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Multiple genome screens have been performed to identify regions in linkage or association with Multiple Sclerosis (MS, OMIM
126200), but little overlap has been found among them. This may be, in part, due to a low statistical power to detect small
genetic effects and to genetic heterogeneity within and among the studied populations. Motivated by these considerations,
we studied a very special population, namely that of Nuoro, Sardinia, Italy. This is an isolated, old, and genetically
homogeneous population with high prevalence of MS. Our study sample includes both nuclear families and unrelated cases
and controls. A multi-stage study design was adopted. In the first stage, microsatellites were typed in the 17q11.2 region,
previously independently found to be in linkage with MS. One significant association was found at microsatellite D17S798.
Next, a bioinformatic screening of the region surrounding this marker highlighted an interesting candidate MS susceptibility
gene: the Amiloride-sensitive Cation Channel Neuronal 1 (ACCN1) gene. In the second stage of the study, we resequenced the
exons and the 39 untranslated (UTR) region of ACCN1, and investigated the MS association of Single Nucleotide Polymorphisms
(SNPs) identified in that region. For this purpose, we developed a method of analysis where complete, phase-solved, posterior-
weighted haplotype assignments are imputed for each study individual from incomplete, multi-locus, genotyping data. The
imputed assignments provide an input to a number of proposed procedures for testing association at a microsatellite level or
of a sequence of SNPs. These include a Mantel-Haenszel type test based on expected frequencies of pseudocase/pseudocontrol
haplotypes, as well as permutation based tests, including a combination of permutation and weighted logistic regression
analysis. Application of these methods allowed us to find a significant association between MS and the SNP rs28936 located in
the 39 UTR segment of ACCN1 with p = 0.0004 (p = 0.002, after adjusting for multiple testing). This result is in tune with several
recent experimental findings which suggest that ACCN1 may play an important role in the pathogenesis of MS.
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INTRODUCTION
Multiple Sclerosis (MS) is a disabling disease of the central nervous

system that affects young adults. Despite substantial evidence of

polygenic inheritance of MS, the Major Histocompatibility

Complex (MHC) is the only Deoxyribonucleic Acid (DNA) region

where convincing evidence of linkage and association with MS has

been found repeatedly and consistently [1,2]. Multiple genome

screens have nominated over 70 regions in linkage or associated

with MS. Unfortunately, apart from some replications of linkage in

regions of Chromosomes 5 and 17 [3], little overlap outside MHC

has been found among these studies. Moreover, while each of the

linkage studies has shown more allele sharing among affected

individuals than would be expected by chance alone [4], none of

them has succeeded in demonstrating linkage with MS at

a genome-wide significance level. A possible explanation is the

absence of MS susceptibility genes with strong individual effects.

In addition, the statistical power to detect a modest effect may be

low due to genetic heterogeneity within and among the studied

populations. These considerations motivated our decision to study

an isolated, genetically homogeneous, old population of the Italian

province of Nuoro, Sardinia, where MS prevalence is 4–5 times as

high as in the Italian mainland. The main objective of this paper is

to report a genetic characterisation of MS in this very special

population, and the discovery of an MS association with genes on

Chromosome 17.

Our study is largely (but not exclusively) based on individuals

extracted from families with multiple MS cases, where the genetic

effect is expected to be stronger than in sporadic cases. Only a few

DNA markers were genotyped and tested. This was made possible

by adopting the following multi-stage design of the study. In the

first stage, five microsatellites in the 17q11.2 region were typed

and tested for MS association. One significant association was

found at microsatellite D17S798. Next, a bioinformatic screen of

the DNA region surrounding this microsatellite highlighted

a strong candidate MS gene, called ACCN1 (Amiloride-sensitive

Cation Channel Neuronal 1, ENSG00000108684). Subsequent testing,

exclusively of Single Nucleotide Polymorphisms (SNPs) located in

ACCN1, revealed a significant association between MS and an

SNP in the 39 untranslated (UTR) region of that gene. This result
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is corroborated by several recent experimental findings, from

independent sources, which we review in the Discussion section.

RESULTS
In 1998 we set up the current MS register in the province of

Nuoro; for each MS case, the register provides the multigener-

ational pedigree. All diagnoses of MS were in accord with Poser’s

criteria for clinical definite MS [5]. An early analysis of the register

data gave an estimated MS relative risk as high as 24 for

a proband’s sibling [6], and evidence that the risk of a proband’s

relative decreases with the degree of genetic sharing with the

proband [7]. This suggests the presence of a strong genetic

component of the disease in the studied population.

Our study sample consisted of a collection of small groups of

individuals, which we call nuclei, each nucleus having been

ascertained around an MS case, or proband, extracted from the

above register. Most probands were extracted from a multiplex

family, in consideration of the fact that cases with a strong family

history of MS are more likely to exhibit an increased frequency of

a particular susceptibility allele than sporadic cases [8]. We had 78

nuclei for a total of 229 individuals. The nuclei were subdivided

according to type: 44 type-1 nuclei consisting of a proband and of

his/her parents, plus occasionally the proband’s siblings; 22 type-2

nuclei consisting of the proband, of his/her spouse and of their

children, and 12 type-3 nuclei consisting of a proband and of

a corresponding unrelated control, matched by village of origin.

