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Low-field hysteresis in disordered ferromagnets
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We analyze low-field hysteresis close to the demagnetized state in disordered ferromagnets using the zero-
temperature random-field Ising model. We solve the demagnetization process exactly in one dimension and
derive the Rayleigh law of hysteresis. The initial susceptibilitya and the hysteretic coefficientb display a peak
as a function of the disorder width. This behavior is confirmed by numerical simulationsd52,3 showing that
in the limit of weak disorder demagnetization is not possible and the Rayleigh law is not defined. These results
are in agreement with experimental observations on nanocrystalline magnetic materials.
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I. INTRODUCTION

Ferromagnetic materials display hysteresis under the
tion of an external field and the magnetization depends
complex way on the field history. In order to define magne
properties unambiguously, it is customary to firstdemagne-
tize the material, bringing it to a state of zero magnetizat
at zero field. This can be done, in practice, by the applica
of a slowly varying ac field with decreasing amplitude.
this way, the system explores a complex energy landsc
due to the interplay between structural disorder and inte
tions, until it is trapped into a low-energy minimum. Th
demagnetized state is then used as a reference frame to
acterize the magnetic properties of the material.

The hysteresis properties at low fields, starting from
demagnetized state, have been investigated already in
by Lord Rayleigh,1 who found that the branches of the hy
teresis loop are well described by parabolas. In particu
when the fieldH is cycled between6H* , the magnetization
M follows M5(a1bH* )H6b@(H* )22H2#/2, where the
signs6 distinguish the upper and lower branch of the loo
Consequently, the area of the loop scales with the peak
H* as W54/3b(H* )3 and the response to a small fie
change, starting from the demagnetized state, is given
M* 5a(H* )6b(H* )2.2

The Rayleigh law has been widely observed in ferrom
netic materials,2 but also in ferroelectric ceramics.3,4 The cur-
rent theoretical interpretation of this law is based on a 19
paper by Ne´el,5 who derived the law formulating the magn
tization process as the dynamics of a point~i.e., the position
of a domain wall! in a random potential. In this framework
the initial susceptibilitya is associated to reversible motion
inside one of the many minima of the random potent
while the hysteretic coefficientb is due to irreversible jumps
between different minima. Successive developments and
provements have been devoted to establish precise links
tween Néel random potential and the material micr
structure,6–9 but in several cases the issue is still unsettl
For instance, the initial permeability of nanocrystalline m
terials typically displays a peak as a function of the gr
size,10 heat treatment,11,12 or alloy composition.10,13 This be-
havior can be associated with changes in the disordered
crostructure, but cannot be accounted for by Ne´el theory that
0163-1829/2002/65~14!/144441~7!/$20.00 65 1444
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predicts a monotonic dependence ofa on the disorder width.5

The zero-temperature random-field Ising model~RFIM!
has been recently used to describe the competition betw
quenched disorder and exchange interactions and their e
on the hysteresis loop.14 In three and higher dimensions, th
model shows a phase transition between a continuous c
for strong disorder and a discontinuous loop, with a mac
scopic jump, at low disorder. The two phases are separ
by a second-order critical point, characterized by univer
scaling laws.14–16A behavior of this kind is not restricted to
the RFIM but has also been observed in other models, w
random bonds or random anisotropies17 and vectorial spins.18

In addition, a similar disorder induced phase transition in
hysteresis loop has been experimentally reported for a
CoO bilayer.19 Thus the RFIM provides a tractable model f
a more generic behavior: the model has been solved exa
in one dimension20,21 and on the Bethe lattice,22,23 while
mean-field theory14 and renormalization group15 have been
used to analyze the transition.

