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Rayleigh loops in the random-field Ising model on the Bethe lattice
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We analyze the demagnetization properties of the random-field Ising model on the Bethe lattice focusing on
the behavior near the disorder induced phase transition. We derive an exact recursion relation for the magne-
tization and integrate it numerically. Our analysis shows that demagnetization is possible only in the continu-
ous high disorder phase, where at low field the loops are described by the Rayleigh law. In the low disorder
phase, the saturation loop displays a discontinuity that is reflected by a nonvanishing magnetizationm` after a
series of nested loops. In this case, at low fields the loops are not symmetric and the Rayleigh law does not
hold.
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I. INTRODUCTION

A ferromagnetic material is characterized by a reman
magnetization even at zero field. In several instances, h
ever, it is convenient todemagnetizethe sample, bringing it
to a state of zero magnetization at zero field. In practice,
can be done by applying a slowly varying ac field, decre
ing its amplitude after each cycle. In this way, the syst
explores a complex energy landscape, due to the inter
between structural disorder and interactions, until it
trapped into a low-energy minimum. If the demagnetizat
process is performed adiabatically and thermal effects do
play an important role, the demagnetized state is reprod
ible for a given realization of the quenched disorder and
thus be used as a reference to define magnetic propertie

The hysteresis loops at low fields, starting from the d
magnetized state, are usually described by the Rayleigh1 law:
when the field is cycled between6H* , the magnetizationm
follows m5(a1bH* )H6b@(H* )22H2#/2, where the
signs6 distinguish the upper and lower branch of the loo
Consequently the area of the loop scales with the peak
H* as W54/3b(H* )3 and the response to a small fie
change, starting from the demagnetized state is given
M* 5a(H* )6b(H* )2.2,3 This law has been measured in
variety of materials, but a few papers have reported sign
cant deviations from the simple quadratic law but no exp
nation has been provided.4

The current theoretical interpretation of this law is bas
on a 1942 paper by Ne´el,5 who derived the law formulating
the magnetization process as the dynamics of a point~i.e.,
the position of a domain wall! in a random potential. In this
framework, the initial susceptibilitya is associated to revers
ible motions inside one of the many minima of the rando
potential, while the hysteretic coefficientb is due to irrevers-
ible jumps between different valleys. The main drawback
Néel theory relies in its purely phenomenological nature,
ing based on azero-dimensionalmodel that does not includ
collective effects considered very important for the magn
zation process.6–8

In the past few years, the zero-temperature random-fi
Ising model~RFIM! has been used to describe the comp
tion between quenched disorder and exchange interac
and their effect on the hysteresis loop.9 In three and higher
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dimensions, the model shows a phase transition betwe
continuous cycle for strong disorder and a discontinuo
loop, with a macroscopic jump, at low disorder. The tw
phases are separated by a second-order critical point, ch
terized by universal scaling laws.9–11A behavior of this kind
is not restricted to the RFIM but has also been observed
other models, with random bonds,12 random anisotropies,13

or vectorial spins.14 In addition, a similar disorder induce
phase transition in the hysteresis loop has been experim
tally reported for a Co-CoO bilayers.15

The RFIM is probably the simplest model including di
order and exchange interactions that can be treated ana
cally. The equilibrium properties of the RFIM on the Beth
lattice has been first studied in Refs. 16 and 17, that re
exact results for various disorder distributions, mostly for t
bimodal one. To describe hysteresis one should, howe
focus on out of equilibrium properties. For this case, ex
results were found in one dimension in Refs. 18 and 19
on the Bethe lattice in Refs. 20–22, while mean-field theo9

and renormalization group10 have been used to analyze th
transition. Recently the one-dimensional solution of t
model, has been generalized to obtain the complete dem
netization process and to derive the Rayleigh loops.23 The
RFIM does not display a phase transition in one dimensio
while numerical simulations indicate that the transition h
an important effect on the demagnatization process. In
ticular, in the low disorder phase the discontinuity in t
saturation curve prevents the magnetization to reach a
magnetized state23 but this behavior has not been understo
theoretically. It has been shown exactly20–22 that the RFIM
displays a disorder induced phase transition on the Be
lattice when the coordination numberz>4 and can thus be
used to clarify the issue.