Proband’s siblings were present in five out of the 44 type-1 nuclei,

with three nuclei including one sibling and the remaining two

nuclei containing two. A large proportion (76.5%) of the 78

probands involved in our analysis was diagnosed during the

relapsing-remitting stage of the MS course, and 38 of them were

extracted from multiplex families with a varying number of

affecteds.

Following the study design outlined in the Introduction, in the

first stage of our analysis we separately tested for MS association

five microsatellites under an MS linkage peak in the 17q11.2

region of DNA (for details see Genomic region and marker

selection, data preparation and genotyping and Supplementary

Table S1). In a previous meta analysis of three genome screens in

the American, British and Canadian populations [9], this region

had the highest linkage score for MS outside the MHC, with a non

parametric logarithm of the odds (LOD) score of 2.58. Three types

of association test, GLOBAL, LOCAL and regression-based

(REG), are reported for each microsatellite in Table 1 (for an

explanation of these tests see Statistical Analysis). Note that

a consistently significant signal across the three tests is found only

at microsatellite D17S798, with a p-value for the global null

hypothesis of no association as low as 0.002, according to our

REG test. The fact that the association signal found at D17S798

does not extend to the two microsatellites located about 2cM away

from it is consistent with the fact that we found no evidence of

linkage disequilibrium (LD) between the studied microsatellites.

These findings may sound surprising when one considers that

Zavattari et al. [10], in a work on Sardinian isolates published

before the design of our study, estimated a 2cM persistence of LD

between microsatellites. However, our findings are consistent with

a very recent investigation on LD in Sardinia, notably by Service et

al. [11], giving evidence that the extension of LD in old isolates,

including the Nuoro population, is not as high as was expected.

In our analysis of D17S798 we found that no alleles, except 1, 5

and 6, were sufficiently frequent in the studied population to

contribute significant evidence of their association, given the

available sample size. A comparison of the pseudocase vs

pseudocontrol frequency for allele 5 (64 vs 43) and for allele 6

(52 vs 75) suggested that alleles 5 and 6 had a deleterious and

protective effect, respectively, whereas allele 1 (31 vs 30) appeared

to be neutral. Allele 6 of D17S798 had the most significant

permutation-adjusted p-value according to both our REG test

(pr1 = 0.002) and our LOCAL test (pr1 = 0.03). Next came allele 5,

with the second most significant permutation-adjusted p-value

according to our REG test (pr2 = 0.003) and to our LOCAL test

(pr2 = 0.034).

Next we performed a bioinformatic screening of the DNA

region surrounding D17S798, extending to the next studied

microsatellite, on both sides. A map diagram of this region is

shown in Figure 1. The only known genes in this region are

MYO1D (Myosin-Id, ENSG00000176658) TMEM98 (Transmembrane

protein 98, ENSG00000006042), SPACA3 (Sperm Acrosome Associated

3, ENSG00000141316) and ACCN1 (the longest on chromosome

17). MYO1D is expressed in many tissues and codes a protein

belonging to the family of unconventional myosins, playing its role

in intracellular movements. TMEM98 codes a small transmem-

brane protein of unknown function, while SPACA3 codes an intra-

acrosomal sperm protein mainly expressed in human spermatozoa

and probably participating in the process of sperm-egg fusion

during fertilization. Finally, ACCN1 [12,13] encodes the Mamma-

lian Degenerin protein, a proton-gated channel permeable to

sodium, lithium and potassium. The function of these channels is

to generate ionic currents involved in the transmission of the

nervous signal. While it cannot be excluded that MYO1D,

TMEM98 or SPACA3 are involved in MS pathogenesis, ACCN1

immediately appeared to be the only strong MS susceptibility

candidate gene in the region explored (see the Discussion section

for further bio-epidemiological evidence pointing at ACCN1).

Table 1. Association testing of each of the microsatellites selected for genotyping in the 17q11.2 region of DNA.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Microsatellite Total number of alleles GLOBALa p-value LOCALb minp REGc minp

D17s582 6 0.90 0.90 0.69

D17s1294 6 0.86 0.98 0.80

D17s1800 8 0.11 0.03 0.09

D17S798 7 0.05 0.03 0.002

D17s1850 5 0.45 0.28 0.24

ap-value for the null hypothesis of no association of the microsatellite, calculated through the GLOBAL test procedure described in the Statistical analysis section.
bp-value for the null hypothesis of no association of the microsatellite, corresponding to the minp, pr1, obtained from the LOCAL testing procedure described in the
Statistical analysis section.

cp-value for the null hypothesis of no association of the microsatellite, corresponding to the minp, pr1, obtained from the REG testing procedure described in the
Statistical analysis section.

doi:10.1371/journal.pone.0000480.t001..
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Our subsequent analysis was entirely focused on the ACCN1

gene, that extends from 50 Kb to 900 Kb away from D17S798.