Here, we use the RFIM to analyze the demagnetizat
process and investigate the properties of the hysteresis
at low fields. Along the lines of Refs. 21 and 23, we compu
the demagnetization cycles exactly in one dimension and
rive the Rayleigh law, obtaininga andb as function of dis-
order and exchange energies. Next, we analyze the prob
numerically in higher dimensions~i.e., d52 and d53)
where exact results are at present not available. Ind53, we
find that the disorder induced transition,14 defined on the
saturation loop, is also reflected by the Rayleigh loops: in
weak disorder phase the system cannot be demagnetize
the final magnetization coincides with the saturation mag
tization. A similar behavior has been recently obtained a
lyzing subloops.24 In the high disorder phase, however,
demagnetization process is possible and hysteresis loop
still described by the Rayleigh law. Above the transition, t
dependence ofa andb on disorder is qualitatively similar in
all dimensions, displaying a peak and decreasing to zero
very strong disorder in agreement with experiments.10–13

II. RANDOM-FIELD ISING MODEL

In the RFIM, a spinsi561 is assigned to each sitei of a
d-dimensional lattice. The spins are coupled to their near
©2002 The American Physical Society41-1
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neighbor spins by a ferromagnetic interaction of strengtJ
and to the external fieldH. In addition, to each site of the
lattice it is associated a random fieldhi taken from given
probability distribution r(h). In the following we will
mainly focus on a Gaussian with varianceR @i.e., r(h)
5exp(2h2/2R2)/A2pR#, but we will also consider a rectan
gular distribution. The Hamiltonian thus reads

H52(
^ i , j &

Jsisj2(
i

~H1hi !si , ~1!

where the first sum is restricted to nearest-neighbors p
The dynamics proposed in Ref. 25 and used in Refs. 14
is such that the spins align with the local field

si5sgnS J(
j

sj1hi1H D . ~2!

In d51, a spin withn neighborsup (n50,1,2), will beup
at the fieldH with probability:

pn~H ![E
2(12n)J2H

1`

r~hi !dhi . ~3!

When a spin flipsup the local field of its neighbors is raise
by 2J so that it can happen that one or both of the t
neighbors flipup. In this way a single spin flip can lead th
neighboring spins to flip, eventually triggering an avalanc

It has been shown that the RFIM obeys return-po
memory:14 if the field is increased adiabatically the magn
tization only depends on the state in which the field was
reversed. This property has been exploited ind51 and in the
Bethe lattice to obtain exactly the saturation cycle and
first minor loops.21 In the next section we will briefly recal
the results reported in Ref. 21 and we will then proceed w
a general derivation for nested minor loops.

III. SATURATION LOOP AND FIRST RETURN CURVES

To obtain the saturation loop, we start from the init
conditionsi521 atH52` and we will raise the field up to
H0. We are thus moving on the lower half of the maj
hysteresis loop. Following Ref. 21, we define the conditio
probabilityU0 that a spin flipsup at H0 before a given near
est neighbor. To computeU0, we take advantage of the tran
lational invariance of the system. There are only two ways
flip up a spin in i keeping the spin ini 21 down. The two
contributions yieldU05p1(H0)U01p0(H0)@12U0#, from
which we obtain

U05
p0~H0!

12@p1~H0!2p0~H0!#
. ~4!

The probability that a spin isup at field H0 is

p~H0!5U0
2p2~H0!12U0~12U0!p1~H0!

1~12U0!2p0~H0! ~5!

and the magnetization per spinM (H0) is simply M (H0)
52p(H0)21. In Fig. 1 we show the saturation loop for
14444
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Gaussian distribution of random fields.
If the field is reversed from a finite valueH0, we have a

new situation and the system departs from the satura
curve. It is possible to show that if the field changes fromH0
to H15H022J the magnetization reaches the upper satu
tion loop again. Thus we can restrict the analysis to fie
included in@H022J,H0#. The first return curve can be ob
tained counting the spins that wereup at H0 and aredownat
H1. To this end, we introduceD1 as the conditional probabil
ity that a spin isdownif its neighbor isup. Following similar
steps as forU0,21 we obtain

D15
f ~H0!1U0@p2~H0!2p2~H1!#

12@p1~H0!2p1~H1!#
, ~6!

where f (H0)[U0@12p1(H0)#1(12U0)@12p2(H0)#. At
this point it is straightforward to write the probabilityp(H1)
that a spin isup at H1:

p~H1!5p~H0!2~U0
2@p2~H0!2p2~H1!#

12U0D1@p1~H0!2p1~H1!#

1D1
2@p0~H0!2p0~H1!# ! ~7!

which is simply related to the magnetization.