Here we generalize the analysis of Refs. 20–23 to ob
exact recursion relations for the demagnetization proces
the Bethe lattice and show that demagnetization is only p
sible in the high disorder phase. In the low disorder phase
remanent magnetization after a series of nested loops of
creasing amplitude does not vanish but scales to zero as
transition is approached. Furthermore, in the low disor
phase the Rayleigh law is not obeyed and low-field loops
not symmetric. The Rayleigh law is instead recovered in
high disorder phase and the Rayleigh parametersa and b
©2002 The American Physical Society04-1
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behave qualitatively as ind51, displaying a peak in the
disorder. All the results derived in this paper hold, in gene
for any analytic and symmetric random-field distributio
with infinite support and finite variance. However, in th
numerical implementation of the analytical results we ha
used a Gaussian distribution. In the case of a discrete di
bution, as the one used in Refs. 16 and 17, the generaliza
of the results is streightforward but lenghty as discussed,
instance, in Ref. 21.

The paper is organized as follows: in Sec. II we descr
the model. In Sec. III we recall the results obtained in Re
20–22 and generalize them for a series of nested loops.
tion IV discusses the effect of the phase transition on
magnetization and Sec. V analyzes the Rayleigh law. A b
discussion of the perspectives is reported in Sec. VI. Fina
the complete derivation of the recursion relations is repor
in the Appendix.

II. THE MODEL

In this section we recall briefly a model used to descr
hysteresis loops in magnetic materials:9 the ferromagnetic
RFIM. This model is characterized by the Hamiltonian

H52J(
^ i , j &

sisj2H(
i

si2(
i

hisi , ~1!

where J.0, the (^ i , j & is restricted on the pairs of neare
neighbors on a lattice of coordination numberz, si is the
Ising spin on the sitei, H is a homogeneous external fiel
and hi represents a quenched random field on the spinsi
modeling the presence of lattice defects. The fields$hi% are
independently drawn from a symmetric distributionr(hi). In
the following the numerical results are referred to a Gauss
distribution with varianceR2.

In this paper we study the case of a Bethe lattice wit
generic coordination numberz. In particular, we are inter-
ested in the casez54 that is known to be the minimal cas
showing a disorder induced phase transition towards a
continuous hysteresis loop.

In order to mimic the microscopic spin dynamics, we u
the flipping rules used in Refs. 9–11 and 18–22 obtain
from the Glauber dynamics at temperatureT and with an
external field of frequencyv taking the limitT→0 first and
thenv→0. The basic rule of thisT50 dynamics is that the
spins align with the local field

si5sgn~hi ,e f f!, ~2!

where the effective local field felt by the spini is

hi ,e f f52
]H
]si

5J (
j Pn( i )

sj1H1hi ~3!

and the sum runs over thez nearest neighbors of the sitei.
Note that though the model is defined through three

ternal parametersJ,H,R, the dynamics is determined by th
two reduced quantitiesH/R and J/R only. For the sake of
simplicity, from now on we rename these two ratiosH andJ,
respectively, and considerR51. Given H and J, we can
22440
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write the probabilitypm(H) that a spini, with m (0<m
<z) of its neighborsup, is also up. This is given by the
probability thathi ,e f f.0:

pm~H !5P~hi ,e f f.0!5E
(z22m)J2H

`

dh8r~h8!. ~4!

III. HYSTERESIS LOOPS

In general a change in the applied fieldH produces a
rearrangement of the spins, so that each spini is stable being
aligned with its effective fieldhi ,e f f . It is important to note
that each spin flip modifies the effective field on the near
neighbors and sometimes generates an avalanche of
flips through the lattice. In the following we will consider th
case of a slowly varying external field: its value is kept co
stant until the next metastable state is reached. Two im
tant properties of theT50 dynamics are~i! the Abelian
property—the stable state after an avalanche does not de
on the order in which the spins flip— and~ii ! the return point
memory—when the field is changed adiabatically the sta
state only depends on the point where the field was last
versed. These two properties can be used to obtain exa
the shape of the hysteresis loops. We first recall the der
tion of the saturation curve and those of the first minor loo
and then procede with the general analysis of minor loop

A. Saturation loop

When the external fieldH is cycled from2` to 1` and
back the magnetization describes the saturation loop.
key quantity describing the lower half of the saturation lo
is the conditional probabilityU0(H) defined20 as the prob-
ability that a given spin flips before a fixed nearest neighb
conditioned to this neighbor being down. The probabil
U0(H) satisfies the following equation:20

U0~H !5 (
m50

z21 S z21
m D @U0~H !#m@12U0~H !#z212mpm~H !.