Direct sequencing of all the ten exons of this gene and their

flanking regions (introns and UTR regions) highlighted 28 SNPs.

These are described in Table 2. Of these, the five SNPs typed in

bold in Table 2 were selected for testing, the selection criterion

being based on minor allele frequency and quality control (for

details see Genomic region and marker selection, data preparation

and genotyping, and Tables S2 and S3). The last two columns of

Table 3 report p-values for the null hypothesis of no association,

for each of the five selected SNPs. These are permutation-adjusted

in such a way to control for family-wise error rate under five-fold

testing.

Out of the five SNPs tested, only rs28936 and rs28933 appear to

be significantly associated with MS, the former being significantly

associated under both the LOCAL and the REG test. These two

SNPs are closer to D17S798 than any of the remaining three SNPs

we have tested, and very close to each other. rs28936 and rs28933

were also in full LD with each other (D9 = 1, R2 = 0.91, see Tables

S4 and S5). In Table 3, the p-values obtained by using our REG

test (for details see Statistical analysis: regression based tests of

association section) are consistently lower than those obtained by

using the LOCAL test. This may be due to a greater sensitivity of

the REG test, owing to the fact that it incorporates the uncertainty

due to the imputation of haplotypes. By means of logistic

regression we also estimated the effect size for SNP rs28936,

corresponding to an odds ratio of 2.07 (1.4–3.1 95% CI) for the A

allele of this SNP, under a multiplicative model. In a conditional

analysis performed by using weighted regression (for details see

Statistical analysis: regression based tests of association section),

when we conditioned on the most significant SNP, rs28936, no

residual association was provided by the remaining four SNPs,

suggesting no evidence of multiple effects operating across the

studied SNPs. However, after conditioning on SNP rs28936,

residual association was still detected at the D17S798 micro-

satellite (p-value = 0.03), suggesting that another effect might

operate within ACCN1, or in a different gene, or in a non-coding

region in LD with D17S798. Note that our tests for association

tended to be conservative, since they were based on haplotypes

imputed under the null hypothesis of no association.

Finally, we tested for disease association the haplotype formed

by D17S798 and SNP rs28936. Based on both our LOCAL and

our REG test (giving minp values of 0.044 and 0.025, respectively)

we could reject the null hypothesis that no variant of that

haplotype was associated with disease. The ‘‘5.A’’ haplotypic

variant, representing a combination of allele 5 of D17S798 and the

‘‘A’’ allele of SNP rs28936, had 43.8 expected pseudo-cases vs 22.5

expected pseudo-controls, which suggested a deleterious effect of

this variant. By contrast the ‘‘6.G’’ variant, with 22.1 expected

pseudocases vs 46.5 expected pseudocontrols, appeared to have

Figure 1. Studied genomic region. This figure consists of three panels, (A,B,C). Panel A shows the location of the 17q11.2 region on Chromosome 17.
Panel B maps the position of four known genes (blue rectangles) in the region around D17S798, where a horizontal line represents DNA sequence,
and a pink bar marks the location of microsatellites D17S798 and D17S1800. The diagram conveys the fact that TMEM98 and SPACA3 (represented
above the horizontal line) lie on the forward helix, whereas Myo1D and ACCN1 (represented below the horizontal line) lie on the reverse helix. Panel C
zooms on gene ACCN1, showing the locations of the genotyped markers relative to D17S798, in Kb. In this latter panel, the horizontal line represents
genomic DNA, the pink dots represent the SNPs we have genotyped, the pink vertical bar represents microsatellite D17S1850, the blue bars represent
ACCN1 exons and the wavy solid line between exons corresponds to the ACCN1 introns. The ACCN1 gene is located on the reverse strand, so the
portion of ACCN1 near D17S798, where SNP rs28936 and SNP rs28933 are located, is the 39 UTR-exon10 region of the gene. The width of the introns
and exons in panel C is proportional to the actual length, with the exception of the first three very long introns (right portion of the panel) which
have been shortened. Gaps are represented by diagonal bars: three bars (intron1-2) = 1,043,911 base pairs; two bars (intron 3–4) = 60,470 base pairs;
one bar (intron 2–3) = 22,926 base pairs
doi:10.1371/journal.pone.0000480.g001
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a protective effect. The remaining variants (‘‘1.A’’, ‘‘1.G’’, ‘‘5.G’’,

‘‘6.A’’) appeared to have a neutral effect. Indeed, the variants

‘‘6.G’’ and ‘‘5.A’’ had the most significant and second most

significant associations, respectively, with a p-value (pr1) for variant

‘‘6.G’’ as low as 0.027 in our REG test (and pr1 = 0.044 in our

LOCAL test), and a p-value (pr2) for variant ‘‘5.A’’ as low as 0.025

in our REG test (and pr2 = 0.069 in our LOCAL test). The

adjusted p-values for the ‘‘6.G’’ and ‘‘5.A’’ variants were

considerably larger than the p-value for SNP rs28936 alone.

