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Protein molecules often self-assemble by means of non-covalent physical bonds to form extended
filaments, such as amyloids, F-actin, intermediate filaments, and many others. The kinetics of filament
growth is limited by the disassembly rate, at which inter-protein bonds break due to the thermal
motion. Existing models often assume that the thermal dissociation of subunits occurs uniformly
along the filament, or even preferentially in the middle, while the well-known propensity of F-actin
to depolymerize from one end is mediated by biochemical factors. Here, we show for a very
general (and generic) model, using Brownian dynamics simulations and theory, that the breakup
location along the filament is strongly controlled by the asymmetry of the binding force about the
minimum, as well as by the bending stiffness of the filament. We provide the basic connection
between the features of the interaction potential between subunits and the breakup topology. With
central-force (that is, fully flexible) bonds, the breakup rate is always maximum in the middle of
the chain, whereas for semiflexible or stiff filaments this rate is either a minimum in the middle
or flat. The emerging framework provides a unifying understanding of biopolymer fragmentation
and depolymerization and recovers earlier results in its different limits. © 2015 AIP Publishing
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Fragmentation and depolymerization of non-covalently bonded filaments
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. INTRODUCTION

The configuration-mediated directionality of non-covalent
bonds between proteins explains their propensity to self-
assemble into fibrils and filaments.! Protein filaments are
ubiquitous in biology, forming inside the cells or in the
extra-cellular matrix—individually, in bundles, or in randomly
crosslinked networks. They facilitate the propulsion in
bacteria, they control the mechanical strength in cytoskeleton
and the bending stiffness in axons, and they allow positional
control of organelles and provide the transport routes all
around the cell.!>® In a different situation, the self-assembly
of proteins into amyloid fibrils impairs physiological activity
and is the root cause of a number of organic dysfunctions.®!!~!3
In yet another context, filaments are artificially or spontane-
ously assembled to achieve a specific function in the material,
such as directed conductivity, plasmonic resonances, or just
the mechanical strength in a fiber composite, with important
technological applications.'*!> Finally, a conceptually related
issue emerges in the denaturation of DNA, ' for which the
available theoretical framework'”'® cannot provide predic-
tions about the topology of the disassembly process. The
typical size of all these aggregates and its time-evolution are
a non-trivial function of the rate at which bonds along the
filament spontaneously dissociate due to the thermal motion
of the assembled molecules. The dissociation rate and the
distribution of fragments are important parameters which enter
the master kinetic equation description of self-assembling
filament size and populations.

A filament growth can be summarized by the reversible
reaction: A, + A; = A, 1, where the monomer subunit A; is
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added to an existing filament of n-units long. For the forward
reaction, it is commonly accepted that association proceeds
by the addition of a single subunit—as opposed to the join-
ing of larger segments—because of the greater abundance of
monomers with respect to active fragments. In contrast, despite
the importance of thermal breakup in many fields of colloid
science and technology,” ' its basic understanding is far from
satisfactory. Several studies aimed to explain thermally acti-
vated filament breakup in physical terms, came to the conclu-
sion that fibrils of any respective size can aggregate, while the
filament breakup can occur with equal probability anywhere
along its length. In particular, Lee'® has demonstrated that the
thermal breakup occurs randomly along the chain, leading to
daughter fragments of any size. In yet another classical model
based on equilibrium detailed-balance between the various
aggregation and breakup events, by Hill,”" the highest breakup
probability is for two fragments of equal size, i.e., the breakup
rate is maximum in the middle.

Theoretical models in the past have focused on the simpli-
fied case of chains of harmonically bonded particles (sub-
units), so that the binding force is linear in the inter-protein
displacement.'*-? In this approximation, the normal modes of
vibration of the chain are de-coupled, which makes the prob-
lem amenable to simpler analysis. Even in this case, the pre-
vious theoretical models reached contradictory conclusions,
with either flat breakup distribution or a pronounced maximum
in the middle. However, the physical bonds linking protein
filament subunits (such as hydrogen bonds and hydrophobic
attraction) are strongly anharmonic. Then, the problem be-
comes one of coupled nonlinear oscillators as in the famous
Fermi-Pasta-Ulam problem,?' for which the typical vibration

©2015 AIP Publishing LLC
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modes are no longer delocalized periodic waves but solitons.??
This is also consistent with the finding®>>* that in a strained
Lennard-Jones (LJ) chain, the strain is not uniformly distrib-
uted, but localized around the bond which is going to break
first. The standard tools of chemical dynamics and stochastic
rate theory,?>?° all based on the harmonic approximation and
on normal modes, are therefore inapplicable.?’->