~5!

It can be shown that the probability that a spin isup at
external fieldH is20

p~H !5 (
m50

z S z
mD @U0~H !#m@12U0~H !#z2mpm~H !. ~6!

The related magnetization is given byml(H)5122 p(H),
which describes the lower half of the hysteresis loop. T
upper half of the hysteresis loop can then be obtained
symmetry@i.e., mu(H)5ml(2H)#.

B. First minor loops

If the external fieldH is raised from2` to a finite value
H0 ~i.e., we are on the lower half of the major loop! and then
it is reversed, the magnetization describes the upper half
minor hysteresis loop. When the field is reversed fromH0 to
H1,H0 we define the conditional probabilityD1(H1) for a
4-2
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RAYLEIGH LOOPS IN THE RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 224404
spin to bedownbefore a fixed nearest neighbor, condition
to this neighbor beingup. The probabilityD1(H1) satisfies
the following equation:22

D1~H1!5 (
m50

z21 S z21
m D @U0~H0!#m

3$@12U0~H0!#z212m@12pm11~H0!#

1@D1~H1!#z212m@pm11~H0!2pm11~H1!#%.

~7!

The related probability that a spin isup at H1 is

p~H1!5p~H0!2 (
m50

z S z
mD @U0~H0!#m

3@D1~H1!#z2m@pm~H0!2pm~H1!#. ~8!

Equation~7! holds as long asH1 is larger thanH022J.22 In
one dimension it has been shown19 that atH5H022J the
upper half of minor loop merges with the upper half of t
major loop with the same local slope. This proof can
extended to the case of a Bethe lattice as long as the sa
tion loop is continuous.22 The case in which the saturatio
loop displays a discontinuity is discussed below for the c
z54.

C. General formula for nested loops

The method used to findU0 andD1 can be generalized to
obtain a complete characterization of all minor loops. In p
ticular, we are interested innestedminor loops, since they
are directly related to the demagnetization process of
disordered ferromagnet. Nested loops is defined as follo
after having reachedH1, we reverse again the field increa
ing its value up toH2<H0 ~lower half of the first minor
loop!. This process is then iterated in a sequence of fie
H2nP@H2n21 ,H2n11# and H2n11P@H2n ,H2n12# with n
>1, whereH2n andH2n11 refer to the final value of the field
H in the lower half of thenth minor loop, and for the uppe
half of the (n11)th minor loop, respectively. The genera
zations ofU0 to the minor loops is calledU2n(H2n) while
the generalization ofD1(H1) is called D2n11(H2n11). In
what follows, we simply indicateU2n(H2n) with U2n and
D2n11(H2n11) with D2n11.

SinceH2n,H2n22, the set of spins contributing toU2n
will be a subset of those contributing toU2n22, so that we
can write

U2n5U2n222h2n211h2n , ~9!

whereh2n21 represents the fraction of spins that wereup at
H2n22 before their fixed nearest neighbor anddown at
H2n21, while h2n is the fraction of the set contributing t
h2n21 that flip up again atH2n . The explicit derivation of
h2n21 andh2n is a little involved and it is thus discussed
the Appendix.

The magnetization atH5H2n is as usual obtained a
m2n[m(H2n)5122 p(H2n), where the probabilityp(H2n)
22440
e
ra-

e

-

e
s:

s

that a spin isup at H2n is given by the probabilityp(H2n21)
that it was alreadyup at H2n21 summed to the probability to
flip up when the field goes fromH2n21 to H2n :

p~H2n!5p~H2n21!1 (
m50

z S z
mD @U2n#m@D2n21#z2m

3@pm~H2n!2pm~H2n21!#. ~10!

The generalization ofD1 to nested minor loops is calle
D2n11 and analogously toU2n(H2n) is given by

D2n115D2n212z2n1z2n11 , ~11!

wherez2n is the fraction of spins that weredownat H2n21
before their fixed nearest neighbor andup at H2n andz2n11
is the fraction of the set of spins contributing toz2n that flip
down again atH2n . The exact expression for the fraction
z2n andz2n11 are reported in the Appendix.

