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Dynamics of a Ferromagnetic Domain Wall and the Barkhausen Effect
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We derive an equation of motion for the dynamics of a ferromagnetic domain wall driven by an
external magnetic field through a disordered medium, and we study the associated depinning transition
The long-range dipolar interactions set the upper critical dimension to bedc ­ 3, so we suggest that
mean-field exponents describe the Barkhausen effect for three-dimensional soft ferromagnetic materials
We analyze the scaling of the Barkhausen jumps as a function of the field driving rate and the intensity
of the demagnetizing field, and find results in quantitative agreement with experiments on crystalline
and amorphous soft ferromagnetic alloys. [S0031-9007(97)04766-2]
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The magnetization of a ferromagnet displays discre
jumps as the external magnetic field is increased. Th
phenomenon, known as the Barkhausen effect, was fi
observed in 1919 by recording the tickling noise produce
by the sudden reversal of the Weiss domains [1]. Th
Barkhausen effect has been widely used as a nondestr
tive method to test magnetic materials, and the statistic
properties of the noise have been analyzed in detail [2,3
In particular, it has been observed that the distributions
sizes and durations of Barkhausen jumps decay as pow
laws at low applied field rates [4–6]. In addition to its
practical and technological applications, the Barkhause
effect has recently attracted a growing interest as an e
ample of a complex dynamical system displaying critica
behavior [7–11].

In soft ferromagnetic materials the magnetizatio
process is composed of two distinct mechanisms [12
(i) When the field is increased from the saturated regio
domains nucleate in the sample, typically starting from th
boundaries. (ii) In the central part of the hysteresis loop
around the coercive field, the magnetization process
due mainly to domain wall motion. The disorder presen
in the material (due to nonmagnetic impurities, lattice
dislocations, residual stresses, etc.) is responsible f
the jerky motion of the domain walls, giving rise to the
jumps observed in the magnetization. The moving wal
are usually parallel to the magnetization (180± walls), and
span the sample from end to end [12]. The statistic
properties of the Barkhausen effect are normally studie
in the central part of the hysteresis loop and can therefo
be understood by studying domain wall motion.

It has recently been proposed to relate the scalin
properties of the Barkhausen noise to the critical behavi
expected at the depinning transition of an elastic interfac
[9,11]. The numerical values of the scaling exponent
however, do not agree with most experimental data [4–6
Interestingly, a quantitative description of the phenomeno
can be obtained by a simple phenomenological mode
where the wall is described as a single point moving i
a correlated random pinning field [13].
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Here, we present an accurate treatment of magnetic
teractions in the context of the depinning transition, whic
allows us to explain the experiments and to give a micr
scopic justification for the model of Ref. [13]. We stud
a single domain wall separating two regions with magn
tization of constant magnitudeM and opposite directions.
We assume that the wall surface does not form overhan
and describe the position of the wall by its heighths$r, td.
The motion of the wall is overdamped because of ed
currents so, neglecting thermal fluctuations, the evoluti
of hs$r , td is governed by

≠hs$r , td
≠t

­ 2
dEssshhs$r , tdjddd

dhs$r , td
, (1)

where Essshhs$r , tdjddd is the energy of the system [14,15]
We will show that by incorporating the effects of ferro
magnetic, magnetocrystalline, magnetostatic and dipo
interactions, and disorder, the equation of motion is

≠hs$r , td
≠t

­ n0=2hs$r , td 1 H 2 Hd 1
Z

d2r 0 Ks$r 2 $r 0d

3 fhs$r 0, td 2 hs$r , tdg 1 hs$r , hd . (2)

Heren0 is the surface tension,H is the external magnetic
field, the demagnetizing fieldHd and the nonlocal term
are due to dipolar interactions, and we model the disord
with a random force, with Gaussian distribution and sho
range correlations,

khs$r , hdhs$r 0, h0dl ­ d2s$r 2 $r 0dDsh 2 h0d , (3)

where Dsxd decays very rapidly for large values of the
argument.

The dipolar interactions are treated considering effecti
magnetic charges induced by the discontinuities of t
magnetization across the boundaries of the sample and
domain wall [16]. The corresponding magnetic surfac
charge is given by

s ­ s $M1 2 $M2d ? n̂ , (4)
© 1997 The American Physical Society 4669
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wheren̂ is normal to the surface and$M1 and $M2 are the
magnetization vectors on each side of the surface. T
surface charge induced at the boundary of the sample gi
rise to a demagnetizing field which opposes the extern
field [12]. The simplest approximation is to conside
this field to be constant throughout the sample, and
be proportional to the total magnetization [9,13]. Th
yields the termHd ­ 2k

R
d2r hs$r, td in Eq. (2), where

the demagnetizing factork takes into account the geometry
of the domain structure, the shape of the system, a
its size.

