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We compare the ground state of the random-field Ising model with Gaussian distributed random fields, with
its nonequilibrium hysteretic counterpart, the demagnetized state. This is a low-energy state obtained by a
sequence of slow magnetic-field oscillations with decreasing amplitude. The main concern is how optimized
the demagnetized state is with respect to the best-possible ground state. Exact results for the ehetgy in
show that in a paramagnet, with finite spin-spin correlations, there is a significant difference in the energies if
the disorder is not so strong that the states are trivially almost alike. We use numerical simulations to better
characterize the difference between the ground state and the demagnetized stdte 3Ftre random-field
Ising model displays a disorder induced phase transition between a paramagnetic and a ferromagnetic state.
The locations of the critical poinE(CDS) and R(CGS) differ for the demagnetized state and ground state. We argue
based on the numerics that @=3 the scaling at the transition is the same in both states. This claim is
corroborated by the exact solution of the model on the Bethe lattice, where the critical points are also different.
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I. INTRODUCTION not addressed. This is the concern of our work, the problem
of how such an optimization process works in the case of a

The relation between equilibrium and nonequilibrium random magnet. Recently, Zaraetl al. have proposed the
states is a central problem in the physics of disordered sysiemagnetization process as the basis for a new optimization
tems. Disorder induces a multitude of metastable states ialgorithm for disordered systemisThe idea behind such
which the system can easily be trapped. The dynamics i¢hysteretic optimization,” is that demagnetization leads to a
usually very slow, or glassy, and on observational time scalekw-energy state, sufficiently close to the GS, which can then
the system is basically always out of equilibrium. On thebe reached by applying other methods using the DS as an
other hand, from the theoretical point of view it is easier toinput. The method was tested for different models such as
consider equilibrium properties, since in this case it is posspin glasses and NP-hard problems.
sible to use all the machinery of statistical physics to tackle Here, we will concentrate on the random-field Ising
the problem. The question is whether the equilibrium prop-model (RFIM), which, while retaining some complex fea-
erties of disordered systems provide a faithful representatiotures characteristic of disordered systems, still allows for a
of the nonequilibrium states in which the system is likely totheoretical analysié.In the RFIM, due to the absence of
be found in practice. This dichotomy is at the core of manyfrustration, the equilibrium state is relatively simple, how-
unsolved issues in the field of disordered system. Typicaéver, the nonequilibrium dynamics is far from trivial. Due to
quantities that one could compare are the energy, the geomehe coupling of the local disorder to the order parameter,
ric characterization of the statas domains in magnetsand  even the GS presents a variety of phenomena, which can be
the energy cost of excitations. studied numerically~8 In fact the GS is found in a polyno-

A simplification of the problem is obtained considering mial CPU time, with exact combinatorial algorithrhsnd
only athermal processes, in which the temperature of theolved exactly ird=1 and on the Bethe lattice!® The equi-
system plays no role and can be ignored. The equilibriuntibrium critical exponents for random-field magnets have
state is in this case just the ground stéBS), the state of been  measured experimentally in B&ngoF>
minimal energy: A zero temperature, nonequilibrium dy- antiferromagnet$t1?
namics is purely relaxational: the system falls simply in the The hysteretic properties of nonequilibrium RFIM have
closest metastable state. A convenient way to allow the sydeen widely studied in the recent literature. The hysteresis
tem to explore the various metastable states is by applying doops display a disorder induced phase transition: for low
external magnetic field. Different field histories typically re- disorder the loop has a macroscopic jump at the coercive
sult in hysteresis and lead to different metastabléfield, while at high disorder the loop is smooth, at least on
configurationg. the macroscopic scalé-*®>At smaller scale the magnetiza-

The demagnetization process consists in applying don curve is highly discontinuous, showing Barkhausen-type
slowly varying ac field with decreasing amplitude, and pro-bursts, in correspondence to jumps between different meta-
vides a simple way to access low-energy statiidas been stable state¥® A disorder induced nonequilibrium phase
studied for more than a century, but until recently the questransition in the hysteresis loop has been studied experimen-
tion how close the demagnetized stdls) is to the GS was tally in Co-CoO films$” and Cu-Al-Mn alloys'®
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1.00 - ' - the RFIM with Gaussian distribution of the random fields.
We first analyze the problem ui=1, where exact results can
be obtained. The average value of the energy is computed as
a function of the disorder strength for the DS and the GS. A
direct comparison of the two values shows that for weak
disorder the differences become more substantial, while for
strong disorder, where each spin basically aligns with the
_ random field, the difference tends to vanish. Numerical stud-
ies using the same disorder realizations reveal that the main
difference between the two states comes from the complete
reversal of GS domains in the DS. This is also visible in the
-0.50 ] overlap between the GS and DS.
We then study th@=3 case in which both paramagnetic
and ferromagnetic behavior exist. The question of whether
the transitions appearing in the GS and in the hysteresis loop
‘1-092 00 100 0.00 1.00 200 are universal has often been debated in the literafl¥eAt
' ' H ' ' the mean-field level it is not possible to distinguish the equi-
librium from the nonequilibrium case and the transition is
FIG. 1. The hysteresis loop of the RFIM computed exactly inthus trivially the same. In addition, the expansion for the
d=1. We also report three minor loops. A demagnetization proceequilibrium and hysteretic transitions is the same to all or-
dure corresponds to a series of minor loops obtained reversing th@ers, but one should always consider the possibility of non-
field atHgy,H;,H,,... as detailed in the text. perturbative corrections to the field theory. Numerical simu-
lations ind=3 indicate that the critical exponents and the
Extensive numerical simulations have been used to chafritical disorder in the two transitions are reasonably close,
acterize disorder induced transitions in the nonequilibriumPUt the numerical uncertainties do not allow for a conclusive
RFIM and critical exponents have been estimated in severz%t""tement about their identity. Here we directly compare the
dimensiong51920The model has been studied by the renor-0€havior of the GS and the DS @3 close to the disorder
malization group and the exponents have been computed in'Qd“Cfd .p.halse tranS|t|onsd_f¥Ve shovr\: that while thi nonuni-
€=6-d expansiort? In addition the hysteresis loop has been o582 critical parameteR; differs in the two cases, the uni-