The magnetization atH5H2n11 is m2n[m(H2n)51
22 p(H2n11), wherep(H2n11) is the probability for a spin
to be up at H2n11. This probability can be written as th
analogous probability atH5H2n minus the probability to
flip downbetweenH2n andH2n11:

p~H2n11!5p~H2n!2 (
m50

z S z
mD @U2n#m@D2n11#z2m

3@pm~H2n!2pm~H2n11!#. ~12!

In principle, an arbirary series of nested loop can be
tained solving the recursion relation forU2n ,D2n11, and us-
ing the result to obtain the magnetization. A similar proc
dure was used ind51 to obtain a closed expression for th
magnetization along the demagnetization curve.23 This is not
possible for the Bethe lattice where an explicit solution
the problem is not available and one should resort to a
merical integration.

IV. DISORDER INDUCED PHASE TRANSITION
AND DEMAGNETIZATION

Previous numerical studies of the zero-temperature
namics of the RFIM on a regular lattice in finit
dimension9,11 have shown that ind>3 the system shows a
phase transition from a strong disorder phase to a weak
order phase, separated by a second-order critical point~in d
52 the presence of a phase transition is still controversi!.
In the strong disorder phase the major hysteresis loop is c
tinuous, whilst in the weak disorder phase the loop show
macroscopic jump in the magnetization at a critical value
the field. Note that if we use the reduced parametersJ/R and
H/R, fixing R51, strong disorder corresponds to small va
ues ofJ and the phase transition will be charcterized by
critical valueJc of the exchange couplingJ. On the Bethe
lattice, a phase transition is observed for coordination nu
bersz>4, while for z<3 one has only the strong disorde
phase.20 The presence of the phase transition has strong
plications on the possibility of demagnetizing the system.
particular, in the weak disorder phase it is not possible
4-3
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demagnetize the system through an oscillating external fi
with decreasing amplitude.

Before we specialize to the casez54, let us note that for
H5J one haspz212m(J)512pm(J). This allows, after a
little algebra, to show that forH5J, U0(J)51/2 is a solu-
tion for anyJ, any z and any random-field distribution. Fo
z54 Eq. ~5! is a cubic equation inU0, with coefficients
depending onH and J through thepi . In order to find the
critical point it is enough to find the value ofH andJ corre-
sponding to a triple solution of the equation. Implementi
this requirement for any symmetric density function of t
disorder, one findsHc5Jc , whereJc satisfies the equation
p0(J)1p1(J)51/3. For a Gaussian distribution of the diso
der, this translates in the following implicit equation forJc :

erf~Jc!1erf~3Jc!51/3 ~13!

resulting in Jc50.561 400 995 873 19 . . . , in accordance
with the result quoted Ref. 22.

Above the transition (J.Jc or weak disorder phase! the
hysteresis loop becomes discontinuous.20 In fact atJ5Jc and
H5Jc the susceptibility]m/]H diverges, and forJ.Jc one
observes a discontinuity with a spinodal singularity. At th
point one can measure a gapDm in the magnetization. It is
easy to show, through an expansion of Eq.~5! to the lowest
order inJ2Jc aroundJc , that forJ→Jc

1 it is

Dm;~J2Jc!
b ~14!

with b51/2 as in the mean-field case. The analytical deri
tion of this result can be easily sketched as follows: first
all the three solutions of Eq.~5! at H5J can be found ex-
plicitly. They are

U0
(a)51/2 and

U0
(b),(c)51/2~16A@123~p01p1!#/@123p11p0# !,

where, for H5J, @123(p01p1)#.0 only for J.Jc and
50 at J5Jc . The gap can be measured byDU[uU0

(b)

2U0
(c)u, and it is simple to show thatDU;(J2Jc)

1/2, which
gives Eq. ~14! considering that to the lowest orderDm
;DU. Actually, the position of the gap in the magnetizati
of the major loop of the hysteresis cycle is located atHg
.J, which could give corrections to the previous resu
However, one can show that (Hg2J);(J2Jc), implying
corrections to the previous value of the gap of the same o
in (J2Jc). Then this correction does not alter the fou
scaling behavior.