Here, we develop a systematic microscopic understanding
of this process based on Brownian dynamics simulation and
theoretical arguments, focusing on the nonequilibrium breakup
phenomena. Hence, we study the intrinsic breakup rates inde-
pendent of any recombination phenomena which may occur at
later stages leading eventually to an equilibrium size. First of
all, we discover that the topology of filament breakup critically
depends on the bending stiffness of the chain. Second, a clear
connection is found between the anharmonicity of subunit
interaction and the fragment distribution resulting from ther-
mal breakup. The anharmonic Lennard-Jones or Morse-like
binding potential in stiff or semiflexible filaments inevitably
leads to a very strong preference for the breakup to occur at
chain ends, but recover the uniform, flat fragment distribution
in the limit of harmonic (or any other symmetric) potential.
Importantly, it is not the bare anharmonicity which controls
this effect, but, more precisely, the asymmetry of the bonding
potential about the minimum (larger force for bond compres-
sion than for extension), which is inherent to the most common
anharmonic potentials. As we will show below, it is precisely
the asymmetry in the potential which “breaks the symmetry”
between dissociation rates at the middle of the filament and at
the ends. Those rates are equal only for symmetric potentials
like harmonic, and they always differ for asymmetric potentials.

In contrast, when the intermolecular interaction is purely
of the central-force type, i.e., a fully flexible chain with no
bending resistance, a bell-like distribution peaked in the middle
is obtained in accord with the prediction of the Hill model.
These findings can be understood with an argument based on
counting the degrees of freedom per particle for the different
potentials. These results provide a fundamental link between
the features of intermolecular interaction and the filament
breakup rate and topology, and can be used in the future to
predict, control, and manipulate the filament length distribu-
tion in a variety of self-assembly processes in biological and
nanomaterials applications.

Il. SIMULATIONS

To model a non-covalently bonded filament, we use a
coarse-grained model of linear chains of Brownian particles
(Fig. 1(a)) bonded by the truncated-shifted LJ potential,
Uy  |4l(o/r)"? = (o/r)°] = Ue, forr <R, "
kT ~ |0, forr > R.’

where r is the distance between two neighbor proteins i and
i+ 1, o is the linear size of the monomer unit, and U, = 4¢&
[(0/R)"? = (0/R.)®]. The parameter & = &/{4[(c/R.)"
— (0/R.)%] + 1} is set to maintain a constant well depth equal
to &, independently of R.. The LJ potential is inherently
anharmonic, except in the close proximity of its minimum.
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FIG. 1. (a) Scheme of the coarse-grained nanofilament as a sequence of
subunits bonded by the truncated LJ potential. (b) The LJ pair interaction
potential between two bonded subunits of size o in the chain, for several
values of attractive range, measured by R. and indicated by arrows in the
plot. (c) The contrast between a combined potential W (r) felt by an inner
subunit in the filament, bonded on both sides, and the end-subunit bonded by
the regular LJ potential. (d) Scheme of the bond-bending force which opposes
changes in the angle between two adjacent bonds by applying couples on each
adjacent bond.

An alternative could be the Morse potential, and we have
checked that the results do not change qualitatively with its
use. Figure 1(b) explains what we mean by truncation: the
attractive region stretches up to a distance R, (indicated by
arrows in the plot and measured in terms of LJ length scale o),
while the depth of the potential well is kept independently fixed
(measured by &, in units of kgT). The shorter the attraction
range, the closer is the potential to its harmonic approximation.
For all the data, we use € = 10, which well approximates the
strength of the most common physical interactions such as
hydrogen bonds and hydrophobic attraction.

We also include in our analysis the local bending energy, in
the form % i K 9?, where 6; is the angle between the directions
of bonds from the particle i to the preceding (i — 1) and the
subsequent (i + 1) subunits. Figure 1(d) illustrates the way this
effect is implemented by imposing pairs of equal and opposite
forces on the joining bonds, providing a net torque on the
junction. Itis the same algorithm thatis used in, e.g., LAMMPS
“angle-harmonic” system.?” The bending modulus K, in units
of kpT, is directly related to the persistence length of the
filament via the standard expression [, ~ Ko /kgT .

The dynamics of the chain of subunits is governed by the
overdamped Langevin equation

dr
dt
where r is the vector containing the positions of all molecules,
v is the friction coefficient, the total potential force acting on
a given particle, —VV, has contribution from both the LJ and
the bending couples, and the Gaussian stochastic force defined
such that (A(¢)) = Oand (A;(1)A;(t")) = 2kpTy §;;6(t —t'), ac-
cording to the fluctuation-dissipation theorem. For numerical
integration, Eq. (2) is discretised in the form known as the
Ermak-McCammon equation®*-3!

