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Abstract. We prove the linear independence of the L-functions, and of their derivatives of any
order, in a large class % defined axiomatically. Such a class contains in particular the Selberg
class as well as the Artin and the automorphic L-functions. Moreover, % is a multiplicative
group, and hence our result also proves the linear independence of the inverses of such L-
functions.
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1 Introduction

In a previous paper [4], we proved that the L-functions in the Selberg class & (see the
survey papers [3] and [5] for definitions and basic properties) are linearly independent
over C and, more generally, over the ring of the p-finite Dirichlet series (see [4] for
definition). Although it is expected that the class . contains all reasonable global
L-functions (see [3], [5]), this is far from being proved at present. As a consequence,
there are several examples of classical L-functions, such as the Artin L-functions,
which are not yet known to belong to . It is therefore natural to ask for a more
general result, establishing the linear independence inside a suitably larger class of L-
functions, unconditionally containing both . and several classical examples of L-
functions.

In this paper we prove a general result on the linear independence of the derivatives
of any order of the L-functions, and of their inverses, in a large class % defined below.
Such a class does in fact contain the class % as well as several important L-functions,
in particular the Artin L-functions and the automorphic L-functions. We remark that
Nicolae [6] has recently obtained a weaker result of this type in the special case of
Artin L-functions. However, his result follows from the arguments in [4]. In fact, the
results in this paper are also based on the arguments in [4].

We define the class ¢ of L-functions by the following axioms. A function F(s) be-
longs to ¥ if

i) F(s) is an absolutely convergent Dirichlet series for ¢ sufficiently large, and has
meromorphic continuation to € as a function of finite order;
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ii) F(s) satisfies a functional equation of type
Y($)F(s) = oj(l — 5)F(1 —s)

where |w| = 1, f(s) = f(3) and the y-factor y(s) has the form

y@=@ﬁﬂm+w
=

with 0 >0, 0 # 4; € R and y, € C;
iii) for ¢ sufficiently large

szgﬂw
where

b(p")
1 p ms

s

log F,(s) =

with b(p™) « p™ for some 0 < %

3

1

It is easy to check that € contains the Selberg class % and also several well known
L-functions, such as the Artin L-functions and the GL(n) cuspidal automorphic L-
functions (see [2] and [7] for the latter case, ensuring that axioms i)—iii) are satisfied).
Moreover, while & is a multiplicative semigroup, our class % is a multiplicative
group thanks to condition 4; # 0 in axiom ii). Indeed, if F € ¥ satisfies the functional
equation in i), then F(s) ™' satisfies

FE@) " = 151 - )F(1 —s)"!

w

with

3(s) = (;)Hl F(~Jss+ 7+ 7).

and it is easy to see that F(s)”' satisfies axioms i) and iii) as well. Therefore, % con-

tains also the inverse of all the functions in &, of the Artin L-functions and of the
GL(n) cuspidal automorphic L-functions.

Denoting as usual by F*)(s) the k-th derivative of the function F(s) we have

Theorem. Let Fi(s), ..., Fx(s) be distinct non-constant functions in € and K be a non-
negative integer. Then the functions
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FO),...,FX ), FV), ..., F ), .. PV (s), ..., F{(s)
are linearly independent over C.

As a corollary of the Theorem we obtain for instance that the Artin L-functions,
their inverses and the derivatives of any order are linearly independent, and the same
applies to most L-functions. Moreover, the same arguments in the proof of the Theo-
rem can be used to prove a more general result, where linear independence is over the
ring of p-finite Dirichlet series, derivatives are replaced by suitable convolutions by
additive functions, and the axioms of the class % are suitably relaxed.

The proof of the Theorem is based on two lemmas. Given an arithmetical function
f(n) and a non-negative integer k we write /®)(n) = (=1)*f(n) log¥ n for its arith-
metic k-th derivative. Moreover, two multiplicative arithmetical functions f(n) and
g(n) are called equivalent if f(p™) = g(p™) for all integers m > 1 and all but finitely
many primes p. Further, we denote by e(n) the identity function, defined by e(1) = 1
and e(n) =0 for n > 2. Our first lemma deals with the linear independence of the
derivatives of non-equivalent multiplicative functions.

Lemma 1. Let fi(n),..., fy(n) be multiplicative functions such that e(n), fi(n),...,
fn(n) are pairwise non-equivalent, and let K be a non-negative integer. Then the func-
tions

(0 (K (0 (K (0 (K
00, m), 00, SO, ), D ()

are linearly independent over C.

Our second lemma proves the multiplicity one property for the class €.

Lemma 2. Let F, G € € satisfy F,(s) = G,(s) for all but finitely many primes p. Then
F(s) = G(s).

We remark that the bound b(p™) « p™ for some 0 <1 in axiom iii) is crucial
for Lemma 2. In fact, Lemma 2 does not hold if condition 6 <% is relaxed, as
the following example shows. Let P(s) = (1 —2%7%)(1 —2°~%) with a,he R and
a+ b =1, and hence h(2") » 2max(@b)m in this case. Clearly, P(s) satisfies 2°P(s) =
21=5P(1 — 5), therefore P(s)F(s) belongs to % for any F € 4. Thus Lemma 2 does not
hold for ¥ if condition 0 < % is relaxed.

Since Lemma 2 shows that the coefficients of functions in 4 are pairwise non-
equivalent multiplicative functions, the Theorem follows at once from Lemma 1.