We recall that usually it is possible to demagnetize a m
terial by applying a slowly oscillating external field appr
priately chosen. In practice, this corresponds to a serie
nested loops, starting from the completely magnetized si
tion ~e.g., m521 andh→2`) and then applying in suc
cession the fields H05J,H152H0(12«), . . . ,H2n11
52H2n(12«) in the limits «→01 andn→1`.23 This se-
quence, forJ,Jc , leads to a completely demagnetized sta
This is due to two fundamental properties of the strong d
ordered phase:~i! the ‘‘return point memory’’ property tha
has been defined in the preceding paragraph;~ii ! the fact that,
22440
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if we are on a certain point of the saturation loop~e.g., at
H5J0 on the lower half! and invert the field toH1 the sys-
tem meets the other half on the saturation loop ifH15H0
22J. This implies that in order that the first minor loop
symmetric with respect to the originH50 andm50 without
touching the saturation curve we have to start fromH05J on
the lower half of the saturation loop~or equivalently from
H05J on the upper half!.

At J.Jc the demagnetization process is no more p
sible, because the discontinuity prevents minor loops to
symmetric with respect to the origin of the axes. In fact the
is now an inaccessible region of the plane (H,m) around the
origin.23 However, the field succession described above s
provides a well-defined procedure~apart the broken symme
try m→2m and H→2H) to minimal possible residua
magnetization, that we denotem` , at H50. Following this
procedure, by numerically integrating Eqs.~9! and~11! with
«51023, we find thatm` displays the same scaling behavi
of the gap in the saturation loop asJ approachesJc from
above:m`}(J2Jc)

1/2 ~see Fig. 6!.

V. RAYLEIGH LAW

The Rayleigh law describes the hysteresis behavior at
field in a vast class of materials. Exact values for the R
leigh parameters have been obtained for the one-dimensi
RFIM,23 where the initial susceptibiltya and the hysteretic
coefficientb both display a peak in the disorderR. A similar
behavior is observed in simulation ford52,3 but only in the
high disorder phase, while in the low disorder phasea andb
are not defined~Figs. 1 and 2!.

In the case of the Bethe lattice, we could not obtain
explicit expression of the Rayleigh parameters even in
high disorder phase. We thus resort to numerical integra
and analyze the demagnetization curves close toH50. We
estimate the susceptibilitya and the hysteretic coefficientb
using a linear fit ofm2n /H2n vs H2n . According to the Ray-
leigh law forn→` we havem2n /H2n5a1bH2n , and simi-

FIG. 1. Final magnetizationm` as a function of the exchang
coefficientJ.
4-4



th
e

n
-
o

e
ce

he
ne-

nd
ion

one
is

the
or-
ional

ase
ri-
on

nt

e

by

RAYLEIGH LOOPS IN THE RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 224404
larly for negative fieldsm2n11 /H2n115a2bH2n11. The
values ofa and b as a function of the exchange couplingJ
are shown in Figs. 3 and 4. When plotted as a function of
disorderR, a, andb show a peak in the high disorder phas
in agreement which the results on Euclidean lattices.

In the low disorder phase the demagnetization curve is
symmetric with respect toH50 and consequently the Ray
leigh law does not hold. In particular, we can define tw
values for the coefficientb:

m2n /H2n5a1b1H2n ,

m2n11 /H2n115a2b2H2n11 . ~15!

The values ofa, b1, andb2 as a function of the exchang
coefficientJ are shown in Figs. 3 and 4; also the differen
Db5b12b2 is shown in Fig. 5, Again, asJ→Jc

1 , Db ap-
proaches 0 as (J2Jc)

1/2 ~see Fig. 6!.

FIG. 2. The Rayleigh parameters~solid line isa, dashed line is
b) as a function of the disorder widthR for R.Rc51/Jc .

FIG. 3. Susceptibilitya as a function of the exchange coefficie
J.
22440
e
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VI. DISCUSSION

In conclusion, the present analysis allows to clarify t
role of a disorder induced phase transition on the demag
tization properties of a ferromagnet. In particular, we fi
that in the low disorder phase the jump in the saturat
curve gives rise to an inaccessible region in the (m,H) plane
close toH50 andm50. Even after an infinitesimally fine
series of nested loop the final magnetizationm` does not
vanish. Approaching the transition, however,m` scales to
zero with an exponent 1/2, which is the same as the
controlling the size jump in the saturation curve. While th
value could be an artifact of the Bethe approximation,
impossibility to demagnetize the system in the low dis
dered phase has already been observed in three-dimens
numerical simulations.23,24

The results discussed in this paper are derived for the c
of Gaussian random-field distribution, but most of the de
vation holds as well for the case of a generic distributi

FIG. 4. Hysteretic coefficientb as a function of the exchang
coefficientJ.

