smartphone cameras, describing the size of the dataset considered,
the acquisition procedure, the methodology, and the recognition accuracy. This ta-
ble shows that current biometric systems based on fingerprint images acquired us-
ing smartphones can achieve a satisfactory recognition accuracy for many hetero-
geneous application scenarios. Furthermore, the results obtained when evaluating
methods using sets of images collected under both indoor and outdoor conditions
are worse than those achieved when evaluating methods on images collected only
under indoor conditions. Similarly, the results obtained for images acquired using
multiple different smartphones are inferior to those achieved for images acquired
using a single device.

4 Conclusions

This chapter presents a review of methodologies for selfie fingerprint biometrics.
The existing methods for fingerprint recognition are described, analyzing every step
of the biometric recognition process. The performance of the state-of-the-art meth-
ods is also compared and analyzed.

State-of-the-art methods enable the acquisition and processing of images of
multiple fingerprints with uncontrolled finger positioning and uncontrolled back-
ground and illumination conditions. They may use enhancing algorithms and stan-
dard minutiae-based recognition techniques or may be based on dedicated feature
extractors and matchers. There are also methods for quality estimation, liveness de-
tection, resolution normalization, and the mitigation of perspective distortions as
well as techniques for improving the compatibility between touchless and touch-
based samples.

Currently, selfie fingerprint biometrics can achieve satisfactory accuracy for a
wide variety of identity verification applications. However, these systems are less ac-
curate than traditional touch-based fingerprint recognition technologies. This is be-
cause smartphone-based systems use samples acquired under less-constrained con-
ditions, which present additional challenges with respect to touch-based fingerprint
images. Furthermore, the results reported in the literature show that there are two
main aspects of the acquisition process that contribute to reducing the recognition
accuracy: i) acquiring images using heterogeneous smartphones and ii) performing
outdoor acquisition with uncontrolled illumination and background conditions.

To improve the usability of selfie fingerprint biometric techniques, current re-
search trends are oriented towards further lowering the acquisition constraints by
considering multi-fingerprint samples acquired in different outdoor scenarios, with
uncontrolled backgrounds, illumination conditions, and finger positioning. At the
same time, researchers are focusing on improving the recognition accuracy by de-
signing novel enhancement techniques, more efficient feature extraction and match-
ing algorithms such as methods based on deep learning and convolutional neural
networks.
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