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Rayleigh loops in the random-field Ising model on the Bethe lattice
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We analyze the demagnetization properties of the random-field Ising model on the Bethe lattice focusing on
the behavior near the disorder induced phase transition. We derive an exact recursion relation for the magne-
tization and integrate it numerically. Our analysis shows that demagnetization is possible only in the continu-
ous high disorder phase, where at low field the loops are described by the Rayleigh law. In the low disorder
phase, the saturation loop displays a discontinuity that is reflected by a nonvanishing magnetizatfter a
series of nested loops. In this case, at low fields the loops are not symmetric and the Rayleigh law does not
hold.

DOI: 10.1103/PhysRevB.65.224404 PACS nuni®er75.60.Ej, 75.60.Ch, 64.60.Ht, 68.35.Ct

[. INTRODUCTION dimensions, the model shows a phase transition between a
continuous cycle for strong disorder and a discontinuous
A ferromagnetic material is characterized by a remanentoop, with a macroscopic jump, at low disorder. The two
magnetization even at zero field. In several instances, howphases are separated by a second-order critical point, charac-
ever, it is convenient tadlemagnetizéhe sample, bringing it terized by universal scaling laws! A behavior of this kind
to a state of zero magnetization at zero field. In practice, thigs not restricted to the RFIM but has also been observed in
can be done by applying a slowly varying ac field, decreasether models, with random bon&srandom anisotropie’s,
ing its amplitude after each cycle. In this way, the systemor vectorial sping’ In addition, a similar disorder induced
explores a complex energy landscape, due to the interplaghase transition in the hysteresis loop has been experimen-
between structural disorder and interactions, until it istally reported for a Co-CoO bilayefs.
trapped into a low-energy minimum. If the demagnetization The RFIM is probably the simplest model including dis-
process is performed adiabatically and thermal effects do nairder and exchange interactions that can be treated analyti-
play an important role, the demagnetized state is reproducally. The equilibrium properties of the RFIM on the Bethe
ible for a given realization of the quenched disorder and catattice has been first studied in Refs. 16 and 17, that report
thus be used as a reference to define magnetic properties.exact results for various disorder distributions, mostly for the
The hysteresis loops at low fields, starting from the de-bimodal one. To describe hysteresis one should, however,
magnetized state, are usually described by the Rayléagh  focus on out of equilibrium properties. For this case, exact
when the field is cycled betweenH*, the magnetizatiom  results were found in one dimension in Refs. 18 and 19 and
follows m=(a+bH*)H*+b[(H*)2—H?]/2, where the on the Bethe lattice in Refs. 20—22, while mean-field th&ory
signs+ distinguish the upper and lower branch of the loop.and renormalization grodp have been used to analyze the
Consequently the area of the loop scales with the peak fielttansition. Recently the one-dimensional solution of the
H* as W=4/3b(H*)® and the response to a small field model, has been generalized to obtain the complete demag-
change, starting from the demagnetized state is given bpgetization process and to derive the Rayleigh IdGpEhe
M* =a(H*)=b(H*)2.22 This law has been measured in a RFIM does not display a phase transition in one dimensions,
variety of materials, but a few papers have reported signifiwhile numerical simulations indicate that the transition has
cant deviations from the simple quadratic law but no expla-an important effect on the demagnatization process. In par-
nation has been providéd. ticular, in the low disorder phase the discontinuity in the
The current theoretical interpretation of this law is basedsaturation curve prevents the magnetization to reach a de-
on a 1942 paper by N&° who derived the law formulating magnetized stafébut this behavior has not been understood
the magnetization process as the dynamics of a paimt  theoretically. It has been shown exa®ly? that the RFIM
the position of a domain walin a random potential. In this displays a disorder induced phase transition on the Bethe
framework, the initial susceptibilitg is associated to revers- lattice when the coordination numberx4 and can thus be
ible motions inside one of the many minima of the randomused to clarify the issue.
potential, while the hysteretic coefficiebis due to irrevers- Here we generalize the analysis of Refs. 20—23 to obtain
ible jumps between different valleys. The main drawback ofexact recursion relations for the demagnetization process on
Neel theory relies in its purely phenomenological nature, bethe Bethe lattice and show that demagnetization is only pos-
ing based on aero-dimensionainodel that does not include sible in the high disorder phase. In the low disorder phase the
collective effects considered very important for the magnetitemanent magnetization after a series of nested loops of de-
zation proces$:® creasing amplitude does not vanish but scales to zero as the
In the past few years, the zero-temperature random-fielttansition is approached. Furthermore, in the low disorder
Ising model(RFIM) has been used to describe the competi-phase the Rayleigh law is not obeyed and low-field loops are
tion between quenched disorder and exchange interactiom®t symmetric. The Rayleigh law is instead recovered in the
and their effect on the hysteresis lodmn three and higher high disorder phase and the Rayleigh parametesnd b
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behave qualitatively as inl=1, displaying a peak in the write the probabilityp,(H) that a spini, with m (0<m
disorder. All the results derived in this paper hold, in general<gz) of its neighborsup, is alsoup. This is given by the
for any analytic and symmetric random-field distribution yrohapility thath; 11>0:
with infinite support and finite variance. However, in the
numerical implementation of the analytical results we have
used a Gaussian distribution. In the case of a discrete distri- Pm(H) =P(hj er> O)ZJ dh’p(h’). (4
bution, as the one used in Refs. 16 and 17, the generalization (z=2m))—H
of the results is streightforward but lenghty as discussed, for
instance, in Ref. 21. IIl. HYSTERESIS LOOPS
The paper is organized as follows: in Sec. Il we describe
the model. In Sec. Ill we recall the results obtained in Refs. In general a change in the applied fiditl produces a
20-22 and generalize them for a series of nested loops. Serarrangement of the spins, so that each sfErstable being
tion IV discusses the effect of the phase transition on theligned with its effective fieldh; o¢¢. It is important to note
magnetization and Sec. V analyzes the Rayleigh law. A briethat each spin flip modifies the effective field on the nearest
discussion of the perspectives is reported in Sec. VI. Finallypneighbors and sometimes generates an avalanche of spin
the complete derivation of the recursion relations is reportedlips through the lattice. In the following we will consider the
in the Appendix. case of a slowly varying external field: its value is kept con-
stant until the next metastable state is reached. Two impor-
Il. THE MODEL tant properties of théef=0 dynamics are(i) the Abelian
property—the stable state after an avalanche does not depend
In this section we recall briefly a model used to describepn the order in which the spins flip— aid) the return point
hysteresis loops in magnetic materidlthe ferromagnetic memory—when the field is changed adiabatically the stable