: . versal finite-siz lin rve for the order parameter can
computed exactly idl=1 and on the Bethe lattice, where the ersa e-size scaling curve for the order parameter can be

disorder induced T f friciently | collapsed on the same curve. This suggests some kind of
Isorder Induced transition is present for sufficiently large,; ersajity in the GS and the DS transitions. The numerical

coordination number. While id=1 there is definitely no  gjmyjations for the GS and DS are done for the same disor-
transition, the situation id=2 is less clear. Recently the ger realizations for both the cases, for cubic lattices of linear
problem of minor loops has been tackled analytically andsizes) =10, 20, 40, 80. The results are averaged over several
numerically. Minor loops are obtained by reversing the fieldrealizations of the quenched random fields. In both cases, we
before the magnetization has reached saturdier Fig. 1~ compute the average magnetization as a function of the dis-
In particular, the demagnetization curve has been computegrder width.
exactly ind=1 (Ref. 21 and on the Bethe lattic®,extend- A difference in the location of the critical point for equi-
ing previous calculatior#$2’ of minor loops. librium and nonequilibrium behavior of the same model may
The equilibrium properties of the RFIM are governed by aappear rather peculiar and one could be tempted to ascribe it
zero-temperature fixed point, and in finite dimensidds to finite-Size corrections. In order to clarify this issue, we
<5 in practice GS calculations have elucidated the proper-have solved exactly the model on the Bethe lattice and com-
ties of the phase diagram. th=3, the GS displays a ferro- pared the results for GS and DS. While the exponents, as
magnetic phase transition induced by the disdréléfor d  expected, are the same, coinciding with the results of mean-
=4, see Refs. 28,29As domain-wall energy arguments and field theory, the critical disorder differs in the two cases.
exact mathematical results indicate dn 2 there is no phase Namely, the transition in the DS occurs at a lower disorder
transition but an effective ferromagnetic regime for smallvalue. Thus there is an intermediate parameter region where
systems, while ird=1 the RFIM is trivially paramagnetic. It the GS is ferromagnetic but the DS is paramagnetic. The
has been suggested that the transition in the GS is ruling thgolution on the Bethe lattice corroborates the picture ob-
transition in the nonequilibrium hysteresis loop, also becaustgined from simulations id=3. From the optimization view-
mean-field calculations give the same results in and out opoint, thed=3 case shows an intermediate phase of “bad”
equilibrium3° Numerical values of the exponents are closecorrespondence between the GS and DS, exactly ds in
but not equal, but one must consider the difficulties in ex-This, however, stops a%ﬁDS) is approached: naturally if both
trapolating values from the finite-size scali#fg’ More re-  the states are ferromagnetic the optimization of the DS is
cently, the question of the universality of the exponents, withmuch easier. To further explore the question of universality
respect to the shape of the disorder distribution, was disef the two transitions in the GS and in the DS, we have
cussed ind=3 simulations, mean-field theory, and on the computed the distribution of the magnetization at the respec-
Bethe lattice®2-34 tive critical point, R andR®9, for different lattice sizes.
Below we report a detailed comparison of the zero-The distributions can again all be collapsed into the same
temperature equilibrium and nonequilibrium properties ofcurve.
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Finally, we consider the question of when is it actually perform in general only slightly worse than linear as a func-
possible to reach the GS via a generic field history. To thigion of the number of spins in the problem.
end, we consider a proper algorithm that allows in principle For the out of equilibrium case, we need to specify an
to construct a field history, provided that it exists, which appropriate dynamics, ruling the evolution of the spins. We
brings to the GS. Studies of th#é=1 case illuminate the will consider the dynamics proposed in Ref. 38 and used in
difficulty of optimizing since it turns out that for anything Refs. 13-15 to study the hysteresis loop. At each time step
but very strong disorder®k the probability to reach the GS the spins align with the local field
rapidly decays to zero.

Our main conclusion is that, in general, demagnetization §= sigr(JE S +hi+ H>, 2
is not a good technique for reaching states that are truly close j

to the equilibrium, except in cases where the outcome igintjl a metastable state is reached. This dynamics can be
clearly similar from the very beginninderromagnetic states ysed to obtain the hysteresis loop. The system is started from
and paramagnetic states where the disorder is strafgs 5 state with all the spin dowg=-1 and therH is ramped
holds for both the energy of the states and also for the spigjowly from H— —o to H—c. The limit of dH/dt—0 can
configurations. A simple formulation is that, since in the DSpe conveniently obtained by increasing the field precisely of
the locations of domain walls are not optimized, there is arthe amount necessary to flip the first unstable spin. A single
excess random-fielZeeman energy. _ spin flip increases the local field of the nearest-neighboring
The paperis Orgar“Zed as follows: in Sec. Il we define th%pinS, generating an avalanche of f||pp|ngs When the Sys-
model and discuss its numerical treatment. In Sec. Il weems find another metastable state, the field is increased
analyze the one-dimensional case, analytically and numerggain. This dynamics obeys return-point membhyt the
cally. Section IV is devoted to the behavior around the distield is increased adiabatically the magnetization only de-
order induced transition ii=3 and on the Bethe lattice. pends on the state in which the field was last reversed. This
Section V demonstrates the algorithm to reconstruct the fie'%roperty has been exploited &1 (Refs. 21,24 and in the

history, together with numerical studies. Conclusions are regethe lattic?2” to obtain exactly the saturation cycle and
ported in Sec. VI. An account of some of these results waghe minor loops.