IV. DEMAGNETIZATION

Here, we extend the approach of Ref. 21 to more gen
field histories, treating explicitly the demagnetization pr
cess: the external field is changed through a nested suc
sion H5H0→H1→H2→•••Hn•••→0, with H2n.H2n12
.0, H2n21,H2n11,0, and dH[H2n2H2n12→0. The
initial value H0 should correspond to complete saturatio
but we discussed above that as long asHn>J the magneti-
zation Mn[M (Hn) simply follows the saturation curve, s
that we can setH05J.

As in the previous section, the key quantity to compute

FIG. 1. Exact expressions for the saturation cycle~thin lines!,
the demagnetization curve~thick lines!, and a few minor loops~dot-
ted lines! for J51 andR51. The points are the results of a nu
merical simulation withL553105 spins and a single realization o
the disorder.
1-2
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the conditional probabilityU2n that a spin flips up before its
nearest neighbor when the field is increased fromH2n21 to
H2n . Similarly on the descending part of the loops we defi
D2n11 as the conditional probability that a spin flips dow
e

on

o
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1
op
ith
nu

fe

14444
e

before its nearest neighbor when the field is decreased f
H2n to H2n11. Enumerating all possible spin histories, w
find recursion relations for the conditional probabilitie
which read as26
H U2n5U2n221S U2n22@p1~H2n!2p1~H2n22!#1D2n21@p0~H2n!2p0~H2n22!#

12@p1~H2n!2p1~H2n21!# D ,

D2n115D2n211S D2n21@p1~H2n21!2p1~H2n11!#1U2n@p2~H2n21!2p2~H2n11!#

12@p1~H2n!2p1~H2n11!# D .

~8!
tiza-
ula-

q.

y

the

y a
-
x-
The derivation of Eqs.~8! is a little involved and we thus
report it in Appendix A.

The magnetization as a function of the peak field is giv
by

M2n5M2n2112U2n
2 @p2~H2n!2p2~H2n21!#

14U2nD2n21@p1~H2n!2p1~H2n21!#

12D2n21
2 @p0~H2n!2p0~H2n21!# ~9!

and a similar expression holds forM2n11.
In the limit H2n222H2n[dH→0, H2n→H* , and

H2n21→2H* , the recursion relations in Eqs.~8! become a
pair of differential equations,27

5
]U

]H*
5S 1

12V D @r~H* !D̃1r~2J2H* !U#,

]D̃

]H*
5S 1

12V D @r~H* !U2r~2J2H* !D̃#,

~10!

whereV[*2H*
H* r(h8)dh8 andD̃(H)[D(2H). The bound-

ary conditions are given by the conditional probabilities
the saturation loop@i.e., U(J)5D̃(J)5U0(J)51/2# and the
solution reads

U~H* !5D̃~H* !

5
1

2
expS 2E

H*

J r~h8!1r~2J2h8!

12V~h8!
dh8D . ~11!

Once the conditional probabilityU is known, it is straight-
forward to compute the magnetization as a function
the peak fieldH* from Eq. ~9!, noting that M (2H* )
52M (H* ). Inner loops starting from the demagnetizati
curve @i.e., Eq.~9!# can also be computed exactly. In Fig.
we report the demagnetization curve and a few inner lo
for a system with Gaussian random-field distribution w
unit variance. The analytical results are compared with
merical simulations, performed on a lattice withL553105

spins, using a single realization of the disorder. The per
n

f

s

-

ct

agreement between the curves confirms that the magne
tion is self-averaging, as assumed throughout the calc
tions.

V. RAYLEIGH LAW

To analyze low-field hysteresis we first substitute in E
~9! H2n andH2n21 with H* and2H* . If we start to reverse
the field fromH05J and we cycle the field symmetricall
aroundH* 50, the process displays the symmetryM (H* )
52M (2H* ) and U(H* )5D̃(H* ). Thus we can reduce
Eq. ~9! to

M ~H* !52U2~H* !(
k50

1

@pk~H* !2pk~2H* !#. ~12!