[

RFIM. This model is characterized by the Hamiltonian state only depends on the point where the field was last re-
versed. These two properties can be used to obtain exactly
_ _ _ the shape of the hysteresis loops. We first recall the deriva-
H=—-J2, sisi—H2, s his;, 1 : . . .
<i2;‘> - Z ! 2.: " @) tion of the saturation curve and those of the first minor loops

. ) , and then procede with the general analysis of minor loops.
where J>0, the 2 ;, is restricted on the pairs of nearest

neighbors on a lattice of coordination numlers; is the
Ising spin on the sité, H is a homogeneous external field,
and h; represents a quenched random field on the spin When the external fielth is cycled from—oo to + o and
modeling the presence of lattice defects. The fidli$ are  back the magnetization describes the saturation loop. The
independently drawn from a symmetric distributie¢h;). In ~ key quantity describing the lower half of the saturation loop
the following the numerical results are referred to a Gaussiai$ the conditional probabilityd o(H) defined® as the prob-
distribution with varianceR?. ability that a given spin flips before a fixed nearest neighbor,
In this paper we study the case of a Bethe lattice with aconditioned to this neighbor being down. The probability
generic coordination numbez In particular, we are inter- Ug(H) satisfies the following equatiof:
ested in the case=4 that is known to be the minimal case

A. Saturation loop

z—1

showing a disorder induced phase transition towards a dis- _ z-1 m 1-m
continuous hysteresis loop. UO(H)_mz:o ( m J[Yo(FITT1=Uo(H) ) Pm(H).
In order to mimic the microscopic spin dynamics, we use (5)

the flipping rules used in Refs. 9—11 and 18-22 obtained - o
from the Glauber dynamics at temperatdfeand with an It can be shown that the probability that a spinug at
external field of frequency taking the limitT—0 first and ~ €xternal fieldH is

