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Scaling behavior in crackle sound during lung inflation
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During slow inflation of lung lobes, we measure a sequence of short explosive transient sound waves called
‘‘crackles,’’ each consisting of an initial spike followed by ringing. The crackle time series is irregular and
intermittent, with the number of spikes of sizes following a power law,n(s)}s2a, with a52.7760.05. We
develop a model of crackle wave generation and propagation in a tree structure that combines the avalanchelike
opening of airway segments with the wave propagation of crackles in a tree structure. The agreement between
experiments and simulations suggests that~i! the irregularities are a consequence of structural heterogeneity in
the lung,~ii ! the intermittent behavior is due to the avalanchelike opening, and~iii ! the scaling is a result of
successive attenuations acting on the sound spikes as they propagate through a cascade of bifurcations along
the airway tree.@S1063-651X~99!13810-8#

PACS number~s!: 87.19.2j, 43.25.1y
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I. INTRODUCTION

There is much current interest in the puzzling phys
associated with the lung@1–6#. In particular, the short ‘‘ex-
plosive’’ transient waves, called crackles, are not fully u
derstood. Forgacs@7# proposed that crackles are associa
with the sudden opening of closed airways. The discr
emission of crackles from the lung tissue has been mod
as a stress-relaxation quadrupole@8#, and this work has re-
ceived experimental support@9#. Also, gas trapping during
inflation has been found to correlate with crackle sound
tensity@10#. Characteristics of individual crackles have lon
been used as diagnostic tools@11–13#. However, in spite of
growing recent interest@12#, there has been no detailed st
tistical analysis of crackle sound. Here, we analyze lu
sounds collected under conditions thatpromotecrackle gen-
eration. We find that the distribution of crackle intensiti
follows a power law, which we interpret using a model
crackle generation and propagation in a tree structure m
icking the bronchial geometry.

II. EXPERIMENTAL DATA

We measure the sound pressure field generated by ai
openings in isolated dog lung lobes. We cannulate the m
bronchus of the lobes, and place the lobes in an airt
chamber with the cannula attached to a metal tube whic
led through the lid of the chamber. We inflate the lobes
120 s from the collapsed state to total lobe capacity by c
ating a steadily increasing negative pressure in the cham
using a suction pump. The inlet of the main bronchus and
outlet of the suction pump are connected to separate
chanical low-pass filters to minimize environmental a
pump noise in the acoustic measurements. To minimize
effects of possible reflections from the low-pass filter back
PRE 601063-651X/99/60~4!/4659~5!/$15.00
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the microphone, we use a 4-m-long uniform tube with
change in its characteristic impedance. We detect the so
at the inlet of the main bronchus with a low-noise micr
phone, amplified and sampled at a rate of 22 050 Hz.
record chamber pressure with respect to atmospheric p
sure ~transpulmonary pressure! and airflow to the lobes
sampled at a rate of 80 Hz. Pressure and airflow were m
sured using a Valydine MP-45 transducer (50 cm H2O) and
a screen pneumotachometer~resistance of 5 cm H2O/l/s) at-
tached to another Validyne MP-45 transducer (2 cm H2O),
respectively. We collect a total of 12 pressure-volume cur
and 12 sound pressure time series during the slow infla
of 12 separate lobes. At the beginning of inflation, the sou
pressure time series display a discrete set of crackle
intermittent pressure transients, each consisting of an in
negative spike followed by a short ringing@see Fig. 1~a!#.
When the pressure-volume curve reaches its lower kn
massive airway openings generate dense and overlap
wave packets. The envelope of the time series gradually
creases with inflation, indicating first the generation
coarse crackles, then later of fine crackles@11#. To charac-
terize the statistical features of the irregular crackle time
ries, we developed a moving window algorithm that dete
and measures the sizes of the negative spikes in the tim
series. An example of the spike time series is shown in F
1~b!. The overall distributionn(s), including data from all
12 inflation experiments, follows a power law behavio
n(s)}s2a, with an exponenta52.7760.05 @Fig. 1~c!#.
Also, in each of the 12 different inflation experiments, t
power law distribution extends over nearly two orders
magnitude with similar exponents~with an averagea
52.7660.19).