briefly reported in Ref. 35. The main hysteresis loop selects a series of metastable
states, which in principle are not particularly close to the
Il. THE RANDOM-FIELD ISING MODEL ground state. To obtain low-energy states, we perform a de-

. ] ) . magnetization procedure: the external field is changed
In the RFIM, a spins = +1 is assigned to each sitdf a  nrough a nested successidi=Hy— H;—Hy— -+ —H,
d-dimensional lattice. The spins are coupled to their nearest-, ..., 0, with Hy,> Honyp™>0,Hon g <Hanes <0, anddH
neighbor spins by a ferromagnetic interaction of strenth —p, 4, . —.0. A perfect demagnetization can be per-
and to the external fielth. In addition, to each site of the formed numerically using the prescription discussed above to
lattice is associated a random fididtaken from a Gaussian optain dH/dt— 0. Such a perfect demagnetization is quite
probability p(h) =exp(-h?/2R?)/ V2R, with standard devia- expensive computationally and it is convenient to perform an

tion R. The Hamiltonian thus reads approximate demagnetization usidgi=1073. A comparison
of the states obtained under approximate and perfect demag-
H=- % Jss; - zl: (H+h)s;, (1) netization shows negligible differences.
where the first sum is restricted to nearest-neighbor pairs. Il. GROUND STATE AND DEMAGNETIZED STATE
In this paper we will consider only the case of zero tem- IN ONE DIMENSION
perature, both in equilibrium and out of equilibrium. The
=0 equilibrium problem amounts to find the minimum7f A. Exact results: Ground State
for a given realization of the random fieldse., the G$ and The GS energy can be computed exactlydinl using

then eventually perform the thermodynamic limit. This prob-transfer-matrix method$For H=0 the free energy of a chain

lem has been solved exactly in a number of simple casesf lengthN is given by

namely, ind=1 and on the Bethe lattice, for particular dis- L 1 1

girgrt]asr.dlstrlbutlons and studied numerically in generic dimen Fy= - Eln(ZN) —_ E'”(Zﬁ +Z) =- ng(zﬁzﬁl)a 3)
The RFIM GS is solvable in a polynomial CPU time, with . . . . .

exact combinatorial algorithms. For the one-dimensionaWherezN IS the partition function with free boundary condi-

case, the solution can be found via a mapping to a “shorte%ions andzy, are thﬁ plartition functions with tk;]e spin at s
path problem® which effectively places the domain walls in 1Xed up(down). The last step in Eq3) uses the approxima-

optimal positions, corresponding to the global minimum oftiffn Z§+Z[(‘: V’ZEZTN which h‘_)'df in the larg&\ limit since
. For higher dimensions, one starts by noticing that findingZn Poth diverge with the ratidy/Zy being finite. The two
the RFIM GS is equivalent to the min-cut/max-flow problem functionsZy andZy satisfy the following recursive relation:
of combinatorial optimization. This can be solved in a vari- + _ tBhn(7t Bl e - TP

. Zy = € PIN(Z €+ Zy_1€77). 4
ety of ways. We use a so-called push-relabel variant of the N (@n-g n-1€") @
preflow algorithm?®” Such methods, properly implemented, From Eq.(4) it follows:

064423-3



ALAVA et al.

Z3Zn = Z\-1Zn-1[2 costiBd) + 2 costi2Bxy)],  (5)

where xy=(1/2p)In(Zy/ Zy), which gives for the total free
energy,

Fy=Fno1— %Bln[z coshipl) + 2 costi2Bxy)],  (6)

so that one can define a free energy per site,

1

Bln[2 cosliBJ) + 2 cosli2Bxy)].

f=-2p @)

Here,xy is a stochastic quantity satisfying the equation

Xn = hy + 9(Xn-1) (8

where g(x)=(1/28)In[(e?#*)+1)/(e?*+e?%)]. When R
—0, Eq.(8) has a fixed point solution of,=g(x..). It is easy
to check thak.,=0 is the only solution for any and g finite,
corresponding to the absence of a phase transition.

WhenR is nonzeraxy is a random variable with an asso-
ciated distributionWy(x), where

(9)

Wy(X)dx= Prol(x < xy < X+ dx).

W\ (x) satisfies the recursive functional equation

Wys1(X) = f ] dhP(h) f ) dxWn(xp) {x—h-H-g(xy)],

(10)

where we have added a uniform figtito the random field
so that in the thermodynamic limiy., is given by the fixed-
point equation

Weo(x) = f dX W (x)P[x—h=H-g(xy)].  (11)

Once W,, is known, any thermodynamic quantity can be
computed. In particular, the free energy per spin is given by

dxW,(x)[cosh2pB) + cosi2Bx)]. (12)

L
fy=-=
=3
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m= f dhP(h) J X WL(x)

—00

Xf dxW..(x)taniBlh+g(x,) +g(x)]}.  (16)

B. Exact results: Demagnetized state

In d=1 the magnetization and the energy per spin as a
function of the external field can be derived explicitly
through a probabilistic reasoning. We show how to get these
results on the saturation loop, focusing on the lower branch
(the results on the upper branch can be obtained by symme-
try considerations Similar but much more involved reason-
ing can be repeated for any minor loop.

