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Abstract

We address a single commodity Pickup and Delivery Vehicle Routing Problem
from the literature. A network of customer nodes is given with both travel
times and costs. A fleet of vehicles of limited capacity is exploited to satisfy
node demands, and a set of routes must be found such that the vehicle capac-
ities are never exceeded, each route does not exceed time resource, and cost is
minimized. The demands of both pickup and delivery nodes can be split, and
each node can be visited more than once. We provide new theoretical insights.
We propose a new formulation where routes are decomposed into sequences of
simpler substructures called clusters, mitigating the combinatorial explosion of
feasible solutions. We introduce valid inequalities, and design a branch-and-
price algorithm, exploiting ad hoc pricing routines and branching strategies,
and embedding a rounding heuristic to speed up pruning. An extensive ex-
perimental analysis shows our method to offer simultaneously more modelling
flexibility and more computational effectiveness than previous attempts from
the literature. Our investigation opens also interesting insights into the use of
route decomposition strategies.

Keywords: routing, split pickup split delivery, branch-and-price, route
decomposition, bike sharing

1. Introduction

In this paper we address a single commodity Split Pickup and Split Delivery
Vehicle Routing Problem (SPSDVRP), a variant of the Pickup and Delivery
VRP where node demands can be split.

We suppose that we are given a network where customers are placed, and
where travelling implies costs and requires time. For each customer we are given
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a demand, that is the amount of commodity that he/she asks to be either picked
up or delivered.

A fleet of identical vehicles, having limited capacity, is available to visit
them. The demand of each customer must be fully satisfied, potentially visiting
him/her more than once and with more than a single vehicle, if needed or
fruitful. For each vehicle we are therefore required to find a route, that is a
pattern defining which customers are visited, the order of their visits, and the
amount of commodity loaded or unloaded at each of them. Each vehicle starts
and ends empty at a depot, its capacity can never be exceeded. The overall travel
time of a route must not exceed a time limit, that is meant to model a work shift.
Finally, we assume that no customer is used as a temporary storage location,
and therefore the amount of commodity in each station is always monotone.

The SPSDVRP requires to find a set of routes of minimum cost respecting
the above conditions.

From an application point of view the SPSDVRP arises in bike sharing con-
texts where, during peak hours, flows along particular direction are registered,
leading to both empty racks in departure stations, and full racks at destination.
Both represent a disservice. One of the solutions chosen by many operators is to
rebalance the system by moving bikes between stations using a fleet of trucks.
The interested reader can find in Laporte et al. (2015) an updated survey on
open problems in bike sharing contexts and in Espegren et al. (2016) a survey
on rebalancing problems.

From a methodological point of view, the SPSDVRP is NP-hard and it
belongs to the wide class of Pickup and Delivery VRPs (PDVRP). We refer
to Battarra et al. (2014) for a recent survey about PDVRPs on transportation
of freights. We also mention Gschwind et al. (2018) and Baldacci et al. (April
2011), that well represent the state of the art of exact algorithms. Both consider
PDVRPs with Time Windows (PDPTW), and are based on column generation
approaches.

Furthermore, in Pessoa et al. (2019) a generic branch-and-cut-and-price
framework is introducted, that solves a formulation encoding a wide class of
VRPs, including the PDPTW. A comparison against state-of-the-art ad-hoc
approaches is also carried out.

Our SPSDVRP generalizes at the same time well known transportation
models like the Split Delivery VRP. In the last years there has been a lively
research interest in that field. Although showing a combinatorial nature similar
to problems from the literature, the SPSDVRP stands out for a few features,
making its solution particularly involved.

The first work addressing the SPSDVRP was Raviv et al. (2013), where the
authors propose several models to maximize user satisfaction and a two-phase
heuristic. Their algorithm was then outperformed by a three-step matheuris-
tic in Forma et al. (2015). Still regarding heuristic methodologies, in Rainer-
Harbach et al. (2013) the authors consider a multiobjective function minimizing
the amount of unsatisfied demands, the number of loading and unloading oper-
ations, and the routing cost. They propose a Variable Neighbourhood Search
approach exploring various neighbourhoods, and they later improve their work



in Rainer-Harbach et al. (2015). The same model is exploited in Di Gaspero
et al. (2013) were the authors propose a hybrid metaheuristic that combines Ant
Colony Optimization and Constraint Programming into a bi-level optimization
algorithm. In Alvarez-Valdes et al. (2016) a two-phased rebalancing heuristic
algorithm is proposed that first identifies which pickup station supplies which
delivery station, and then constructs routes in a greedy fashion.

For what concerns the exact methodologies for SPSDVRP, in Espegren et al.
(2016) the authors propose a new formulations and valid inequalities when the
satisfaction of nodes demands is not a constraint but a cost in the objective
function, while in Bulhdes et al. (2018) the SPSDVRP is addressed imposing
that each node must be visited by the same vehicle only and considering an
additional service time for loading and unloading operations. In the latter, a
branch-and-cut approach is proposed that solves to optimality instances with
up to 41 nodes.

Indeed in Casazza et al. (2018a) we addressed the SPSDVRP in its core
features, proposing a mathematical programming approach where we modelled
the problem by means of a set partitioning extended formulation in which each
column represents a route including all the loading information. However, our
previous methodology left two open issues. First, from a modelling point of
view, it was not designed to explicitly handle travel times: these were instead
approximated by a limit on the number of customer visits in each route. Second,
from an algorithmic point of view, due to the nature of the pricing procedure,
computing times were extremely sensitive to the magnitude of customer demand
and vehicle capacity coefficients.

Unfortunately, we did not find means of overcoming these issues by simply
extending our previous approach. In this paper we therefore propose a new
mathematical programming model, and a corresponding branch-and-price-and-
cut algorithm for the SPSDVRP that proves to overcome these two issues, and to
provide better performances than Casazza et al. (2018a) at the same time. The
main idea is to decompose routes into simpler substructures, thereby proving
and exploiting a rich set of combinatorial properties on them. A preliminary
version of our approach, covering partial results, was presented as Casazza et al.
(2018c).

In Section 2 we first formalize the problem and then, in Subsection 2.1, we
describe the way we decompose vehicle routes, obtaining simpler combinatorial
substructures that we call clusters, investigating their theoretical properties. In
Section 3 we propose a new extended formulation that combines these substruc-
ture to reduce the complexity of the problem along with valid inequalities to
improve the quality of the dual bound provided by our formulation. In Sec-
tion 4 we explain the details of our methodology, describing how we obtain dual
bounds by means of column generation procedures, and how we integrate such
procedures into a branch-and-price framework, along with ad-hoc branching
strategies and primal heuristics. Finally, in Section 5 we study the perfor-
mances of our algorithm by means of an extensive experimental campaign. In
Section 6 we collect some conclusions.



2. Models and structural properties

The SPSDVRP can be formalized as follows: We are given a directed graph
G = (Ny, A), where Ny = {0,...} is a set including both the customer nodes
N = {1,...} and a depot 0, and A = {(4,5) | i,7 € No} is a set of arcs
connecting them. Let ¢;; and ¢;; be the travelling cost and time of arc (i,5) €
A, respectively. We also assume that both costs and times satisfy triangular
inequality.

Customer nodes can be partitioned into two sets: the set of pickup nodes
N and the set of delivery nodes N~. For each customer node i € N, we are
given a demand d;, that is the amount of commodity to be picked up if i € N T,
or to be delivered if i € N™. We assume that ) ;i di =D ,cn- di.

A homogeneous fleet, represented by a set of vehicles of limited capacity
M ={1,...}, is given. Vehicles are requested to carry units of commodity from
pickup nodes to delivery ones in order to fulfil exactly their demands. Each
node can be visited more than once by one or more distinct vehicles.

We define a route as a sequence of nodes visited by a vehicle that starts and
ends at the depot. We say that arc (7, ) is traversed in the route for each pair
of nodes 7 and j which are consecutively visited. The travelling cost and the
time of a route are the sum of the costs and the sum of the times of the arcs
traversed, respectively. A route is feasible only if it does not exceed a given time
limit T

We define the loading plan of a vehicle as the amount of demand loaded
(resp. unloaded) at each pickup node (resp. delivery node) visited.

Finally, we define a routing plan as a route along with a loading plan. A
routing plan is feasible only if its corresponding route is feasible and the amount
of demand loaded on the vehicle after visiting a node in the route is always non-
negative and never exceeds a capacity Q.

The SPSDVRP aims to find a minimum cost set of routing plans satisfying
node demands.

In Figure 1 we depict an example in which we assume 2 vehicles with capacity
@ = 10 each. Both vehicles start empty from the depot and visit pickup node
6 splitting its demand. The load of vehicles after each operation is reported as
a label on the arcs of the solutions. Also pickup node 5 is visited twice, but
this time by the same vehicle. The vehicles continue independently their routes
until they reach the delivery node 11, where they fractionally serve its demand
before ending their routes empty at the depot.

