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Boundary effects on flux penetration in disordered superconductors
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We investigate flux penetration in a disordered type-Il superconductor by molecular dynamics simulations of
interacting vortices. We focus on the effect of different boundary conditions on the scaling laws for flux front
propagation. The numerical results can be interpreted using a coarse-grained description of the system in terms
of a nonlinear diffusion equation. We propose a phenomenological equation for the front position that captures
the essential behavior of the system and recovers the scaling exponents.
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I. INTRODUCTION In this paper we systematically analyze the effect of dif-
ferent boundary conditions on the propagation of the flux

In recent years, the discovery of high-temperature supeifront. A similar study was presented in Refs. 13 and 14 in the
conductors has generated a renewed interest in understandifigmework of nonlinear flux diffusion in the absence of dis-
the magnetization properties of type-ll superconductors.order. We show here that the results are in agreement with
The magnetization process is usua”y described in terms dVID SimulationS fOI’ VariOUS diﬁerent boundal’y COﬂditiOhS.
the Bean modet:as the magnetic flux enters into the sampleNext, we analyze the effect of disorder by varying the pin-
from the boundaries, quenched disorder is responsible for th@ing strength in the MD system. The results are then inter-
formation of a constant flux gradient. The Bean model proPreted theoretically by means of the nonlinear diffusion
vides a phenomenological picture of average magnetizatioﬁquatlonl-z_mFma”ya we propose a phenomenological equa-
properties, such as hysteresis and thermal relaxatiout, tion for the front position that is able to capture in a simple
does not describe local space-time fluctuations. Indeed, r&v@y the behavior of the system, recovering the numerical
cent experiments showed that these fluctuations are not onf@sults for the different boundary conditions.
common, but also large, spanning several length scales: the
flux line dynamics is intermittent, taking place in Il. VORTEX DYNAMICS MODEL
avalanche$,and flux fronts are fractal.’ o _ _

A widely used modeling strategy to describe the fluctua- Inan |nf|n_|tely Ion_g cylmd_er, flux lines can be represented
tions in the magnetization process consists in molecular dy2S @ set of interacting particles performing an overdamped
namics(MD) simulations of interacting vortices, pinned by Motion in a random pinning !andscaf)‘el. The equation of
quenched random impuriti€s™ With this approach it has Motion for each flux ling is given by
been possible to model flux profilds, hysteresis,
avalanched®!!and plastic flow?''! One of the aims of these
studied is to link the macroscopic behavior, as described, for
instance, by generalized Bean models, to the microscopic
vortex dynamics. where the effective viscosity is obtained from material pa-

Recently, we have shown that the flux penetration due tsameters asl'=® H.,/p,c2. Here, ®, is the magnetic
interacting vortices in a disordered superconductor can bguantum flux,c is the speed of lightp, is the resistivity of
described by a disordered nonlinear diffusion equatfofhe  the normal phase, arid., is the upper critical field. The first
equation can be obtained performing a coarse graining of theerm on the right-hand side of Ed1l) accounts for the
microscopic equation of motion of the vortices. In the ab-vortex-vortex interaction and it is given by
sence of pinning, the equation reduces to the model intro-
duced in Ref. 13. This model has been solved analytically to J(N)=®F(BmAIK,(|r|/N)T, )
provide expressions for the dynamics of the front for differ-
ent boundary cqndit.ion?'l“w.hen quenched disorder is in- where K, is a Bessel function decaying exponentially for
cluded in the_ dlffusmr_\ equations, qu>§ fronts are pinned |n# F|>)\, and\ is the London penetration lengthThe inter-
agreement with MD simulations. Varying the parameters ofyction s cut off at a distanceN6to improve computational
the equation, we observe a crossover from flat to fractal ﬂu}éfficiency. The second term on the right-hand side of (&

fronts, consister)t with. experimental observations. The Va'“%escribes the interaction between pinning centers, modeled
of the fractal dimension suggests that the strong dlsordear1S localized trans. and flux lines. Hef.is the force due to
limit is described by percolatiolf. In the weak-disorder PS ' '

limit, we recover the analytical results derived in Refs. 132 Pinning center located &, | is the range of the wells
and 14. Using this description, we can thus directly link con-(typically I<)), andp=1,... N, (N is the total number
tinuum theories, for which analytical solutions are possible of Pinning centers For the pinning force, we use the follow-
to the microscopic equations used in MD simulatiéhs. ing expressionG(x) = —fox(|x|—1)?, for [x|<1 and zero

