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Boundary effects on flux penetration in disordered superconductors
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We investigate flux penetration in a disordered type-II superconductor by molecular dynamics simulations of
interacting vortices. We focus on the effect of different boundary conditions on the scaling laws for flux front
propagation. The numerical results can be interpreted using a coarse-grained description of the system in terms
of a nonlinear diffusion equation. We propose a phenomenological equation for the front position that captures
the essential behavior of the system and recovers the scaling exponents.
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I. INTRODUCTION

In recent years, the discovery of high-temperature su
conductors has generated a renewed interest in understa
the magnetization properties of type-II superconducto1

The magnetization process is usually described in term
the Bean model:2 as the magnetic flux enters into the samp
from the boundaries, quenched disorder is responsible fo
formation of a constant flux gradient. The Bean model p
vides a phenomenological picture of average magnetiza
properties, such as hysteresis and thermal relaxation,3 but
does not describe local space-time fluctuations. Indeed
cent experiments showed that these fluctuations are not
common, but also large, spanning several length scales
flux line dynamics is intermittent, taking place i
avalanches,4 and flux fronts are fractal.5–7

A widely used modeling strategy to describe the fluctu
tions in the magnetization process consists in molecular
namics~MD! simulations of interacting vortices, pinned b
quenched random impurities.8–11 With this approach it has
been possible to model flux profiles,9 hysteresis,9

avalanches,10,11 and plastic flow.8,11 One of the aims of these
studies9 is to link the macroscopic behavior, as described,
instance, by generalized Bean models, to the microsc
vortex dynamics.

Recently, we have shown that the flux penetration due
interacting vortices in a disordered superconductor can
described by a disordered nonlinear diffusion equation.12 The
equation can be obtained performing a coarse graining of
microscopic equation of motion of the vortices. In the a
sence of pinning, the equation reduces to the model in
duced in Ref. 13. This model has been solved analyticall
provide expressions for the dynamics of the front for diffe
ent boundary conditions.13,14 When quenched disorder is in
cluded in the diffusion equations, flux fronts are pinned
agreement with MD simulations. Varying the parameters
the equation, we observe a crossover from flat to fractal
fronts, consistent with experimental observations. The va
of the fractal dimension suggests that the strong diso
limit is described by percolation.12 In the weak-disorder
limit, we recover the analytical results derived in Refs.
and 14. Using this description, we can thus directly link co
tinuum theories, for which analytical solutions are possib
to the microscopic equations used in MD simulations.12
0163-1829/2002/66~17!/174507~5!/$20.00 66 1745
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In this paper we systematically analyze the effect of d
ferent boundary conditions on the propagation of the fl
front. A similar study was presented in Refs. 13 and 14 in
framework of nonlinear flux diffusion in the absence of d
order. We show here that the results are in agreement
MD simulations for various different boundary condition
Next, we analyze the effect of disorder by varying the p
ning strength in the MD system. The results are then in
preted theoretically by means of the nonlinear diffusi
equation.12–14Finally, we propose a phenomenological equ
tion for the front position that is able to capture in a simp
way the behavior of the system, recovering the numer
results for the different boundary conditions.

II. VORTEX DYNAMICS MODEL

In an infinitely long cylinder, flux lines can be represent
as a set of interacting particles performing an overdam
motion in a random pinning landscape.8–11 The equation of
motion for each flux linei is given by

GvW i5(
j

JW~rW i2rW j !1(
p

GW @~RW p2rW i !/ l #, ~1!

where the effective viscosity is obtained from material p
rameters asG5F0Hc2 /rnc2. Here, F0 is the magnetic
quantum flux,c is the speed of light,rn is the resistivity of
the normal phase, andHc2 is the upper critical field. The firs
term on the right-hand side of Eq.~1! accounts for the
vortex-vortex interaction and it is given by

JW~rW ![F0
2/~8pl3!K1~ urWu/l! r̂ , ~2!

where K1 is a Bessel function decaying exponentially f
urWu.l, andl is the London penetration length.15 The inter-
action is cut off at a distance 6l to improve computationa
efficiency. The second term on the right-hand side of Eq.~1!
describes the interaction between pinning centers, mod
as localized traps, and flux lines. Here,GW is the force due to
a pinning center located atRW p , l is the range of the wells
~typically l !l), andp51, . . . ,Np (Np is the total number
of pinning centers!. For the pinning force, we use the follow
ing expression:GW (xW )52 f 0xW (uxW u21)2, for uxW u,1 and zero
©2002 The American Physical Society07-1
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otherwise. In the present simulations we restrict ourselve
the caseT50 ~see Ref. 16 for the implementation of therm
noise in MD simulations!.