2.1. Routing plans and clusters

We first present some observations that highlight particular regularities of
the routing plans. These are subsequently exploited to devise combinatorial
properties and a new extended formulation.

Since the objective of our problem is to minimize the total travelling costs
of the selected routing plans, we first observe that, due to triangular inequality:



Figure 1: Example of feasible solution assuming a capacity @ = 10 and using 2 vehicles. Each
arc has a label reporting the load of the vehicle after visiting a node. Nodes 5, 6, and 11 are
visited twice splitting their demands.

Observation 2.1. There always exists an optimal routing plan where no pickup
node (resp. delivery node) is visited without collecting (resp. delivering) at least
one unit of its demand.

Furthermore, since vehicles always start and end empty at the depot and
nodes cannot serve as temporary storages, we can observe that:

Observation 2.2. There always ezists an optimal routing plan where the first
and the last nodes of each route are a pickup and a delivery node, respectively.

Therefore, a route is an alternate sequence of pickup and delivery nodes,
that always starts with a pickup, and always ends with a delivery.

Our intuition is therefore that the structure of a route can be much simplified
by explicitly encoding such an interleaved behaviour. Indeed, in the following we
formalize such an intuition, and prove a few key properties of such an encoding.

Definition 2.1. We denote a cluster either as a single depot node or as a
non-empty sequence of pickup nodes followed by a non-empty sequence delivery
nodes along with their loaded (resp. unloaded) demands.

We remark that each node in a cluster must be adjacent in G to both its
preceding and its following node in the cluster, if any.

In other words, a cluster is a slice of a routing plan. Therefore, a route is
itself a sequence of one or more clusters linked together, plus an additional stop
at the depot at the beginning and at the end. An example of cluster structure
in a route is depicted in Figure 2: the first route is partitioned in three clusters,
two with three nodes and one with two nodes. The second route is partitioned
in two clusters, one with four and one with two nodes. All clusters start with a
pickup node and end with a delivery node.
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Figure 2: Cluster partitioning of routes in Figure 1

Definition 2.2. Given a cluster in a route, such cluster is feasible if both the
sum of loaded demands and the sum of unloaded demands do not exceed the

capacity Q.

Definition 2.3. The cost of a cluster is the sum of the arcs connecting the
nodes of the inner pickup and delivery sequences.

Let ¢ and ¢’ be two consecutive clusters of a route, and let 7 and j be the
last and first node of cluster ¢ and ¢/, respectively. Then we say that clusters ¢
and ¢’ are connected by a linking arc (i, 7).

Definition 2.4. The cost of a route is the sum of the cost of its clusters and
the cost of its linking arcs.

We readily observe that:

Proposition 2.1. There always ezists an optimal SPSDVRP solution where no
node is visited more than once in the same cluster.

Proof. In fact, let us suppose by contradiction that such an optimal solution
exists and that ¢ is a pickup node visited twice in a cluster. Let ¢} and ¢} be
the two quantities loaded on the vehicle, and that ¢; is the demand of ¢ loaded,
that is ¢; = ¢} + ¢/. Since the visits occur in the same cluster, we know that
between the first and the second visit there are only pickup nodes, and that the
capacity is not exceeded. Therefore, we can set ¢, = ¢; and ¢ = 0, avoiding the
second visit due to Observation 2.1. The same holds if i is a delivery node. [

We remark that such a property does not hold outside the cluster struc-
ture; that is, in general, visiting the same node twice may be both needed for
feasibility or simply be profitable.

We also observe that:

Observation 2.3. The demand loaded in each node of a sequence of pickup
nodes is irrelevant to both the feasibility and the cost of a cluster, as long as the
sum of loaded demands remains constant. The same also applies to a delivery
sequence.

That is, each cluster can encode implicitly a potentially huge number of
equivalent solutions. Also, let us extend the notion of k-split cycle introduced
by Dror & Trudeau (1990) to clusters:



Definition 2.5. Let k > 1 and N = {i,...,i} C Nt be given, N is a pickup
k-split cycle if there exist k clusters such that (a) nodes i1 and iy, are visited in
the same cluster, and (b) for everyt =1,...,k—1, nodes iy and i;y1 are visited
in the same cluster.

Similarly we can define a delivery k-split when N C N—. For example, let
us be given three routes r1 = (0,1,3,2,4,0), ro» = (0,3,5,6,8,0), and r3 =
(0,5,7,1,8,6,0), where we suppose that odd numbers are pickup nodes, while
even numbers are delivery nodes. In such example, there are two k-split cycles:
one with k =3 (N = {1,3,5}), and one with k =2 (N = {6,8}).

We prove that:

Theorem 2.1. When c;; costs and t;; times satisfy triangular inequality, there
always exists an optimal routing plan where no pickup (resp. delivery) k-split
cycle is included.

Proof. Let us be given an optimal solution having a k-split cycle N, and let
us suppose w.l.o.g. that each node i; € N is visited two distinct clusters, thus
having two distinct loaded demands ¢;, and g;’. For each node i; we can move
one unit of demand from ¢;, to ¢;, and from g;, to g;, , without modifying
the total amount of demand loaded in the clusters. Also, all ¢;, and g;’ values
remain constant besides (jgl and zj;; which are decreased and increased by one
unit of demand, respectively. Therefore by repeating such operation (jgl times,
we obtain a loading ¢;, = 0 and, because of Observation 2.1, a solution that is

at least as good as the starting one, thus optimal. O

Indeed, Theorem 2.1 generalizes the Proposition by Dror and Trudeau for
the SDVRPDror & Trudeau (1990).

2.2. Routes, clusters and loading patterns.

We now consider the particular subproblems arising when the routes are
assumed to be given, and only a suitable loading/unloading plan needs to be
found. Our main result is that by exploiting the clusters structure we are able
to improve theoretical findings from the literature.

Theorem 2.2. Given a set of feasible routes, one for each vehicle, the problem
of finding a feasible loading plan can be solved in polynomial time.

Proof. We provide a constructive proof, reducing to a maximum flow problem.
Let us build a graph in which we have a source node s and a sink node ¢, a
node fj' for each pickup node ¢ and a node f; for each delivery node j, and
two nodes p;k and p,_ . for each cluster k of each vehicle m, corresponding to
the subset of pickup and delivery nodes of cluster k, respectively. Let us add
arcs from s to f;" and from f; to ¢ with capacity d; and d;, respectively. For
each pickup node i visited in a cluster k of vehicle m, add an arc from f;r to
p; x With infinite capacity. Similarly, for each delivery node j visited in a cluster
k of vehicle m, add an arc from p,, to f;~ still with infinite capacity. From
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Figure 3: Resulting flow graph of the routes in the solution of Figure 1 assuming vehicles with
capacity @ = 10. The labels on the arcs are the capacities of each arc (infinite capacities are
omitted).

each node p;", add an arc to p_,, with capacity @, and from each node p,, add
an arc to p;k 41 with infinite capacity. An example of the graph is depicted in
Figure 3.

A maximum flow solution on such a graph ensures that at most D,y d;
units can be loaded, and at most ), d; units unloaded. For each node, the
units loaded (unloaded) are at most the demand of the node itself because of the
limited capacity of ingoing arcs in f;” (outgoing arcs from f;). Nodes pt . and
D, fepresent the load of the vehicle after pickups and deliveries, respectively.
No vehicle is overloaded due to the limited capacity of arcs (p;k, P,.i)- Loading
(unloading) is possible only at nodes corresponding to pickup (delivery) clus-
ters, since they are the only ones connected to the source (depot). The flow
passing from each node corresponding to pickup (delivery) cluster is at most @,
satisfying vehicles capacity constraints.

The quantities loaded and unloaded at nodes i and j of a cluster k of vehicle
m are given by the flow on the arc (f;" p:;k) and (p,,;., f; ), respectively. [

l

Thus, the reduction used in the proof of Theorem 2.2 can be used to actually
find a loading plan. In particular,

Corollary 2.3. If the flow reaching the depot t is less than the demands of
pickup (delivery) nodes, then the starting assignment of nodes to clusters does
not represent a feasible solution.



This follows from the fact that some demands are not satisfied if the flow is
less than their sum.

Furthermore, we remark that in our proof of Theorem 2.2, the pickup nodes
(resp. delivery nodes) visited in a cluster are connected to the same p;k (resp.
P,,.;) Dode, disregarding their order of visit in that cluster. In fact, the order of
visits inside a cluster is irrelevant to build a loading plan. Formally, we prove
the following:

Proposition 2.2. When the set of nodes visited in each cluster of each vehicle
18 fized, it is always possible to find a feasible loading plan in polynomial time,
or to prove that no feasible loading plan exists.