y— = -VV(r) + A1), @

VV(I') 2kBT

r(t + At) = r(t) — At+T

At, A3)
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where I is randomly extracted from a normal distribution with
zero average and unit standard deviation. The discrete time
step is taken as At = 5 x 1077, where the reduced time unit
is defined as T = 02/ D, and D = kgT/ is the diffusion coef-
ficient. For a typical globular protein (e.g., Lysozyme), with
diameter o ~ 5 nm and diffusion coefficient D ~ 10710 m?/s,3
we obtain 7 =~ 0.25 us. Therefore, Ar ~ 13 ps. Each run is
initialized with the equilibrium interparticle distance r; — r;
=280, as a straight chain (all §; = 0), corresponding to the
minimum of all interaction potentials. A dissociation event is
assumed to take place when one of the bonds exceeds the cut-
off length (R,), i.e., [r; — ri+1| > R, at which point the simu-
lation is terminated and the location of the rupture recorded.
The location of the rupture is recorded. To generate the prob-
ability distributions plotted in Figs. 3 and 4, N independent
runs are performed and the normalised breakup probability is
calculated as P(s) = N(s)/N where N(s) is the total number of
recorded breakup events for the bond s € 1, ..., n. For most
data, we have reached N > 10%; since the runs are independent,
the N(s) are binomially (Bernoulli) distributed and the error

bars are estimated as 4/ P(s)[1 — P(s)]/N, which always stayed
below 10% of the value for P(s).

lll. RESULTS
A. Breakup statistics along the filament

Figure 3 shows the main result of our Brownian dynamics
simulation: on increasing the bending stiffness of the fila-
ment, the highly inhomogeneous normalized probability P(s)
changes from a bell-shaped distribution peaked in the middle
(reminding of the Hill model), to a completely opposite shape,
with a strong preference for single subunits to dissociate from
the ends.

The conclusion arising from these data is clear: there is a
broad range of what one could collectively interpret as “stiff”
filaments, for which the nature of bond-breaking statistics is
exactly the same. These are with the bending stiffness of K
= 1000, and their behaviour does not differ from the last dataset
in Fig. 3 (labelled ‘stiff’), corresponding to the strictly 1-
dimensional filament where only the motions along the chain
were permitted. For these stiff or semiflexible filaments, there
is a very strong preference to dissociate a single subunit from
the chain ends, which does diminish for less symmetric poten-
tials, as demonstrated by Fig. 4 below. However, as the chain
becomes increasingly flexible, the ratio of breaking rates at
the ends and in the middle gradually reverses, and for a very
flexible chain (K = 0.1 in the plot), the breakup probability
resembles the prediction from the Hill model. One can qual-
itatively understand this effect: for a stiff filament (as shown
in Figs. 1(a) and 2), in order to develop a thermal fluctuation
large enough to stretch a bond beyond R., a whole sequence
of bonded particles has to move in a correlated fashion; this
leads to an effectively harmonic potential acting on the middle
particles and diminishes their breaking rate very significantly.
On the other hand, as the particles in a flexible chain are free to
move perpendicular to the bond axis, this coherent motion is
not required and the bond breaking statistics is dominated by
the single-bond equilibrium.

J. Chem. Phys. 142, 114905 (2015)
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FIG. 2. An illustration of the role of bond-bending in the potential. The
chains of n =20 subunits bonded with £ =10 and R. =4 were initialized
from a straight conformation and allowed to fluctuate for 5000 ts. The
resulting snapshots, for each value of K indicated on the image, show the
effect of differing persistence length.

Most protein filaments are quite stiff. The F-actin has
the quoted persistence length /,, ~ 16 um,**** and the insulin
amyloid filaments: [, ~ 4 um.> Interestingly, if one measures
[, in the units of constituent protein size (as the parameter o
in our case), these very different filaments all have /,, between
3000 and 6000 units. We therefore choose the bending stiffness
modulus K = 1000 in all subsequent analysis, which is within
the class of “stiff” filaments according to the data in Fig. 3.

This distribution of breaking points along the chain is
equivalent to the distribution of fragment sizes resulting upon
breakup. Figure 4 shows how this distribution depends on the
nature of physical bond between subunits. As we have seen
in the illustration, Fig. 1(b), changing the cutoff distance R,
while keeping the depth of the attractive potential well con-
stant (&) effectively alters the degree of potential asymmetry:
the larger the R., the more asymmetric the potential is. We
have also independently tested the breaking statistics in an