III. MODEL FORMULATION

To interpret the power law distribution of the spikes, w
develop a model of crackle wave generation and propaga
4659 © 1999 The American Physical Society
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4660 PRE 60ADRIANO M. ALENCAR et al.
in a tree structure. When the lungs deflate to very low v
umes, many peripheral airways close up by forming a liq
bridge between the collapsed airway walls@14#. Experiments
on flexible tube models and in isolated lungs indicate that
opening of a single airway can be characterized by a crit
opening threshold pressureP @15# . If the pressure at the inle
of an airway exceeds this threshold, the airway opens. T
we model the airway tree with a binary tree in which
threshold pressurePi , j is assigned to each airwa
( i , j ), where i is the generation number (i 51,•••,N) and
j P@1,2i #. The distribution ofPi , j is broad@6# and will be

FIG. 1. ~a! Time series of raw sound data as well as lung v
ume, both as functions of inflation time. Sound pressure is in a
trary units, and lung volume is normalized to total lung capacity
the end of inflation. The inset is a zoom to a short segment of
sound wave, showing first a smaller, then a larger crackle wav
both consisting of an initial negative spike followed by a sh
ringing. ~b! Time series of the normalized negative spikes for e
perimental data in~a!. ~c! Log-log plot of the size distributionn(s)
of spike amplitudes based on data from 12 independent inflatio
l-
d

e
al

s,

examined below. We assume that at timet50, all airways
are initially blocked. The inflation is simulated by applyin
an external pressurePE at the top of the tree.PE is initially
assigned the valueP0,0, the threshold pressure of airwa
~0,0!. Since an airway opens when the pressure in its pa
equals or exceeds its critical threshold pressure, the air
~0,0! now opens and its pressure is set equal toPE . Next, the
two daughter airways~1,0! and ~1,1! are checked; ifPE
>P1,0 then~1,0! opens and ifPE>P1,1 then~1,1! also opens.
This opening process is then continued sequentially do
the tree until no airway is found withPi , j<PE . This process
defines a cascade or avalanche of opening@5#. The inflation
is then continued by gradually increasingPE in small incre-
ments until the entire tree becomes open. We next desc
how crackle waves are generated in individual airways a
how they propagate up the tree. Before the opening of
airway occurs, a large pressure gradient builds across
fluid plug that blocks the segment. WhenPE reachesPi , j of
the airway, the meniscus of the fluid plug is either rapid
pushed out of the segment or disrupted. This process is
@15# and the pressure gradient is sufficiently steep to gene
a transient sound wave—a crackle. We assume that
sound wave can be represented as a single spike with
amplitude si , j proportional to the local threshold pressu
Pi , j . This sound wave travels in both directions, but we a
only interested in the wave traveling toward the root of t
tree. A wave traveling up in a daughter branch will be
tenuated due to several factors. Here we consider attenua
due to a change in geometry at a bifurcation. Based on c
tinuity of pressure and volume velocity at the bifurcation, t
original pressure spike amplitudesi , j will be attenuated as
@16#

si , j
1 5

2Ai , j

Ai , j1Ai , j 111Ai 21,j /2
si , j5bi , j si , j , ~1!

wheresi , j
1 is the pressure spike amplitude transmitted fro

the branch (i , j ) into its parent branch (i 21,j /2). The other
daughter of the parent branch is denoted by (i , j 11), andA
denotes the cross-sectional area of a branch. The factorbi , j is
the acoustic attenuation coefficient that depends on the l
geometry. When the wave passes through a cascade ofi bi-
furcations to reach the root, the total attenuation is obtai
by successively applying the above equation at each bifu
tion. When an avalanche is initiated, each segment par
pating in the avalanche generates a crackle wave loca
which is then propagated up the tree and the waves are
perimposed at the root to simulate the measured spike
series. We can obtain an analytical distribution of the sou
pressure spikes, if we also assume thatbi , j5b (b5a con-
stant throughout the tree!, and allPi , j51. Hence all the local
si , j51. In this case, a wave initiated at generationi will pass
i bifurcations to arrive at the root with an amplitudes5bi .
Thus, the distributionn(s) will be taking discrete values o
b0,b1, . . . ,bN. Since at generationi we have 2i segments
each sending a wave up the tree, the corresponding num
of spikes are 20,21, . . . ,2N. On a log-log graph, this define
a power law. By normalizing the histogram with the bin siz
bi 212bi , the exponent of the tail of the probability distribu
tion n(s) is
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a5
ln~2/b!

ln~b!
. ~2!