Our approach is indeed similar to the one presented in Casazza et al. (2018a)
where, given a set of routes without loading quantities, a flow formulation is used
to obtain such a missing information. However, our proof is different: from a
theoretical point of view, our approach allows to build a smaller support graph,
potentially yielding a better computational behaviour. In details, the graph of
Casazza et al. (2018a) has two nodes for each customer node of the problem,
while our graph has one node for each customer node, and two nodes for each
cluster. Therefore, our graph has always a strictly smaller number of nodes,
except in the extreme scenario in which exactly one pickup and one delivery
node is visited in each cluster. In such scenario, the number of nodes of the two
graphs is identical. Furthermore, our approach requires less information about
the order of the nodes in the route. This makes it additionally suited to early
detect the infeasibility of a branching node in a branch-and-bound approach.

3. Extended formulation

We now exploit the features of clusters to obtain a new formulation of the
SPSDVRP. Let K = {1,...} be the set of potential available clusters, and let
r— {(zzj,v—vg,q],gz) e BIAl x BIVol » NIV IB%'NO‘}
be the set of all feasible patterns v of a cluster, where Z;Yj is 1 if arc (4,7) is
selected, and 0 otherwise, w; is 1 if node 4 is visited, and 0 otherwise, g; is the
quantity of demand of node 7 loaded, and §] is 1 if node 7 is the first or the last
node visited in the cluster, and 0 otherwise. We assume that there exist two
types of clusters: clusters where customers nodes in IV are visited, and clusters
visiting the depot 0 only. Therefore, if w] =1 then z = {0...0}, g={0...0},

5g=1,and 5] =0forallie N.
We introduce the following variables:

Ymy =

& 1 if pattern v is selected for cluster k in vehicle m
0 otherwise

Tnij =

r _ J1 ifarc (i,7) is selected to link clusters k£ and &k + 1 in vehicle m
0 otherwise

f,’fl > 0 : amount of demand loaded on vehicle m after visiting nodes in cluster k



The SPSDVRP can be modelled as follows:

min Z Z Z Cl] mlj+zzmym'y (1)

meM keEK (i,j)€A ~erl

stD D D @y =

meM keK ~eTl

Vie N (2)

It 2 (D@ = D @y =S ¥m e Mk €K (3)
Y€l ieN+ iEN—

RN @b+ Qsiuk, <Q Vme Mke K (4)
yel'ieN+

D5 < D Ty Vm e M,k e K,ie Ny (5)

~yel j€N+

ZS ymg men_ﬂ Vm e M,k € K,i € Nj (6)

ver JENG

Zggyinv = Z Z §8yfm =1 Vme M (7)

yel keK:k>1~el

Z a:fmj <1

Vme M, ke K (8)

(4,4)€A
Do T S D T = D T Vme M, ke K (9)
(i,5)€A (4 ])GA i€EN
Z Z “ 77”] + Z leym'y Ym e M
keK (i,j)€A vel
(10)
Ymy €B VmeMEkeK~el
(11)
T €B Vm e M,k € K, (i,j) € A
(12)
0<fk <@ VYme MkeK
(13)
The objective function (1) minimizes the cost of the routing plans. Con-

straints (2) ensure that the demand of each node is satisfied. Constraints (3)
and (4) ensure consistency of the flow in the routing plan and impose that the
capacity of the vehicle is never exceeded, respectively. Constraints (5) and (6)
impose the use of linking arcs between each cluster. Constraints (7) force each
vehicle to start and end its route at the depot. Constraints (8) and (9) impose
that at most one linking arc is selected to connect two clusters and none is se-
lected after the depot is visited, respectively. Finally, constraints (10) impose
that each route does not exceed the time resource 7'

10



8.1. An upper bound to the number of clusters.

Keeping the size of the set K of potential clusters small is of key importance
to keep our formulation manageable. In fact, the number of clusters of an
optimal routing plan is not known in advance, but it influences the number
of variables of our formulation: therefore an unbounded number of clusters
implies an unbounded number of variables. However, we can algorithmically
infer bounds on it. We start by observing that:

Observation 3.1. An upper bound Mg, to the mazimum number of nodes
visited in a route can be obtained by solving a Resource Constrained Elementary
Shortest Path Problem (RCESPP).

In fact we obtain n,,., by simply solving, in a preprocessing phase, a single
RCESPP starting and ending in the depot, where each node in N has a unitary
profit. Such a RCESPP involves a single time resource T' that is consumed by
t;; when travelling arc (7, ).

Furthermore, the maximum number of visited nodes directly influences the
maximum number of clusters of each vehicle:

Observation 3.2. Fach route has at most

n
kmar _ \‘ mazx J 2
; 5 +

clusters.

In fact, if we are given the number of nodes visited in a route we can obtain
the maximum number of clusters of such a route by minimizing the number of
nodes visited in each cluster, that is two nodes per cluster. Then we need two
additional clusters for the starting and ending depot.

8.2. Valid inequalities.

To strengthen our formulation and reduce symmetries we add sets of valid
inequalities. We start from observing that:

Observation 3.3. FEach node whose demand is partially collected in a selected
cluster pattern v is visited at least twice.

We then add the following inequalities in our formulation:
1 q; /d;
S Yy ey s vien (14)
meM keK yel’

To enforce a minimum integer number of selected clusters in a solution, we
add the inequality

S Sk, [= ] (15

meM keK vel’

11



Finally, to reduce symmetries between vehicles, we sort vehicles by the num-
ber of their clusters:

Z a:]fmjz Z zfn/ij,VmeM,m’:m—Fl,keK. (16)
(1,5)€A (4,5)€A

These inequalities are polynomial in number: we generate and add them to
our formulation during preprocessing as well.

4. Algorithms

Straightly solving model (1) - (13), (14), (15), and (16) would be impractical
due to the number of y,’fw variables, that grows exponentially both in the number
of nodes and in the range of demand values; therefore, we relax the integrality
conditions and solve the so-called Master Problem (MP), that is continuous
relaxation of such a model, by means of column generation (CG) techniques.

We start by solving a Restricted MP (RMP) involving a small initial set of
columns (see Subsection 4.1), and then we use dual information to iteratively
search for negative reduced cost variables by solving a pricing problem (see
Subsections 4.2 and Subsection 4.3 for implementation details). If any negative
reduced cost variable is found, it is added to the RMP and the CG process is
repeated, otherwise the optimal RMP solution is optimal for the MP as well,
and therefore the corresponding value is retained as a valid lower bound for the
SPSDVRP. If the final RMP solution is integer, then it is also optimal for the
SPSDVRP, otherwise we enter a search tree by performing branching operations
(see Subsection 4.4) to find a proven global optimum. To speed up the pruning
of non-optimal solutions, we also designed a rounding heuristic to find good
primal bounds (see Subsection 4.5).

4.1. Initialization

We remark that, according to our definition of pattern variables yfw, if the
depot is visited in a cluster (wy = 1), then no other node is visited in such a
cluster (w; = 0) for each ¢ € N. In turn, depot-only clusters are always needed
to obtain a feasible solution.

Therefore, we first add to T' a column 4 where z;’j = 0 for all (¢,5) € A,

wg’ =35 =1, and wz = sj = q:’ =0 for all ¢ € N. Then, we populate the RMP
with a variable yfn;y for each vehicle m € M and cluster k£ € K.

As a positive side effect, we can skip the search for these columns during
pricing.

Additionally, we exploit these initial columns to reduce symmetries in our
formulation. In fact, we observe that:

Observation 4.1. Let k4, be a lower bound to the minimum number of clusters
required to perform all the pickups and deliveries, that is

Zi6N+ di-‘

kmin =
=5
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whenever (m — 1) (kmaz — 2) < kmin we fiz the variable encoding the depot-only
cluster for vehicle m to 1.

In fact, depot-only cluster variables for vehicle m are set to 0 if and only if,
m is left unused; we leave it as an option only if the vehicles of index m’ < m
are able to perform all the pickups and deliveries on their own.

4.2. Pricing problem

Due to our initialization method, the pricer can neglect clusters depot.

Let A\, u, ¢, v, v™, n, m, and 6 be the dual variables of constraints (2), (3),
(4), (5), (6), (10), (14), and (15), respectively.

