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Low-field hysteresis in disordered ferromagnets
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We analyze low-field hysteresis close to the demagnetized state in disordered ferromagnets using the zero-
temperature random-field Ising model. We solve the demagnetization process exactly in one dimension and
derive the Rayleigh law of hysteresis. The initial susceptibdignd the hysteretic coefficiebtdisplay a peak
as a function of the disorder width. This behavior is confirmed by numerical simulatie2s3 showing that
in the limit of weak disorder demagnetization is not possible and the Rayleigh law is not defined. These results
are in agreement with experimental observations on nanocrystalline magnetic materials.
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[. INTRODUCTION predicts a monotonic dependenceaain the disorder width.
The zero-temperature random-field Ising modeFIM)
Ferromagnetic materials display hysteresis under the adas been recently used to describe the competition between
tion of an external field and the magnetization depends in guenched disorder and exchange interactions and their effect
complex way on the field history. In order to define magneticon the hysteresis loofd.In three and higher dimensions, the
properties unambiguously, it is customary to fidetmagne- model shows a phase transition between a continuous cycle
tize the material, bringing it to a state of zero magnetizationfor strong disorder and a discontinuous loop, with a macro-
at zero field. This can be done, in practice, by the applicatiorscopic jump, at low disorder. The two phases are separated
of a slowly varying ac field with decreasing amplitude. In by a second-order critical point, characterized by universal
this way, the system explores a complex energy landscap&gcaling laws:*~16 A behavior of this kind is not restricted to
due to the interplay between structural disorder and interadhe RFIM but has also been observed in other models, with
tions, until it is trapped into a low-energy minimum. This random bonds or random anisotropfeand vectorial spins®
demagnetized state is then used as a reference frame to chir-addition, a similar disorder induced phase transition in the
acterize the magnetic properties of the material. hysteresis loop has been experimentally reported for a Co-
The hysteresis properties at low fields, starting from theCoO bilayer:® Thus the RFIM provides a tractable model for
demagnetized state, have been investigated already in 18@7more generic behavior: the model has been solved exactly
by Lord Rayleight who found that the branches of the hys- in one dimensiof?"** and on the Bethe lattic&** while
teresis loop are well described by parabolas. In particulatnean-field theory# and renormalization grodp have been
when the fieltH is cycled between- H*, the magnetization Uused to analyze the transition.
M follows M=(a+bH*)H=b[(H*)2—H?]/2, where the Here, we use the RFIM to analyze the demagnetization
signs = distinguish the upper and lower branch of the loop.process and investigate the properties of the hysteresis loop
Consequently, the area of the loop scales with the peak fieldt low fields. Along the lines of Refs. 21 and 23, we compute
H* as W=4/3b(H*)® and the response to a small field the demagnetization cycles exactly in one dimension and de-
change, starting from the demagnetized state, is given bjve the Rayleigh law, obtaining andb as function of dis-
M* =a(H*)=b(H*)2.2 order and exchange energies. Next, we analyze the problem
The Rayleigh law has been widely observed in ferromaghumerically in higher dimensionsi.e., d=2 and d=3)
netic material$,but also in ferroelectric ceramiéé.The cur- ~ Where exact results are at present not availablel=8, we
rent theoretical interpretation of this law is based on a 1944ind that the disorder induced transitibhdefined on the
paper by Nel® who derived the law formulating the magne- Saturation loop, is also reflected by the Rayleigh loops: in the
tization process as the dynamics of a pdire., the position ~Weak disorder phase the system cannot be demagnetized, as
of a domain wall in a random potential. In this framework, the final magnetization coincides with the saturation magne-
the initial susceptibilitya is associated to reversible motions tization. A similar behavior has been recently obtained ana-
inside one of the many minima of the random potential,lyzing subloops?* In the high disorder phase, however, a
while the hysteretic coefficieritis due to irreversible jumps demagnetization process is possible and hysteresis loops are
between different minima. Successive developments and intill described by the Rayleigh law. Above the transition, the
provements have been devoted to establish precise links béependence cd andb on disorder is qualitatively similar in
tween Nel random potential and the material micro- all dimensions, displaying a peak and decreasing to zero for
structuré® but in several cases the issue is still unsettledVvery strong disorder in agreement with experimefits?
For instance, the initial permeability of nanocrystalline ma-
terials typically displays a peak as a function of the grain
sizel? heat treatment*2 or alloy compositiort®*3 This be- Il RANDOM-FIELD ISING MODEL
havior can be associated with changes in the disordered mi- In the RFIM, a spirs;= =+ 1 is assigned to each sitef a
crostructure, but cannot be accounted for byNbeory that  d-dimensional lattice. The spins are coupled to their nearest-
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neighbor spins by a ferromagnetic interaction of strenhth 1.0
and to the external fieltH. In addition, to each site of the