0.2 . . .
i - —0—1D stiff
Filamentn=20  —/ = K=1000 **

- L-J: €=10, Rc=4 —e—K=10
T 0150y ——K=5 -

A B —o—K=3 g
% ——K=1

o —o—K=0.1
Qo
-

© 01} -
=

©
Q

<]
o 005 #\%

0

Bond position, s

FIG. 3. The normalized probability of the first breakup as a function of the
position along the filament for a chain n =20 and LJ parameters € = 10, R,
=4. The effect of changing bending stiffness (increasing persistence length)
is evident: for the chain with essentially no bending penalty (lowest K), the
distribution of fragment sizes is bell-shaped with a maximum in the middle
of the filament. Stiff chains, with a strong bond-bending penalty, instead,
feature a nearly homogeneous, flat distribution of fragment sizes—with an
increasingly large increase of breakup rate at the ends. There is a broad
range of semiflexible filaments that behave in exactly the same way: as “stiff”
chains.
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FIG. 4. The normalized probability of the first breakup event as a function of
the position along the filament for a chain n =20 long, bonded by potentials
with £ =10 and K =1000. The harmonic potential with the same depth has a
uniform (homogeneous) probability of breakup, while at increasing R, (and
the degree of potential asymmetry about the minimum), the ends of the chain
are increasingly more prone to single-particle depolymerization. The ratio of
the probability of breaking at the end (dissociation) to the fragmentation in
the middle Peng/ Prig =5.46 for R, =4.

explicitly harmonic potential of the same depth and curvature
at the minimum. In the limit of harmonic chain, we recover
a completely uniform (flat) distribution of fragments, with
a very high accuracy. This is in agreement with the theory
of Lee,' who assumed harmonic bonds. On the other hand,
Fig. 4 clearly demonstrates that, with increasing asymmetry,
the breakup probability P(s) displays an increasingly strong
preference for depolymerization from the ends. For the highly
asymmetric (and also highly anharmonic) potential with R,
= 4, the breakup probability of the outer bonds is over 5 times
larger than the one of the innermost bonds.

Another important result is shown in Fig. 5, where for
a given level of LJ potential depth and asymmetry, and stiff
filament with K = 1000, as usual, we study the effect of fila-
ment length (the total number of bonded subunits, n). It is
more difficult to normalise the breakup probability P(s) this

T T T T T
K=1000, L-J: €=10, Rc=2.5

-] o

n=50 n=60

max
-

n=40

)P

o
=)

o
o
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Probability of break, P(s
o
'S

02 o
e
0 1 1 1 1 1
0 10 20 30 40 50 60

Bond position, s

FIG. 5. Relative probability of the first breakup event upon varying the total
length N, and the parameters of bonding potentials £ =10, R, =2.5, and
K =1000. The range of enhanced breakup probability As at each end remains
constant for all n.
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time, because for longer filaments, there are more and more
“plateau values” of the constant (low) breakup frequency in
the middle, which participate in the original normalisation by
the total number of runs, N (effectively uniformly suppress-
ing the values of P(s) and thus masking the characteristic
ratio Pena/ Pmia). We therefore chose to scale all datasets by
their maximum value of P.,4, such that the different curves
are comparable. It is clear that with the filament increasing
past n = 20, there is no further change in the characteristic
ratio Peyd/ Pmia—simply the region of “chain middle” becomes
extended. Perhaps one may regard this as an effective confir-
mation of the Lee model,' since for very long and very stiff
filaments, a very large middle section has an effectively har-
monic bonding, and therefore uniform breakup rate. It appears,
the range of enhanced probability near the ends is relatively
constant, As < 10. Shorter filaments have the middle region
elevated simply because the two end-effects start overlapping.

The finding that, for stiff filaments with asymmetric inter-
action potentials, the dissociation rate at the end can be substan-
tially larger than the rate of fragmentation in the middle, may
be important in the self-assembly kinetics of actin filaments.'
There, and in many other cases, the tendency to depolymerize
at the end is amplified by the presence of multiple bonds in
the interior of the filament, due to the double-stranded helical
structure in the case of actin.

IV. PROBABILITY OF FIRST BREAKUP

In addition, we studied the probability of the first breakup
(irrespective of its position along the filament), upon varying
R, and the filament length n, for the case of a stiff filament
(limit of large K) which also approximates the case of a 1D
aggregate. From the results plotted in log-linear fashion in
Fig. 6, it is clear that the probability for the chain to frac-
ture depends exponentially on time, P(t) = const - e/, with a
characteristic breakup time 17! increasing upon increasing the

FilamentN=20 = Re=4
= 1 _ Cemq TR Rc=3 A
= K=1000, L-J: &=10 "~ " Roc 5
~ . -we Re=2
8 9 P e Rc=1.5
S
= 01 i
2
=
his
o '
> : ]
S oot H. -
o] I
o HY
o
0001 1 1 I 1 1 1
0 210° 410° 610° 810° 110" 1.2107

Time (ts)

