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Dynamics of a Ferromagnetic Domain Wall and the Barkhausen Effect
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We derive an equation of motion for the dynamics of a ferromagnetic domain wall driven by an
external magnetic field through a disordered medium, and we study the associated depinning transition.
The long-range dipolar interactions set the upper critical dimension t@. lse 3, so we suggest that
mean-field exponents describe the Barkhausen effect for three-dimensional soft ferromagnetic materials.
We analyze the scaling of the Barkhausen jumps as a function of the field driving rate and the intensity
of the demagnetizing field, and find results in quantitative agreement with experiments on crystalline
and amorphous soft ferromagnetic alloys. [S0031-9007(97)04766-2]

PACS numbers: 75.60.Ej, 68.35.Ct, 75.60.Ch

The magnetization of a ferromagnet displays discrete Here, we present an accurate treatment of magnetic in-
jumps as the external magnetic field is increased. Thiteractions in the context of the depinning transition, which
phenomenon, known as the Barkhausen effect, was firstllows us to explain the experiments and to give a micro-
observed in 1919 by recording the tickling noise producedcopic justification for the model of Ref. [13]. We study
by the sudden reversal of the Weiss domains [1]. The single domain wall separating two regions with magne-
Barkhausen effect has been widely used as a nondestruiization of constant magnitudé and opposite directions.
tive method to test magnetic materials, and the statisticalVe assume that the wall surface does not form overhangs,
properties of the noise have been analyzed in detail [2,3and describe the position of the wall by its heighE, ¢).

In particular, it has been observed that the distributions oThe motion of the wall is overdamped because of eddy
sizes and durations of Barkhausen jumps decay as powetrrents so, neglecting thermal fluctuations, the evolution
laws at low applied field rates [4—6]. In addition to its of (7, ) is governed by

practical and technological applications, the Barkhausen - -

effect has recently attracted a growing interest as an ex- b, 1) = —M, 1)
ample of a complex dynamical system displaying critical ot Sh(r,1)

behavior [7-11]. where E({h(7,1)}) is the energy of the system [14,15].

In soft ferromagnetic materials the magnetizationwe will show that by incorporating the effects of ferro-
process is composed of two distinct mechanisms [12]magnetic, magnetocrystalline, magnetostatic and dipolar
(i) When the field is increased from the saturated regionjnteractions, and disorder, the equation of motion is
domains nucleate in the sample, typically starting from the
boundaries. (i) In the central part of the hysteresis loopdh(7,1)
around the coercive field, the magnetization process is gy
due mainly to domain wall motion. The disorder present N S
in the material (due to nonmagnetic impurities, lattice X A0 = b0+ 0 h). (2)

dislocations, residual stresses, etc.) is responsible fQfere,, is the surface tensior is the external magnetic
the jerky motion of the domain walls, giving rise to the fie|q the demagnetizing field’, and the nonlocal term
jumps observed in the magnetization. The moving wallsyye que to dipolar interactions, and we model the disorder

are usually parallel to the magnetizatia8@® walls), and  ith 5 random force, with Gaussian distribution and short
span the sample from end to end [12]. The statlsnca}ange correlations

properties of the Barkhausen effect are normally studied
in the central part of the hysteresis loop and can therefore (n(F WG Ky = 82GF — F)A(h — k'), (3)
be understood by studying domain wall motion.

It has recently been proposed to relate the scalingvhere A(x) decays very rapidly for large values of the
properties of the Barkhausen noise to the critical behavioargument.
expected at the depinning transition of an elastic interface The dipolar interactions are treated considering effective
[9,11]. The numerical values of the scaling exponentsmagnetic charges induced by the discontinuities of the
however, do not agree with most experimental data [4—6]magnetization across the boundaries of the sample and the
Interestingly, a quantitative description of the phenomenoriomain wall [16]. The corresponding magnetic surface
can be obtained by a simple phenomenological modekharge is given by
where the wall is described as a single point moving in R R
a correlated random pinning field [13]. o= M — M) - i, 4