FIG. 5. The deviations from the Rayleigh law are measured
Db5b12b2.
4-5



ly
io
og
or
in

e

si

m
u

tti

-
a
ls

th
ab
fo
bl

n
te
al

la
a

in

-

t

rive

s

COLAIORI, GABRIELLI, AND ZAPPERI PHYSICAL REVIEW B65 224404
r(x). The particular form of the distribution enters on
when we try to obtain quantitative results about the transit
point or the Rayleigh parameter, but the phenomenol
should be the same independently on the distribution. A w
of caution should, however, be spent when consider
nonanalytic distributions, such as the uniform21 or the bimo-
dal one.16,17 In this case the derivation follows the sam
steps, but typically some of thepi integrals are zero for a
nonvanishing interval of fields which makes the analy
cumbersome~see, for instance, Ref. 21!.

Finally, it is interesting to compare the nonequilibriu
behavior of the hysteresis loop with the corresponding eq
librium state. The equilibrium or, atT50, the ground-state
properties have been evaluated exactly on the Bethe la
only for a bimodal distribution of random fields„i.e., r(x)
5@d(x2h)1d(x1h)#/2….16,17 In this case, the system ex
hibits atT50 a disorder induced ferromagnetic transition
h5J. In the corresponding hysteresis loop, this point a
marks a transition, albeit somewhat trivial: forh,J the
cycle is perfectly squared and the first spin to flip@at H
56(2J2h)# leads to an avalanche that reverses all
other spins. The case of the Gaussian distribution is prob
less trivial and thus more interesting to compare, but un
tunately no analytic solution for the ground state is availa
in the literature.
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APPENDIX

Here we derive the expressions forh2n21 , h2n , z2n , and
z2n11 appearing in Eqs.~9! and~11!. We first note that these
quantities can be defined in a recursive way. In particu
h2n21 represents the fraction of the set of spins which,
H2n22, contribute toU2n22, but aredownat H2n21. To ob-
tain the weight associated to this fraction, consider a spi
with a given neighborj kept down ~i.e., the spinj is condi-
tioning the probabilities!. When the spini flips down at
H2n21, apart fromj all the other neighbors can be eitherup
or down. Consider for instance the case in whichm of these
neighbors areup and z212m down. Under these condi-
tions, the spini flips down if its effective field is positive at
H2n22 and negative atH2n21,H2n22. The associated con
tribution to h2n21 is then given by

@U2n22#m@D2n21#z212m@pm~H2n22!2pm~H2n21!#,
~A1!

where@U2n22#m@D2n21#z212m is the probability that, at the
moment at which the spini flips down, m given neighbors
are up and z212m ~other than j ) are down, and
@pm(H2n22)2pm(H2n21)# is the probability that the spini,
havingm upneighbors, isup at H2n22 but not atH2n21. To
obtainh2n21, we have first to multiply Eq.~A1! by a com-
22440
n
y
d
g

s

i-

ce

t
o

e
ly
r-
e

,
-

r,
t

binatorial factor (n
z21), taking into account all the equivalen

choices of the sitej, and then sum overm from 0 to z21.
The result reads:

h2n215 (
m50

z21 S z21
m D @U2n22#m@D2n21#z212m

3@pm~H2n22!2pm~H2n21!#. ~A2!

An analogous procedure can be implemented to de
h2n , the fraction of the set of spins contributing toh2n21
which flip backup at H2n . Using a derivation similar to the
one discussed above, we obtain

h2n5 (
m50

z21 S z21
m D @U2n#m@D2n21#z212m

3@pm~H2n!2pm~H2n21!#. ~A3!

The quantitiesz2n andz2n11 can be obtained proceeding a
in the evaluation ofh2n21 andh2n , noticing that in this case
the fixed neighborj ~conditioning the probabilities! has to be
kept keptup. Moreover the spini must flip fromdownto up
at H2n , in order to contribute toz2n , and then flip back
downat H2n11 in order to contribute also toz2n11. The final
results reads

z2n5 (
m50

z21 S z21
m D @U2n#m@D2n21#z212m

3@pm11~H2n!2pm11~H2n21!#

z2n115 (
m50

z21 S z21
m D @U2n#m@D2n11#z212m@pm11~H2n!

2pm11~H2n11!#. ~A4!

FIG. 6. Final magnetizationm` and Db as a function ofJ
2Jc . The solid line has a slope 1/2.
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