DISCUSSION
We have studied MS association in the genomic region 17q11.2 in

the isolated population of Nuoro, Sardinia. In the first stage of our

study we analysed five microsatellites scattered across an in-

dependently discovered MS linkage peak in 17q11.2. We found

one significant MS association at microsatellite D17S798. Of the

known genes surrounding this microsatellite, ACCN1 was identified

to be the best MS susceptibility candidate on the basis of external,

a priori, information. This prompted us to resequence the exons

and the 39 UTR segment of ACCN1, where SNPs were identified

and tested for MS association. Two SNPs (rs28936 and rs28933)

in the 39 UTR region of ACCN1 gave significant marginal

associations after adjusting for five-fold SNP testing. Confidence in

a genuine association is strengthened by the fact that the two most

significant associations were found on two SNPs that occupy

adjacent positions in the sequence of tested markers, and,

moreover, by the fact that both these significant SNPs have a high

frequency of the minor allele. Moreover, consider that the effect

size for the deleterious allele of SNP rs28936, on an odds ratio

scale, was as high as 2.07 (1.4–3.1 95% CI). Odds ratios of this

magnitude are not unexpected in a genetically homogeneous, high

disease prevalence, population. The power to detect such an effect

by our method, given our sample size, is greater than 87% for any

value of a greater than 0.01. Recall that our method, due to the

particular permutation procedure, may lose sensitivity in those

situations where the conditioning on nucleus founders is un-

necessary. When we conditioned on SNP rs28936, no residual

association was provided by the remaining four SNPs, suggesting

no evidence of multiple effects operating across the studied SNPs.

In the following we discuss (i) current knowledge about the biology

of ACCN1, and (ii) external evidence supporting an involvement of

ACCN1 in MS. Finally we shall suggest a possible role of ACCN1 in

the aetiology of MS, in the light of the available evidence.

The ACCN1 gene, a member of the family of amiloride sensitive

cation channel acid sensing ion channels [13], encodes the

Mammalian Degenerin (MDEG, Q16515) protein, a proton-gated

channel permeable to sodium, lithium and potassium. The

function of these channels is to generate ionic currents involved

in the transmission of the nervous signal. MDEG has two isoforms,

MDEG1 and MDEG2, with different biological properties [14].

MDEG1, expressed in the postsynaptic membrane of granule cells

and in the Purkinje cells of the cerebellum, can form an active

ionic channel either as a standalone, or by binding other proteins

of its family, and is activated by a low pH. MDEG2, expressed in

the brain and in sensory neurons, cannot form an active ionic

channel as a standalone, but participates in an heterodimeric

active ionic channel by interacting with another protein of its

family. For example, MDEG2 interacts with the Amiloride-sensitive

Cation Channel 3 (ACCN3) to form a channel where the ionic current

is modulated by the Protein Kinase C, presumably the alpha

isoform, [15] via shared interaction with the Protein Kinase C

Alpha Binding Protein (PRKCABP), an adaptor protein encoded

by the Protein Interacting with C Kinase 1 (PICK1,

ENSG00000100151) gene. Interestingly, an heteromer formed

by the above proteins is involved in the sensation of pain caused by

low pH values. Furthermore, there is evidence that MDEG

participates in mechanosensation, perception of taste, perception

of pain and possibly in neurotransmission and neuromodulation

[16]. In addition, mice knock-out experiments have shown that it

is required for normal light-touch sensation [17]. See [16] for

a review of current understanding of the ACCN1 gene and its

family, including their potential pathogenetic role and the

possibility of therapeutic modification. The hypothesis of an

involvement of ACCN1 in MS is well within the realms of

possibility, as indicated by the following experimental, clinical and

epidemiological evidence:

1. In the nematode Caenorhabditis elegans, mutations of MDEG

homologues known as degenerins (deg-1, mec-4, mec-10) are

the major known causes of hereditary neurodegeneration,

according to experimental literature [12].

2. The MDEG1 channel is constitutively activated in the

presence of the same mutation that causes degeneration in

the nematode [12]. This has led to the suggestion that a gain

of function of the MDEG1 channel might be involved in

human forms of neurodegeneration.

Table 3. Association testing of each of the five SNPs genotyped in the ACCN1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SNP Variant allele
Pseudo casesn (exp
freq)

Pseudo controlso (exp
freq) LOCALp p-value REGq p-value

rs28936 G 57.0 83.0 0.0078 (0.02) 0.0004 (0.002)

rs28933 A 55.8 78.4 0.017 (N.S.) 0.002 (0.01)

rs3025251 A 27.6 16.6 0.204 (N.S.) 0.135 (N.S.)

rs2074215 A 99.3 112.0 0.116 (N.S.) 0.062 (N.S.)

rs16571 T 72.1 69 0.727 (N.S.) 0.676 (N.S.)

nExpected frequency of pseudocases carrying the variant allele.
oExpected frequency of pseudocontrols carrying the variant allele.
pThe first number is the unadjusted p-value for the null hypothesis of no association of the SNP, based on the Z statistic for the 262 table comparing the two alleles of
the SNP. The second number, in brackets, is the corresponding adjusted version of the p-value, calculated through the LOCAL test procedure described in the
Statistical analysis section, to correct for the five-fold multiplicity.