lattice it is associated a random fielig taken from given

probability distribution p(h). In the following we will 05 :
mainly focus on a Gaussian with varianée[i.e., p(h)
=exp(-h%2R?)/\27rR], but we will also consider a rectan-

gular distribution. The Hamiltonian thus reads 0.0 |

M(H)

H=—<Z> Jss;— > (H+h)s;, (1)
1,] i

where the first sum is restricted to nearest-neighbors pairs.
The dynamics proposed in Ref. 25 and used in Refs. 14-16

is such that the spins align with the local field -1.0 o ‘ ;
-2.0 -1.0 0.0 1.0 2.0

H

: )

FIG. 1. Exact expressions for the saturation cy¢hen lines,
the demagnetization curyéhick lineg, and a few minor loop&ot-

In d=1, a spin withn neighborsup (n=0,1,2), will beup ted lineg for J=1 andR=1. The points are the results of a nu-
at the fieldH with probability: merical simulation with.=5x 10° spins and a single realization of
the disorder.

si=sgr(‘]; sj+hi+H

—+ oo
Pn(H)= L(l_n)J_HP(hi)dhi- (3 Gaussian distribution of random fields.
If the field is reversed from a finite valug,, we have a
When a spin flipaip the local field of its neighbors is raised new situation and the system departs from the saturation
by 2J so that it can happen that one or both of the twocurve. It is possible to show that if the field changes fidm
neighbors flipup. In this way a single spin flip can lead the to H,=H,— 2J the magnetization reaches the upper satura-
neighboring spins to flip, eventually triggering an avalanchetion loop again. Thus we can restrict the analysis to fields
It has been shown that the RFIM obeys return-pointincluded in[H,—2J,H,]. The first return curve can be ob-
memory™* if the field is increased adiabatically the magne-tained counting the spins that weup at H, and aredownat
tization only depends on the state in which the field was lasH ;. To this end, we introducB ; as the conditional probabil-

reversed. This property has been exploited#l and in the ity that a spin isdownif its neighbor isup. Following similar
Bethe lattice to obtain exactly the saturation cycle and theteps as fOUO,Zl we obtain

first minor loops?! In the next section we will briefly recall

the results reported in Ref. 21 and we will then proceed with f(Ho)+Ug[p2(Hg) —p2(H1)]
a general derivation for nested minor loops. =TT [py(Ho) —pa(HD] (6)
IIl. SATURATION LOOP AND FIRST RETURN CURVES where f(Ho)=Uo[1—pi(Ho) ]+ (1—Ug)[1—pa(Ho)]. At

this point it is straightforward to write the probabilip(H 1)
To obtain the saturation loop, we start from the initial that a spin isup at H,:
conditions;=—1 atH = — and we will raise the field up to