voV?h(F,t) + H — Hy + [dzr’K(? — )
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where# is normal to the surface and; and M, are the For k = 0 (no demagnetizing field), Eq. (2) displays a
magnetization vectors on each side of the surface. Thdepinning transition; i.e., there exists a critical figit
surface charge induced at the boundary of the sample givesich that forH < H, the interface is pinned while for
rise to a demagnetizing field which opposes the externall > H,., it moves with nonzero average velocity. At
field [12]. The simplest approximation is to consider H = H,, the system exhibits scaling properties: The in-
this field to be constant throughout the sample, and téerface moves by avalanches whose siz@sd durations
be proportional to the toftal2 magnetization [9,13]. ThisT distributions follow power laws,
yields the termH; = —k [ d?r h(7,1) in EqQ. (2), where R ra
the demagnetizing factdrtakes into account the geometry P(s) ~ 577, P(T) ~ T (8)
of the domain structure, the shape of the system, anw/henk > 0, the demagnetizing field provides an addi-
its size. tional restoring force that keeps the interface at the de-
Magnetic surface charges will also appear on the domaipinning transition [9,11] if the external field is increased
wall when its surface is not parallel to the magnetizationadiabatically.
In the limit of infinite anisotropy [17] and small bending  Using the functional renormalization group scheme in-
of the surface, we can express the surface charge as  troduced in Ref. [23], we find that—due to the long-
oh(i.1) range kerne_IK(? — ) in Eq. (6)—the critical behavior
— (5) of Eq. (2) differs from that of elastic interfaces: The up-
dx per critical dimension becomelk = 3 [18,24,25], instead
where# is the local angle between the vector normal toof d. = 5[21,22]. Hence we predict that, far = 3, the
the surface and the magnetization (see Fig. 1). The intemotion of the domain wall will be described by mean-field
action energy of these chargés = (1/2) [d?rd?*r’ x  theory (apart from logarithmic corrections), which yields
o(F)a(#)/|F — #'| gives rise to the nonlocal kernel [18,22] 7 = 3/2, a = 2, and that the surface is flat (the
present in Eq. (2) [14,15,18]: roughness exponedtis zero). These values differ signifi-
5 o cantly from the results of elastic interfaces whichlir= 3
KG —7) = =M <1 L3 = x) > 6) @er =13 a =15 and{ = 0.7[22,26]
|F — 7|3 |7 — 7|2 Next we make contact between our approach and the

) ] ] ) ) conventional approach that reduces the domain wall to a
The interaction (6) is long range and anisotropic, as CaBjngle point moving in a random pinning field [3,13,27].

o(F) = 2M cosf = 2M

also be seen by considering the Fourier transform To this end, we introduce an infinite range versign— «)
2M? p? of Eg. (2), which should have the same critical behavior
Kip.a) = 7 Jp? + ¢%’ (7) :ﬁj;}z.e(Z) but has the advantage of being much simpler to

where p and g are the two components of the Fourier 14 reat the infinite-range model, we discretize the
vector. Moreover, an estimate of the order of magnitude ofyierface and consider that a¥l elements are at the same

K(# — 7') shows that it_dominates over the surface tensionyistance from each other. Equation (2) then becomes [28]
for all length scales of interest [19].

Apart from the nonlocal kernel, Eq. (2) is the equation ~ 9/;(z) — H(t) — xh + J[F — k(O] + mi(h),  (9)

proposed in Ref. [9] which, in turn, reduces whier= 0 at
to a driven elastic interface in the presence of quenched _ N )
disorder [20—22]. whereh = > ._, h;/N, x = Nk, J = (vy + 2M?), and

the external fieldd (z) increases at a finite constant rate.
Summing Eg. (9) over all site§ we obtain an equation

h " for the total magnetizatiom = N#,
N

dt i=1
where the time dependence of the field has been made
explicit. We can approximat® »; by an effective random
pinning fieldW (m), depending only on the magnetization.