Now we can expandM (H* ) aroundH* 50. In this limit we
have

@pk~H* !2pk~2H* !#.H 2H* r~2J! if k50,2,

2H* r~0! if k51,
~13!

and

U2~H* !.U2~0!$112H* @r~0!1r~2J!#%. ~14!

Collecting Eqs.~13! and ~14! in Eq. ~12!, we obtain M
.aH* 1b(H* )2 recovering the Rayleigh expression with

H a54U2~0!@r~0!1r~2J!#,

b54U2~0!@r~0!1r~2J!#2.
~15!

An expansion can also be performed for minor loops on
demagnetization curve~i.e., cycling H between 6H* ),
yielding M5(a1bH* )H6b@(H* )22H2#/2, which coin-
cides with the Rayleigh law.

In Fig. 2~a! we report the values ofa andb for a Gaussian
distribution of random fields as a function of the disorderR,
showing that both components of the susceptibility displa
maximum inR. To identify the low and strong disorder be
havior of the susceptibilities, we perform an asymptotic e
pansion and we obtain forR→` that a.2/A2pR and b

.2/pR2. For R→0, we obtain:a.(1/epJ)e2J2/2R2
and b

.(1/epJA2p)(1/R)e2J2/2R2
. Finally in Fig. 2~b! we report
1-3
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DANTE, DURIN, MAGNI, AND ZAPPERI PHYSICAL REVIEW B65 144441
a and b obtained with a rectangular distribution o
random fields. The derivation of these results is reported
Appendix B.

VI. SIMULATIONS IN DÄ2,3

Next, we turn our attention to the high dimensional sy
tem, for which analytical results are not available. In order
obtain unambiguously the demagnetized state for a gi
realization of the disorder, one should perform aperfect de-
magnetization. This is done in practice by changing the fie
by precisely the amount necessary to flip the first unsta
spin. In this way, the field is cycled between2H* andH*
andH* is then decreased at the next cycle by precisely
amount necessary to have one avalanche less than in
previous cycle. This corresponds to decreaseH* at each
cycle by an amountdH, with dH→01. The perfect demag
netization algorithm allows us to obtain a precise charac
ization of the demagnetized state but it is computationa
very demanding. Thus we resort to a different algorith
which performs anapproximate demagnetization: instead of
cycling the field between2H* andH* we just flip the field
between these two values and then decreaseH* by a fixed

FIG. 2. The reversible susceptibilitya and the hysteretic coeffi
cient b computed exactly ind51 for ~a! a Gaussian distribution o
random fields and~b! a rectangular distribution.
14444
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amountdH. We have checked that with a reasonably sm
dH ~i.e., dH,1023) the demagnetization curve is quite in
sensitive to the algorithm used.

As we discussed above, it is well established that ind
53 the saturation loops reveal a phase transition atRc

.2.16 for J51 ~Ref. 16! @the transition is not present ind
51, while in d52 the issue is controversial~Ref. 16!#. We
find that the transition is reflected also in the Rayleigh loo
in Fig. 3 we report the final magnetizationM` computed
using the demagnetization algorithm for different values
R. For strong disorderR.Rc , we see thatM`.0 as ex-
pected, but asR,Rc the demagnetization curve tends to t
saturation magnetization andM`→61. The transition be-
comes sharper as the system size is increased, indicating
demagnetization is possible only forR.Rc ~see also Ref.
24!. We notice here that two scenarios are possible foL
→` asR→Rc

2 . The first possibility is thatM` scales con-
tinuously to zero as (Rc2R)b and the second is that th
transition is discontinuous~i.e., M`→M* .0). The present
numerical results do not allow us to distinguish betwe
these two cases, but a recent analysis of the RFIM on
Bethe lattice is in favor of the first alternative.28