Toi=2 J(ri—r)+2> GL(R,—r)/l], 1)
] p
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otherwise. In the present simulations we restrict ourselves to 0.5 . . . - .
the casel =0 (see Ref. 16 for the implementation of thermal
noise in MD simulations

As we discussed in the Introduction, we intend to study
the effect of different boundary conditions on the flux pen-
etration. We start with an empty system and concentrate all
the vortices in a small strip at the boundary. Due to mutual
repulsion, the vortices will be pushed inside the material,
forming a flux front. There are several ways to implement
the boundary conditions, corresponding to different experi-
mental situations. Here, we will consider the following
boundary condition$>4

(A) Constant total number of vortices. Experimentally this
corresponds to an external control of the magnetic flux.

(B) Constant vortex concentration at the boundary. This
case corresponds to an external control of the magnetic field.

(C) Total vortex number increasing at constant rate. This FIG. 1. The pinned density profiles measured in MD simulations

represents an external contr'ol of the fqu rate. for different values of the pinning center density. In the inset we
(D) Boundary concentration increasing at constant rate

. h show the data collapse.
corresponding to a constant field rate.

As a word of caution, one should notice that boundaryresponding to a clean superconducdtioe., without defects
conditions can be more complicated in reality, due to comin order to clearly identify the front penetration law in the
plex surface barriers that oppose flux penetration. These aigitial regime. In Fig. 2 we show that the front advances as a
not considered here and the only surface barrier is providegower law with an exponent that depends on the boundary

by already entered flux lines. condition. In particular, we find,~t"2 for case(B), x,
~t?R for case(C), andx,~t for case(D). The presence of
ll. MD SIMULATIONS disorder can affect all these behaviors in a different way,

depending on the imposed boundary condition. Q&eis

We perform MD simulations based on H@) and analyze  quite similar to the caséA) studied in Ref. 12: after an
the flux front propagation for different values of the pinning initial transient, the front gets pinned and the pinning length
strengthf,. We typically use up tdN,=800000 Poisson- scales with the pinning strengtsee Fig. 3. In particular, the
distributed pinning centers of width=\/2 in a system of pinning length scales roughly ag~ 1/f,, as shown in the
size (L,=800\, L,=100\), corresponding to a density of inset of Fig. 3. For cas&C), the front never gets pinned. The
n=10/\2. The numbeN of flux lines depends essentially on effect of disorder is only to slow down the dynamicsee
the boundary condition adopted in the simulation. The injecFig. 4). A similar behavior is found for cas@®).

tion of magnetic flux into the sample is implemented as in
Ref. 12, concentrating at the beginning of the simulation all IV. NONLINEAR DIFFUSION

the flux lines in a small strif.’ <\, parallel to they direc-

tion, and imposing periodic boundary conditions in both di- In Ref. 12, we have shown that the front propagation can
rections. The front position is taken as theoordinate of the ~be described by coarse graining the system and obtaining a
most advanced particle in the system at different times.

Case(A), corresponding to a constant vortex number, was
studied in detail in Ref. 12, where we showed that the front 100 ¢
positionx, grows initially with time ast!”® for small times.
Eventually the front position slows down and saturates to a X

value &, which increases as the strength of the pinning cen-
tersfy is decreased. In particular, the front pinning lenggh

was found to scale s, .12 Here, we analyze the behavior 10

of the front as a function of the pinning density. In Fig. 1 we

report pinned density profiles for different valuesrofWe

use a large density of pinning centers, corresponding to the

weak-pinning regime. The data collapse indicates a scaling 1 . . .

form of the typep(x,n)=n4G(xn*4. This result combined 10 100 1000 10000 100000

with the one reported in Ref. 12 implies that the pinning !

length scales ag,~ (fp‘/ﬁ)_m- We notice that in the weak- FIG. 2. The average position of the front plotted as a function of
pinning regime one indeed expects the pinning strength tgme. The data have been obtained from MD simulations with dif-
scale <'315f0\/ﬁ-17 ferent boundary conditiongfor a definition see textin a clean

Next, we compare the behavior observed in d@sewith  system ,=0). The curves increase # wherea depends on the
that of case$B)—(D). We first consider the cadg=0, cor-  particular boundary condition imposed.
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~ FIG. 3. The average position of the front, obtained from MD  FIG. 5. The density profile at different timesobtained from
;lmulatlons for casé€B), plotted as a functlon of time. The curves MD simulations for boundary conditiofA) in the presence of dis-
increase as'? and saturates at long times to a value depending omrder. At the beginning the profile follows the solution of the non-

fo. From top to bottom, the curves correspond ¢e-0.001, 0.002, |inear diffusion equation in the disorder free case and eventually
0.003, 0.004, 0.005, 0.006, 0.007, 0.01, 0.015, and 0.02. In th@eforms due to the action of pinning.