Acknowledgments. We wish to thank Zeé¢v Rudnick for supplying the required infor-
mation about automorphic L-functions. This research was partially supported by a
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PO3A 008 26.
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2 Proofs

In the proof of Lemma 1 we may clearly assume that K > 1, otherwise the result fol-
lows from Theorem 2 in [4]. We remark here that there are two misprints in the proof
of Theorem 2 of [4]: on page 30, line —8, change “for j =2,...,N” to “for some
Jj€{2,...,N}”, and on page 31, line 4, change ““and the ¢;(n) are non-identically
vanishing” to “and some ¢;(n) is non-identically vanishing”.

We prove Lemma 1| by contradiction. Assume that there exists an identically van-
ishing non-trivial linear combination of derivatives of arithmetical functions satisfy-
ing the properties in Lemma 1. That is, suppose there exist f(n),..., fv(n) as in
Lemma 1, an integer K > 1 and complex numbers cj not all zero such that for every
n>1

N K *) N K « x
(1) > 2 ety (n) =325 (=1) ¢ fi(n) log"n = 0.
j=1k=0 j=1k=0

We assume that K is minimal over all such linear combinations and, with such a K,
also that

v={J:¢r # 0}

1s minimal.

Suppose that v > 2, assume without loss of generality that cig,cyx # 0, and let
qo > 1 be such that fi(qo) # f2(qo). For every n coprime with ¢, we have

@ 3 o lam =3 & -0 ot log a0 finog'n =0

Multiplying (1) by fi(go) and then subtracting from (2) we get

K -
(3) S (=) fi(n) logh n = 0,
j=1k=0

where ¢, are suitable complex numbers with ¢;x = ¢k (fi(q0) — f1(qo)) and

f;(n) = {f,(n) if (n,q0) =1

0 otherwise.

Since the functions f;(n) satisfy the properties required by Lemma 1, the fact that (3)
holds with ¢;x = 0 contradicts the minimality of v.

Therefore v = 1 and (1) takes the form
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N K-1

@) ofi(n)logKn+ > kg:j()(—l)"cjk_;;(n) loghn =0

with some ¢ # 0. Let now ¢; > 1 be such that fi(g;) # 0. Arguing as before, using ¢;
in place of ¢, from (4) we obtain

—1

K
(5) > (=) e f; () log* n =0,
j=1 k=0

where ¢, are suitable complex numbers with ¢, = ¢Kfi(¢1)logg: and the func-
tions f;*(n) are defined analogously to the f(n)’s, with ¢o replaced by ¢;. Since
cix_; # 0, equation (5) contradicts the minimality of K, and Lemma 1 follows. []

In order to prove Lemma 2 we write the functional equation of F € ¥ in the form
P (S)F(s) = 0¥ (1 = $)F(1 - s),
where the modified y-factor y*(s) is defined by

[D,20 T(4s + 1)

7 = LTG0 =) )

(as usual, an empty product equals 1). Let

_ _ 1 B _VF
h(s) = 0] —pl_[%% and H(s) = o)

where 2 is a finite set of primes and y;(s), y5(s) are modified y-factors of F(s) and
G(s), respectively. By iii), every p-th Euler factor F,(s) and G,(s) is holomorphic and
non-vanishing for ¢ > %, hence /(s) is holomorphic and non-vanishing for o 2%
as well. Moreover, by the properties of the I" function, the quotient yj(s)/y&(s) is
meromorphic with finitely many zeros and poles for ¢ >1, and hence the same
property holds for H(s) as well. Therefore H(s) is meromorphic over € with finitely
many zeros and poles by ii), and hence by i) there exists a rational function R(s) such
that R(s)H (s) is an entire non-vanishing function of order at most 1. Thus by Hada-
mard’s theory we get

5 7eas'+b VZ‘(S)
© M= R

for some a,b € C.

Now we use the following classical result of Bohr [1]: if f(¢) is an almost periodic
function satisfying |f(¢)| > k > 0, then arg f(¢) = At + ¢(¢) with 1 € R and ¢(¢) al-



6 J. Kaczorowski, G. Molteni, A. Perelli

most periodic. Let ¢ be sufficiently large. Then A(s) is an absolutely convergent Di-
richlet series

Wo+if) =3

with ¢(1) = 1 and ¢(n) « n* for some constant 4. Therefore /(s) is almost periodic in
t and satisfies the hypothesis of Bohr’s theorem. Applying Stirling’s formula to the
right hand side of (6) with a sufficiently large fixed ¢ = g we obtain

h(00+il) :ceo:tl/fel}'floglelét(l_’_0(?)) {— 400

with ¢ e C and «,f,7,0 € R. By almost periodicity we have that « = f = 0 and by
Bohr’s theorem we deduce that y = 0 as well, hence

(7) e oy +it)=c+o(l) t— 4.

By almost periodicity, the right hand side of (7) must be constant, thus for s = gy + it
we have

h(S) _ edﬁLe

for some d, e € C. By analytic continuation and by the uniqueness principle for gen-
eralized Dirichlet series we deduce that d = 0, and hence /(s) = 1 since ¢(1) = 1. [

We remark that, once (6) is established, there is a more direct proof of Lemma 2 in
the case where the Euler factors of functions in % are of polynomial type, that is

eio/'(P) -1

) swee

This is the case, for instance, of automorphlc L-functions. In fact, m this case the
zeros and poles of /(i) consist of finitely many “vertical progressions’ i - (g’;) +igh ggpl

The zeros and poles of the RHS of (6) consist of finitely many zeros and poles of
R(s)_1 as well as finitely many “horizontal semi-progressions”’, caused by the poles of
the I" function. Therefore, (6) implies that each side is identically one, and Lemma 2

follows. We wish to thank the referee for this remark.
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