IV. NUMERICAL AND ANALYTICAL RESULTS

Next, we examine numerically hown(s) and a change
when we relax some of the simplifying assumptions. In F
2, we show the effect of distributingPi , j uniformly between
0 and 1 independent of generation number. The distribu
n(s) is now a staircase, and the overall slope is sensitive
b. However, we find good agreement between Eq.~2! and the
exponent of the envelope of the distributions~see inset!.
When the value ofb is not constant but has a certain pro
ability distribution with meanb̄ and standard deviations,
the staircase gradually disappears, buta does not depend on
s, only on b̄. Figure 3~a! shows hown(s) depends on the
system size forN510, 14, and 18. Increasing the number
generations increases the saturation value ofn(s) and de-
creases the crossover spike sizes3 , and hence the scalin
region ofn(s) is shifted toward lower values ofs. However,
the exponenta remains the same for allN. Assuming that
Pi , j and hence the wave amplitudessi , j are uniformly dis-
tributed, we can derive the distribution function for the wa
amplitude at the root as follows. Let us denote the proba
ity by ni(s) that a wave initiated at generationi has a sizes.
Sincesi , j are uniformly distributed between 0 and 1,ni(s) is
also uniformly distributed, but between 0 andbi . Due to
normalization of the distribution, the value of this probabili
is b2 i . We are interested in the probability of finding a spi
size s at the root that can come from any generationi
51, . . . ,N. This probability,n(s), will be the weighted av-
erage of the probabilitiesni(s) for i 51, . . . ,N. The weights
are the relative number of segments at each generation,
2i /Q where Q5201211 . . . 12N. This again defines a
power law on the log-log graph ofn(s) ands with a slopea
given by Eq.~2!. Summing the geometric series, we obtain
closed form approximation,

FIG. 2. The distributionn(s) of spike sizes in a binary tree
model ofN515 generations for different values of the attenuat
b. The threshold pressure distribution is uniform. The inset co
pares the analytical exponent~solid line! and the exponent esti
mated from the envelope of the distributions.
.

n
to

f
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e.,

n~s!5
1

bN f S s

bND , ~3!

where f (x) is a scaling function

f ~x!5H 1

a21
if x,1,

x2a

a21
otherwise.

~4!

Equation ~4! implies that the crossover from a flat to
power-law behavior ofn(s) occurs ats35bN with a satura-
tion value ofb2N. Thus, rescalings by bN andn(s) by b2N,
we can collapse all the curves in Fig. 3~a! to a single master
distribution. Indeed, Fig. 3~b! demonstrates that the distribu
tions for differentN fall on a single curve. The scaling func
tion is in good agreement with the numerical simulations

V. DISCUSSION

Several assumptions have been made in our mode
crackle generation and propagation. First, the airway s
ments have been assumed to be rigid tubes. Flexible air