As we discussed in the Introduction, we intend to stu
the effect of different boundary conditions on the flux pe
etration. We start with an empty system and concentrate
the vortices in a small strip at the boundary. Due to mut
repulsion, the vortices will be pushed inside the mater
forming a flux front. There are several ways to impleme
the boundary conditions, corresponding to different exp
mental situations. Here, we will consider the followin
boundary conditions.13,14

~A! Constant total number of vortices. Experimentally th
corresponds to an external control of the magnetic flux.

~B! Constant vortex concentration at the boundary. T
case corresponds to an external control of the magnetic fi

~C! Total vortex number increasing at constant rate. T
represents an external control of the flux rate.

~D! Boundary concentration increasing at constant ra
corresponding to a constant field rate.

As a word of caution, one should notice that bounda
conditions can be more complicated in reality, due to co
plex surface barriers that oppose flux penetration. These
not considered here and the only surface barrier is provi
by already entered flux lines.

III. MD SIMULATIONS

We perform MD simulations based on Eq.~1! and analyze
the flux front propagation for different values of the pinnin
strength f 0. We typically use up toNp5800 000 Poisson-
distributed pinning centers of widthl 5l/2 in a system of
size (Lx5800l, Ly5100l), corresponding to a density o
n510/l2. The numberN of flux lines depends essentially o
the boundary condition adopted in the simulation. The inj
tion of magnetic flux into the sample is implemented as
Ref. 12, concentrating at the beginning of the simulation
the flux lines in a small stripL8!l, parallel to they direc-
tion, and imposing periodic boundary conditions in both
rections. The front position is taken as thex coordinate of the
most advanced particle in the system at different times.

Case~A!, corresponding to a constant vortex number, w
studied in detail in Ref. 12, where we showed that the fr
positionxp grows initially with time ast1/3 for small times.
Eventually the front position slows down and saturates t
valuejp which increases as the strength of the pinning c
ters f 0 is decreased. In particular, the front pinning lengthjp

was found to scale asf 0
21/2.12 Here, we analyze the behavio

of the front as a function of the pinning density. In Fig. 1 w
report pinned density profiles for different values ofn. We
use a large density of pinning centers, corresponding to
weak-pinning regime. The data collapse indicates a sca
form of the typer(x,n)5n1/4G(xn1/4). This result combined
with the one reported in Ref. 12 implies that the pinni
length scales asjp;( f 0An)21/2. We notice that in the weak
pinning regime one indeed expects the pinning strength
scale asf 0An.17

Next, we compare the behavior observed in case~A! with
that of cases~B!–~D!. We first consider the casef 050, cor-
17450
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responding to a clean superconductor~i.e., without defects!
in order to clearly identify the front penetration law in th
initial regime. In Fig. 2 we show that the front advances a
power law with an exponent that depends on the bound
condition. In particular, we findxp;t1/2 for case ~B!, xp
;t2/3 for case~C!, andxp;t for case~D!. The presence of
disorder can affect all these behaviors in a different w
depending on the imposed boundary condition. Case~B! is
quite similar to the case~A! studied in Ref. 12: after an
initial transient, the front gets pinned and the pinning leng
scales with the pinning strength~see Fig. 3!. In particular, the
pinning length scales roughly asxp;1/f 0, as shown in the
inset of Fig. 3. For case~C!, the front never gets pinned. Th
effect of disorder is only to slow down the dynamics~see
Fig. 4!. A similar behavior is found for case~D!.

IV. NONLINEAR DIFFUSION

In Ref. 12, we have shown that the front propagation c
be described by coarse graining the system and obtainin

FIG. 1. The pinned density profiles measured in MD simulatio
for different values of the pinning center density. In the inset
show the data collapse.