Magnetic surface charges will also appear on the dom
wall when its surface is not parallel to the magnetizatio
In the limit of infinite anisotropy [17] and small bending
of the surface, we can express the surface charge as

ss$rd ­ 2M cosu . 2M
≠hs$r , td

≠x
, (5)

whereu is the local angle between the vector normal
the surface and the magnetization (see Fig. 1). The int
action energy of these chargesEd ­ s1y2d

R
d2r d2r 0 3

ss$rdss$r 0dyj$r 2 $r 0j gives rise to the nonlocal kerne
present in Eq. (2) [14,15,18]:

Ks$r 2 $r 0d ­
2M2

j$r 2 $r 0j3

µ
1 1

3sx 2 x0d2

j$r 2 $r 0j2

∂
. (6)

The interaction (6) is long range and anisotropic, as c
also be seen by considering the Fourier transform

Ksp, qd ­
2M2

p

p2p
p2 1 q2

, (7)

where p and q are the two components of the Fourie
vector. Moreover, an estimate of the order of magnitude
Ks$r 2 $r 0d shows that it dominates over the surface tensi
for all length scales of interest [19].

Apart from the nonlocal kernel, Eq. (2) is the equatio
proposed in Ref. [9] which, in turn, reduces whenk ­ 0
to a driven elastic interface in the presence of quench
disorder [20–22].

FIG. 1. The domain wall separating two regions of opposi
magnetization. The discontinuities of the normal compone
of the magnetization across the domain wall generate magn
charges.
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For k ­ 0 (no demagnetizing field), Eq. (2) displays
depinning transition; i.e., there exists a critical fieldHc

such that forH , Hc the interface is pinned while for
H . Hc, it moves with nonzero average velocity. A
H ­ Hc, the system exhibits scaling properties: The i
terface moves by avalanches whose sizess and durations
T distributions follow power laws,

Pssd , s2t , PsT d , T2a . (8)

When k . 0, the demagnetizing field provides an add
tional restoring force that keeps the interface at the d
pinning transition [9,11] if the external field is increase
adiabatically.

Using the functional renormalization group scheme i
troduced in Ref. [23], we find that—due to the long
range kernelKs$r 2 $r 0d in Eq. (6)—the critical behavior
of Eq. (2) differs from that of elastic interfaces: The up
per critical dimension becomesdc ­ 3 [18,24,25], instead
of dc ­ 5 [21,22]. Hence we predict that, ford ­ 3, the
motion of the domain wall will be described by mean-fie
theory (apart from logarithmic corrections), which yield
[18,22] t ­ 3y2, a ­ 2, and that the surface is flat (the
roughness exponentz is zero). These values differ signifi-
cantly from the results of elastic interfaces which ind ­ 3
aret . 1.3, a . 1.5, andz . 0.7 [22,26].

Next we make contact between our approach and
conventional approach that reduces the domain wall t
single point moving in a random pinning field [3,13,27
To this end, we introduce an infinite range versionsd ! `d
of Eq. (2), which should have the same critical behavi
as Eq. (2) but has the advantage of being much simple
analyze.

To treat the infinite-range model, we discretize th
interface and consider that allN elements are at the sam
distance from each other. Equation (2) then becomes [

≠histd
≠t

­ Hstd 2 xh̄ 1 Jfh̄ 2 histdg 1 hishd , (9)

where h̄ ;
PN

i­1 hiyN, x ; Nk, J ; sn0 1 2M2d, and
the external fieldHstd increases at a finite constant rate
Summing Eq. (9) over all sitesi, we obtain an equation
for the total magnetizationm ; Nh̄,

dm
dt

­ c̃t 2 xm 1

NX
i­1

hishd , (10)

where the time dependence of the field has been m
explicit. We can approximate

P
hi by an effective random

pinning fieldWsmd, depending only on the magnetization
When the interface moves between two configurations,
change inW is

W sm0d 2 W smd ­
X

i

0
Dhi , (11)

where the sum is restricted to the sites that have mov
(i.e., their disorder is changed). The total number of su



VOLUME 79, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 8 DECEMBER1997

-

n
-

t

l

e
ly
e
l
].

g
t

e-
-
e
ot

n

sites scales, on average, asjm0 2 mj, since ford $ dc the
size of an avalanche scales like its area [18,22]. Assum
that theDhi are uncorrelated and have random signs,
find that the effective pinning field is correlated,

kjW sm0d 2 W smdj2l ­ Djm0 2 mj , (12)

whereD sets the scale of the fluctuations ofW . These
correlations of “Brownian” type have been experimenta
observed in SiFe alloys [3]. In the model of Alessand
et al. [13] (ABBM), the domain wall is treated as a sing
point moving in a Brownian correlated field. The ABBM
model is equivalent to Eqs. (10) and (12), and predicts t
the avalanche exponents should depend on the field driv
rate, witht ­ 3y2 2 cy2 anda ­ 2 2 c [5], wherec ;
c̃yD. In the adiabatic limitc ! 0, we recover the mean
field exponents of the depinning transition. Moreover, o
results imply that Brownian correlations in the pinnin
field do not reflect peculiar long-range correlations in t
impurities, but represent aneffectivedescription of the
collective motion of the interface.