Ho. We are thus moving on the lower half of the major p(H1)=p(HO)—(US[pZ(HO)—pZ(Hl)]
hysteresis loop. Following Ref. 21, we define the conditional

probability U, that a spin flipaup at H, before a given near- +2UoDy[p1(Ho) = p1(H1)]

est neighbor. To computd, we take advantage of the trans- n Di[po(Ho) —po(HDD) @

lational invariance of the system. There are only two ways to
flip up a spin ini keeping the spin in—1 down The two  which is simply related to the magnetization.
contributions yieldU o= p;(Ho)Uo+ po(Ho)[1—U,], from

which we obtain IV. DEMAGNETIZATION
Po(Ho) Here, we extend the approach of Ref. 21 to more general
U0:1_[ Ho)—po(Ho) 1" 4 field histories, treating explicitly the demagnetization pro-
P1(Ho) —Po(Ho A
- o _ . cess: the external field is changed through a nested succes-
The probability that a spin igp at field Hg is sion H=Ho—H;—Hp—---Hy---—0, with Hy,>Hn4»
>0, Hy,_1<H <0, and dH=H,,—H —0. The
112 ’ 2n—1 2n+1 ’ 2n 2n+2
P(Ho)=Ugp2(Ho) +2Uo(1~Ug)pa(Ho) initial value Hy should correspond to complete saturation,
+(1=Ug)2po(Ho) (5) but we discussed above that as longHhs=J the magneti-

zationM ,=M(H,,) simply follows the saturation curve, so
and the magnetization per spM(Hg) is simply M(Hg) that we can set,=J.
=2p(Hy)—1. In Fig. 1 we show the saturation loop for a  As in the previous section, the key quantity to compute is
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the conditional probabilityJ,,, that a spin flips up before its before its nearest neighbor when the field is decreased from
nearest neighbor when the field is increased fidpy_; to  H,, to H,,, ;1. Enumerating all possible spin histories, we
H,,. Similarly on the descending part of the loops we definefind recursion relations for the conditional probabilities
D,n.1 as the conditional probability that a spin flips down which read a&

Uan-2[P1(H2n) = P1(H2n-2) 1+ Dan—1[Po(H2n) — pO(HZn—Z)])

1—[p1(Hzn) = p1(Hzp-1)] ’
Dan-1[P1(H2n-1) = P1(H2n+1) ]+ Uan[p2(Hon-1) — p2(H2n+1)]>
1-[p1(Hzn) = P1(H2n+1)] '

U2n:U2n2+(
8

Dont1= D2nl+<

The derivation of Eqs(8) is a little involved and we thus agreement between the curves confirms that the magnetiza-
report it in Appendix A. tion is self-averaging, as assumed throughout the calcula-
The magnetization as a function of the peak field is givertions.
by
V. RAYLEIGH LAW

Mon=M 1+ 2U3 [P2(Hon) — Po(Hon- _ . : Lo
an a1 nl P2(Han) = Pa(Han-1)] To analyze low-field hysteresis we first substitute in Eq.

+4U,5,Don_1[P1(Hon) —P1(Hon—1)] (9) H,,, andH,,_ 4 with H* and—H*. If we start to reverse
) the field fromHy=J and we cycle the field symmetrically
+2D3%,_1[Po(H2n) = Po(Hzn-1)] (9 aroundH* =0, the process displays the symmel(H*)
- : =—M(—H*) and U(H*)=D(H*). Th d
and a similar expression holds fdt,,,, ;. Eq (9)(to ) and U(H")=D(H") us we can reduce

In the Ilimit Hzn,Z_HandHHO, Hzn—>H*, and

H,,_1— —H?*, the recursion relations in Eg&) become a 1
pair of differential equation$’ M(H*)=2U2(H*) >, [pu(H*)—pu(—H*)]. (12
k=0
oU = . Now we can expant (H*) aroundH* =0. In this limit we
Tl ;) [p(H*)D+p(2J-H*)U], have
) _ (10 . . 2H*p(2Jd) if k=0,2,
| * _ _H* _ _ ~
2 = g et u-p2a-neB) [P P HOI={ s O ey (9
. _ and
whereQEf'jH*p(h’)dh’ andD(H)=D(—H). The bound-
ary conditions are given by the conditional probabilities on U?(H*)=U*0){1+2H*[p(0)+p(2D)]}. (14
the s.aturation looji.e., U(J)=D(J)=Uy(J)=1/2] and the Collecting Egs.(13) and (14) in Eq. (12), we obtain M
solution reads =aH* + b(H*)? recovering the Rayleigh expression with
U(H*)=D(H*) a=4U%0)[p(0)+p(29)], s
b=4UZ(0)[p(0)+p(23)]%.