The central quantity to consider, in order to solve for the
magnetization as a function of the external fiéldon the
hysteresis loop, is the conditional probability for a spin to be
up, conditioned to one of its nearest neighbors being down.
To calculate this quantity, one can reason as follows: first fix
the spin at site—1 down, and defin@,(H) as the probabil-
ity for a spin to be up, given that exactig(m=0,1,2 of its
neighbors are up,

pm(H) = P(hf">0) = dhp(h),
(z-2m)J-H

17)

wherez is the coordination numbdez=2 in d=1). Fix now
for a moment the spin at siiedown as well and look at the
spin at sitei+1. It will be up with probabilityU, and down
with probability 1-U,. The spin at sita will flip up with
probability p; when the spin at+1 is up andp, when it is
down. Ultimately, the spin atwill be up (conditioned to the
spin ati—1 being down with probability Uy=Ugyp;+(1
—Ugp)po. It follows:

_ Po
1-pi+po

OnceU, is known, a similar reasoning leads to thecon-
ditioned probability p(H) for a spin to be up. Now let us fix

Uo (18)

The magnetization at a site 0 of an infinite lattice is given byie spin at sité down: the spin at sité—1 will be up with

z'-7° \Z'Z -7z { 1 }
=———-= =tanh =In(Z*/2") |,
(o) Z'+Z Z'Iz +\Z izt 2 )
(13

whereZ*~ are, respectively, the partition functions with the

spin at 0 fixed ugdown). These are given by
Z' = ePo(e* Pz + e"PZ)) (P Z] + e7PZ)), (14)

where Z7, are the partition functions for the semi-infinite
right (left) lattice, with the spin at site 1-1) fixed up
(down). This gives

(soy =tanH Blho + g(x) + g(x) 1}, (15)
wherex, (X)) refers to the semi-infinite righieft) lattice. Fi-

probability Uy and down with probability 16, The same
holds for the spin at site+1. Thus,

p(H) = U3p, + 2Ug(1 - Ug)py + (1 -Up)?%py,  (19)

from which the magnetization is obtained esH)=2p(H)
The energy per spin on the saturation loop is obtained as
follows. Due to translational invariance,

_(H) _
E=—=-Xss.») —H(s) - (hs).

N (20)

To calculate the spin-spin correlatidss, ;) we introduce
the probabilitiegh**,®*~,®~*, &~ for adjacent spins to be,
respectively, up-up, up-down, down-up, and down-down.

nally, the magnetization for the infinite lattice is obtained These quantities are not independent, since they have to sat-

averaging over the quenched variabkes

isfy the obvious identities®* =®~*,d**+d*"=p(H), and
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d"+d*"=1-p(H). Thus it is sufficient to calculate one of
them, for exampleb™". This is done by separating the four

contributions from the possible boundary conditions deter-

mined by the values of the spins at sitesl andi+1. When

they are both down, the probability for the couple of spins at

sitesi andi+1 to be both down iyg[l—pl(H)]Z, when one
is up and the other is down isUg(1-Uy[1-py(H)][1
-po(H)], and when both of them are up id-Uy)I1
-po(H)]?. Adding up the four contributions we gdt™~=(1
-Up)2 This fixes the other probabilities to b@* =d~*
=2p-1+(1-Up)?, andd**=1-p-(1-Uy)2 Thus, the spin-
spin correlation is
(880 =@ + @ - 20" =4[p- (1-Uy)] -3.

(21)
The average valuéh;s;) can be obtained by averaging over
the fieldh’ the product ofh’ times the average value of the

spins; over the local fields other tham, once the field ait is
fixed at the valuén’:

(his) =f dh'p(h")h’(s|h"). (22
The conditional averagés|h’) is given by D(H|h')-1
wherep(H|h’) is the conditional probability for a spin to be
up at an external fielt, given that its local random field is
fixed at the valuéh’. From Eq.(9) this is trivially given by
p(H|h') = U26(h’ + H + 2J) + 2U(1 — Ug) d(h’ + H)

+(1-Up?6(h’ +H - 2J), (23
which finally gives

(his) = 2U3 J

-H-2J

+oo

+o0
dh p(h")h’ + 4Uy(1 - UO)J dh’ p(h")h’
-H

+oo

+2(1- uo)zf dh p(h")h’ —h'. (24)

-H+2J

In particular, for a Gaussian distribution with=0 and vari-
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R

FIG. 2. The energy of the GS is compared with the one of DS.
The values are computed exactlyds 1 as a function of the disor-
der widthR.

Similar but much more involved reasonings can be re-
peated for any minor loop—eventually for a series of nested
loops leading to the demagnetized state—providing a series
of recursive equations for the magnetization, the spin-spin
and the spin-field correlations, which are the quantities
needed to compute the energy. If the external field is changed
through a nested successibti=Hy,—H;—H,—---H, -

—0, with Hy,>Hoypo>0,Hy 1 <Hyp1 <0, anddH=H,,
-H,,.»— 0, the spin-spin correlations are given recursively
by

(SSi+DH,, ~ (SSwhH,, = 4U5,[p2(Hzn) = pa(Han-1)]

— 4D3, 1[Po(Hazn) = Po(Hzn-1)],
(27)

whereU, andD, are, respectively, the probabilities for a spin
to be up(down) conditioned to one of its neighbors being

anceR the integrals can be performed analytically and theqown, and satisfy in turn a set of recursive equations. Similar

result is
2

(hs) = \/j Re H2R2U262R cosh2JH/R?) + g19-(HIZ)
aw

X(1-2U3) + 2Uq(1 - Up)]. (25)

equations hold for magnetization and spin-field correlation,

leading to a complicated recursive formula for the energy.

The results of such calculations are shown in Figs. 2 and 3,
where the energy of the demagnetized state is compared with
the energy of the ground state evaluated in the preceding
section.