First, since the values of v and v~ are indexed by nodes in N+ and N,
respectively, let us simplify notation as

{ v ifie Nt
Vv; =

K3
v, ifie N~

K2

For each v € T', the reduced cost of variable yfm is computed as

g
Z CijZ l] Z n t”ZlJ Z z%

(i,5)€A (i,)€A ieN
=Y k 'v k 'v k 'v
=N - D wmthg + > umg > (g
1EN iENT i€EN— iENT
mk =Y
- E v;""s! — 0
ieN

Now, let us aggregate coefficients as follows:
. a;?k = ¢;; — ™t is the cost of arc (i, 5);

o BMF = N\; + pumk 4 ¢™F and BMF = \; — u™F are either the profit or the
cost for loading one unit of demand in pickup node ¢ € N* and delivery
node ¢ € N, respectively.

The reduced cost ¢” can be rewritten accordingly:
Z amk ’Y _ Z Bmk Z LT 1+ qz /d Z mG ’Y ) (17)
(i,5)€A iEN iEN iEN

We can finally formulate the pricing problem as follows:

. k mk
min E aM iz — E MR Qs
meM keK wo B as

(i,j)EA iEN
i/ d; |
- Y - e 19
iEN i€EN
s.tw; < g < d;w; Vie N (19)
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Ya<Q VN € {N*,N~} (20)

ieN

Z Zij = Z Zji + 8i = w; vie Nt (21)
(i,5)€A JEN*

Zzij—i_si: Z Zji = W; Vie N— (22)
JEN— (Ji)EA

» si<1 VN € {(N*,N"} (23)
ieN

ST (mig i) = wy ¥SCN,|S|>0,uecs (24)

iEN\S,5€8
z; €B (i,7) € A (25)
w; €B,s; €B 1€N (26)

where variable z;; is 1 if arc (4, §) is selected, and 0 otherwise, variable w; is 1
if node i is visited in the cluster, and 0 otherwise, and variable s; is 1 if node ¢
is either the starting or the ending node of the cluster.

The objective function (18) targets at minimizing the reduced cost. Con-
straints (19) bound the amount of demand loaded at each node and impose that
if a node is visited, at least one unit of its demand is loaded. Constraints (20)
impose that both the pickup and delivery demands loaded do not exceed the
capacity Q. Constraints (21) and (22) ensure that each visited node has exactly
one ingoing and one outgoing arc. The only exceptions are the first pickup node
and the last delivery node of the cluster, having no ingoing and no outgoing arc,
respectively. Constraints (23) impose that there is at most one pickup node that
starts the cluster and one delivery node that ends the cluster. Finally, (24) are
subtour elimination constraints.

We observe that for a given solution to our pricing problem we may have
three kinds of visited nodes:

integer nodes: those having their demands fully collected (i.e. ¢; = d;);
bridge nodes: those having exactly one unit of demand collected (i.e. ¢; = 1).

fractional nodes: those having their demands fractionally collected (i.e. 1 <
¢ < di);

However, we prove that:

Theorem 4.1. There always exists an optimal solution of (18) — (26) having
at most one fractional pickup and one fractional delivery node.

Proof. Assume by contradiction that there exists an optimal solution where all
nodes are integer but ¢ and j, which are pickup nodes and have both fractional
demands ¢; and ¢;. Let r = g; 4+ g; be the capacity used by fractional demands
of nodes i and j. Let us assume w.l.o.g. that node ¢ is more efficient than
node j, that is /"% > "%, 'We can improve the contribution to the objective
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Figure 4: Example of auxiliary graph used to solve the pricing problem: pickup nodes are
unreachable from the time the vehicle visits the first delivery node.

value (18) by setting ¢; = min{d;, 7} and ¢; = max{0,r —d;}, that is decreasing
the capacity used by the less efficient node, and increasing the capacity used
by the most efficient. The argument iteratively extends to solutions in which
the number of nodes is higher than two, and symmetrically applies to pairs of
fractional delivery nodes. O

Observation 4.2. There always exists an optimal MP solution, in which each
selected column contains at most one fractional node.

In fact, each MP column can be found by solving the pricing problem, which
in turn is allowed to generate only columns with at most one fractional node.

4.83. Pricing algorithms.

We remark that, given a pair of vehicle m € M and cluster k£ € K, the pricing
problem has two components: a routing one (finding sequences of nodes) and
a loading one (finding amount of demand to serve in each of them). Despite
the additional complexity given by the second component, we are able solve our
pricing problem as a variant of the RCESPP.

To this aim let us define a directed graph G= (NO, fl), where Ny is the set
of nodes and A is the set of arcs of the graph.

The set Ny has one node for each pickup and delivery node of the original
graph G, and two different copies of the depot, that is Ny = N U {07, 0 }.

The set A instead has:

« arcs going from depot 0% to all pickup nodes i € NT;
e arcs going from pickup nodes i € N to all nodes j € N but the depots;

e arcs going from delivery nodes i € N~ to all nodes j € N \ Nt but the
pickup ones.

An example of such a graph is depicted in Figure 4.
Also, for each arc (4, j) we have a cost ¢;; such that

1
a™ otherwise

_ {V-mk,ifi=0+\/j=0_
%=\ am
1)

A single vehicle of capacity Q must travel from 07 to 0~ at minimum cost
visiting each node at most once. When a node ¢ is visited, at least one unit of
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its demand is loaded into the vehicle, and for each unit of demand loaded we
collect a profit B"*. Also, if the demand of the node is fully loaded into the
vehicle, we collect the full profit 7;, otherwise only 7;/2 is collected. The sum
of pickup (resp. delivery) demands loaded into the vehicle must not exceed the
capacity @, however, such a capacity is always replenished when travelling from
a pickup node to a delivery node.

We can prove the following.

Proposition 4.1. Given a partial path from 07 to i, visiting a set of nodes
V C N, the problem of finding an optimal pickup loading plan (resp. delivery
loading plan) for such a partial path can be solved in pseudo-polynomial time.

Proof. The problem of finding an optimal loading plan is equivalent to the prob-
lem of finding an optimal Fractional Knapsack Problem with Penalties (FKPP)
Casazza & Ceselli (2014): let us be given a knapsack of capacity Q = Q —|V|, a
set of items I = V, and for each item its weight w; = d; — 1, the profit p; = BI*
for each unit of weight packed, and the cost ¢; = m; /2 paid if item ¢ is packed.

Since for each node in V, at least one unit of demand is collected, the
knapsack has a fixed profit ¢ = >, ;p; — ¢;. Solving a FKPP on such an
instance returns a knapsack maximizing the profit

" = Z(szz —cili) + sz' — G
iel iel
where 0 < z; < w; is the quantity of item ¢ packed into the knapsack and y; is 1
if the item is packed. Items fully packed into the knapsack correspond to integer
nodes, items that are not packed correspond to bridge nodes, and the fractional
items correspond to fractional nodes. In such a way all nodes in V' have at least
one unit of demand collected, the capacity @ is never exceeded, for each node
we collect at most d; unit of demand. Also, for each instance of FKPP it always
exists an optimal packing where only one item is fractionally packed Casazza &
Ceselli (2014), and such a packing can be found in pseudo-polynomial time. [

Such a result allows us to focus on the routing component of the pricing
problem: we devise a dynamic programming algorithm that is an extension of
the well-known procedure for the RCESPP proposed in Righini & Salani (2006).

In our procedure a label [ = (i,¢, V,r, f) corresponds to a partial path from
0" to ¢ having cost ¢, visiting all nodes in V, with residual capacity r, and such
that f € VU {@} is the fractional node, where f = @& means that no fractional
node has been visited yet.

We now briefly describe the generic idea behind our algorithm, while we
provide a more detailed description of the extension and dominance operations
in the following paragraphs. Our algorithm proceeds as follows:

initialization: we start from a single label [ = (07, 6,0, Q, @) and push it into
a label queue;

selection: at each iteration we select the first label of the queue as the label
to extend;

16



extension: given the selected label I = (i,¢,V,r, f), for each neighbour j of ¢
we extend [ creating three different labels, one where j is integer and its
demand is fully collected, one where j is bridge and one unit of its demand
is collected, and one where j is fractional;

dominance: we test each of the generated labels against the labels in the queue:
if the new label is dominated by any of the labels in the queue, then it is
discarded. Otherwise, it is pushed inside the queue;

termination: the algorithm ends when the queue is empty.

We remark that due to the structure of our graph, all paths generated using
such an algorithm provide a sequence of pickup nodes followed by a sequence of
delivery nodes.

At the end of our algorithm we search for the label ending in 0~ having
minimum cost and exploit Observation 4.1 to retrieve an optimal loading plan
corresponding to the route found. However, in our implementation we keep
track of the loaded quantities during the extension operations.

We remark that our procedure is similar in nature to the one proposed in De-
saulniers (2010) to solve the pricing problem in a branch-and-price approach for
the Split Delivery Vehicle Routing Problem with Time Windows. This further
highlights how our clusters may generalize nodes in SDVRPs.