inset, we show that the pinning length scales @s

the numerical simulations reported in Fig. 2, since the expo-
disordered nonlinear diffusion equation. The equation thahent g describes the dynamics of the front position.
rules the evolution of the local vortex densjiyr,t) is The functionG(u) also depends on the boundary condi-
tion and for casgA) is given by G(u)=(1—u?)/6 for u
<1 and vanishes fon=1. The other cases are reported in
Refs. 13 and 14. We check by MD numerical simulations
that, in the presence of disorder, the density profiles are de-
wherea= [d?rr - J(r)/2=®2/4 andF, is a randomifriction  scribed by the nonlinear diffusion equatié®). In Fig. 5 we
force due to the pinning centers, with a typical value scalingshow that the profiles follow thé,=0 solution and then

ap o - - )
FEZV(apr—pFC)-H(BTV P, (3

asF.~fyn. deform when pinning starts to dominate.
For T=0 andfy=0, Eq.(3) can be solved exactly using
scaling method>4 In particular the density profiles obey V. FRONT DYNAMICS

the equation . _ .
In order to understand in a simple way the effect of dis-

p(X,y,t) =t~ “G(x/tF), (4) order on the front propagation for different boundary condi-
tions, we can write an equation for the average position of
wherea and 8 depend on the boundary conditions and satthe front. The approach is very similar in spirit to what is
isfy a+2B=1. For the cases considered) a=1/3, 8  done for the imbibition of porous medif.As discussed
=1/3; (B) a=0, B=1/2; (C) a=-1/3, p=2/3; and(D) above, the front is driven by the density gradient against the
a=—1, B=1. These results are in perfect agreement withpinning landscape. The density gradient can be estimated
simply asV p~p(0t)/x,, wherex, is the front position and
100 ‘ p(0}) is the boundary density. The typical pinning force can
simply be taken a$,+/n. Collecting these two contribution
we write

I'dx,/dt=ap(0,t)/x,— foyn. (5

In order to close the problem we have to specify the behavior
of the boundary density, which clearly will depend on the
particular boundary condition chosen. Let us consider the
various cases.

(A) When the total number of vortices is conserved, the
boundary density decreases as the front advances. This can
be explained by noting that the density at the boundary can
be roughly estimated gg0,t) =m/x,, wherem=M/L, and
M is the the total number of vortices. Inserting this into Eq.
(5) we obtain

FIG. 4. The average position of the front for ca&) obtained
from MD simulations for different values of the pinning strength.

The front moves axp~At2’3, andA is reduced in the presence of 2
disorder. dxp/dt=1/x5—g/m, (6)
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whereg=f,/n/a and time is expressed in units Bf(ma). 100 - - -
Equation(6) admits an implicit solution as
(g/m)t=arctanliyg/mx,)/Vg/m—x,, (7)

which can be expanded for,<1/\/g/m to give x,~t*
(short time$ and forxpzl/\/ﬁlljﬁ (long times yielding x,,
= /m/g{1-2 exg—2(g/m)**]}, corresponding to a pinned
front. This behavior is in agreement with the scaling found in"?
numerical simulationgsee Ref. 12

(B) The case of a constant vortex density at the boundary
is similar to case(A). The boundary condition is simply

— L=100

p(0t)=p,, and Eq.(5) becomes - L=50
dx,/dt=1/x,—9/po, (8)

where time is now expressed in unitslof(pga). As in the 10 1 1'0 1(')0 10'00 10000

previous case, Eq8) cannot be solved explicitly but from t

the implicit solution it is possible to obtain the asymptotic
behavior: x,~tY2 at short times and X,=po/
g{1l—exd—(d/py)t]} at long times, in agreement with the
results presented in Fig. 3.