qThe first number is the unadjusted p-value for the null hypothesis of no association of the SNP, based on an unconditional weighted logistic regression. The second
number, in brackets, is the corresponding adjusted version of the p-value, calculated through the REG test procedure described in the Statistical analysis section, to
correct for the five-fold multiplicity. The symbol ‘‘N.S.’’ stands for ‘‘statistically non significant’’.

doi:10.1371/journal.pone.0000480.t003..
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3. A link between ACCN1 and neurodegeneration, suggested in

the above two points, appears particularly interesting in the

light of recent evidence that the primary insult in MS may

indeed be of a neurodegenerative (rather than inflammatory)

kind [18]. Such a kind of insult, it is suggested in [18], might

bring in its wake a harmful autoimmunity, itself causing

further collateral damage to neurons, in the context of

a positive feedback link that might well set the pace of

a progressive neuronal injury at certain stages of MS or in

some MS patients.

4. An involvement of a deregulated ion channel in MS has been

reported [19]. More specifically cerebellar ataxia, a sign that

accompanies MS, seems to be due to an increased expression

of sensory-neuron-specific sodium channels in the Purkinje

cells, leading to increased ionic current inside the cells and to

consequent alterations in cellular functions.

The following points also indicate, albeit rather indirectly,

plausibility of an involvement of ACCN1 in MS:

N there is now evidence that susceptibility to common autoim-

mune disorders such as Type 1 diabetes, Graves’ disease and

autoimmune hypothyroidism [20,21] may largely depend on

genetic variation in untranslated genic regions, possibly

involving a modification of the localization, stability or splicing

of the messenger Ribonucleic Acids (mRNAs). This suggests

that a deregulated expression of ACCN1, possibly an over-

expression resulting in an increased ionic current when the

channel is activated, may underlie our finding of an MS

association at the rs28936 polymorphism in the 39 UTR region

of ACCN1;

N an association between the Protein Kinase C alpha (PRKCA,

ENSG00000154229) and MS has been observed in the Finnish

and Canadian populations [22]. In the light of the previously

discussed functional link between the Protein Kinase C alpha

and MDEG2 (encoded by the ACCN1 gene), the above finding

provides indirect prior evidence in favour of a genuine

involvement of ACCN1 in MS patho-genesis, thereby adding

weight to the results of our analysis. These findings, combined

with the results our study, point to a possible interaction

between PRKCA and ACCN1 in the context of MS association,

a possible target for future investigation;

N the region 17q11.2 where ACCN1 gene is located is syntenic to

the Eae18b QTL on rat Chromosome 10. This locus of

approximately 3Mb in length was found to be associated with

the murine model of multiple sclerosis EAE (Experimental

Autoimmune Encephalomyelitis), displaying maximum LOD

scores in the range 4.5 to 5.8, depending on the EAE

phenotype. The ACCN1 gene is included in this linkage interval

and the peak linkage marker D10Rat123 is internal to the gene

[23].

We would add that secondary inflammation in MS, as long as it

is accompanied by acidosis, might activate the MDEG1 ion

channel, and consequently lead to cell death in the context of

a progressive, inflammation-mediated, neurodegenerative process.

Our results point to a family of ion channels which are considered

to be potential drug targets because they are involved in

neuropathic pain. If the above hypotheses are true, future drugs

for neuropathic pain might work also in the treatment of MS,

perhaps as a prophylactic measure to prevent inflammation in the

early stage of the disease, or in combination with immunosup-

pressor drugs in the subsequent stages of the disease. In our

opinion, the above considerations motivate further experimental

and epidemiological investigation of the role of ACCN1 in MS

aetiology. Finally, our statistical results do not exclude presence of

other SNPs within (or in the proximity of) ACCN1, that are also

associated with MS, thereby motivating future, more extensive,

exploration of the genomic region in the vicinity of D17S798.

MATERIALS AND METHODS

Genomic region and marker selection, data

preparation and genotyping
Table S1 describes the five high heterozygosity microsatellites

which we selected for typing in 17q11.2. Some were used in

previously mentioned genome screens, or located near markers

used in previously published work.

All the ten exons of ACCN1 and their flanking regions (introns

and UTRs) were directly sequenced, which led to identifying 28

SNPs. All of these were found in non-coding regions, with the

exception of the SNP 1147090 found in exon number 10. This

non-synonymous SNP leads to a Pro499Ser substitution; however,

we excluded it from the association analysis due to the very low

minor allele frequency. Of the 28 identified SNPs, the five SNPs

highlighted in bold in Table 2 were selected for inclusion in the

association analysis. The criteria for selection were: (i) a minimum

call rate of 90%, (ii) consistency with Hardy-Weinberg Equilib-

rium (HWE) in founders at a p-value $0.01 (iii) presence of

homozygous genotypes of major/minor alleles and presence of the

heterozygous genotype, (iv) heterozygosity greater than 0.25, (v)

a minor allele frequency (MAF) greater than 10%. The choice of

10% as a threshold for MAF was motivated by the fact that, given

our sample size, an SNP with an MAF below 10% cannot

contribute appreciable evidence of an association.