We also mention that further modeling details might potentially fit in our
framework, like quantity dependent loading and unloading time, without signif-
icantly change neither the formulation nor the structure of the pricing problem
(e.g. by adapting the computation of B* values).

Label extension. Given a labell = (i,¢,V,r, f) we extend [ to all neighbours j of
i such that j ¢ V, and we create three different labels where j is integer, bridge,
and fractional. These three new labels are identical, except in the amount of
demand ¢ that is loaded in each of the three cases, and in the tracking of the
(single) current fractional node. In general, we the extension generates a label
U'=(j3,¢,V',r' f"), where j is adjoined to the set of visited nodes V' = VU{j},
the cost of the partial path is ¢’ = ¢+ ¢&; — ,8;-""“@' —m;(1+1G/d;])/2, and the
residual capacity is decreased v’ = r — ¢. Also, when travelling from a pickup
node 7 to a delivery node 7, the capacity is replenished, that is v’ = Q — ¢, and
the fractional node is reset f' = @. In any case, if 7/ < 0 the label is discarded.
The differences between integer, bridge, and fractional extensions of node j are
the following:

integer: the demand of j is fully loaded, that is ¢ = d;, and the fractional node
of the label I’ is the same as the one of [, that is f' = f;

bridge: the loaded demand ¢ is set to 1 and, similarly to the integer extension,
the fractional node does not change, that is f' = f;

fractional: we set ¢ = 2 and f’ = j. We remark that the setting of ¢ is only
a temporary lower bound to the vehicle capacity consumption: the actual
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amount of loaded demand is set at its final value ¢ = min{d; — 1,7} only
after the path is complete, and the residual vehicle capacity r is computed.
It also follows that the fractional extension is performed only if the demand
of the node is greater than 2, since otherwise the resulting label would be
identical either to the bridge or to the integer one.

Also, both integer and fractional extensions are performed only if the profit ,Bjmk
is positive, otherwise if j is visited integer or fractional in an optimal solution,
there always exists an equivalent optimal solution where it is visited as bridge.

Dominance rules. The drawback of our extension method is that we cannot
collect the full profit of a fractional node until all pickup (resp. delivery) nodes
are visited. Therefore, when checking the dominance of a given label with a
fractional node, we have to ensure that such a label is dominated for every
value of fractional loading.

Let us suppose that we are given two labels I" = (i,,7/, V', f') and 1" =
(i, ", ", V", f""), the necessary conditions for I’ to dominate I” are that I” visits
at least the same nodes of I’ and that [’ has less residual space that I’, that is
V' C V" and v’ > r”. For what concerns the cost instead, we can distinguish
between 4 cases:

case 1 - f' = f" = @: I’ dominates I” if I” is more expensive, that is

C/ S C//
case 2 - [ = O N f"" # &: I’ dominates " if [ is more expensive even if the
fractional demand is loaded at maximum, that is

¢ <’ — BfF min{dp, — 3,7}

case 3 - f'#£ SN f”" = @: I’ dominates I” if I” is more expensive when I’ uses
the difference of residual spaces to load its fractional demand, that is:

¢ — BpFmin{dy — 3,7 — 1"} < ¢’

case 4 - ' # DA f" # @: I’ dominates [” if I” is more expensive both when
its fractional demand is loaded at minimum and at maximum value, that
is case 3 and

d - ,@}T,Lk min{dy —3,7", dpr =3+ (r' —1")} <" — ,B}T/L,k min{ds» —3,r"}

Bidirectional algorithm. In order to improve the performance of our pricing
algorithm, we exploit bidirectional search. Since each solution is composed of a
sequence of pickup nodes, and a sequence of delivery nodes that can be treated
independently, we run the algorithm on two different graphs, one composed by
pickup nodes only, and one by delivery ones only. At the end, we obtain full
solutions by joining the best labels of each pair of pickup and delivery nodes.
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Heuristic pricer. To further speed up our CG procedure, we also include a
heuristic version of our pricing algorithm where dominance rules are relaxed
in such a way that the condition on the set V is ignored. The exact pricer is
therefore run only when the heuristic pricer cannot find a column of negative
reduced cost.

Pricer execution and insertion policy. In a strict CG approach, our pricing
procedure should be computed for each pair of cluster k € K and vehiclem € M,
in order to find the column with minimum reduced cost. Instead, we found
profitable from a computational point of view, to perform partial pricing. In
details, we loop in order over the set of clusters and over the set of vehicles,
stopping the loops as soon after we find a pair k and 7w yielding a negative
reduced cost column. We then insert the corresponding column % in I" and
add a variable yfjﬁy for each pair of cluster k and vehicle m, even if we have no
guarantees that all those variables have a negative reduced cost.

4.4. Branching rules

When the optimal MP solution is fractional, and upper and lower bounds do
not match, we check which integrality constraints are not satisfied and enforce
them by exploring a search tree through branching rules.

First, we check whether an integer number of vehicles has been selected. Let
gﬁw be the value of a variable yﬁw in a fractional solution to the MP, we search
for the vehicle m having the most fractional depot node visited in the second
cluster, that corresponds to a vehicle that does not leave the depot, that is

. : a1
m € argmin WoYmy — 5
meM ~er

If no fractional value is found, then we skip to the next branching rule, otherwise
we perform binary branching: in the first child node we impose that vehicle m
never leaves the depot by adding constraint

Y Wyre > 1, (27)
yel’

while in the second child we impose that the vehicle is always used, that is

3wk, <0. (28)
yel

We remark that both constraints have no impact on the resolution of the pricing
problem, since all columns having depot only are included in the MP during an
initialization phase.

When the number of vehicles is fixed, we check the integrality of the number
of clusters used in each vehicle, searching for a pair of vehicle m and cluster k
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having the most fractional column with depot only, that is

A 1
m, k) € argmin wlgE - =
(7, £) meM,keK Z 0Imy 2
If such a fractional column exists, we perform binary branching and, similarly

to the previous branching operation, we create two children where the depot is
either fixed inside a cluster or excluded from such a cluster. In the first case we

add to the MP constraint A
> Wy, > 1, (29)

yel
while in the second one we add

S alyh, <. (30)
yel

Still, these constraints have no impact on our pricing problem.

Our last branching rule is devised to progressively assign nodes to clusters.
We search for a tuple (1h, k,7) having the maximum fractional assignment of
node i to cluster k of vehicle m, that is

(m,k,7) €  argmin E w; ymv
meM, ke K,i€ Ny ~el

If a fractional assignment is found we branch creating two children: one where
we force i to be always visited by vehicle m in cluster k£ by adding constraint

-7,k

and one where we forbid such assignment

S @k, <o. (32)

yel’

From an implementation point of view, when such constraints are included in the
MP, additional dual variables must be taken into account during the resolution
of the pricing problem in the CG procedure. Constraint (31) and (32) origin a
profit and a cost for visiting a node ¢ in cluster k € K of vehicle 7, respectively.
However, no modification is required, since in our pricing problem we already
consider profits for visiting a node even if its demand is not profitable. Also,
for what concerns constraint (32), to avoid the generation of infeasible columns
and thus to speed up the CG procedure, we remove node i from the graph G
during the resolution of the dynamic programming procedure for cluster k and
vehicle m.

When no branching rule is applied, there may be some integrality constraints
that are still not satisfied, for example the amount of demand loaded at each
node, or the arcs selected in a route. However, we prove that:
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Proposition 4.2. If an integer assignment of nodes to cluster is given, we can
stop the branching process and, in pseudo-polynomial time, either find a feasible
solution or prove that such an assignment is infeasible.

Proof. First given such an assignment, we can find a feasible loading plan by
solving a maximum-flow problem as described in Theorem 2.2.

Then, for each vehicle we find a route of minimum cost by solving a particular
variant of RCESPP where (a) the vehicle must visit all pickup nodes in a cluster
before visiting a delivery node in the same cluster, and (b) the vehicle must visit
all nodes in cluster k before the ones in cluster k£ + 1.

Let us consider a single vehicle for which we are given the sets W* of all the
nodes visited in each cluster £ € K by such a vehicle. We solve the problem of
finding a minimum cost route using a dynamic programming algorithm where
a label I = (i,¢,t,k,V) is a partial path from the depot 0 to node 4 in cluster
k, of cost ¢ and travelling time t, that visited all nodes in V. Our algorithm
proceeds as follows:

initialization: we start from a single label [ = (0,0,0,1,0) and we add such a
label to a queue of labels;

label selection: at each iteration we extract the first label of the queue;

extension: we extend the selected label | = (i,¢,t,k, V) to a subset of neigh-
bours j of ¢ such that j ¢ V U{0}, t +¢;; <T, and

jJENTAWrEV(j € NTAVAWE=NtNWk) ifie Nt
JENTNWEV(j e (Ng\NT)NWHFLIAVAWE =WF) otherwise

obtaining a new label I = (j, ¢, t', k', V') such that ¢/ = c+¢;;, t' = t+t;5,
V' =V U{j}, and

, k ifie Ntvje N~
k+1 otherwise

If these these conditions are satisfied, the new label is pushed into the
queue;

dominance: given two labels | = (i,¢,t,k, V) and I" = (i,¢,t', k, V'), | domi-
nates l' ife <, t <, V' CV;

termination: the algorithm ends when the labels queue is empty.