thenw—0. The basic rule of thiF =0 dynamics is that the

z
spins align with the local field p(H) = 2 z [Uo(H) ] 1= Uo(H) ] ™p(H). (6)
m=o0 \M
S =sgrnh; efr), 2 o
) ) The related magnetization is given by(H)=1—-2p(H),
where the effective local field felt by the spins which describes the lower half of the hysteresis loop. The
oy upper half of the hysteresis loop can then be obtained by
hi'e”:_gz\] > s +H+h (3  Symmetry[i.e., m,(H)=m(—H)]
i jen(i)

and the sum runs over tienearest neighbors of the site B. First minor loops

Note that though the model is defined through three ex- If the external fieldH is raised from—o to a finite value
ternal parameterd,H,R, the dynamics is determined by the H, (i.e., we are on the lower half of the major lIoagmnd then
two reduced quantitiebl/R and J/R only. For the sake of itis reversed, the magnetization describes the upper half of a
simplicity, from now on we rename these two rattésndJ, minor hysteresis loop. When the field is reversed fidgto
respectively, and considéR=1. GivenH and J, we can H;<H, we define the conditional probabili,(H,) for a
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spin to bedownbefore a fixed nearest neighbor, conditionedthat a spin isup atH,, is given by the probabilityp(H,,_ )
to this neighbor beingip. The probabilityD,(H,) satisfies that it was alreadyp atH,,_; summed to the probability to

the following equatiorf? flip up when the field goes fromi,,_; to Hyp:
z—1 7—1 z 2
Di(H)= > ( )[Uo(Ho)]m P(Hon) =p(Han_1)+ > ( )[Uzn]m[Dznﬂzm

m=0 m m=0 m

X{[1=Uo(Hp) 1" * ™1~ pm+1(Ho)] X[Pm(Hzn) = Pm(H2n-1) 1. (10

+[D1(H) P ™ pms1(Ho) = Pme2(HD ]} The generalization oD, to nested minor loops is called

7) D,,.1 and analogously t&J,,(H,,) is given by

Don+1=Doan-1=ont {on+1, (11

The related probability that a spin ig atH; is
where {,, is the fraction of spins that wemownat H,,_ 4
m before their fixed nearest neighbor amglat H,,, and {5, 1
[Uo(Ho)] is the fraction of the set of spins contributing dg, that flip
downagain atH,,,. The exact expression for the fractions
X[D1(HDT* "pm(Ho) = Pm(HD]. (8 ¢,, and{,,. 1 are reported in the Appendix.
The magnetization aH=H,,,; is my,,=m(H,,)=1
one dimension it has been shoWithat atH=H,—2J the —2P(Han.1), wherep(Hzn.4) is the probability for a spin
upper half of minor loop merges with the upper half of thet0 be up at Hzy..1. This probability can be written as the
analogous probability ad =H,,, minus the probability to

major loop with the same local slope. This proof can befi downbetweenH... andH .
extended to the case of a Bethe lattice as long as the saturJ:\-p 2n an+1-

z

p(H)=p(Ho)~ 3 (;

m=

Equation(7) holds as long asl; is larger tharH,—2J.2? In

tion loop is continuoué? The case in which the saturation z

loop displays a discontinuity is discussed below for the case P(Hans 1) =p(Han) — 2 ( Z)[U2n]m[D2n+l]zm

z=4. M=o \m
><[pm(HZn)_pm(HZnJrl)]- (12)

C. General formula for nested loops

The method used to find, andD; can be generalizedto ~ In principle, an arbirary series of nested loop can be ob-
obtain a complete characterization of all minor loops. In partained solving the recursion relation oy, , Dy 1, and us-
ticular, we are interested inestedminor loops, since they ing the result to obtain the magnetization. A similar proce-
are directly related to the demagnetization process of th@ure was used id=1 to obtain a closed expression for the
disordered ferromagnet. Nested loops is defined as followsnagnetization along the demagnetization ci/Ehis is not
after having reacheH;, we reverse again the field increas- possible for the Bethe lattice where an explicit solution for
ing its value up toH,<H, (lower half of the first minor the problem is not available and one should resort to a nu-
loop). This process is then iterated in a sequence of fieldgnerical integration.

Honel[Han-1,Hon+1] and Haqige[Hon, Honi2] with n

=1, whereH,, andH,,,, ; refer to the final value of the field IV. DISORDER INDUCED PHASE TRANSITION

H in the lower half of thenth minor loop, and for the upper AND DEMAGNETIZATION

half of the (h+1)th minor loop, respectively. The generali-
zations ofU, to the minor loops is callet,,(H,,) while
the generalization oD;(H;) is called Dy, 1(Hs,41). IN
what follows, we simply indicatéJ,,(H,,) with U,, and
Dont1(Han+1) With Doy g.