-

FIG. 3. ~a! The distribution of spike sizes as a function tree s
N. The mean attenuationb̄ is 0.6 and the threshold pressure dist
bution is uniform.~b! Renormalization of the spike size distribu
tions corresponding toN510, 14 and 18 shown in~a!. The open
circles denote the analytical scaling function.
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walls would be important in describing the mechanism
ringing @see Fig. 1~a!# which we do not analyze in this study
Second, we also assume that the only mechanism that
duces attenuation is that of a wave passing through a b
cation. Attenuation due to energy dissipation in the v
coelastic airway walls is not likely to be important. Th
reason is that the spikes carry high-frequency energy
which the airways behave nearly like rigid pipes. Additio
ally, attenuation in air is even less than attenuation in tiss
Following the generation of a wave, we assume that a sin
wave travels up the tree and that wave reflection does
affect the spike size distribution. When the original wa
passes the first bifurcation toward the root, it will be r
flected. The reflected wave will be re-reflected from the fi
bifurcation downward and this second reflection will follo
the original wave. The secondary waves, however, do
affect the spike size distribution. The lengths of the sm
airways range from 0.1 to 0.3 cm. The sound wave spee
small airways is 268644 m/s @17#. An upper limit for the
time difference between the original and the reflected w
is (0.3 cm)/(200 m/s)50.000015 s. The smallest time di
ference between two spikes we can identify is on
2/22050'0.0001 s. Thus, the first reflection cannot be se
rated from the original wave going upward. There should
at least six consecutive reflections to achieve a time de
that can be reliably measured with our system. At a bifur
tion, the reflected energy would be less than 35% of
incident energy. After 6 reflections, the amplitude decrea
to below 0.2% of the original wave amplitude. Numeric
simulations show that reflections having amplitudes up
10% of the original waves do not influence the scaling
havior. We assume that airways open via avalanches. Th
important since, as we explain below, it leads to the int
mittent large pressure spikes in the crackle time series. Th
large pressure spikes are generated when pressure grad
builds up in front of a segment due to a local high thresh
pressure. When this threshold pressure is overcome by
external pressure field, the segment opens, initiating an
lanche in which many segments below the first segment
quentially open. Every segment that opens in an avalan
generates a crackle. The crackle amplitudes that are seq
tially generated within an avalanche must be on aver
smaller and smaller as they come from deeper regions
the crackle waves are attenuated by more and more bifu
tions. This process leads to the observed intermittent be
ior of the spike time series. An important assumption rega
ing the model structure is that the tree is symmetric. Us
similar arguments as above, one can show that the sca
behavior does not change if the binary tree is incomple
i.e., asymmetric. In a symmetric tree, the number of branc
at generationi is 2i whereas in an asymmetric tree the nu
ber of branches at generationi is ai , wherea,2. Thus, the
exponent in Eq.~2! changes toa5 ln(a/b)/ln(b) where the
asymmetry parameter takes the value ofa52 for a symmet-
ric tree. Physiologically realistic asymmetry is obtained
a51.95, which decreasesa by 5%. Another important as
sumption is that the threshold pressures are independe
generation. The effect of introducing a distribution forPi , j
that slightly depends on the generation number to reflect
fact that threshold pressures are, on average, an increa
function of decreasing diameter@15# ~and hence of increas
f
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ing generation number!, is to increasea by no more than
10%. However, the scaling behavior is again not affect
Thus, we find that it is the tree structure that produces s
ing behavior in the crackle size distribution. To further te
that the origin of scaling in lung crackle sound is the tr
structure of the airways, we measure the bubbling sound
gaseous control fluid~sparkling wine!. Using a similar setup,
we place the microphone about 2 cm above the surface o
control fluid in a glass. We apply the same spike detect
algorithm to the sound pressure to identify the spike ti
series shown in Fig. 4~a!. The spike time series from th
control fluid is qualitatively different from that in Fig. 1~b!.
The distribution of the spike sizes in Fig. 4~b! is similar to a
log-normal distribution unlike the power law distributio
found for the lung@see Fig. 1~c!#. When we use the loca
sound spike time series of the control fluid as input to o
tree model, the sound pressure distribution at the root of
tree is indistinguishable from that of the real lung sou
distribution @see dashed line in Fig. 4~b!#. Thus, the tree
structure acts as a strong acoustic filter such that the so
pressure distribution at the root becomes a power law in
pendent of the nature of the locally generated sound.

VI. CONCLUSION

With regard to the physiological implications, rescalin
the experimental data to fit the scaling function of Eq.~2!

FIG. 4. ~a! Time series of sound pressure spikes of bubbl
champagne.~b! Solid line shows the log-normal-like distribution o
the time series in~a!. Dotted line is the distribution after passing th
time series in~a! through the tree structure.
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requires thatb50.65 andN515, whereas the value ofb
estimated from independent morphometric airway dim
sions is 0.62, which is close to our estimate obtained fr
dynamic sound measurements. The tree sizeN515 is also a
reasonable estimate for the number of airway generat
initially closed in a collapsed lung@18#. The quantitative
agreement between the spike time series from the exp
ments and simulations suggests that~i! the irregularities are a
consequence of the heterogeneity in the threshold press
and airway structure of the lung,~ii ! the intermittent behav-
ior of the crackle spike time series is due to the avalanche
opening of the airway segments, and~iii ! the scaling behav-
ior is a result of the successive attenuations acting on
sound spikes as they propagate through a cascade of b
cations along the airway tree. Finally, we note that the ch
,
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acteristics of crackles have long been used as diagno
tools to differentiate among a variety of pulmonary diseas
However, the use of crackles in diagnosis has been base
medical experience collected over many years. Our res
here provide a physical understanding of crackles and
allow us to estimate the average diameter of the airw
where crackles come from. This has potential clinical imp
tance, since it may allow the localization of closed airwa
and, hence, of local edema or inflammation of tissue.
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