From the demagnetization curve, the Rayleigh parame
can be estimated plotting (M2M` )/H vs H and fitting the
linear part of the curve close toH50 ~see Fig. 4!. As we
show in Fig. 4 the demagnetization curve is basically ind
pendent of the system size, once the magnetization has
shifted byM` . Thus we expect that the Rayleigh paramet
be also independent ofL. In Fig. 5 we report the values ofa
and b obtained numerically ind52 andd53 for different
values ofR, using systems of sizes (L5100)2 and (L550)3.
The results are qualitatively similar to those obtained exa
in d51: the curve displays a peak for intermediate disor
and a decrease to zero for weak and strong disorder.

FIG. 3. The absolute value of the final magnetizationuM`u as a
function of R, obtained from numerical simulations ind53. For
strong disorderuM`u50 as expected, while for weak disorder th
final magnetization coincides with the saturation value. The tra
tion between the two types of behavior becomes sharper as
system size is increased.
1-4
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VII. DISCUSSION

In this paper we have discussed the demagnetization p
erties of the RFIM ind51,2,3. In d51 it is possible to
compute exactly the demagnetization curve and obtain
expression for the Rayleigh parameters. We find thata andb
display a peak in the disorderR. This result is confirmed by
numerical simulations ind52,3, where analytical results ar
not available. In addition, ind53 the disorder induced phas
transition strongly affects the demagnetization process:
R,Rc it is not possible to demagnetize the system anymo

It is interesting to compare our theoretical results w
experiments on nanocrystalline materials. It has been
ported that the initial susceptibility in several cases displ
a peak as the heat treatment or the alloy composition
varied.10–13 The peak is usually associated with changes
the microstructure, which induce a competition between
disorder present in grain anisotropies and intergrain inte
tions mediated by the amorphous matrix.10 Notice that a
similar behavior cannot be reproduced by Ne´el theory, where

FIG. 4. The demagnetization curve can be used to obtain
estimate of the Rayleigh parameters. Notice the absence of sy
size dependence. These results are obtained ind53.

FIG. 5. The reversible susceptibilitya computed exactly ind
51 is compared with numerical results ind52 andd53. In the
inset we show a similar plot for the parameterb.
14444
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the initial susceptibility is decreasing with the width of th
disorder potential.5 On the other hand, we see here that t
behavior is well captured by the RFIM, that allows us
analyze the the effect of the disorder-exchange ratioR/J. For
weak disorder, we have a few large domains and the sus
tibility is dominated by domain-wall dynamics. When th
disorder is increased, the number of domains~and domain
walls! also increases and so does the susceptibility. Incre
ing the disorder further leads to a complete breakup of
domains and the response is dominated by single spin flip
low random-field regions with a progressive decrease of
susceptibility.

A detailed understanding of the demagnetization proc
and low-field hysteresis has important implications also fr
a purely theoretical point of view. When a disordered syst
is demagnetized, it explores a complex energy landscape
til it finds a metastable minimum. It would be interesting
compare the statistical properties of the demagnetized s
with those of the ground state of the system.25 The analysis
of the ground state of disordered systems has received w
attention in the past few years, due to the connections w
general optimization problems, and the RFIM is one of t
typical models used to test ground-state algorithms.29 De-
magnetization could provide a relatively simple way to o
tain a low-energy state that can be useful for optimizat
procedures. We are currently pursuing investigations al
these lines.30

ACKNOWLEDGMENTS

This work was supported by the INFM PAIS-G project o
‘‘Hysteresis in disordered ferromagnets.’’ We thank M.
Alava, G. Bertotti, F. Colaiori, and A. Gabrielli for usefu
discussions and remarks.

APPENDIX A: DERIVATION OF THE RECURSION
RELATIONS

Here, we derive recursion relations for the condition
probabilitiesU2n and D2n11 as a function of the previous
magnetization history. Let us first consider the case
D2n11: the field from H2n21 reachesH2n and is then de-
creased again up toH2n11. The weight of the fraction of
spins that at fieldH2n11 flip down before their neighbor is
given by

D2n115D2n212z2n1z2n11 , ~A1!

where z2n is the weight of the fraction of spins that wer
downat H2n21 before a fixed nearest neighbor and flipup at
H2n , while z2n11 is the weight of the fraction of spins con
tributing to z2n which flip againdownat H2n11.