If our algorithm fails to find a feasible solution, then it means that the
starting assignment of nodes to cluster does not provide a route that satisfies
the time resource constraint. O
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4.5. Rounding heuristic

To speed up the pruning of non-optimal branching nodes, we include in our
framework a rounding heuristic that starts from a feasible fractional solution to
the MP to find a feasible routing plan.

Let w"F = > yer w;’yf,w be the fractional assignment of node 4 to cluster
k of vehicle m. We select a threshold 0 < p < 1 and then we round all @"*
values, such that

i =mk
witk = {1 D20 e Moke K,ie Ny
0 otherwise

Given an integer assignment of nodes to cluster, we exploit the same proper-
ties of Proposition 4.2, and first we search for a feasible loading plan, and then
for feasible routes. If any of these cannot be found, the integer assignment is
discarded.

We found to be profitable to repeat such a procedure with different values
of p, such that given the difference between the most and the least fractional
assignment

= max it — min T
meM,kEK,i€ Ny meEM,kEK i€ Ny
p is selected in
: ~mk k
p= min "+ —0,Vk =0,...,10.
meM,kEK,i€ Ny 10

We remark that if a feasible loading plan is not found for a given k, then no
feasible loading plan can be found for k" > k.

5. Experimental analysis

We implemented our algorithms in C++, using the SCIP framework Achter-
berg (2009) version 4.0.0, while the LP subproblems were solved using the sim-
plex algorithm implemented in CPLEX 12.6 CPLEX development team (2011):
the framework automatically switches between primal and dual methods.

As a benchmark we considered the dataset used in Casazza et al. (2018a) and
available at Casazza et al. (2018b), where each instance describes a randomly
generated complete network with nodes located in the two-dimensional space
[—500, 500] x [—500, 500], with the depot located at (0,0). Travelling costs c;;
are computed as the Euclidean distance between nodes i and j. Each node
has a randomly generated integer demand between [—10,10], where positive
values define pickup nodes, and negative values define delivery ones. We initially
considered the same settings of Casazza et al. (2018a), where vehicle capacity
@ is set to 10, and the number of available vehicles is |M| = 5. The name of
each instance is in the form nXXqYYL, where XX is the number of nodes, YY
is the vehicle capacity, and L identifies the network.

22



We remark that our dataset was generated by selecting those instances of
Chemla et al. (2013) with up to 30 nodes and, in addition, a set of smaller
instances was generated in Casazza et al. (2018a), where each instance with 20
nodes was split in two smaller instances of 10 nodes each, one with an upper
case and one with a lower case letter at the end.

Since travelling times were not handled in earlier works, ¢;; coeflicients were
not defined. We therefore proceeded as follows: instances in the dataset were
considered in lexicographical order (assuming first instance to be successor of
the last one); for each instance, the travelling times ¢;; were set as the euclidean
distance between nodes ¢ and j in the subsequent instance according to the
lexicographical order. This allowed us to obtain unrelated travel times and
costs. We consider those distances to be in seconds, and then set the time
resource 1" = 3600.

All tests have been conducted on a PC equipped with an Intel Core i7 6700K
CPU clocked at 4.00GHz and 32 GB of RAM setting a time limit of 3 hours of
computation for each run. All CPLEX options have been kept at default values,
except for multi-threading support, which has been turned off.

We report that, as a preliminary benchmark, we designed a simple arc based
formulation. However, it performed poorly, yielding timeouts already on in-
stances with 10 nodes. Therefore, we did not further experiment with such an
approach.

5.1. Algorithm profiling

To study the performance of our methodology, in a first round of tests we
observed how the computing time was spent during the solving process.

In Table 1 we report for each instance the sum of the demands D = .y d;,
the gap between upper and lower bound at the end of the computation, the
number of branching nodes explored, the number of both CG iterations and
generated columns, the percentage of time spent solving the LP subproblems
and the pricing problem, and the computing time.

Instances with 30 nodes seem out of reach for our exact solution procedure
(for three of them our algorithm was not even able to find a feasible upper
bound), good duality gaps are consistently reached on instances with 20 nodes
within our time limit, one instance being solved to proven optimality. All in-
stances with 10 nodes can be solved in few minutes. These results are in line
with previous computational experience on simpler SPSDVRP variants.

It is interesting to observe that on average 77% of the time is spent in com-
puting the LP subproblems. An opposite computational behaviour is reported
in Casazza et al. (2018a). This phenomenon proves that our findings are indeed
very effective in speeding up a complex pricing algorithm, even if the price is
the need of handling a more complex MP.

5.2. Comparison with unitary travelling time

In a second round of tests we evaluated the performance of our methods
(BAP) on instances with unitary travelling time only. The lack of travelling
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Instance D gap (%) #nodes H#CG iter. (#col.) LP (%) pricer (%) time (s)
nl0ql0a 48 0.0 63 332 (2061) 78 16 6
nl0ql0A 52 0.0 49 210 (1374) 79 15 3
nl0qlob 32 0.0 653 1897 (4167) 78 11 32
nl0ql0B 60 0.0 3404 8287 (23066) 72 10 361
nl0ql0c 44 0.0 32 180 (2456) 79 18 3
nl0ql0C 64 0.0 386 1644 (6264) 80 13 32
nl0qlod 42 0.0 351 1780 (8167) 80 13 52
nl0ql0D 54 0.0 2048 4063 (5374) 74 12 7
nl0ql0e 58 0.0 1660 5225 (15714) 7 10 213
nl0ql0E 58 0.0 151 595 (2221) 82 13 10
n10q10f 36 0.0 413 1726 (5264) 72 19 29
nl0qlOF 50 0.0 310 1084 (3892) 76 16 17
n10ql0g 34 0.0 217 914 (3907) 73 20 14
nl0ql0G 52 0.0 458 1671 (5088) 68 22 29
nl0qlOh 62 0.0 130 456 (2683) 86 10 8
nl0qlOH 48 0.0 504 1445 (3967) 80 11 26
n10ql0i 60 0.0 187 717 (5515) 76 18 18
nl0q10I 44 0.0 104 399 (2744) 86 10 6
n10q10j 42 0.0 368 1368 (3873) 81 11 27
nl0ql0J 56 0.0 542 1427 (3884) 79 13 23
n20q10A 88 0.0 20723 43663 (50694) 72 14 5720
n20ql0B 80 6.4 38168 73678 (64517) 64 17 -
n20q10C 108 10.7 21735 46176 (47336) 7 14 -
n20q10D 118 19.5 53000 75520 (41578) 71 13 -
n20ql0E 112 12.5 40122 64849 (42629) 76 11 -
n20q10F 90 2.3 22906 55809 (74420) 65 21 -
n20q10G 86 15.7 24257 57922 (65954) 72 15 -
n20q10H 100 8.2 34442 67485 (63219) 70 14 -
n20q10I 102 26.1 32865 55982 (46965) 76 11 -
n20ql0J 92 8.4 46047 79919 (54906) 69 12 -
n30q10A 140 - 10705 25305 (51368) 71 23 -
n30ql0B 124 120.9 8345 24430 (48504) 83 12 -
n30ql10C 152 - 8089 19695 (50470) 79 17 -
n30q10D 146 96.6 12202 26351 (42652) " 18 -
n30ql0E 132 114.0 5923 16391 (47943) 85 12 -
n30q10F 130 - 72 504 (43973) 99 1 -
n30q10G 162 46.0 5416 14808 (45126) 84 13 -
n30q10H 136 85.7 10126 22254 (44287) 80 15 -
n30q10I 144 103.1 8470 19809 (39899) 83 13 -
n30q10J 138 37.8 7838 21193 (46494) 81 14 -

Table 1: Results for instances with up to 30 nodes, a travel time 7' = 3600, and 3 hours ot

time limit.
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time modelling was indeed one of the issues left open in Casazza et al. (2018a).
The aim was therefore both to understand the overhead needed to handle our
additional modelling flexibility, and to compare to the previous approach of
Casazza et al. (2018a) (MVB), checking the price of the additional modelling
freedom of our current approach.

To obtain a fair comparison we therefore set T' = 10 and replaced each
travelling time as ¢;; = 1. This means that each vehicle can visit at most 9
customers before going back to the depot.