1 2 p(h")+p(23-h")
= EeXP< - fH* 1-a(h) dh'|. (1) an expansion can also be performed for minor loops on the

demagnetization curvei.e., cycling H between =H*),
yielding M= (a+bH*)H=b[(H*)2—H?]/2, which coin-
fcides with the Rayleigh law.

In Fig. 2(a) we report the values @ andb for a Gaussian
distribution of random fields as a function of the disor&er
showing that both components of the susceptibility display a
maximum inR. To identify the low and strong disorder be-

Once the conditional probability is known, it is straight-
forward to compute the magnetization as a function o
the peak fieldH* from Eg. (9), noting that M(—H*)
=—M(H*). Inner loops starting from the demagnetization
curveli.e., Eq.(9)] can also be computed exactly. In Fig. 1

we report the demagnetization curve and a few inner loops . o . i
for a system with Gaussian random-field distribution Withﬁawor of the susceptibilities, we perform an asymptotic ex

unit variance. The analytical results are compared with nuPansion and we obtain fdR—c that a=2/y2wR and b

. _ 12 2
merical simulations, performed on a lattice with=5x10° ~ =2/mR? For R—0, we obtain:a=(1/enJ)e YR and b
spins, using a single realization of the disorder. The perfect=(1/ewd27)(1/R)e™*/?R". Finally in Fig. 2b) we report
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0.2
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ey 01 |
0.05
0
0.08 ; ' ' FIG. 3. The absolute value of the final magnetizaiibh,| as a
function of R, obtained from numerical simulations o~ 3. For
strong disordetM..|=0 as expected, while for weak disorder the
0.06 - final magnetization coincides with the saturation value. The transi-
tion between the two types of behavior becomes sharper as the
system size is increased.
S 0.04
amountdH. We have checked that with a reasonably small
dH (i.e., dH<10 %) the demagnetization curve is quite in-
0.02 t sensitive to the algorithm used.
As we discussed above, it is well established thatlin
=3 the saturation loops reveal a phase transitiorRat
0 0 =2.16 forJ=1 (Ref. 16 [the transition is not present i

=1, while ind=2 the issue is controversi@Ref. 16]. We
find that the transition is reflected also in the Rayleigh loops:
FIG. 2. The reversible susceptibilityand the hysteretic coeffi- iy Fig. 3 we report the final magnetizatiovl.. computed
cientb computed exactly iml=1 for (a) a Gaussian distribution of using the demagnetization algorithm for different values of
random fields andb) a rectangular distribution. R. For strong disordeR>R,, we see thaM.=0 as ex-
. C oo
) ) o pected, but aR<R, the demagnetization curve tends to the
a and b obtained with a rectangular distribution of sayyration magnetization ard,.— =1. The transition be-
random'flelds. The derivation of these results is reported iRgmes sharper as the system size is increased, indicating that
Appendix B. demagnetization is possible only f&&>R. (see also Ref.
24). We notice here that two scenarios are possibleLfor
VI. SIMULATIONS IN D=2,3 —x asR—R; . The first possibility is thaiM.. scales con-

. i i . tinuously to zero asR.—R)? and the second is that the
Next, we turn our attention to the high dimensional sys-i.ansition is discontinuougi.e., M,,—M?* >0). The present
tem, for which analytical results are not available. In order to, ’