To confirm the results obtained above, we first simul
an automaton version of Eq. (2) in three dimensio
applying an adiabatically increasing magnetic field.
this limit, we recover, for the distribution of avalanch
sizes and durations, the results expected for the depin
transition in mean-field theory [18].

To overcome the numerical limitations posed by Eq.
and obtain an extensive avalanche statistics as a func
of c andx, we next simulate the infinite-range model
Eq. (9). We measure the distributions of domain wall v
locities and avalanche sizes and durations (see Figs. 2
3, and [18]). Forc , 1, we find power laws with expo-
nents in perfect agreement with the ABBM model. T
cutoff of the distributions is determined by the demagnet
ing fields and diverges forx ! 0 [18]. In the case of the
avalanche size distribution, it scales asx22 (see Fig. 3).

FIG. 2. The distribution of avalanche sizes in the infinit
range model as a function ofc for N ­ 32 696, x ­ 0.0075.
The lines are the theoretical predictionst ­ 3y2 2 cy2.
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It would be interesting to experimentally study the behav
ior of the cutoff by externally changing the demagnetizing
field.

Our results are in agreement with experiments o
crystalline (SiFe) [4,5] and amorphous (Co-base and Fe
base) ferromagnetic alloys [29] performed at differen
values ofc, which yield t ­ 3y2 2 cy2 and a ­ 2 2

c. A direct comparison with experiments in which the
parameterc is not defined, as in the case of a sinusoida
driving field, is problematic [6,7]. The result presented
in Ref. [9] (i.e.,t . 1.3) could be due to a finite driving
ratesc . 0.4d. In addition, it is important to remark that
the present theory applies only if domain wall motion is
the dominant magnetization process. This was indeed th
case in Refs. [4,5,29], where the noise was recorded on
in the region of constant permeability around the coerciv
field. A detailed critical discussion of the experimenta
results reported in the literature can be found in Ref. [29

In particular geometries, typically frames or toroid
samples, the demagnetizing field is absentsx ­ 0d [3]. It
is then possible to observe experimentally the depinnin
transition of domain walls. It has been reported tha
the average velocity of the domain walls, in different
ferromagnetic materials [30], increases forH . Hc, as

y , sH 2 Hcdb , (13)

with b ­ 1, in agreement with the theory (b ­ 1 is
expected in mean-field theory [22]).

We have seen that avalanche distributions can be d
scribed by power laws with exponents that do not de
pend on material details. The power spectrum of the nois
displays instead a more complex structure and does n
show such a marked universality. At low frequency the
power spectrum grows with an exponent varying betwee
c ­ 0.5 for crystalline alloys andc ­ 1 for amorphous

FIG. 3. The distribution of avalanche sizes in the infinite
range model as a function ofx for N ­ 32 696 and c̃ ­
0. The data collapse is obtained from the scaling function
Pss, xd ­ s23y2fsx2sd.
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alloys, while at high frequencies it decays with an exp
nent varying betweenc ­ 22 for crystals andc ­ 21.6
for amorphous alloys [2,4–6,29]. In samples with asingle
domain wall present, the power spectrum was found to d
cay asv22 [3].

Following the analysis of Tanget al. [31], we obtain, at
low frequency,c ­ 1 for the power spectrum measure
on a single site andc ­ 0 when the signal is averaged
over the whole system. For the averaged spectrum,
also find av22 decay at large frequencies, due to th
Brownian properties of the effective pinning field. Th
discrepancies between theory and experiments could
due to the presence of many domain walls interacti
through the demagnetizing field. When a domain wa
starts to move, the demagnetizing field increases, creatin
larger pinning force on the other walls. Therefore, on sho
time scales the interactions between the walls is irreleva
and should not change the avalanche distributions.
larger time scales, this effect may be important and cou
modify the properties of the power spectrum. In order
clarify this issue, it would be necessary to analyze in det
the dynamics of many coupled domain walls.

The present theory for the Barkhausen effect, bas
on the depinning of a ferromagnetic domain wall, shou
apply to soft ferromagnetic materials, which are frequen
used in experimental studies of the Barkhausen effect [
6,9,13]. For hard ferromagnets and rare earth materi
where strong random anisotropies prevent the formation
domains, disordered spin models could be appropriate [
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cussions, and L. A. N. Amaral and M. Meyer for critica
reading of the manuscript. The Center for Polym
Studies is supported by NSF.
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