The energy per site on the lower branch of the saturation

loop is in general given by
E(H) = - 4)[p(H) - (1 -Ug)’]+ 3] - H(2p(H) - 1)

+oo
-2U3 J
-H-2J

—4Uy(1 - uo)f dh’ p(h")h’
-H

dh’ p(h")h’

+o0

—2(1—u0)2f dh’ p(h)h' +h'. (26)

—H+2J

C. Simulations: How optimized is the demagnetized state?

While the energies of the GS and DS can be obtained
exactly ind=1, we use numerical simulations to obtain a
more detailed picture of the differences between the two
states. We consider a system of site 10* spins and obtain
numerically the GS and the DS averaging the results over
1000 realizations of the random fields. In this way, we can
recover to a great precision the exact resqéise Fig. 3,
indicating that the system size and statistical sampling em-
ployed are adequate to fully characterize the system.
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FIG. 3. The energy difference between the GS and the DS com-

puted exactly ind=1 is compared with the numerical simulations. FIG. 5. The average change in the spin-spin overlap between the
GS and the DSAQ) and the contribution to that from completely
In one dimension the comparison of the domain structurédestroyed” GS domainéAqgest), as a function oR.
of DS and the GS is the easiest since the domain walls are
just pointlike. For the GS we know that it is optimized such of
that all the large enough local random-field fluctuations hat with decreasing the average domain size increases
nucleate domains of the same sign. The rest of the rando 9

; . . . ; - faster than in the GS, while the size distributi®l,) re-
landscape is split up into regions that align themselves with . . D . .
. . . . mnains exponential. This is accompanied by a reduction in the
such fluctuations depending on the sign of the random-field C
overlapg=((sgssps +1)/2 between these two states. FRr
EXCesS, i egioli- AS @ result the Zeeman energy of do—I th ap is ol ¢ ity st local fi i
mains, defined a&;==; _jomaihli, IS linear in domain size, arge the overlap is close to unity; strong local fielgslign

E,~ I, and the asymptotic mean domain length follows thethe spins in the same way regardless of the mechanism by

Imry-Ma prediction(ls9 ~ 1/R2. Moreover, since the ran- which the spin state is created. AFRismall the local field is

dom landscape has a finite correlation I’ength the domaif® longer strongly correlated with the orientation of the spin,

size distribution is exponentidf ' and thus whether the GS and DS are locally aligned depends
Any qualitative differences in the DS will follow from on how optimized the latter is,

three separate mechanisnis) shifts of domain walls(2) The fundamental mechanism for the deviations between
_Sep A . ’ the states seems to be the “destruction” of GS domains, at
creation of domains inside intact GS domains, &8dde-

) Lo X K least for smallR (see Fig. 4 agaijn This is demonstrated in
ftruptlc_)n Qf ?S doma'né:'g' 4)' Fro”.‘ _the point of view Of. Fig. 5 by depicting the changkq in the overlap that comes
optimization” the first one is of trivial concern, since it o . . .
. . solely from missing GS domains. The conclusion from this
would have little effect, e.g., on the scaling Bf ps, where

the subscript underlines the is computed for the DS. The dominance is that the demagnetized states typically miss re-

. . : . ions in which the integrated field fluctuation is large which,
second one is more detrimental if the energy difference to thgS such. leads in the GS to the formation of GS domain

GS |s.con5|dered. In add.'t'on o the cost of the two domam]’herefore the overlap should get smaller the larger the scale
walls it subtracts a contribution from the Zeeman energy oﬁength on which one compares the DS and GS, as confirmed

the domain that persists and surrouriiflsthe GS the one . ) .
that is not created in the DS. The third one would make theby Fig. 6, which shows the overlap between a DS domain

. and the GS as a function of the lendgz of the DS domain.
largest change to the total energy, sincelfae- 1 the energy The importance of such destroggg domains can also be

seen in the total contribution to the energy difference be-

a domain consists mostly of its Zeeman energy.
Numerical studies of the DS domain structure indicate

+ ++ - - - - - - + + + groundstate o . )
tween the DS and GS. F&small this is again dominated by
Tt missing GS domains. In general the difference between the
TE ST T T o T T DWshift energies of the GS and DS derives from the combination of
""" S domain walls and Zeeman energy. Figure 7 shows that for
+ 4+ + - =i+ Hl= =+ 4+ 4+ nucleated Ips small the DS domains do not have much Zeeman energy.
Rt . droplet This changes iflpg is larger, in which regime the scaling
it s o4 + 4+ destroyed approaches the Imry-Ma -like scalinj{%g)._ The implication
N H GS domain is that the field energy of large domains in the DS self-

averages, and comes from a sum of random contributions
FIG. 4. An illustration of the possible mechanisms for the de-(i.e., the domains contain regions where the actual random-
viations between GS and DS. field sum isoppositeto the spin orientation, such as the
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FIG. 6. (Color online The average overlap of
a DS domain of sizéyg with the GS domain spin
state at the same locations f&=0.5, 0.6, 0.8,
0.9, 1.0. The overlap decreases wiig.

Aos(l)

1000

DS

missing GS domains The crossover between the smiglf  disorder, the transition point has been located numerfcally
behavior and the asymptotic scaling is located closggs). at R(CGS)zz,zs (see below. It is possible to define the usual
set of critical exponents characterizing the phase transition
and compute the values by exact GS calculations. For in-
stance, the magnetizatiovi = (|m|), with m=23,;s/N, scales

A. Simulations in d=3 close to the transition point as

IV. AROUND THE DISORDER INDUCED TRANSITION

The RFIM displays a disorder induced phase transition
both in the GS and in the hysteresis loop, which can also be M = Ar?, (28)
observed by analyzing the 3$22391f the GS and the DS
are always paramagnetic, the transition is absent, asl for
<3. Thus we perform numerical simulations d+3, with ~ wherer=(R-R;)/R. is the reduced order parameter aais
the aim to characterize the difference between DS and G8 nonuniversal constant. The correlation length defines an-
around the disorder induced transition. other exponeng=(Br)™, whereB is another nonuniversal

In d=3 for low disorder, the GS is ferromagnetic, while constant which rules the finite-size scaling of the model, so
for higher disorder it becomes paramagnetic. For Gaussiathat

107

FIG. 7. (Color online@ The Zeeman energy of
DS domains of the sizdps. The black circles
mark the average DS domain size for a givRn
The two lines above and below the data indicate
optimal, linear(GS-like) scaling and the Imry-
Ma-like 112 scaling, respectively.