FIG. 6. The probability of first breakup of a filament of fixed n =20, normal-
ized such that it is equal to unity at # =0, is plotted against simulation time
measured in timesteps (ts). Different data sets represent the different attraction
range R, which is our measure of potential asymmetry. The fitted lines are
all simple exponentials, from which we extract the characteristic rate of the
first breakup, A.
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attraction range R, (and the asymmetry of bonding potential
with that). The average first-breakup time, irrespective of the
location on the chain, is defined by 17! = fooo P(t)r dr, upon
normalizing P(t) = A - e~*. This exponential dependence can
be understood from the analysis of the many-particle Fokker-
Planck equation

dp(r,t) .
= LS st ) 4
Y p(r,1) 4)
with the Smoluchowski operator defined as*>*!
Ly(..) = DV, [Ve(...) + BVUL(D)(. . )] (5)

acting on the many-particle probability density p(r,?), where,
in supervector notation, r = {ry, ..., r,} is the set of inter-
particle coordinates. The probability as a function of time
that all bonds remain within the cutoff at a time ¢, that is,
the probability that the chain does not break within a time
t, is given by Q(t) = f_lif p(r,t)dr. We shall recall that, in
supervector notation, the condition r < R, means that all bond
vectors (relative particle coordinates) in the chain are within
an extension smaller than the cutoff R.. Furthermore, Uy,(r)
represents the multi-dimensional potential energy landscape
given by the superposition of the Lennard-Jones potentials
acting on pairs of molecules.

The first passage/breakup time probability density is
defined as the change of Q(r) between the time ¢ and ¢ + dt
and is thus given by P(¢) = —dQ(t)/dt. Combining these
equations, with some manipulations (see, e.g., Ref. 42), it
is possible to show that the first-passage time probability
density is exactly equal to P(t) = =DV, p(r,t)|g... The mean
first-breakup time is then defined as the first moment of
the first-breakup time probability density, 17! = fooot - P(t)dt
= fowt -[=-DV,p(r,t)|g ]dt, which is the same quantity as
measured from the exponential fits in simulations. The
exponential dependence on time can be understood from
the analysis of the many-particle Fokker-Planck equation,
Egs. (4)—(5). Its general solution is p(r,7) = 3, ¢,(r)e P!,
where p labels the eigenfunctions ¢, and eigenvalues A, of
the many-body operator L.

According to the ground-state dominance principle, the
time evolution for long filaments (n > 1) is dominated by
the smallest non-zero eigenvalue A, such that, recall-
ing the expression for P(t), the time dependence of the
first-breakup probability is given by P(t) = =D V,p(r,1)|g,.
~ e¢~*min’ Hence, the breakup probability is indeed exponential
in time with a characteristic frequency-scale given by the
smallest finite eigenvalue A, of the many-body operator L.
This result explains the exponential dependence on time of the
breakup probability observed in the simulations in Fig. 6. Also,
combining the expressions for P(¢) and for A7, it is possible
to show that A ~ Ay, which confirms that the ground-state of
the many-body Fokker-Planck equation indeed sets the time
scale of breakup.

Furthermore, the rate A grows roughly linearly with the
chain length n, which is demonstrated in Fig. 7. This partic-
ular dependence A o n arises because the number of escape
attempts increases with the chain size. One can show by means
of the standard supersymmetric transformation of the Fokker-
Planck equation into the Schrodinger equation,*? that A(n) is

J. Chem. Phys. 142, 114905 (2015)

25 T T T T T T
K=1000, L-J: €=10, Rc=2.5

Mean breakup rate A(n), [107ts~!]

0 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Filament length, n

FIG. 7. The mean time of the filament breakup is plotted for different
filament lengths, indicating an almost linear increase. In simple terms, taking
from Fig. 4, the probability to break in the middle as pmiq ~ 0.035 and the one
at the end as pepg~0.145, with As ~ 6 subunits from each end affected, the
total rate can be estimated as A = (n —2As) Pmid +2AS Pend, Which is the solid
line in the plot with only a single fitting normalisation factor: 6.3x 1077 ts~!;
the deviations at small n are clearly due to the overlapping end effects (see
Fig. 5).

analogous to the quantum ground-state energy of an ensemble
of (n — 1) bound states, and the ground state energy is extensive
(cc n) within the quasiparticle approximation.*3

V. DISCUSSION
A. “Phase diagram” of first breakup locations

We find a useful representation in a map that covers all of
the K-R, parameter space to study how the location of first-
breakup events along the filament changes upon varying both
the stiffness K and the cutoff or asymmetry R.. The results can
be represented as a contour plot for the ratio P4/ Pidaie as @
function of K and R.. The contour plot is shown in Fig. 8. The
bottom left corner, corresponding to flexible (low-K) filaments
with short-ranged potential close to harmonic (low-R,), repre-
sents conditions where the filament breaks in the middle and
the fragment distribution is bell-shaped, in conformity with
Hill’s model predictions. Upon increasing both K and R, at the
same time, breakup in the middle becomes less favourable and
the distribution tends to flatten out. Eventually, for very stiff
filaments and asymmetric potentials with large R, the oppo-
site limit of U-shaped fragment distributions with preferential
breakup at the filament ends is recovered. This occurs in the
top-left region of the map in Fig. 8. For symmetric binding
potentials close to harmonic (low R.: along the K axis of the
contour plot), the bell-shaped distribution persists longer upon
increasing K, eventually transforming into a flat distribution
Popa/ Piaaie = 1 for stiff filaments. On the other side of the
map, where R, is increased for flexible chains, the bell-shaped
distribution persists for flexible chains up to R, — co which
corresponds to the LJ with no cutoff.