From the schematic diagram of Figure 1 it appears that two of

the five selected SNPs are located in the 39 UTR region flanking

exon 10, two are located within intron 8–9, and one is located in

intron 6–7. Because ACCN1 is a very long gene, with as many as

ten exons and with the longest intron (intron 1–2) in its

chromosome [24], our chosen SNPs do not provide a complete

coverage of it, with the exception that the 39 UTR portion of the

gene was found to contain all the tag SNPs listed in the HapMap

Project (see http:// www.hapmap.org [25]) for that portion of the

gene. Moreover, we improved the coverage by including in the

analysis the microsatellite D17S1850, located within the gene in

the intron 1–2. Exon sequencing details are given in Tables S2 and

S3. The blood sample collection was performed at the Division of

Neurology, S.Francesco Hospital, Nuoro (I); the buffy coat

preparation and the DNA extraction, according to classical salting

out protocol, were performed at the Centro di Tipizzazione

Tissutale of the Azienda Sanitaria Locale Nu3, Nuoro, where the

biological bank resides. Further DNA extraction from buffy coat,

microsatellite typing and gene sequencing were performed at the

Centre National de Genotypage, Evry, France (see http://www.

cng.fr/).

Statistical analysis
In a classical trio study, an ascertained proband is genotyped along

with his or her parents to form a proband-parent trio. The present

study extends this design by including two further ascertainment

schemes. In the first, a proband is genotyped along with his or her

spouse (and possibly their offspring). In the second, an isolated

proband is recruited into the study to act as an isolated case

with a corresponding control, matched by village of origin. Our

study embraces all these three ascertainment schemes, by

including proband-parent trios, which we call type-1 nuclei,

proband-spouse-offspring trios, which we call type-2 nuclei, and

ACCN1 and Multiple Sclerosis
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matched case-control pairs, which we call type-3 nuclei. A founder is

any individual who has no parents included in his/her own

nucleus. Thus, in a nucleus of type 1 or 2 the two parents are the

founders, whereas in a nucleus of type 3, where there is no

offspring, both the proband and the corresponding matched

control are founders.

Pseudocases and Pseudocontrols
We regard a family-based association study as a special case of

matched case/control analysis, where each nucleus contributes

pseudocases and pseudocontrols. Biernacka and Cordell [26] define

pseudocases and pseudocontrols at a genotype level. We favour the

following, different, option: in type-1 nuclei, we define the

pseudocases to be the two parental haplotypes transmitted to the

proband, and the pseudocontrols to be the remaining two parental

haplotypes. In type-2 nuclei, we define the pseudocases to be the

two haplotypes found in the proband, and the pseudocontrols to

be those found in the spouse. In type-3 nuclei, we define the

pseudo-cases to be the two haplotypes found in the proband, and

the pseudocontrols to be those found in the proband’s matched

control. Under a null hypothesis of no disease association at the

studied loci, any haplotype variant should be approximately

equally frequent in the pseudocases and in the pseudocontrols,

under each of the three different ascertainment schemes. We pool

the three types of nuclei into a joint analysis which looks for

haplotype variants that are significantly more (or less) frequent in

the pseudo-cases than in the pseudocontrols. A large disparity

between the pseudocase and pseudocontrol counts, for any

particular haplotypic variant, may be taken to indicate evidence

of an association. In the spirit of the Transmission Disequilibrium

Test [27], our analysis acknowledges the mutual matching of

pseudocases and pseudocontrols in the same nucleus.

One reason for choosing a haplotype-level analysis, rather than

a genotype-level one, is that in the presence of occasional

genotyping failures the missing allele calls can be imputed by

‘‘borrowing strength’’ from information about the neighbouring

loci, so as to exploit linkage disequilibrium over the studied DNA

region. Given a set of genotyping data, at multiple loci, we

estimated the (imperfectly observed) haplotypic phase and, at the

same time, imputed any missing calls at a particular locus by

combining information about population-level haplotypic frequen-

cies with information about the neighbouring loci. The ability to

‘‘borrow strength’’ from information about neighbouring loci will

attenuate the impact of biased missingness, for example when an

SNP is preferentially losing heterozygotes. The method avoids the

need to eliminate families with ambiguous haplotypes, which

would incur bias, and moreover allows tests of association to be

performed at a haplotype level, whenever appropriate [28,29].

Reconstructing the Haplotypes
Our data include incomplete genotype measurements in the

studied founders, denoted by GF, incomplete genotype measure-

ments in the offspring, denoted by GO, and the ascertainment

status of each studied individual, represented by a vector D

pointing at individuals with an ascertainment proband status.

Unknown quantities in the problem are complete haplotype

information for all founders, HF, and complete haplotype

information for all offspring, HO. We use data (GF,GO, D) to

make inferences about (HF,HO), under the assumption that (i) no

recombinations within the studied DNA region occur in the

parent-to-offspring meioses, and that (ii) genotyping error is

absent. Violations of the latter assumption were preliminarily

checked by looking at locus-specific deviations from HWE, and at

mendelian consistency between parental and offspring genotypes.