EZeeman

10 F

1 10 100 1000
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— -Blv. vip _ 1.2 T T T
M = ALP"f[BL""(R- Ry)/R.]. (29 SoDs Lo
B8 DS L=20
Simulation§-8 yield »¢9=1.17 andB©9=0.02. 18 -6 DS L=40 |1
A disorder induced transition is also found in the hyster- igg ::fgg
esis loop. At low disorder the loop shows a macroscopic g | e GS L=10 |
jump, which disappears at a critical value of the disorder. =-u GS L=20
This transition reflects itself on the DS, which is ferromag- +-¢ GS L=40
netic when the main loop has a jump and is paramagnetic§ 0.6 | :: gg ::fgg 7
otherwise. The transition point has been obtained numeri-
cally in d=3 asR(CDS):Z.16 and the critical exponents have 44 |
been measured. In particular, Ref. 39 reports data collapse
with Bpg=0.04 andypg=1.41. While there is strong evi- :
dence that the exponents measured in the DS should be equ 02 | W

to those measured on the main loop, the relation with the - T

equilibrium transition is not clear. 0 . Ty
We notice first that numerical simulations reported in the 2 2.5 3 3.5 4
literature indicate that the transition appears at slightly dif- R
ferent locations in the GS and in the DS. Hartmann and FIG. 8. The magnetization of the GS and the DSdin3 for
(GS)_ . . . 8.
Nowak® reportR; "> =2.29+0.04 for the GS with system size i¢erent system sizé& and disordeR

up to L=80, Hartmann and Yourigrefine this value to
R®¥=2.28+0.01 with sizes up th=96, which is also con-
firmed by Middleton and Fish&rwho estimate R(CGS)

=2.27+0.04. For the hysteresis loop the best estimai, is
=2.16+0.03, with system sizes up k6=320 and a similar !
value for the D139 Thus, unless strong finite-size effects (see Fig. 11

take place, one is tempted to conclude that the two transit-he",: ;rl:n.][.rggrY’ntmseég'rgre]g%?glres'T]m::'oar:sbmﬂﬁgtg 'ihcil
tions take place at two different values Rf. ransiions 1 universal, bu i

Here we analyze the problem again by numerical simulaparameter seems to differ. Consequently the GS and DS dif-

tions, computing the GS and the DS numerically, using theIer mos.tly around the tra}nsition, while the.difference s
same disorder realizations for the two cases. Simulations arg"all€r in the paramagnetic and ferromagnetic phases.
performed for cubic lattices of linear sizes 10, 20, 40, 60,

80 and the results are averaged over several realizations of B. The Bethe lattice

the random fie!ds. The _GS is found gxa_ctly_using a min-cut/ The RFIM can be solved exactly in the Bethe lattice, dis-
max-flow algorithm, while demagnetization is performed ap-pjaying a disorder induced transition in the GS and in the
proximately with the algorithm discussed in Ref. 21 with

dH=10"2 (see Sec. ) In both cases, we compute the aver-

can be expected, since f&°% <R<R°® the GS is ferro-
magnetic(M >0) and the DS is paramagnetim =0) as it is
also apparent plotting the difference in the magnetization

age magnetization as a function of the disorder wictbe o DS L=10
Fig. 8. In Fig. 9 we collapse the two sets of data into a o ‘mged @ DS L=20

. . . . (G9 1F o DS L=40 [{
single curve, using two different values f&; (i.e., R \ < DS L=80
=2.28 and?(cDS)=2.16) but the same values for the exponents 2 e GS L=10
(i.e.,»=1.37 and8=0.03. The best value for the ratio of the . :gg t=ig
nonuniversal constant is found to MDS/AGSzl a_nd _ o «GS L-80
Bps/Bgs=0.68+0.02. The fact that the scaling function is &
the same for the two cases is a strong indication for univer- S
sality, going beyond the simple numerical similarity of the 05t :o' )
exponents. There is always the possibility that in the thermo- o
dynamic limitR\°¥=RP9. At the present stage this hypoth- “
esis is not supported by the data, since we were not able t G
collapse all the data into a single curve using the s&ne .

Next, we compare the statistical properties of the GS and . . o

the DS around the transitions. In Fig. 10, we report the value 0_2 0 > 4 6
of the overlap as a function d® for different system sizes. BL"™(R-R )IR
When the disorder is decreased from the paramagnetic re- o
gion, the overlap decreases as fbr1l. However, for low FIG. 9. Numerical results il=3: The magnetization can be

disorder, the overlap rapidly increases and reaches 1 in th@llapsed usingR,=2.28 (GS) and R,=2.16 (DS), »=1.37, andg
ferromagnetic state. The minimum of the overlap is located-0.03. The scaling curve is the same for DS and GS indicating
in the parameter region corresponding to the transitioes  universal behavior. The values for the ratios of the nonuniversal
R~2.2-2.3. A decrease in the overlap around the transitionconstants aré\ys/Ags=1 andBps/Bgs=0.68.
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FIG. 10. The overlap between the GS and the DSI#8 for
different system sizes.
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Fai)= 3 [ Foali) 5 -In 2(costB9) + costizge i)l |
iel() B
(31)
where
x:(i) = éln[zmi)/za(i)], (32)

so that the contribution at the free energy from site

1
f(i)=- Zgln[z cosh{Bd) + 2 cosh2px,(i))]. (33)
X,(i) is a stochastic quantity satisfying the equation

X)) =h+ 2 glXeea(D]-

jel(

When R— 0, Eq.(34) has a fixed point solution of,=(z
-1)0g(X.). X.=0 is a solution for any] and 8. For B<f3.