SinceH,,<H,,_», the set of spins contributing t0d5,,
will be a subset of those contributing td,,_,, so that we
can write

Previous numerical studies of the zero-temperature dy-
namics of the RFIM on a regular lattice in finite
dimensio?** have shown that ini=3 the system shows a
phase transition from a strong disorder phase to a weak dis-
order phase, separated by a second-order critical ioirtt
=2 the presence of a phase transition is still controversial
In the strong disorder phase the major hysteresis loop is con-
tinuous, whilst in the weak disorder phase the loop shows a
macroscopic jump in the magnetization at a critical value of
the field. Note that if we use the reduced parameifRsand
wheren,,_, represents the fraction of spins that wepeat  H/R, fixing R=1, strong disorder corresponds to small val-
H,,_, before their fixed nearest neighbor awmidwn at ues ofJ and the phase transition will be charcterized by a
H,,—1, While 75, is the fraction of the set contributing to critical valueJ. of the exchange coupling. On the Bethe
non—1 that flip up again atH,,,. The explicit derivation of lattice, a phase transition is observed for coordination num-
NMan—1 @and 7y, is a little involved and it is thus discussed in bersz=4, while for z<3 one has only the strong disorder
the Appendix. phase® The presence of the phase transition has strong im-

The magnetization aH=H,,, is as usual obtained as plications on the possibility of demagnetizing the system. In
My, =m(H,,)=1-2p(H,,), where the probabilityp(H,,) particular, in the weak disorder phase it is not possible to

Uon=Uon_2— m2n-11 720, 9
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demagnetize the system through an oscillating external fielc 1.0 . .
with decreasing amplitude.

Before we specialize to the case 4, let us note that for
H=J one hasp,_;_(J)=1—py(J). This allows, after a 0.8 |
little algebra, to show that foH =J, Uy(J)=1/2 is a solu-
tion for anyJ, any z and any random-field distribution. For
z=4 Eq. (5) is a cubic equation irJy, with coefficients 0.6 -
depending orH and J through thep; . In order to find the 8
critical point it is enough to find the value &f andJ corre-
sponding to a triple solution of the equation. Implementing 04 |
this requirement for any symmetric density function of the
disorder, one find$i.=J., whereJ; satisfies the equation
Po(J) +p1(J)=1/3. For a Gaussian distribution of the disor- 02
der, this translates in the following implicit equation fiy:

erf(Je) +erf(3Jc) = 1/3 (13 0'%.50 0.52 0.54 0.56 0.‘58 o.éo 0.62 0.64 o.ée o.és 0.70
resulting in J;=0.5614009958734. .., in accordance J
with the result quoted Ref. 22. FIG. 1. Final magnetizatiom,, as a function of the exchange

Above the transition J>J. or weak disorder phag¢he  oefficientl.

hysteresis loop becomes discontinul fact atJ=J. and
H=J. the susceptibilityym/dH diverges, and fod>Jc one it e are on a certain point of the saturation logg., at
ob§erves a discontinuity with a.splnodal S|ng.ular.|ty. At .th|sH —J, on the lower half and invert the field td4, the sys-
point one can measure a gan in the magnetization. ItiS  om meets the other half on the saturation loopdif=H,
easy to show, through an expansion Sf_@'to the lowest  _ 53 This implies that in order that the first minor loop is
order inJ—J; aroundJ,, that forJ—J. itis symmetric with respect to the origt=0 andm= 0 without

Am~(J—J) (14) touching the saturation curve we have to start ftdg¥ J on

¢ the lower half of the saturation loofor equivalently from

with B=1/2 as in the mean-field case. The analytical derivaHo=J on the upper hajf
tion of this result can be easily sketched as follows: first of At J>J. the demagnetization process is no more pos-
all the three solutions of Eq5) at H=J can be found ex- sible, because the discontinuity prevents minor loops to be

plicitly. They are symmetric with respect to the origin of the axes. In fact there
is now an inaccessible region of the plam, ) around the
U@ =1/2 and origin.2® However, the field succession described above still
provides a well-defined procedu¢apart the broken symme-
UP@=1/2(1+ \[1-3(po+p1) 1/[1—3p1+ Pol). try m——m and H——H) to minimal possible residual