Consider the Bayesian posterior for HF, denoted as p(HF) and

proportional to P(HF,GF,GO,D). Because under a null assump-

tion of no disease association D is independent of (HF,GF,GO), we

may write:

p(HF)!P(HF,GF,GO)~P(GFjHF,GO) P(GOjHF) P(HF),

where stands for ‘‘proportional to’’. Because GF is a deterministic

function of HF, and therefore independent of GO, once we know

HF, we may simplify this as follows:

p(HF)!P(GFjHF) P(GOjHF) P(HF):

Under assumption (ii) above, P(GF|HF) indicates logical consis-

tency between the founder haplotype assignments, HF, and the

corresponding observed genotypes, GF. The term P(GO|HF), in

type-1 and type-2 nuclei, reflects mendelian consistency between

founder haplotypes and observed offspring genotypes (depending

on the proportion of patterns of transmission of the parental

haplotypes which match the observed offspring genotypes). The

term P(HF) represents prior assumptions about the population

distribution of haplotypes (see below).

We use the MCMC-based PHASE software [30] to draw from

p(HF) samples of HF, denoted HF(1), HF(2), …, HF(M). In this

software, P(HF) is shaped around the population genetics model

proposed by Stephens et al [31]. Next, in order to identify the

pseudocases and the pseudocontrols in each nucleus, we associate

each HF(i), (for i = 1,…,M), with a corresponding sample of HO,

denoted by HO(i), extracted from P(HO| HF(i),GO). Note that

P(HO|HF,GO) specifies in each nucleus the probability of any

particular haplotype assignment in the offspring, conditional on

the founders’ haplotypes and on the available genotyping data. We

end up with a set {(HF(i),HO(i))} of samples whose empirical

distribution approximates the posterior distribution of (HF,HO).

From these samples, we obtain the probability of any particular

pseudocase/control assignment in any particular nucleus, which

enables us to generate a reconstruction table. This is a table where

each row corresponds to a distinct, posterior-weighted, pseudo-

case/control assignment in a particular nucleus. Each nucleus

generally contributes separate rows in the reconstruction table, one

row for each distinct pseudocase/control assignment with positive

probability in the posterior, for that nucleus. Shown in Table 4 is

a pedagogic example of a reconstruction table with only three

nuclei represented in it. In this example, the first row represents an

assignment where founder 1 of nucleus 264 has haplotypes AGT

and AAC, both acting as pseudocases, whereas the third row

represents an assignment where founder 1 of nucleus 1121 has

case haplotype GGT and control haplotype AAC. In our analysis,

each pseudocase or pseudocontrol haplotype in the table was

defined over the complete sequence of DNA loci under study. In

the last column of the table, a (posterior) weight gives the relative

proportion of times that any particular haplotype assignment in

a particular nucleus was generated by the Markov chain. Recall

that the reconstruction table has been generated under a null

hypothesis of no association. Any test of association based on such

a table, including the tests we are going to propose, will tend to be

conservative, as a consequence of this fact.

A GLOBAL Test of Microsatellite Association
The p-values in column 3 of Table 1 have been obtained by

separately applying to each of a set of five microsatellites the

following GLOBAL test of association. Let our global null

ACCN1 and Multiple Sclerosis

PLoS ONE | www.plosone.org 7 May 2007 | Issue 5 | e480



hypothesis, H0, assert that none of the m alleles of a microsatellite

is associated with the disease. To reject/accept H0 as a whole, we

proceed as follows. From the reconstruction table we obtain, by

weighted averaging, the expected frequency of copies of allele j

that are pseudocases (tij) and pseudocontrols (uij) in nucleus i, for all

relevant combinations of i and j. By summing over the nuclei we

obtain dj = Si(tij2uij), and d = (d1, …, dm). A marked departure of

dj from zero indicates a deleterious (or protective) effect of allelic

variant j on disease risk. Under H0 we can freely interchange the

entire vector ti = (ti1, …, tim) with ui = (ui1, …, uim), with probability

0.5, independently in each i-th nucleus. Under the resulting

permutation distribution, d has zero expectation and variance

covariance matrix V: {vhk = Si(tih2uih)(tik2uik)}. A global test of H0

can be based on the fact that under such permutation distribution

the statistic Z = d’V2d (where V2 denotes the generalized inverse of

V) has an asymptotic x2
m{1 distribution. Because the test is per-

formed under a null permutation distribution which conditions on

the set of founder haplotypes in each nucleus, it is robust to popula-

tion stratification differences between nuclei. Due to the presence of

type-3 nuclei, the method is not robust to population stratification

differences within the nucleus founders. The problem is attenuated by

the fact that we study an isolated population, and that we match the

two founders of each type-3 nucleus by village of origin.