In Table 2 we report for each instance the sum of demands D, the gap
between upper and lower bound and the computing time of MVB, and the
number of branching nodes, the number of CG iterations and columns, the gap,
and the computing time of BAP.

We first compare the results of BAP on these simplified instances (last three
columus of Table 2) and on their counterparts having full travelling time details
(columns gap, #nodes and time of Table 1). As expected, explicitly including
time details is actually making the problem more complex, especially in terms of
number of branch-and-bound nodes that need to be explored to prove optimality.

Second, we compare the performance of BAP and MVB. For the set of
instances with 20 and 30 nodes, BAP and MVB seem equivalent: neither algo-
rithm can consistently solve these instances to proven optimality. MVB solves
one instance more than BAP, but BAP is able to obtain a lower and an upper
bound for all the instances, while MVB in three cases fails in finding any valid
lower bound.

Restricting to those instances with 30 nodes where MVB finds a lower bound,
MVB gaps are clearly smaller than BAP ones. Comparing the bounds obtained
by both methodologies, we observed that BAP lower bounds were on average
8.6% worse than MVB ones, while upper bounds were 5.8% worse. Since the
structure of these instances do not differ from that of smaller ones and the
timeout is kept constant, we argue such a phenomenon to simply depend on a
slower convergence process in optimizing larger instances through branching.

By looking at the instances with 10 nodes, BAP clearly outperforms MVB,
with computing times which are orders of magnitude smaller. That is, despite
being more flexible from the modelling point of view, our method proves to be
more computationally effective than that of Casazza et al. (2018a).

To further investigate the differences between MVB and BAP, we report in
Table 3 the effort required by both algorithms to compute a lower bound: for
each instance we compute the best bound between the lower bound found by
MVB and the lower bound at the root node of the branch-and-bound tree of
BAP, and we report the gaps between the lower bounds the two algorithms and
the best lower bound, and the corresponding computing time.

We can observe that when MVB terminates, its lower bound is the best,
matching the theoretical expectation. The one found by BAP is up to 28.6%
worse. However, for what concerns the computing time, BAP outperforms MVB
by orders of magnitude: for instances with 10 nodes the computing time is
negligible, and it is smaller than 10 seconds for all the instances with 20 and
30 nodes. Furthermore, for 3 instances with 30 nodes, MVB fails to find any
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valid lower bound within 3 hours of computation. We can also observe that
the computing time of MVB grows very quickly as the size of the instances
increases, while that of BAP increases mildly.

Therefore, the advantage of BAP is the ability to find a lower bound in small
computing time, even tough this feature leads to a significant reduction of the
quality.

5.3. Increasing capacity

In a third round of experiments we evaluate the effect of optimizing instances
with larger capacity values. Handling them was the second issue left open in
Casazza et al. (2018a).

In Table 4 we report the results of the comparison between MVB and BAP
on the same dataset but setting the capacity @ = 20.

The first observation is that both algorithms still solve all the instances with
10 items to proven optimality. However, with respect to the previous results in
Table 2, while the average computing time required by BAP is substantially the
same, we observe that MVB requires on average almost twice the computing
time, and for instance n10q20C almost 3 hours.

The problems of MVB on instances with an increased capacity are confirmed
by results with 20 and 30 nodes, where MVB fails in finding any valid lower
bound for 16 instances out of 20, while BAP still solves to optimality 7 instances
with 20 nodes.

Our conclusion is that BAP is less influenced by the value of the capacity of
the vehicles, while MVB only works when such capacity is small.

5.4. Increasing time

It remains true that the performance of a pricing algorithm in routing prob-
lems are influenced by the overall length of the priced routes. To further test
how our methodology in this direction, we repeated our tests doubling the value
of time resource, that is setting 7' = 7200. In Table 5 we can observe that
the results are very similar to the ones reported in Table, obtained by setting
T = 3600: the number of instances solved to optimality is unchanged, and also
the computing times and the number of branching nodes, although being differ-
ent for the single instances, is on average very similar. Indeed, such a robustness
comes by design: the value of T' might influence the number of clusters available
in each route, but not the length of the single cluster. That is, the complexity
of the pricing problem (which is the most critical point in CG approaches like
ours) is not affected by T'.

6. Conclusions

Our investigation on the SPSDVRP led first of all to an interesting struc-
tural insight: optimal solutions always exist, having a particular structure in
clusters; by making such a structure explicit, we are able not only to cast the
SPSDVRP as a generalization of well known problems in transportation, but
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also to generalize and extend the theoretical properties which are known for
them. As a representative example, we proved that a cluster in SPSDVRP
(that is a concatenation of a single sequence of pickup operations and a single
sequence of delivery operations) generalizes a single node in a SDVRP, keeping
at the same time many of the corresponding theoretical properties.

We have also proved that these properties can be exploited to obtain effective
pricing algorithms, and full SPSDVRP exact algorithms as a consequence.

Even if the size of instances that can be consistently solved to proven opti-
mality is still far from that of real networks, our experimental results revealed
that our approach outperforms previous attempts from the literature in three
regards. First, it offers more modeling flexibility: instances in which travel
times are considered explicitly can be optimized with limited additional effort.
Second, our algorithms are less affected by instance data, and in particular by
the capacity of the vehicle. The width of the planning horizon shows also to
have no computationally relevant effect. Third, it is faster on small instances
and it keeps being able to provide lower bounds in reasonable computing time
on larger ones.

Overall, our results indicate that although it is common practice in the de-
sign of column generation algorithms for routing problems to price full routes,
thereby aiming for the best dual bound at the cost of solving a complex pric-
ing problem (like in Casazza et al. (2018a)), alternative approaches exploiting
decomposition results might be promising.
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Instance D MVB BAP

gap (%) time (s) #nodes #CG iter. (#col.) gap (%) time (s)
n10ql0a 48 0.0 82 115 565 (2336) 0.0 )
nl0qlOA 52 0.0 35 15 94 (940) 0.0 1
nl0qlob 32 0.0 63 117 485 (1855) 0.0 3
nl0ql0B 60 0.0 7 100 419 (1675) 0.0 3
n10qloc 44 0.0 34 1 23 (817) 0.0 0
nl0ql0C 64 0.0 4701 429 1572 (4571) 0.0 14
nl0ql0d 42 0.0 96 274 1414 (3809) 0.0 12
nl0ql0D 54 0.0 426 1017 2704 (5003) 0.0 28
nl0ql0e 58 0.0 241 980 3261 (7412) 0.0 41
nl0qlOE 58 0.0 204 229 940 (3385) 0.0 10
n10q10f 36 0.0 64 689 2778 (6329) 0.0 30
nl0ql0F 50 0.0 44 17 83 (1341) 0.0 1
n10ql0g 34 0.0 67 101 381 (1840) 0.0 2
nl0ql0G 52 0.0 207 39 200 (2944) 0.0 2
nl0qlOh 62 0.0 1806 201 731 (2518) 0.0 6
nl0qlOH 48 0.0 615 233 756 (3155) 0.0 7
n10q10i 60 0.0 2923 332 1119 (4115) 0.0 11
n10q10I 44 0.0 105 252 871 (3293) 0.0 7
n10ql0j 42 0.0 87 245 1088 (3988) 0.0 11
nl0ql0J 56 0.0 240 174 620 (2902) 0.0 4
n20ql10A 88 0.0 981 8983 20115 (19648) 0.0 681
n20q10B 80 0.0 9951 67622 114946 (72724) 0.5 -
n20q10C 108 3.0 - 60173 109649 (77490) 1.5 -
n20q10D 118 0.0 518 98724 133953 (50723) 14.0 -
n20ql0E 112 6.7 - 100544 147071 (63372) 8.4 -
n20ql0F 90 0.0 771 1273 4710 (12099) 0.0 194
n20ql0G 86 7.3 - 61816 122950 (88221) 6.6 -
n20q10H 100 12.4 - 30492 57759 (47093) 0.0 3266
n20q10I 102 8.2 - 76573 119861 (67279) 7.2 -
n20ql10J 92 0.0 684 21418 42901 (35735) 0.0 2038
n30q10A 140 8.1 - 38785 76673 (62522) 31.4 -
n30q10B 124 9.0 - 47955 100053 (82084) 43.5 -
n30q10C 152 - - 46006 80907 (57063) 47.9 -
n30q10D 146 19.2 - 42116 80969 (66967) 26.8 -
n30ql0E 132 9.8 - 46798 88300 (65238) 19.1 -
n30ql0F 130 8.7 - 30131 68089 (66979) 19.4 -
n30ql0G 162 10.6 - 53247 89268 (57332) 26.8 -
n30q10H 136 16.0 - 49109 91616 (65381) 30.3 -
n30q10I 144 - - 41815 80692 (65595) 18.8 -
n30q10J 138 - - 32580 71382 (77218) 23.3 -