(C) This case is similar to cas@), with the difference
that the total number of vortices increases with tifhe.,
m=ht). Due to this, the front is never pinned. In the absenc
of pinning we recover tha?® behavior observed in MD
simulations. We cannot find an analytical solution of the
equation in this case and resort to numerical integration. Th

results indicate that the front asymptotically grows s where plastic flow is expected to be present and size effects

=C+At?°. For low pinning we expect that the coefficieht become predominafitin our case, finite-size effects play no
decreases with the pinning strength. This result is in agree- P ' piay

ment with the MD simulatiorisee Fig. 4 r_elevan_t role and the_ pinning length doe_s no_t depend on the
: . ! . linear size of the lattice as can be seen in Fig. 6.
(D) As in cas€(C), the front is not pinned by the disorder, ) . ) i
) . . In our simulation we did not include the effect of the
which has the only effect of reducing the front velocity. One

. 2 . vortex core; thus we expect our results to be valid in the
can compute the asymptotic velocity imposikg=Vt and London regime for magnetic fields much smaller thfn so
inserting this expression in E¢5), which now reads 9 g

that vortices never overlap. In principle one could expect the
(T/a)dx,/dt=ht/x,—g, (9)  result to be affected by the low distance singularity of the

FIG. 6. The front position as a function of time computed from
MD simulations for casgA) with two different system sizek, ,
keepingm constant. The result does not dependLgn

ning regime'’ where we expect pinning to be due to the
fluctuations in the pinning forces. Hence the front pinning

qength is controlled byF .~ f,v/h. Notice that in this regime

the front, although fractal at small length scaléss well
efined as in the experimental results presented in Refs. 5-7.
his would not be the case in the strong-pinning regime

whereh here is the rate of increase of the boundary density. 80 . . .
Solving forV one obtains/= (\/g?+4hT'/a—g)a/2l .

- £=05

VI. DISCUSSION AND PERSPECTIVES ol | £=0.2
----- normal case

In this paper we have analyzed the effect of different
boundary conditions on the flux penetration in disordered
type-1l superconductors. We have conducted a series of MLy
simulations of interacting vortices and interpreted the results ?
in terms of a nonlinear diffusion equation. In the limit of no
disorder, the equation has been solved in Refs. 13 and 1«
yielding solutions for the front propagation and the density 20
profiles. Here we have shown that these results are in perfe
agreement with MD simulations. Moreover, we have found
that the presence of pinning centers affects the behavior ¢
the system and, depending on the boundary conditions, th 0 0 500 1000 1500 2000
front is either pinned or simply slowed down. To clarify t2/3
these effects, we have introduced a simple equation of mo-
tion for the front position, in the same spirit of the Washburn  FIG. 7. The average position of the front for ca& obtained
approach to imbibitior® Despite its simplicity, the equation from MD simulations including the cutoff at small length scale due
captures the essential features of the front dynamics. to the vortex core. As in the case without cutoff, the front moves as

We have focused our analysis in the weak collective pinx,~At?3 andA is reduced for large.

40
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vortex-vortex interaction we have adoptgske Eq.(2)]. A modify the scaling behavior discussed here. We believe,
nonsingular expression for this interaction, taking explicitly however, that away from the surface this effect should not be
into account the effect of the vortex cores, was proposed ifmportant and the scaling would be recovered. In addition,
Ref. 19: thermal and quantum creep effects in general may lead to a
.. . o slowly moving front, even when pinning is expected. It is
J(N=®3(8mN\3) (K (|r|/N)—Ky(|r|/€))r.  (10)  possible to account for these effects in this framework con-
sidering the diffusion term in Eq.3) or adding a random

. . . noise term to the front propagation equation. In particular
generate vortex stackin@e., several vortices being captured ” .
conditions, the time scale of these creep processes could be

by a single pif at high vortex den5|t|e§. We hav_e tested theIarge enough to allow for the observation of front pinning.
_effect of vortex core on front propagation r_eplacmg the force In conclusion, we expect that our approach together with
:Ew?m(r?) vaétrzéh:ﬁozeo'ngg%?:a?g S'mgyrlre]gutlztas Siér? H‘or7 a systematic series of magneto-optical measurements per-
P 9 0=~ : 9. formed under different magnetic field controls.g., see
show that the vortex core doe_s not change substantially thlsefs. 57, will represent significant steps for the under-
gggﬁ?éfja?e;hewfr:i%r;t'is\/\éeug(;gcti;r}ztc:ﬁa?l?femfocr:;;s’nis standing of the flux penetration phenomenon in disordered
' superconductors. Our results could also be generalized to

Eq. (3) Qecreases a5 INCreases. Agaln the situation COUI.d interpret magnetization curves or hysteresis loops as a func-
change in the strong-pinning regime where vortex stacklnqion of the field driving frequency

becomes more important.
An important question that still remains to be addressed is

the relevance of these results for expe_ri_ments. We can asso- ACKNOWLEDGMENTS
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of surface barriers for flux penetration could in principle of UFC where this work has been completed.

In Ref. 20 it was shown that the low distance cutoff could
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