To computez2n , we consider the spins that at the fie
H2n21 aredownbefore their neighbor~for instance, we can
say that the spini th is downbefore the spin in sitei 21) and
areup at the fieldH2n . Since we fixedup the spin in sitei
21, the spin in sitei 11 can be eitherup or down. If the spin
in i 11 is up when the spini flips up, it contributes toz2n
with

n
em
1-5
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U2n@p2~H2n!2p2~H2n21!#.

If the spin in sitei 11 is downwhen the spini flips up, we
obtain

D2n21@p1~H2n!2p1~H2n21!#.

Indeed,@pn(H2n)2pn(H2n21)# is the probability that a spin
with n up nearest neighbors isup at H2n but not atH2n21,
while D2n21 ,U2n are, respectively, the conditional probabi
ties that the spin in sitei 11 is downor up if the spin in site
i is down. Adding the two contributions, we obtain

z2n5$D2n21@p1~H2n!2p1~H2n21!#

1U2n@p2~H2n!2p2~H2n21!#%. ~A2!

The derivation ofz2n11 follows similar steps: we count th
spins that areup at H2n and are againdownat H2n11. If the
spin in the sitei 11 is up at H2n11, the spin ini is up at H2n
and isdownat H2n11 with probability

U2n@p2~H2n!2p2~H2n11!#.

Finally, we analyze the case in which the spin in sitei 11 is
alreadydownwhen the spini flips down. The weight of this
configuration is

D2n11@p1~H2n!2p1~H2n11!#,

so thatz2n11 is given by

z2n115$U2n@p2~H2n!2p2~H2n11!#

1D2n11@p1~H2n!2p1~H2n11!#%. ~A3!

Substituting these two expressions in Eq.~A1! we obtain the
second of Eqs.~8!. We can then derive a similar equation f
U2n @first of Eqs.~8!# following the same method as the on
employed above to calculateD2n11.

APPENDIX B: THE CASE OF THE RECTANGULAR
DISTRIBUTION

It is also instructive to consider the case of a rectangu
distribution of random fields@i.e., r(x)51/2D if uxu,D and
zero otherwise#, since all the calculations can be carried o
explicitly. As usual, we cycle the field aroundH50 and we
take H05J. The calculation should be divided in sever
cases, depending on the value ofD.

~i! For D>3J, we haver(x)5r(2J2x)51/2D, so that
pk(H* )2pk(2H* )5H* /D and Eq.~11!, reduces to
-

nd

14444
r

t

l

U2~H* !5
1

4 S D2J

D2H*
D 2

. ~B1!

Inserting these results in Eq.~12!, we obtain

M ~H* !5S D2J

D2H*
D 2

H

D
. ~B2!

Expanding Eq.~B2!, we obtain the values fora andb

5 a5
1

D F12
J

DG2

,

b52
1

D2 F12
J

DG2

.

~B3!

~ii ! For 2J,D,3J, U2(0) is still given by Eq.~B1! but
pk(H* ) differs from the previous case. The magnetization
now given by

5
M ~H* !5S D2J

~D2H* !
D 2

3H* 22J1D

4D

if H* .D22J,

M ~H* !5S D2J

~D2H* !
D 2

H

D

if H* ,D22J.

~B4!

The expansion aroundH* is thus still given by Eq.~B3!.
~iii ! The behavior forJ,D,2J is again different: close

to H* 50 the peak magnetization is not given by Eq.~12!,
but for H* ,2J2D can be written as

M ~H* !5
~D2J!2H*

4JD~D2H* !
, ~B5!

so that expanding we obtain

5 a5
~D2J!2

4D2J
,

b5
~D2J!2

2D3J
.

~B6!

~iv! Finally for D,J there is no hysteresis and thus th
Rayleigh law is not defined.
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