magnetization, that we denote,, , atH=0. Following this

where, forH=J, [1—3(pg+p;1)]>0 only for J>J. and  procedure, by numerically integrating Eq48) and (11) with
=0 at J=J.. The gap can be measured WJE|Ugb) =103, we find thatm., displays the same scaling behavior
—U, and it is simple to show thatU~(J—J.)Y2 which  of the gap in the saturation loop dsapproaches), from
gives Eq.(14) considering that to the lowest ordeym  above:m,,x(J—J.)Y2 (see Fig. 6.
~AU. Actually, the position of the gap in the magnetization
of the major loop of the hysteresis cycle is locatedHgt
>J, which could give corrections to the previous result.
However, one can show thaH(—J)~(J—J.), implying The Rayleigh law describes the hysteresis behavior at low
corrections to the previous value of the gap of the same orddield in a vast class of materials. Exact values for the Ray-
in (J—J;). Then this correction does not alter the foundleigh parameters have been obtained for the one-dimensional
scaling behavior. RFIM,? where the initial susceptibiltg and the hysteretic

We recall that usually it is possible to demagnetize a macoefficientb both display a peak in the disord@r A similar
terial by applying a slowly oscillating external field appro- behavior is observed in simulation fd=2,3 but only in the
priately chosen. In practice, this corresponds to a series dfigh disorder phase, while in the low disorder phas:db
nested loops, starting from the completely magnetized situaare not definedFigs. 1 and 2
tion (e.g.,m=—1 andh— —«) and then applying in suc- In the case of the Bethe lattice, we could not obtain an
cession the fieldsHy=J,H;=—Hy(1-¢),... Hyn1  explicit expression of the Rayleigh parameters even in the
= —H,,(1—¢) in the limitse—0" andn— +%.23 This se-  high disorder phase. We thus resort to numerical integration
quence, fod<J., leads to a completely demagnetized stateand analyze the demagnetization curves closH 0. We
This is due to two fundamental properties of the strong disestimate the susceptibilitg and the hysteretic coefficiemt
ordered phase(i) the “return point memory” property that using a linear fit oim,,/H,, vs H,,. According to the Ray-
has been defined in the preceding paragréiphthe fact that, leigh law forn—c we havem,,/H,,=a+bH,,, and simi-

V. RAYLEIGH LAW
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FIG. 4. Hysteretic coefficienb as a function of the exchange

FIG. 2. The Rayleigh parametefsolid line isa, dashed line is coefficientJ.

b) as a function of the disorder widfR for R>R.=1/J. .

larly for negative fieldsmy,,,/H,,.1=a—bH,,.;. The VI. DISCUSSION

values ofa andb as a function of the exchange couplidg In conclusion, the present analysis allows to clarify the
are shown in Figs. 3 and 4. When plotted as a function of thegle of a disorder induced phase transition on the demagne-
disorderR, a, andb show a peak in the high disorder phase, tization properties of a ferromagnet. In particular, we find
in agreement which the results on Euclidean lattices. that in the low disorder phase the jump in the saturation
In the low disorder phase the demagnetization curve is nogyryve gives rise to an inaccessible region in thieH) plane
symmetric with respect tél =0 and consequently the Ray- ¢lose toH=0 andm=0. Even after an infinitesimally fine
leigh law does not hold. In particular, we can define twoseries of nested loop the final magnetization does not
values for the coefficierty: vanish. Approaching the transition, however,, scales to
zero with an exponent 1/2, which is the same as the one
controlling the size jump in the saturation curve. While this
value could be an artifact of the Bethe approximation, the
impossibility to demagnetize the system in the low disor-
dered phase has already been observed in three-dimensional
The values ofa, b*, andb™ as a function of the exchange numerical simulation&2
coefficientd are shown in Figs. 3 and 4; also the difference  The results discussed in this paper are derived for the case
Ab=Db*—b~ is shown in Fig. 5, Again, a3—J_ , Ab ap-  of Gaussian random-field distribution, but most of the deri-
proaches 0 as)—J.)*? (see Fig. 6. vation holds as well for the case of a generic distribution

mzn/Hzn:a"f‘ b+H2n,

Man+1/Honp1=a—b " Hopys. (19

0.30 ' 0.08 ; ;
0.06 |
0.20 | 1
IvQ
S T 0.04
.
=)
0.10 | .
0.02 |
0.00 Il Il 1 0-00 Il Il Il Il 1 il il 1
0.30 0.40 0.50 0.60 0.70 0.50 052 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70
J J

FIG. 3. Susceptibilitya as a function of the exchange coefficient

J.