. . . . “numerical results do not allow us to distinguish between
obta_m gnamb|guogsly the demagnetized state for a 9Vethese two cases, but a recent analysis of the RFIM on the
reallzat|_on .Of the_dllsorder, one shquld perforrpgn‘ect dg- Bethe lattice is in favor of the first alternati¢@.
magnetizationThis is done in practice by changing the field o .

b isely the amount necessary to flip the first unstable From th_e demagnet|_zat|on curve, the Rayle|g_h .parameters
y precisely y p
spin. In this way, the field is cycled betweenH* andH* can be estimated plotting —M..)/H vs H apd fitting the
andH* is then decreased at the next cycle by precisely thgnear _part_ of the curve close_ ﬂd_=0 (see '.:'g' 3 .AS we
amount necessary to have one avalanche less than in t§80W in Fig. 4 the demagnetization curve is basically inde-
previous cycle. This corresponds to decreste at each pe_ndent of the system size, once the magnetllzatlon has been
cycle by an amoundH, with dH—0*. The perfect demag- shifted pyMw. Thus we expect that the Rayleigh parameters
netization algorithm allows us to obtain a precise characterP€ also independent f In Fig. 5 we report the values af
ization of the demagnetized state but it is computationally@nd b obtained numerically id=2 andd=3 for different
very demanding. Thus we resort to a different algorithmvalues ofR, using systems of sizes & 100y and (L =50)°.
which performs arapproximate demagnetizatiomstead of ~ The results are qualitatively similar to those obtained exactly
cycling the field betweer-H* andH* we just flip the field in d=1: the curve displays a peak for intermediate disorder
between these two values and then decrétseby a fixed and a decrease to zero for weak and strong disorder.
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the initial susceptibility is decreasing with the width of the
disorder potential.On the other hand, we see here that the
behavior is well captured by the RFIM, that allows us to
analyze the the effect of the disorder-exchange iRtih For
weak disorder, we have a few large domains and the suscep-
tibility is dominated by domain-wall dynamics. When the
disorder is increased, the number of domajasd domain
walls) also increases and so does the susceptibility. Increas-
ing the disorder further leads to a complete breakup of the
domains and the response is dominated by single spin flips in
low random-field regions with a progressive decrease of the
susceptibility.

A detailed understanding of the demagnetization process
and low-field hysteresis has important implications also from
a purely theoretical point of view. When a disordered system
is demagnetized, it explores a complex energy landscape un-

FIG. 4. The demagnetization curve can be used to obtain ag it finds a metastable minimum. It would be interesting to
estimate of the Rayleigh parameters. Notice the absence of syStegbmpare the statistical properties of the demagnetized state

size dependence. These results are obtaineld-if.

VIl. DISCUSSION

with those of the ground state of the systéhThe analysis
of the ground state of disordered systems has received wide
attention in the past few years, due to the connections with

In this paper we have discussed the demagnetization progeneral optimization problems, and the RFIM is one of the

erties of the RFIM ind=1,2,3. Ind=1 it is possible to

typical models used to test ground-state algorititnBe-

compute exactly the demagnetization curve and obtain amagnetization could provide a relatively simple way to ob-

expression for the Rayleigh parameters. We find ghandb
display a peak in the disord& This result is confirmed by
numerical simulations inl= 2,3, where analytical results are
not available. In addition, id= 3 the disorder induced phase

transition strongly affects the demagnetization process: for

tain a low-energy state that can be useful for optimization
procedures. We are currently pursuing investigations along
these lines?
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APPENDIX A: DERIVATION OF THE RECURSION
RELATIONS

Here, we derive recursion relations for the conditional
probabilitiesU,, and D,,,.; as a function of the previous
magnetization history. Let us first consider the case of
D,,.1: the field fromH,,,_; reachesH,, and is then de-
creased again up tbl,,. ;. The weight of the fraction of
spins that at fieldH,, ., flip down before their neighbor is
given by

Dan+1=Don-1—font {an+1, (A1)
where {,, is the weight of the fraction of spins that were
downatH,,, 4 before a fixed nearest neighbor and flipat
H,,, while {,,. 1 is the weight of the fraction of spins con-
tributing to {5, which flip againdownatH,,,, ;.