(34)

DS?2? 1t is thus an interesting case to compare the two state§(1/2)|n[2/(z_ 2)], there are also two stable solutions, +

around the respective transition directly in the thermody-
namic limit. We consider here a Bethe lattice with coordina-

tion zand obtain the GS generalizing tle 1 case as in Ref.

9. In this caseN refers to the generation of the lattice, and
Z:(i) are the partition functions of a branch of generation

with a fixed up(down) spin at a central site The recursion
relation for theZ: (i) is

Zi(i) =e [ [Zh (e + 2,4 (e ™),
jel()

(30)

where for any given sité the sum ovelj runs over the set
I(i) of thez-1 nearest neighbors oaway from the center of
the lattice. Then, following thel=1 case, one can write

0.2 T T T

01 F .

0.0 B4
-0.1
< i
= 02
8
=

-0.3

04 '\ W LA L=20

I Y & --%L=40
05 L k! —9L-60 |

e =---0L1=80

_0-6 1 1 1
2 25 3 35 4

R
FIG.

the DS ind=3 for different system sizes.

#0 corresponding to the appearance of a ferromagnetic
phase.

To perform quenched averages one has to solve for the
probability distribution of W,,(x,,), where W,(x)dx=Prokx
<Xx,<x+dx), which satisfies the recursive functional equa-
tion

©

Wia(¥) = JOC dh P(h)foc Ax Wi (xy) - - f A% 1 Wh(X,-1)

—00

(35

z-1
xélx—h—H—Eg(xk)],

k=1

so that in the thermodynamic limW/,, is given by the fixed-
point equation

[

WOO(X) = f dxlwoc(xl) T J dxz—lwoo(xz—l)

—00

z-1
xP[x—h—H—Eg(xk)]. (36)
k=1

Once W,, is known, any thermodynamic quantity can be
computed. In particular, the free energy per spin is given
again by Eq(12) and the magnetization at the central site of
an infinite lattice is given by Eq(13), where Z!! are the
partition function with the spin at 0 fixed Uglown), respec-
tively. They are given by

Zll = [ (ez; +e"P7;) (37)
k=1z

and Z; for k=1,...,z are the partition functions of the
branches attached to the central site 0, with the boundary

11. The difference in magnetization between the GS andpin fixed up(down). This gives for the magnetization at the

central site(sp),
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FIG. 12. The magnetization of the GS and the DS computed FIG. 13. The distributions of the magnetization in the DS and
exactly on the Bethe lattice witk=4 in the thermodynamic limit, the GS at their respective critical points on the Bethe lattice, ob-
showing the ordering of the critical poifsee the ins¢t When the  tained numerically for different lattice siz& can be all collapsed
data are plotted against the reduced paramé®rR)/R. the  together.
curves superimpose. The result implies that for the Bethe lattice

Acs=Aps: V. REACHING THE GROUND STATE
BY NONEQUILIBRIUM DYNAMICS
(so) :tanh{ﬁ[h(ﬁ > g(Xk)”- (38) We have shown that the demagnetization procedure, as a
k=12 peculiar type of field history, does not necessarily bring the
The magnetization for the infinite lattice can then be ob-system to the GS, because the DS and GS in general corre-
tained averaging over the quenched variabigs spond to different microscopic configurations. Now the ob-
B . . vious question is: can we reach the GS by nonequilibrium
_ dynamics? Or, in other words, is there any field history, start-
M= J_x th(h)f_w oy Wh(x) -+ f_w W) ing from saturation, which can bring the system to the GS?
The answer to this question requires to clarify the relation
xtanr{ﬁ[h + > g(xk)]}. (39 between the spin configurations visited along the nonequilib-
k=12 rium dynamics driven by the field, and the locally stable

For a Gaussian random-field distribution the fixed-pointState.S’ given as SO'““.OHS O.f E@). In fact, only a I|m|ted_
equation cannot be solved explicitly and we thus resort to %r_actlon of stable configurations may be r(_aached_by a field
numerical integration. We obtaWW..(x) for z=4, and for dif- Istory. The problem has been analyzed n detall- using an
ferent values oR, and compute the magnetization using Eq.algonthm, called the reverse field histoRFH), which 'S
(39). In Fig. 12 we compare the magnetization of the GSable to calculate the simplest sequence of reversal fields

L : ol
with the one of the remnant magnetization in the DS, com-brlnglng to a generic stable state, if it exiéis” We apply

puted in Ref. 22. As observed in the simulationsiin3, the this algorithm to the case _of GS, calculated independently by
. . . . exact combinatorial algorithms.

transition occurs at two different locatiotisee the inset of
Fig. 12, for z=4,RP¥=1.781258..22, andR°¥ =1.8375,
with the mean-field exponeB=1/2). When plotted against
(R-R.)/R; the two curves superimpose close to the critical Consider the spin configuratia(the set oiN Ising sping
point. This indicates that, though not required by universalteached after the application of a field history consisting in a
ity, in the Bethe latticeAgs=Aps, as also found ird=3. sequence of reversal fieldsl}={H,,...,H,}, starting from

To investigate possible finite-size scaling we have perthe saturation, and withl,,=0. Let us define the generating
formed numerical simulations in the Bethe lattice, following function s=f({H}), and the stable states it generatesHas
the method of Ref. 25. Collapsing the order-parameter curvetates.Due to adiabatic dynamical response and return point
as ind=3, using a scaling form similar to E9), does not memory, this stats contains the memory of a subset of the
appear to be possible in the Bethe lattice, because the scalimgversal fields. In fact not all the reversal fields determine the
region is very narrow. Thus to test finite-size scaling, wefinal states. For example, the reversal fields which give rise
have computed the distribution of the magnetizatioat the  to closed minor loops do not influence the final state, because
respective critical pointsR S andR'®9 for different lattice  their memory is erased. Thus only the memory of the set of
sizesN. The distributions can all be collapsed into the samereversal fieldfHg} which are not erased is contained in the
curve (see Fig. 13 using the formP(|m[)=f(|m|/M)/M. final state. The inverse functidiigt=g(s) allows to obtain,