— When the interface moves between two configurations, the
M change inW is
X
Wm') — Wim) = 'An;, (11)

FIG. 1. The domain wall separating two regions of opposite

magnetization. The discontinuities of the normal component . . .
of the magnetization across the domain wall generate magnetivhere the sum is restricted to the sites that have moved

charges. (i.e., their disorder is changed). The total number of such
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sites scales, on average,|ag — m|, since ford = d.the It would be interesting to experimentally study the behav-
size of an avalanche scales like its area [18,22]. Assuminipr of the cutoff by externally changing the demagnetizing
that theA»; are uncorrelated and have random signs, wdield.

find that the effective pinning field is correlated, Our results are in agreement with experiments on
crystalline (SiFe) [4,5] and amorphous (Co-base and Fe-
(IW(m") = W(m)I*y = Dlm" — ml, (12) base) ferromagnetic alloys [29] performed at different

values ofc, which yield 7 = 3/2 — ¢/2 anda =2 —

where D sets the scale of the fluctuations @f. These .. A direct comparison with experiments in which the
correlations of “Brownian” type have been experimentallyparameter: is not defined, as in the case of a sinusoidal
observed in SiFe alloys [3]. In the model of Alessandrodriving field, is problematic [6,7]. The result presented
et al. [13] (ABBM), the domain wall is treated as a single in Ref. [9] (i.e.,7 = 1.3) could be due to a finite driving
point moving in a Brownian correlated field. The ABBM rate(c = 0.4). In addition, it is important to remark that
model is equivalent to Egs. (10) and (12), and predicts thahe present theory applies only if domain wall motion is
the avalanche exponents should depend on the field drivingie dominant magnetization process. This was indeed the
rate, witht = 3/2 — c¢/2anda = 2 — ¢ [5], wherec = case in Refs. [4,5,29], where the noise was recorded only
¢/D. In the adiabatic limit — 0, we recover the mean- in the region of constant permeability around the coercive
field exponents of the depinning transition. Moreover, oufiield. A detailed critical discussion of the experimental
results imply that Brownian correlations in the pinning results reported in the literature can be found in Ref. [29].
field do not reflect peculiar long-range correlations in the |n particular geometries, typically frames or toroid
impurities, but represent aeffectivedescription of the samples, the demagnetizing field is abdgnt= 0) [3]. It
collective motion of the interface. is then possible to observe experimentally the depinning

To confirm the results obtained above, we first simulat@ransition of domain walls. It has been reported that
an automaton version of Eg. (2) in three dimensionsthe average velocity of the domain walls, in different

applying an adiabatically increasing magnetic field. Inferromagnetic materials [30], increases #r> H., as

this limit, we recover, for the distribution of avalanche

sizes and durations, the results expected for the depinning v~ (H - H)", (13)

transition in mean-field theory [18]. . L . L
To overcome the numerical limitations posed by Eq. (2)Wlth B =1, in agreement with the theorys(= 1 is

. . L ~expected in mean-field theory [22]).
and obtain an extensive avalanche statistics as a functiof s
We have seen that avalanche distributions can be de-

of ¢ and y, we next simulate the infinite-range model of scribed by power laws with exponents that do not de-
Eqg. (9). We measure the distributions of domain wall ve- nd on rr¥atperial details. The or\)/vers ectrum of the noise
locities and avalanche sizes and durations (see Figs. 2 am . ) P P

isplays instead a more complex structure and does not

3, and [18]). Fore < 1, we find power laws with expo- show such a marked universality. At low frequency the

nents in perfect agreement with the ABBM model. The ower spectrum arows with an exoonent varving between
cutoff of the distributions is determined by the demagnetiz-IO P 9 P ying

ing fields and diverges foy — 0 [18]. In the case of the ¥ = 05 for crystalline alloys andy = 1 for amorphous
avalanche size distribution, it scales gs? (see Fig. 3).
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§ FIG. 3. The distribution of avalanche sizes in the infinite

FIG. 2. The distribution of avalanche sizes in the infinite-range model as a function of for N = 32696 and ¢ =
range model as a function ef for N = 32696, y = 0.0075. 0. The data collapse is obtained from the scaling function
The lines are the theoretical predictions= 3/2 — ¢/2. P(s, x) = s 2 f(x%s).
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