To computel,,,, we consider the spins that at the field
H,,_, aredownbefore their neighbo(for instance, we can
say that the spiith is downbefore the spin in site—1) and
areup at the fieldH,,,. Since we fixedup the spin in site
—1, the spin in sité+ 1 can be eitheup or down If the spin
in i+1 is up when the spin flips up, it contributes toZ,,
with
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2

UanlP2(H2n) = P2(Han-1)]- 1/ A-J
o I U2(H*)=— (B1)
If the spin in sitei + 1 is downwhen the spin flips up, we 4\ A—H*
obtain . . .
Inserting these results in E¢L2), we obtain
Don—1[p1(Hzn) —p1(Hon-1) 1. A ZH
Indeed,[ p,(H2n) —Pn(H2n-1)] is the probability that a spin M (H*)z( *) 1 (B2)
with n up nearest neighbors igp at H,,, but not atH,,,_, A-H
while D,,_1,U,, are, respectively, the conditional probabili- Expanding Eq(B2), we obtain the values fax andb
ties that the spin in site+ 1 is downor up if the spin in site
i is down Adding the two contributions, we obtain 1 J1?
a=—[1-—+—
A Al
{on=1{D2n-1[P1(H2n) —P1(H2n-1)] , B3)
1 J
FUplPa(Han) ~Pa(Haon DT} (A2 b=2p[1—ﬂ |
The derivation of¢,,, 1 follows similar steps: we count the
spins that areip at H,, and are agaidownatH,, ;. If the (i) For 2J<A<3J, U%(0) is still given by Eq.(B1) but
spin in the sitd + 1 isupatHy,. 1, the spininiisupatH,,  p,(H*) differs from the previous case. The magnetization is
and isdownat H,,, ; with probability now given by
Uan[ P2(Hzn) = P2(Han+ 1) 1. ( A—J \23H*—2J+A
* ) —
Finally, we analyze the case in which the spin in sitel is M(H®)= (A—H*) 4A
alreadydownwhen the spini flips down The weight of this -
configuration is if H*>A-2J, (B4)

2
A-J H
Dan+1lP1(H2n) = P1(Han+ 1) ], M(H*):(—* ) N
so thatl,,, 1 is given by (A—H¥)
\

if H*<A—2J.
={U Hopn) — po(H
Eons1={Uanl Pa(Han) ~Pa(Hans )] The expansion around* is thus still given by Eq(B3).
+DonsalP1(Hon) —P1(Honi 1)1} (A3) (iii) The behavior fod<A<2J is again different: close
to H* =0 the peak magnetization is not given by E#2),
but for H* <2J—A can be written as

Substituting these two expressions in E&1) we obtain the
second of Eqs(8). We can then derive a similar equation for
U,, [first of Egs.(8)] following the same method as the one

(A—J)*H*
employed above to calculate,, . ;. M(H*)= ———, (B5)
4JA(A—H*)
APPENDIX B: THE CASE OF THE RECTANGULAR so that expanding we obtain
DISTRIBUTION
It is also instructive to consider the case of a rectangular a= (A-J)?
distribution of random field§i.e., p(x) = 1/2A if |x|<A and 4A2]
zero otherwisg since all the calculations can be carried out (B6)
explicitly. As usual, we cycle the field arourtti=0 and we _(A-J)?
take Ho=J. The calculation should be divided in several © 2A3]
cases, depending on the valuefof
(i) For A=3J, we havep(x)=p(2J—x)=1/2A, so that (iv) Finally for A<J there is no hysteresis and thus the
p(H*) —p(—H*)=H*/A and Eq.(11), reduces to Rayleigh law is not defined.
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