A. RFH Algorithm
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I— - ‘ ‘ ‘ - - a pure effect of the finite system size. To this end, let us first
consider the dependencefgfyp on R. For the random states
the fractionfgyp sensibly changes witR, but following a
different curve with respect thss (Fig. 14). If there were no

correlation between GS and thé states the two curves

- would be coincident. The dependencefgfp on R reflects

the fact that the number ¢ states depends on the disorder

value and on the system si#e,and only at large disorder,

where the number of locally stable states decreases, the ratio

betweenH states and stable states is significantly greater

- than zero. We cannot make a similar estimation for the frac-

tion fgg but we note that its shape is not very different from

frnp, €Ven if it has different offset ifR. This point reflects

10 20 30 20 50 e 70 the fact that the GS has a probability to be field reachable

R significantly higher than any random stable state for the same

) - N andR values.
FIG. 14. Fraction of reachable states, averages over 100 realiza-

tions of disorder. Full symbols: fractiofgyp Of reachable locally
stable states, generated by random sampling the set of local minima. VI. CONCLUSIONS

Open symbols: fractiorigg of ground states reachable considering . . .
different realizations. System sizes e 10 000(squaresand N For disordered systems such as the random-field Ising
=5000(circles. model one would be interested in both universality in statis-

tical properties and in the question how to “optimize” in the
case of a sample with a given distribution of the impurities.
In this paper we have studied this problem in detail, by com-
aring the demagnetized and ground states. Our main find-
ngs are the following: First, the GS is globally optimized,
and the demagnetization procedure does not perform well
unless the optimization problem is rather trivial. This is
slightly surprising since the conclusion holds in particular if
he GS is paramagnetic. In fact, the DS algorithm does not

anage to find the right spin configuration, thus many of the
domains of the GS do not appear in the DS, as clearly seen in
fhe d=1 case.

Second, ind=3 (and with the aid of the Bethe lattice
solution, we have demonstrated that the existence of a phase
transition for both the DS and GS makes the “phase dia-

ram” of optimization to show a regime where the outcome
less optimal: in the paramagnetic phase of the DS, where
%he GS is already ferromagnetic since the critical thresholds
are ordered such th&°% >R, In this regime DS and GS
are expected to differ strongly in the thermodynamic limit.
We also provide numerical evidence that the3 transition

We applied the RFH algorithm to the GS in one dimen-appears to have the same critical exponents in both the GS
sion, with N=5000, 10 000 spins, averaging the results forand DS*3 This can be considered both surprising—there be-
100 different realizations of the same disorderThe GS ing no exact field theoretical way of treating tde 3 phase
was obtained by the max-flow min-cut procedure for eachransition—and expected, since the functional renormaliza-
realization, as described. At each disorder vdRiegve com-  tion calculations in spite of their shortcomings indicate that
pute the fractionfgg of the realizations in which the GS is the actions are the sanielt seems intriguing that such uni-
reachable. For comparison, we also consider the fractiomersality is met exactly in the limit where the optimized char-
frnp Of the reachable locally stable states, generated by raracter of the DS changes.
dom sampling the set of local minima. The results are shown The results indicate that for the particular system at hand,
in Fig. 14. where the disorder couples directly to the expected magneti-

Remarkably, the GS does not result to be systematicallgation, “local” optimization methods have difficulties. Of
field reachable, and the fractidgg depends on the disorder course, as in “hysteretic optimization,” one can perturb or
(see Fig. 14 for two system size3 he curve’s shape reason- “shake” the state obtained from the DS procedure to try to
ably has limits equal tdgs=0 for R— 0, where demagneti- still lower the energy. These attempts are of course usually
zation becomes impossible, arfids=1 for R—, where just heuristic. In the case of the RFIM, the joint approach of
hysteresis disappears and each state is field reachable. Ooptimizing by the DS and computing the GS exactly allows
may argue that the fact that the GS is sometimes reachablete understand better similarities and differences between

starting from a spin configuratiogibelonging to theH states
ensemble, the set of reversal fielfids} which have been
actually stored in the state and that—if applied as a fiel
history—will reproduce the original state, i.e5f(g(s)). We
define this set of reversal field$s as theminimal field
history.

The RFH algorithm takes as input a configurat®at H
=0 and gives as output—when it exists—the reversal fiel
history from saturation to the state The formulation of the
algorithm is based on the order-preserving character of th
dynamicst® and is therefore, applicable to a wide range of
models beyond the RFIM. An interesting result of the RFH
algorithm is obtained when it is applied to a stataot be-
longing to theH states(i.e., where no field history exists
The iterated search for the reversal field sequence enters
infinite loop and, in this case, it can be shown that no fiel
history leading to the state exisits.

B. Simulation results in one dimension
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equilibrium and low-energy nonequilibrium states. Interfaces in quenched disorder would provide another in-
In addition to the ferromagnetic RFIM model, one canteresting example, since the roughness exponent typically
consider other systems where two disorder induced phagdiffers in and out of equilibrium(i.e., at the depinning
transitions exist. Numerical simulations and analytical resultshreshold.* It would be interesting to measure the roughness
have shown that a disorder induced transition in the hysteref an interface after a demagnetization cyf(le., after the
esis loop can be observed in the random bond Ising nfddel, field driving the interface is cycled with decreasing ampli-
in the random-fieldD(N) model?° in the random anisotropy tude), and compare its properties with those of the ground-
model?64” and in the random Blume-Emery-Griffith state interface. Finally, there is the issue of energetics of
model?* All these systems display as well a transition in excitations in the respective ensembles: the universality of
equilibrium and it would be interesting to compare their DSexponents and scaling functions would seem to imply that

and GS. these also scale similarly.
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