In general, the most dramatic change in the breakup loca-
tion and fragment-distribution shape occurs along the path of
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FIG. 8. Contour plot showing the ratio Penq/Pmidale as a function of fila-
ment stiffness K and the asymmetry parameter R.. The bottom-left lagoon
(dark) represents conditions where filaments break in the middle (bell-shaped
distribution, according to Hill?’), while the upper-right (light) region of this
map represents conditions where filaments break at the ends (the U-shaped
distribution) and negligibly in the inner locations. Arrows on the top signify
that these geodesic lines extrapolate towards K — co. Arrows to the right
indicate that there is little further change past R =4 —5. The dashed geodesic
line marks the P.nq/ Pmiadle =1 condition, separating the regions of bell- and
U-shape distributions.

steepest ascent, defined as the path parallel to the gradient of
the surface. Based on our results, the path of steepest ascent
and most dramatic evolution in the breakup topology is approx-
imately identified by the line log(K/kgT) = (7/5)R./0 .

B. Bond-bending stiffness controls the filament
breakup/recombination equilibrium

In Figs. 3 and 4, we have shown that depending on the
relative extent of bond-bending and central forces in the inter-
molecular interaction, the fragment size distribution can change
from a U-shaped distribution in the limit of large bond-bending
rigidity, to a bell-shaped distribution with opposite curvature
in the limit of a purely central-force Lennard-Jones potential.
Intermediate bending stiffness values yield distributions with
shape in between the two limiting cases.

It is first important to understand the microscopic origin of
this qualitative difference upon varying the bending stiffness in
the intermolecular interaction. Since the flexible chain breakup
statistics closely resembles the prediction of Hill,° we take a
similar approach and consider the fragment-size dependence
of the breakup rate within a chemical equilibrium assumption
and for the special simplifying case of harmonic bonds. We
have checked that with harmonic bonds the same behaviour
trend as in Fig. 3 is reproduced, with the only difference that the
P(s) distribution for the stiff filament is flat (as indeed proven
by Lee'?) instead of U-shaped in the case of stiff filaments
(as the last curve in Fig. 4 shows). That is, the Hill-like bell-
shaped P(s) is the universal result for fully flexible chains.

The equilibrium constant for a dissociation reaction
n S np +n, of a filament n into two fragments ny, n, takes

the form: Keq = V™' Z(n1)Z(n2)/Z(n) = K}, .,/ K, 0o Where
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Z(ny) is the partition function of fragment n;. K\ ., is the
dissociation rate, while K;an is the recombination rate of
these two fragments. The latter can be estimated from the
diffusion-controlled collision rate of two linear chains, upon
accounting for the diffusion coefficient of the two chains
(Kirkwood-Riseman approximation®®) and for the encounter
efficiency of end-to-end collisions of the two chains. In this
way, the size-dependence was found to be K;;an o (npInny
+ niInny)/ninon.® The size-dependence of the dissociation
rate (and hence the fragment size-distribution) can be obtained
by replacing this form for the association rate in the
expression for the equilibrium constant, and upon evaluating
the fragment-size dependence of the partition functions in the
numerator of K.

From classical statistical mechanics, rigid-body transla-
tional degrees of freedom of the chain contribute to the parti-
tion function a factor ~n*/2, and rigid-body rotational degrees
of freedom contribute an extra factor ~n3, since the overall
mass of the filament is o« n. Together these two factors give
a partition function ~n°/2. The vibrational contributions of the
monomers in the chain factorise in the partition function, as for
a chain of harmonic oscillators, resulting in standard factors
of the type ~(kpT/hw)", where w is the Einstein frequency.
Clearly these factors do not contribute to K. because the
corresponding terms in the numerator and denominator cancel.

A full consideration of the normal modes of the linear
chain with free ends, beyond the Einstein model, leads to
an additional nontrivial size-dependence ~n~'/2, for vibra-
tions of harmonic spheres in 1D, and to ~n~>/? for vibrations
in a flexible 3D chain.’’-*® In simple terms, upon increasing
the chain length, more low-energy modes can be accommo-
dated in the spectrum, which causes the partition function to
decrease. The importance of this effect was first recognized by
Frenkel® in the context of nucleation phenomena. Hence, with
purely central-force interaction in 3D (flexible chain), the over-
all contribution is ~n?/273/2 = 3. Akin to covalent bonds in
molecular physics, the bending stiffness introduces additional
degrees of freedom for rotations about the bond symmetry axis,
which then leads to an overall dependence ~n°/>=3 = n3/2. One
should note that with spheres and purely central-force bonds,
there is no such axis of symmetry for the rotations, and the three
translational degrees of freedom per particle suffice to describe
the vibrational behavior. Including all these considerations, the
dissociation rate will have a dependence on the fragment sizes
given by