FIG. 2. The average position of the front plotted as a function
time. The data have been obtained from MD simulations with d
ferent boundary conditions~for a definition see text! in a clean
system (f 050). The curves increase asta, wherea depends on the
particular boundary condition imposed.
7-2
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disordered nonlinear diffusion equation. The equation t
rules the evolution of the local vortex densityr(rW,t) is

G
]r

]t
5¹W ~ar¹W r2rFWc!1kBT¹2r, ~3!

wherea[*d2rrW•JW (rW)/25F0
2/4 andFc is a randomfriction

force due to the pinning centers, with a typical value scal
asFc; f 0An.

For T50 and f 050, Eq.~3! can be solved exactly usin
scaling methods.13,14 In particular the density profiles obe
the equation

r~x,y,t !5t2aG~x/tb!, ~4!

wherea andb depend on the boundary conditions and s
isfy a12b51. For the cases considered,~A! a51/3, b
51/3; ~B! a50, b51/2; ~C! a521/3, b52/3; and~D!
a521, b51. These results are in perfect agreement w

FIG. 3. The average position of the front, obtained from M
simulations for case~B!, plotted as a function of time. The curve
increase ast1/2 and saturates at long times to a value depending
f 0. From top to bottom, the curves correspond tof 050.001, 0.002,
0.003, 0.004, 0.005, 0.006, 0.007, 0.01, 0.015, and 0.02. In
inset, we show that the pinning length scales asf 0

21.

FIG. 4. The average position of the front for case~C! obtained
from MD simulations for different values of the pinning strengt
The front moves asxp;At2/3, andA is reduced in the presence o
disorder.
17450
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the numerical simulations reported in Fig. 2, since the ex
nentb describes the dynamics of the front position.

The functionG(u) also depends on the boundary cond
tion and for case~A! is given by G(u)5(12u2)/6 for u
,1 and vanishes foru>1. The other cases are reported
Refs. 13 and 14. We check by MD numerical simulatio
that, in the presence of disorder, the density profiles are
scribed by the nonlinear diffusion equation~3!. In Fig. 5 we
show that the profiles follow thef 050 solution and then
deform when pinning starts to dominate.

V. FRONT DYNAMICS

In order to understand in a simple way the effect of d
order on the front propagation for different boundary con
tions, we can write an equation for the average position
the front. The approach is very similar in spirit to what
done for the imbibition of porous media.18 As discussed
above, the front is driven by the density gradient against
pinning landscape. The density gradient can be estima
simply as¹r;r(0,t)/xp , wherexp is the front position and
r(0,t) is the boundary density. The typical pinning force c
simply be taken asf 0An. Collecting these two contribution
we write

Gdxp /dt5ar~0,t !/xp2 f 0An. ~5!

In order to close the problem we have to specify the beha
of the boundary density, which clearly will depend on t
particular boundary condition chosen. Let us consider
various cases.

~A! When the total number of vortices is conserved, t
boundary density decreases as the front advances. This
be explained by noting that the density at the boundary
be roughly estimated asr(0,t)5m/xp , wherem[M /Ly and
M is the the total number of vortices. Inserting this into E
~5! we obtain

dxp /dt51/xp
22g/m, ~6!

n

e

FIG. 5. The density profile at different timest obtained from
MD simulations for boundary condition~A! in the presence of dis-
order. At the beginning the profile follows the solution of the no
linear diffusion equation in the disorder free case and eventu
deforms due to the action of pinning.
7-3
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whereg[ f 0An/a and time is expressed in units ofG/(ma).
Equation~6! admits an implicit solution as

~g/m!t5arctanh~Ag/mxp!/Ag/m2xp , ~7!

which can be expanded forxp!1/Ag/m to give xp;t1/3

~short times! and for xp.1/Ag/m ~long times! yielding xp

.Am/g$122 exp@22(g/m)3/2t#%, corresponding to a pinne
front. This behavior is in agreement with the scaling found
numerical simulations~see Ref. 12!.