Ab=b*-b".
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p(X). The particular form of the distribution enters only
when we try to obtain quantitative results about the transition
point or the Rayleigh parameter, but the phenomenology
should be the same independently on the distribution. A word e
of caution should, however, be spent when considering
nonanalytic distributions, such as the uniféfror the bimo-
dal one'®'’ In this case the derivation follows the same §10-1 |
steps, but typically some of thg; integrals are zero fora |~ U -
nonvanishing interval of fields which makes the analysis f - ’
cumbersomesee, for instance, Ref. 21 e
Finally, it is interesting to compare the nonequilibrium 102 L
behavior of the hysteresis loop with the corresponding equi-
librium state. The equilibrium or, af=0, the ground-state
properties have been evaluated exactly on the Bethe lattic
only for a bimodal distribution of random fields.e., p(x) , , ,
=[8(x—h)+ 8(x+h)]/2).2817 In this case, the system ex- 10 10 107
hibits atT=0 a disorder induced ferromagnetic transition at J=J,
h=J. In the corresponding hysteresis loop, this point also
marks a transition, albeit somewhat trivial: for<J the
cycle is perfectly squared and the first spin to flgt H
==*(2J—-h)] leads to an avalanche that reverses all the . 1 o .
other spins. The case of the Gaussian distribution is probablginatorial factor %), taking into account all the equivalent
less trivial and thus more interesting to compare, but unforhoices of the sit¢, and then sum ovem from 0 toz—1.
tunately no analytic solution for the ground state is availablel he result reads:
in the literature.

—1

10

FIG. 6. Final magnetizationm,, and Ab as a function ofJ
—J.. The solid line has a slope 1/2.

z—1

z—1
= m z—1-m
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7.0, the fraction of the set of spins contributing g,
which flip backup atH,,,. Using a derivation similar to the
APPENDIX one discussed above, we obtain

Here we derive the expressions $,_1, 7an, {on, and
{on+1 @ppearing in Eq99) and(11). We first note that these S (Z— 1 m 7—1-m
quantities can be defined in a recursive way. In particular, T2n m |[Yan]"[D2n—1]
1non—1 fepresents the fraction of the set of spins which, at
H,,_», contribute toU,,,_,, but aredownat H,,_;. To ob- X[Pm(H2n) = Pm(H2n-1) 1. (A3)
tain the weight associated to this fraction, consider a spin
with a given neighboj kept down (i.e., the spinj is condi-  The quantities/,, and{,,,, can be obtained proceeding as
tioning the probabilities When the spini flips down at  in the evaluation ofp,,_; and#,,, noticing that in this case
H,,_ 1, apart fromj all the other neighbors can be eithgg  the fixed neighboj (conditioning the probabilitigshas to be
or down Consider for instance the case in whithof these  kept keptup. Moreover the spim must flip fromdownto up
neighbors areup and z—1—m down Under these condi- at Hy,, in order to contribute tal,,, and then flip back
tions, the spiri flips downif its effective field is positive at downatH,,; in order to contribute also tf,, ;. The final
H,,_, and negative aH,,,_,;<H,,_,. The associated con- results reads
tribution to »,,_1 is then given by

z—1 2—1
[Uzn-21"D2n-1]""*""[Pm(H2n-2) — Pm(H2n-1)1, {on= 2 ( m )[UZn]m[D2n1]21m
(Al) m=0

>< J—
where[U,,_,]MD,,_1]> 1™ is the probability that, at the [Pm+1(Han) = Pm-1(Han-1)]

moment at which the spin flips down m given neighbors .

are up and z—1-m (other than j) are down and z— . -
[Pm(Han-2)— Pm(Han—1)] is the probability that the spii {on+1= E:O m |[YUzn]"[D2nt1] [Pm+1(Hzn)
havingm upneighbors, isup at H,,,_, but not atH,,,_;. To

obtain 7,,_41, we have first to multiply Eq(Al) by a com- —Pmr1(Hone) 1. (A4)
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