K-

win2 ™ (nlnz)x_l(nz Inny + nylnny)/n. (6)

The exponent x, which collects all size-dependent contri-
butions of the partition function, is different depending on
whether the interaction is purely central-force, or has a bond-
bending stiffness. For central forces, x = 3, whereas with
semiflexible or stiff chains one has x =3/2. The leading
contribution is then ~(n;n,)?, with a pronounced bell-shape
peaked in the middle for the exclusively central-force flexible
chain, and ~(n;n,)°, leading to a much flatter distribution
for a chain with bond-bending penalty. The fact that the
slightly U-shaped distribution observed in simulations for stiff
filaments is not recovered by this model should be attributed
to the various approximations (Kirkwood-Riseman for chain
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diffusion, detailed balance, etc.) involved in the model, and
also to the harmonic approximation of independent linear
oscillators underlying the factorization of partition functions.
This argument, however, explains, qualitatively, that a flatter
distribution of fragments is to be expected in the presence
of bond-bending, due to the additional rotational degrees of
freedom about the stiff intermolecular bond symmetry axis,
which is absent with purely central-force interactions.

C. Possible roles of electrostatics and temperature
in amyloid fibril breakup

We can briefly comment on the qualitative predictions of
this model for the distribution of breakup fragments in realistic
amyloid fibrils. Realistic intermolecular forces which bind
proteins in amyloid fibrils crucially depend on both electro-
statics and temperature. We shall start considering the role of
electrostatics first.

Electrostatic repulsion between two bound proteins in a
filament is ubiquitous except for solutions at very high ionic
strength. Electrostatic repulsion acts to “lift up” the bonding
minimum, and it may also contribute an additional small en-
ergy barrier to the total interaction U, with a maximum U, co-
existing or competing with the new lifted attractive minimum.
We denote the new attractive minimum as U], < €. Due to
the fact that the electrostatic energy decreases with r, and the
maximum is typically at r > ryy,, the lifting up of the bonding
minimum by the electrostatic repulsion is not entirely compen-
sated by the energy barrier (the new maximum in U). Hence,
the total energy to be overcome for the particle to escape from
the bonding minimum is Upax — Uy, < €. This consideration
points towards a role of electrostatics which promotes breakup,
or at least, restructuring into a different morphology where the
electrostatic energy density is reduced. This outcome of our
analysis is compatible with recent experimental observations
where an increased electrostatic repulsions (e.g., at lower ionic
strengths) is responsible for fission or scission phenomena of
larger compact aggregates into smaller and more anisotropic
aggregates.!>#

Our simulations show a crossover from a U-shaped frag-
ment distribution into a bell-shaped distribution upon going
from high values of bond-bending stiffness K to lower values.
In our simulations, K is fixed and set independently of T, the
latter being kept constant throughout at varying K. In reality,
however, K and T may not be decoupled for a realistic model
of amyloid fibrils. The reason is that the inter-protein bending
stiffness K originates, microscopically, from the strength of
B-sheets which bind two adjacent proteins in the fibril. The
mechanism is known: due to the planar, sheet-like, nature of
two hydrogen-bonded S-sheets, there is an intrinsic bending
resistance against sliding or rolling of the two proteins past
each other. The same mechanism provides bending rigidity
when two surfaces bonded by many anchored central-force
springs are displaced tangentially apart. Upon increasing T, the
hydrogen and hydrophobic bonds which keep the two 3-sheets
together start to dissociate, leading to lower bending stiffness
and lower values of K.

Hence, based on our simulation results, we can predict that
the fragment distribution function of realistic amyloid fibrils
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should evolve from a U-shaped distribution at low temperature
T, where the B-sheets of two adjacent proteins are tightly
bound, into a bell-shaped distribution at higher 7" where the -
sheet bonding becomes looser, which makes the bending stift-
ness K decrease. This prediction may be confirmed by prelim-
inary experiments, and future work using ab-initio simulations
should focus on identifying the relationship between K and
T, which controls the evolution of the fragment distribution
with 7. In future research, it will be important to combine all
these effects into a general coarse-grained approach along the
lines of Refs. 45 and 46, to achieve a bottom-up description of
realistic filaments and their size evolution.