~B! The case of a constant vortex density at the bound
is similar to case~A!. The boundary condition is simply
r(0,t)5r0, and Eq.~5! becomes

dxp /dt51/xp2g/r0 , ~8!

where time is now expressed in units ofG/(r0a). As in the
previous case, Eq.~8! cannot be solved explicitly but from
the implicit solution it is possible to obtain the asympto
behavior: xp;t1/2 at short times and xp.r0 /
g$12exp@2(g/r0)t#% at long times, in agreement with th
results presented in Fig. 3.

~C! This case is similar to case~A!, with the difference
that the total number of vortices increases with time~i.e.,
m5ht). Due to this, the front is never pinned. In the absen
of pinning we recover thet2/3 behavior observed in MD
simulations. We cannot find an analytical solution of t
equation in this case and resort to numerical integration.
results indicate that the front asymptotically grows asxp
5C1At2/3. For low pinning we expect that the coefficientA
decreases with the pinning strength. This result is in ag
ment with the MD simulation~see Fig. 4!.

~D! As in case~C!, the front is not pinned by the disorde
which has the only effect of reducing the front velocity. O
can compute the asymptotic velocity imposingxp5Vt and
inserting this expression in Eq.~5!, which now reads

~G/a!dxp /dt5ht/xp2g, ~9!

whereh here is the rate of increase of the boundary dens
Solving for V one obtainsV5(Ag214hG/a2g)a/2G.

VI. DISCUSSION AND PERSPECTIVES

In this paper we have analyzed the effect of differe
boundary conditions on the flux penetration in disorde
type-II superconductors. We have conducted a series of
simulations of interacting vortices and interpreted the res
in terms of a nonlinear diffusion equation. In the limit of n
disorder, the equation has been solved in Refs. 13 and
yielding solutions for the front propagation and the dens
profiles. Here we have shown that these results are in pe
agreement with MD simulations. Moreover, we have fou
that the presence of pinning centers affects the behavio
the system and, depending on the boundary conditions,
front is either pinned or simply slowed down. To clari
these effects, we have introduced a simple equation of
tion for the front position, in the same spirit of the Washbu
approach to imbibition.18 Despite its simplicity, the equation
captures the essential features of the front dynamics.

We have focused our analysis in the weak collective p
17450
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ning regime,17 where we expect pinning to be due to th
fluctuations in the pinning forces. Hence the front pinni
length is controlled byFc; f 0An. Notice that in this regime
the front, although fractal at small length scales,12 is well
defined as in the experimental results presented in Refs. 5
This would not be the case in the strong-pinning regi
where plastic flow is expected to be present and size eff
become predominant.8 In our case, finite-size effects play n
relevant role and the pinning length does not depend on
linear size of the lattice as can be seen in Fig. 6.

In our simulation we did not include the effect of th
vortex core; thus we expect our results to be valid in
London regime for magnetic fields much smaller thanHc2 so
that vortices never overlap. In principle one could expect
result to be affected by the low distance singularity of t

FIG. 7. The average position of the front for case~C! obtained
from MD simulations including the cutoff at small length scale d
to the vortex core. As in the case without cutoff, the front moves
xp;At2/3, andA is reduced for largej.

FIG. 6. The front position as a function of time computed fro
MD simulations for case~A! with two different system sizesLy ,
keepingm constant. The result does not depend onLy .
7-4
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BOUNDARY EFFECTS ON FLUX PENETRATION IN . . . PHYSICAL REVIEW B66, 174507 ~2002!
vortex-vortex interaction we have adopted@see Eq.~2!#. A
nonsingular expression for this interaction, taking explici
into account the effect of the vortex cores, was propose
Ref. 19:

JW~rW ![F0
2/~8pl3!„K1~ urWu/l!2K1~ urWu/j!…r̂ . ~10!

In Ref. 20 it was shown that the low distance cutoff cou
generate vortex stacking~i.e., several vortices being capture
by a single pin! at high vortex densities. We have tested t
effect of vortex core on front propagation replacing the fo
in Eq. ~2! with the one in Eq.~10! and studying case~C! for
a pinning force off 050.02 andn510. The results in Fig. 7
show that the vortex core does not change substantially
dynamics of the front. We notice that the slopeA decreases
asj increases, which is due to the fact that the constanta in
Eq. ~3! decreases asj increases. Again the situation cou
change in the strong-pinning regime where vortex stack
becomes more important.