Table 2: Results for the comparison between BAP and MVB with instances with up to 30
nodes and 3 hours ot time limit.
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Instance D MVB BAP
gap (%) time (s) gap (%) time (s

~—

nl0ql0a 48 0.0 24 3.5 0
nl0ql0A 52 0.0 24 8.3 0
nl0ql0b 32 0.0 26 9.1 0
nl0ql0B 60 0.0 37 3.2 0
n10q10c 44 0.0 23 0.0 0
nl0ql0C 64 0.0 221 8.8 0
nl0ql0d 42 0.0 23 3.7 0
nl0ql0D 54 0.0 52 22.5 0
nl0ql0e 58 0.0 67 5.6 0
nl0ql0E 58 0.0 39 10.8 0
n10q10f 36 0.0 19 11.5 0
nl0ql0F 50 0.0 30 3.4 0
nl0ql0g 34 0.0 22 13.3 0
nl0ql0G 52 0.0 33 4.6 0
nl0ql0h 62 0.0 70 9.2 0
nl0ql0H 48 0.0 58 5.0 0
n10q10i 60 0.0 307 23.3 0
n10q10I 44 0.0 27 9.7 0
n10q10j 42 0.0 32 9.5 0
nl0ql0J 56 0.0 215 28.6 0
n20q10A 88 0.0 286 11.6 2
n20ql0B 80 0.0 363 17.8 1
n20q10C 108 0.0 454 8.2 2
n20q10D 118 0.0 388 194 1
n20ql0E 112 0.0 2492 15.9 2
n20q10F 90 0.0 333 7.4 2
n20q10G 86 0.0 7349 14.1 2
n20q10H 100 0.0 594 12.8 1
n20q10I 102 0.0 3409 16.1 1
n20ql10J 92 0.0 620 21.8 1
n30q10A 140 0.0 3239 18.5 8
n30ql10B 124 0.0 5582 22.1 6
n30ql10C 152 - - 0.0 6
n30q10D 146 0.0 7715 14.3 7
n30q10E 132 0.0 2869 12.3 6
n30ql10F 130 0.0 7928 13.7 8
n30ql10G 162 0.0 1569 15.2 7
n30q10H 136 0.0 6639 23.7 8
n30q10I 144 - - 0.0 7
n30ql0J 138 - - 0.0 7

Table 3: Gap from the best lower bound for both BAP and MVB with instances with up to
30 nodes and 3 hours ot time limit.
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Instance D MVB BAP

gap (%) time (s) #nodes #CG iter. (#col.) gap (%) time (s)
n10g20a 48 0.0 7 29 173 (1258) 0.0 2
nl0q20A 52 0.0 487 53 339 (1783) 0.0 4
nl0q20b 32 0.0 90 85 317 (1386) 0.0 3
n10q20B 60 0.0 1105 95 389 (1901) 0.0 )
n10q20c 44 0.0 34 13 102 (1439) 0.0 2
n10q20C 64 0.0 10731 33 180 (1936) 0.0 2
n10g20d 42 0.0 51 47 349 (2256) 0.0 4
nl0q20D 54 0.0 109 234 827 (3779) 0.0 13
n10q20e 58 0.0 702 41 242 (2494) 0.0 4
nl0q20E 58 0.0 143 2 3 (679) 0.0 0
n10q20f 36 0.0 143 811 3297 (8802) 0.0 66
nl0q20F 50 0.0 72 3 52 (1267) 0.0 1
n10q20g 34 0.0 136 115 420 (1562) 0.0 4
n10q20G 52 0.0 3754 25 154 (1640) 0.0 2
nl0q20h 62 0.0 1278 123 619 (3124) 0.0 9
nl0q20H 48 0.0 1343 244 892 (3417) 0.0 14
n10q20i 60 0.0 1548 203 734 (3440) 0.0 13
n10q201 44 0.0 437 275 946 (3328) 0.0 12
n10g20j 42 0.0 46 57 308 (2013) 0.0 4
nl0qg20J 56 0.0 521 145 521 (2684) 0.0 7
n20q20A 88 - - 16537 42367 (44661) 0.0 4356
n20q20B 80 0.0 10789 31047 65707 (61346) 0.0 8780
n20q20C 108 - - 23195 70329 (80948) 0.0 10762
n20q20D 118 - - 41670 83232 (70226) 0.3 -
n20q20E 112 - - 3192 10195 (19967) 0.0 730
n20q20F 90 0.0 8358 758 3394 (9063) 0.0 621
n20q20G 86 0.0 10724 28438 79091 (87554) 0.2 -
n20q20H 100 0.0 6935 4069 14268 (21644) 0.0 974
n20q20I 102 49257 90062 (67084) 3.3 -
n20q20J 92 - - 5960 16541 (20662) 0.0 1038
n30q20A 140 - - 17768 43914 (48957) 20.5 -
n30q20B 124 - - 17076 46152 (54320) 18.5 -
n30q20C 152 - - 21411 48708 (48615) 16.6 -
n30q20D 146 - - 18075 47214 (54889) 18.9 -
n30q20E 132 - - 18090 55855 (440568) 19.5 -
n30q20F 130 - - 17899 46839 (51898) 12.4 -
n30q20G 162 - - 15661 42264 (50714) 25.9 -
n30q20H 136 - - 988 4080 (11806) 19.8 -
n30q20I 144 - - 8162 21687 (30082) 45.5 -
n30q20J 138 - - 433 2031 (10205) 53.5 -

Table 4: Results obtained with an increased capacity @ = 20 with instances with up to 30
nodes and 3 hours ot time limit.
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Instance D gap (%) #nodes H#CG iter. (#col.) LP (%) pricer (%) time (s)
n10ql0a 48 0.0 40 213 (2323) 75 21 5
nl0ql0A 52 0.0 195 750 (3658) 75 18 16
nl0qlob 32 0.0 1091 3129 (6779) 78 10 60
nl0ql0B 60 0.0 843 2670 (7055) 72 18 65
nl0ql0c 44 0.0 11 99 (2400) 77 20 3
nl0ql0C 64 0.0 1314 4185 (8702) 78 12 120
nl0qlod 42 0.0 103 608 (3144) 82 13 12
nl0ql0D 54 0.0 1306 3107 (5664) 76 11 66
nl0ql0e 58 0.0 3021 8453 (10809) 74 12 230
nl0ql0E 58 0.0 524 1817 (4699) 73 17 34
n10q10f 36 0.0 225 1093 (5233) 66 24 28
nl0qlOF 50 0.0 157 621 (4825) 74 20 15
nl0qlog 34 0.0 59 272 (1581) 81 14 4
nl0ql0G 52 0.0 19 140 (2860) 54 43 4
nl0qlOh 62 0.0 227 793 (3017) 75 19 16
nl0qlOH 48 0.0 522 1828 (6280) 74 18 46
nl0ql10i 60 0.0 159 580 (3605) 73 19 11
nl0q10I 44 0.0 101 391 (2582) 78 17 8
n10q10j 42 0.0 196 916 (4205) 72 22 23
nl0ql0J 56 0.0 139 551 (3007) " 14 7
n20q10A 88 3.4 32137 62212 (53283) 70 16 -
n20ql0B 80 8.1 31827 63822 (62006) 67 15 -
n20q10C 108 1.6 25477 54790 (51568) 72 17 -
n20q10D 118 20.0 30483 48096 (39405) 78 12 -
n20ql0E 112 14.3 31724 53827 (38488) 80 9 -
n20q10F 90 0.0 3132 9547 (27937) 76 17 1864
n20q10G 86 14.2 26739 65065 (65389) 66 18 -
n20q10H 100 24 35410 68293 (54280) 72 13 -
n20q10I 102 13.5 24598 46629 (45527) 7 13 -
n20ql0J 92 4.2 30349 57840 (51243) 75 12 -
n30q10A 140 56.6 2101 7483 (53537) 81 17 -
n30ql0B 124 78.2 9894 29683 (51267) 78 16 -
n30ql10C 152 80.0 4667 14176 (55870) 79 18 -
n30q10D 146 69.2 3405 9608 (36575) 90 9 -
n30ql0E 132 55.2 5257 16331 (43098) 87 9 -
n30q10F 130 44.3 2737 9957 (42245) 86 11 -
n30q10G 162 45.0 4487 13690 (48880) 83 14 -
n30q10H 136 54.7 7144 19630 (47169) 80 15 -
n30q10I 144 49.7 6519 18752 (43805) 84 12 -
n30q10J 138 31.8 5240 17220 (49060) 80 14 -

Table 5: Results for instances with up to 30 nodes, a travel time 7' = 7200, and 3 hours ot

time limit.
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