D. Anharmonicity controls depolymerization
from the ends in stiff filaments

When the bending rigidity of the chain is high, the prob-
ability of spontaneous bond breaking is flat when the bond
potential is harmonic!°—yet it adopts a very distinct and very
strongly biased U-shape when the asymmetry of the potential
increases (Fig. 4). How can we quantitatively explain why the
asymmetry of interaction potential between any two bonded
subunits leads to higher breakup rates at the chain ends, and
much smaller breakup rates in the middle? For a high bend-
ing modulus, one can treat the bond at the filament end as a
classical diatomic molecule, and a subunit in the middle of the
chain as the inner particle in a linear triatomic molecule. In
the latter case, the combined potential W felt by the particle in
the middle is sketched in Fig. 1(c).

One would be tempted to explain the difference between
the higher dissociation rate at the filament end and the lower
one in the middle by referring to the overall lower energy
(deeper potential well) felt by the particle in the middle sitting
in the minimum of the combined potential W(r). Applying
a Kramers-type escape-rate argument would then lead to an
Arrhenius dependence of the particle on the depth of the energy
well and an overall large difference between the two rates.
However, such an approach cannot explain the observation
that the rate is the same in the middle and at the end for the
case of harmonic potential; in that case, the same argument
about W applies; hence, one would expect a lower rate in the
middle, which is not observed, in agreement with previous
calculations.'” What is different in the case of the harmonic
potential is the fact that the asymmetry of the bonding potential
is removed for the particle at the end of the chain (while the
subunits in the middle effectively experience the harmonic
potential in both cases).

It is in fact this asymmetry which facilitates dissociation
at the termini of the chain, where less resistance is encountered
by the particle escaping outwardly from the bound state. In
order to verify that this is indeed the right physics, we also
run a test simulation with a quartic potential U o (rr — rmin)“,
which is anharmonic yet fully symmetric about the minimum,
just like the harmonic potential. Also in this case, we found a
completely flat distribution of fragments, as for the harmonic
potential, which supports the proposed claim.

It is therefore the asymmetry, in the case of anharmonic
potentials, which plays the major role in facilitating the pref-
erential bond breakup at the chain ends. The explanation can
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be found in the different values of the mean thermal fluctua-
tion from the equilibrium position (energy minimum) for the
particle sitting in the asymmetric LJ potential at the chain
end, and the particle moving in the more symmetric combined
potential W(r) in the middle of the chain. An analysis of
the mean thermal fluctuation done long ago by J. Frenkel®”
shows that the mean thermal fluctuation of the particle feeling
the anharmonic/asymmetric potential at the end is typically
larger because of the shallower slope of the potential in the
outward direction. For the particle in the middle, the situation
is different because the combined potential W(r) does not
become shallower as the particle in the middle moves away
from one of the two neighbours, due to the presence of the
interaction with the other neighbour.

VI. CONCLUSIONS

By means of Brownian dynamics simulations, we have
shown that thermal breakup rates and breakup topology of
model protein filaments (and other linear nanoparticle aggre-
gates) are strongly affected by the presence of bond-bending
stiffness in the interaction between subunits, and by the degree
of asymmetry of the anharmonic binding potential. With stiff
chains bonded by inter-particle forces with anharmonicity and
asymmetry of the potential typical for intermolecular interac-
tion potentials (van der Waals, hydrophobic attraction, etc.),
we find a strongly preferential breakup at the chain ends, and
an overall U-shaped fragment distribution. In contrast, with
purely central-force interactions between subunits, that s, fully
flexible chains—the fragment size distribution is bell-shaped,
with a pronounced peak in the middle (symmetric breakup),
and the lowest breakup rate is found at the ends of the chain.

While the preferential breakup at the end of stiff chains
(filament depolymerization) can be explained in terms of the
larger thermal fluctuations at the chain-end associated with
potential anharmonicity/asymmetry in a perfectly stiff quasi-
1D chain model, the dramatic change of breakup topology
upon varying the strength of bond-bending interaction is more
subtle. In this case, we found a tentative explanation upon
considering the degrees of freedom associated with the vibra-
tional partition function of the fragments. In general, breakup
into two equal fragments is favoured with purely central-force
bonds because the product of the partition functions of two
fragments is maximised (which is intuitive if one considers that
the classical partition function for rigid body motions increases
strongly with the fragment size). The vibrational partition
function, instead, decreases with fragment size because more
low-energy modes can be accommodated in longer fragments.
This effect becomes stronger in the case of bond-bending,
where the total number of vibrational degrees of freedom is
larger due to the rotation axis of the stiff bond. As a result of
this compensation between the size dependencies of the vibra-
tional and rigid-body partition functions, the size-dependence
of fragmentation rate with bond-bending is much weaker
compared to the central-force case.

Hence, we found some general laws which govern the
fragmentation behavior of model linear aggregates, as a func-
tion of the relative importance of central-force and bond-
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bending interactions between subunits. These findings are
important towards achieving a bottom-up control over the
length and time-evolution of filament populations, both in bio-
logical problems (acting, amyloid fibrils, etc.) and in nanopar-
ticle self-assembly for photonic applications.
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