An important question that still remains to be addresse
the relevance of these results for experiments. We can a
ciate each one of the boundary conditions studied her
different experimental conditions, corresponding to the w
the field is applied to the sample. In many cases, the pres
of surface barriers for flux penetration could in princip
d

J.H

se

a

y
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modify the scaling behavior discussed here. We belie
however, that away from the surface this effect should not
important and the scaling would be recovered. In additi
thermal and quantum creep effects in general may lead
slowly moving front, even when pinning is expected. It
possible to account for these effects in this framework c
sidering the diffusion term in Eq.~3! or adding a random
noise term to the front propagation equation. In particu
conditions, the time scale of these creep processes coul
large enough to allow for the observation of front pinning

In conclusion, we expect that our approach together w
a systematic series of magneto-optical measurements
formed under different magnetic field controls~e.g., see
Refs. 5–7!, will represent significant steps for the unde
standing of the flux penetration phenomenon in disorde
superconductors. Our results could also be generalize
interpret magnetization curves or hysteresis loops as a fu
tion of the field driving frequency.

ACKNOWLEDGMENTS

This work has been supported by CNPq and FUNCA
S.Z. is grateful for the hospitality of the Physics Departme
of UFC where this work has been completed.
ett.
1G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, an
V.M. Vinokur, Rev. Mod. Phys.66, 1125~1994!.

2C.P. Bean, Rev. Mod. Phys.36, 31 ~1964!.
3Y.B. Kim, C.F. Hempstead, and A.R. Strnad, Phys. Rev.129, 528

~1963!.
4S. Field, J. Witt, F. Nori, and X. Ling, Phys. Rev. Lett.74, 1206

~1995!; C.M. Aegenter, Phys. Rev. E58, 1438~1998!; K. Beh-
nia, C. Capan, D. Mailly, and B. Etienne, Phys. Rev. B61,
R3815~2000!.

5R. Surdeanu, R.J. Wijngaarden, E. Visser, J.M. Huijbregtse,
Rector, B. Dam, and R. Griessen, Phys. Rev. Lett.83, 2054
~1999!.

6R. Surdeanu, R.J. Wijngaarden, B. Dam, J. Rector, R. Gries
C. Rossel, Z.F. Ren, and J.H. Wang, Phys. Rev. B58, 12 467
~1998!.

7S.S. James, S.B. Field, J. Seigel, and H. Shtrikman, Physic
332, 445 ~2000!.

8H.J. Jensen, A. Brass, and A.J. Berlinsky, Phys. Rev. Lett.60,
1676 ~1988!.

9C. Reichhardt, J. Groth, C.J. Olson, S. Field, and F. Nori, Ph
.

n,

C

s.

Rev. B52, 10 441~1995!; 53, R8898~1996!.
10O. Pla, N.K. Wilkin, and H.J. Jensen, Europhys. Lett.33, 297

~1996!.
11C.J. Olson, C. Reichhardt, and F. Nori, Phys. Rev. B56, 6175

~1997!; Phys. Rev. Lett.80, 2197~1998!.
12S. Zapperi, A.A. Moreira, and J.S. Andrade, Jr., Phys. Rev. L

86, 3622~2001!.
13V.V. Bryskin and S.N. Dorogotsev, JETP77, 791~1993!; Physica

C 215, 173 ~1993!.
14J. Gilchrist and C.J. van der Beek, Physica C231, 147 ~1994!.
15P.-G. de Gennes,Superconductivity of Metals and Alloys~Ben-

jamin, New York, 1966!.
16D. Monier and L. Fruchter, Eur. Phys. J. B17, 201 ~2000!.
17A.I. Larkin and Yu.N. Ovchinnikov, J. Low Temp. Phys.34, 409

~1979!.
18E. Washburn, Phys. Rev.17, 273 ~1921!. For a review see M.

Dube, M. Rost, and M. Alava, Eur. Phys. J. B15, 691 ~2000!.
19E.H. Brandt, Phys. Rev. B34, 6514~1986!.
20D.K. Jacksonet al., Europhys. Lett.52, 210 ~2000!.
7-5