LOCAL Tests via Permutation
The above, global, test may be undersensitive when departure

from the null hypothesis is entirely explained by one or few alleles

of a highly polymorphic microsatellite. We may then consider the

following, alternative, LOCAL test procedure. Each allele is

compared against the group of all others by forming a 262 table of

pseudocase/control expected frequencies, generated by weighted

averaging over the reconstruction table. Let T be the largest of the Z

statistics of 262 tables, each of which compares one allele against all

others. To obtain an empirical p-value for H0, denoted minp, we

compare T with its distribution under random permutations of the

reconstruction table. These are performed by randomly inter-

changing the pseudocase with the pseudocontrol haplotypes, with

probability 0.5 independently in each row of the reconstruction

table. The same properties of robustness we have mentioned in the

context of our GLOBAL test hold for this LOCAL test. It should be

noted that, when we omit the pseudocase/control labels of the

haplotypes, the reconstruction table does not provide information

about the null hypothesis of no disease association, yet it is

representative of the uncertainty about nuisance parameters related

to the unobserved haplotypic phase and missing allele calls. By

testing association via permutations of the pseudocase/control labels,

independently in each row of the reconstruction table, we come close

to conditioning on the values of a complex set of nuisance

parameters unrelated to the null hypothesis.

A comparison between columns 3 and 4 of Table 1 shows a clear

tendency of the minp calculated through the LOCAL test to be

more sensitive than the test of the previous section, in the study of

our microsatellites. A similar procedure we have used to test

association of the five SNPs of the ACCN1 gene. First, we have

calculated a separate unadjusted p-value for each SNP, essentially

by treating it as a bi-morphic microsatellite so that the test of the

previous section could be applied. We have then ordered the

unadjusted p-values for the various SNPs such that

pr1#pr2#…#prm. In order to adjust for multiple SNP testing,

each prj is then transformed into a corresponding adjusted p-value,

prj, using the permuted replicates of the reconstruction table we

had previously generated in the analysis of microsatellites. From

each of these replicates, an ordered set of p-values for the various

SNPs, Pr1#Pr2#…#Prm, is obtained. Essentially, we calculate prj

as the proportion of replicates where prj is equal to or less than

min(Prj, …#Prm), with a possible modification required to ensure

monotonicity of the {prj} [32,33]. The procedure ensures a strong

control of the family-wise error rate under multiple SNP testing.

Column 5 of Table 3 contains p-values calculated through the

procedure just described. Because our permutation procedure

preserves correlation between SNPs, the reported p-values

acknowledge non-independence of the tests.

Regression-Based Tests of Association
The test procedures described so far are based on expected

pseudocase/control frequencies, and therefore ignore uncertainty

due to haplotype reconstruction. An alternative, inspired by

a paper by Cordell [34], is to use the following REG test based on

unconditional logistic regression [35,36]. With reference to our

analysis of the five SNPs of Table 3, the idea is to perform

a separate regression analysis on each individual SNP. In the

regression, each of the four haplotypes in each row of the

reconstruction table is treated as an independently observed

response/covariate pair, where the response is 0 for a pseudocon-

trol and 1 for a pseudocase, and where the covariate represents

presence/absence of the minor allele in the SNP of interest. By

opting for the ‘‘weighted logistic regression’’ option found in most

statistical packages, we allow the observations contributed by any

particular row of the reconstruction table to enter the regression

with a relative importance fixed by the corresponding posterior

weight. For each jth SNP, we obtain a corresponding estimate of

the relative risk parameter, bj, and a corresponding Wald’s statistic

Table 4. Pedagogic example of a reconstruction table with only three nuclei represented in it. See explanation in the main text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Family Nucleus type
Founder 1 Founder 2

Weight
Pseudocase Pseudocontrol Pseudocase Pseudocontrol

264 2 assignment 1 AGT GGT 0.35

AAC GGT

264 2 assignment 2 GGT GGT 0.65

AAC AGT

1121 1 assignment 1 GGT AAC GAC GGC 0.25

1121 1 assignment 2 GAT AGC GAC GGC 0.50

1121 1 assignment 3 GGT AAC GGC GAC 0.25

660 1 assignment 1 GGT AAC GGC GGC 1.0

doi:10.1371/journal.pone.0000480.t004..
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and p-value. The p-values (one for each SNP) are then

permutation-adjusted to account for multiple SNP testing.

Embedding Cordell’s regression approach within a permutation

scheme protects from the possibility that the weighting scheme

used in the regression does not rigorously correspond to a likeli-

hood in a specific model of the data. Because of its ability to

incorporate haplotype assignment uncertainty, the REG test

should be more sensitive than the LOCAL test, and the results

of Table 3 seem to confirm this. We also used an extension of the

above REG procedure, where a permutation-based p-value for the

hypothesis of no association of a target marker is computed by

adjusting for the effect of a conditioning marker. This simply requires

including a covariate term for both the conditioning and target

markers in the regression equation.

The data management and the statistical analysis of the

reconstructed haplotype configurations, according to the proposed

methods, were performed with the aid of the software package

GADA (Genetic Association Downstream Analysis), written in R

by one author (CB).
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