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Abstract 

 

This article introduces the Second Special Issue of Cardiovascular Pathology (CVP), the official 

journal of the Society for Cardiovascular Pathology (SCVP).  This CVP Special Issue showcases a 

series of commemorative review articles in celebration of the 25th anniversary of CVP originally 

published in 2016, and now compiled into a virtual collection with online access for the 

cardiovascular pathology community.  This overview also provides updates on the major 

categories of cardiovascular diseases from the perspective of cardiovascular pathologists, 

highlighting publications from CVP, as well as additional important review articles and 

clinicopathologic references. 
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1. Introduction  

In 2018, Cardiovascular Pathology (CVP) published its first ever Special Issue presenting 

a virtual collection with online access to a series of Consensus Documents produced jointly by 

the Society for Cardiovascular Pathology (SCVP) and the Association for European 

Cardiovascular Pathology (AECVP) [1]. Given the popularity of that endeavor, CVP is excited to 

now publish a second Special Issue of CVP [2] incorporating the series of 25th anniversary 

commemorative CVP review articles [3–9]. These articles were conceived as a series with the 

general title of Pathobiology of Cardiovascular Diseases: Past, Present and Future Perspectives 

[3].  The objectives of this second Special Issue of CVP are: 1) to assemble the 25th Anniversary 

commemorative review articles into one cohesive virtual collection with online access for the 

cardiovascular pathology community; and 2) to broaden the scope of the endeavor by providing 

updates and commentaries on the major categories of cardiovascular disorders—incorporating 

important clinical publications while also presenting the viewpoint of cardiovascular 

pathologists.  For access to the Special Issues, go to: 

https://www.sciencedirect.com/journal/cardiovascular-pathology/special-issue/10W77NHMB8L. 
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1.1. Basic Anatomy and Physiology 

Gross anatomy and histopathology are the mainstays of cardiovascular pathology 

practice [10];  consideration of the three-dimensional geometry of the heart deserves more 

attention. Hutchins and colleagues [11,12] published detailed studies of cardiac size, chamber 

volumes, valve orifices, and shape of the ventricles at autopsy.   Differences in the shape of the 

right and left ventricles when arrested in systole or diastole have been  demonstrated [11], and 

these features should be taken into account in making determinations regarding ventricular 

hypertrophy and dilation. 

More recently, Maclver and colleagues [13,14] have elegantly demonstrated the three 

dimensional architecture of the heart in relationship to cardiac function; some misconceptions 

regarding ventricular geometry also were clarified [15].  Recent reviews provide detailed 

analyses of structure and function of the right ventricle and left atrium in health and disease 

[16,17]. The challenge of separating physiological hypertrophy from pathological concentric and 

eccentric hypertrophy also has been addressed [18]. 

The Human Cell Atlas, a global initiative championed by the Broad Institute [19] 

(https://www.broadinstitute.org/research-highlights-human-cell-atlas) also promises to shed 

highly detailed insights into the complex individual genetic and cellular anatomy of the 

cardiovascular system.  Such analyses have already revealed cellular heterogeneity in a host of 

tissues, elucidating such previously unrecognized cell populations as the pulmonary ionocyte, 

expressing the bulk of CFTR in lung [20], and distinct subsets of hepatic macrophages [21].  

Cardiovascular pathologists will be critical adjuncts and tour guides to the accurate 

identification, annotation, and exploration of heart and vessel tissues for these analyses. 
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2. Importance of Core Diagnostic Approaches 

2.1. Autopsy 

The autopsy remains a procedure of paramount importance in investigation of 

cardiovascular disease and sudden deaths [22,23].  There is a paradox and a dilemma related to 

the development of new powerful approaches to obtaining important information from the 

autopsy while autopsy rates in non-forensic settings, including academic centers, remain 

distressingly low.  Postmortem genetic testing, the so-called molecular autopsy, has become 

increasingly feasible utilizing next generation sequencing of blood and tissues [22–25].  While 

fresh specimens are still preferable, utilization of formalin-fixed, paraffin-embedded tissues 

(FFPPT) is becoming increasingly practicable [26,27]. The emerging importance of the rapid 

research autopsy leverages powerful technological advances in genetic analyses and organoid 

cultures with a logistical system for performing autopsies within 6 hours of death [23].  An 

entire recent issue of the journal Circulation was devoted to the application of the autopsy to 

cardiovascular investigation [28–36].  

A major deterrent to routine incorporation of molecular diagnostics in routine autopsy 

practice is economic.  Although the cost of next generation sequencing has decreased 

substantially, most medical examiner jurisdictions do not have a budget for routine 

performance of post-mortem genetic testing.  A notable exception is the molecular genetic 

testing laboratory of the Office of the Chief Medical Examiner of New York City which tests for a 

diverse– but not exhaustive – panel of channelopathy genes in the setting of sudden cardiac 

death [25]. Secondary, but no less knotty, issues include providing truly informed family 
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consent for post-mortem genetic testing and determining who conveys the results, and how 

potentially actionable molecular diagnoses are explained to the next-of-kin [37]. 

 

2.2. Endomyocardial Biopsy 

The development of the technology for endomyocardial biopsy (EMB) in the 1960’s was 

a game-changer in cardiology, enabling pre-mortem cardiac tissue analyses for storage 

disorders, myocarditis, and sarcoidosis that had not been previously possible [38].  With the 

dawn of successful cardiac transplantation enabled by the development of calcineurin 

inhibitors, the EMB surged to even greater importance as the gold standard for evaluating 

cellular rejection; Billingham and colleagues at Stanford first demonstrated the safety and 

efficacy of the approach in 1973 [39].  Despite limitations relating to sampling and inter-

pathologist variability in diagnoses, the EMB remains the mainstay for surveillance and 

diagnosis in cardiac rejection; advances in contemporary imaging [40,41] and molecular 

biomarkers [42] have not made significant inroads on clinical practice in cardiac 

transplantation. 

Thus, EMB interpretation is a core element of contemporary cardiovascular pathology 

practice; besides evaluating cellular and antibody-mediated rejection (and distinguishing those 

from ischemic injury, infections, and post-transplant lymphoproliferative disorders), the tissue 

diagnosis of inflammatory heart disease (myocarditis and sarcoidosis), infiltrative diseases 

(amyloidosis and lysosomal storage diseases), and toxic injury (chloroquine and anthracyclines) 

are all critical contributions that arise out of the cardiovascular pathology sign-out [43–47].  

Novel tissue biomarkers—evaluable on biopsies—can even be superior to established clinical 
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criteria (and serum analytes) for stratifying risk in heart failure patients [48].  With the 

increasing application of immune checkpoint inhibitors (ICI) in cancer therapeutics, the EMB has 

also assumed new importance in the early diagnosis of potentially fatal immune checkpoint 

inhibitor (ICI) myocarditis [49]. The importance of EMB has been recognized by leading 

cardiology organizations, and the indications for EMB in various clinical scenarios have been 

defined [50,51]. 

Although Pereira et al. [40,41] have stated that contemporary imaging procedures can 

potentially replace EMB for the diagnosis of some myocardial pathology,  EMB remains the 

standard for validation of imaging techniques, and it uniquely has the potential to yield a tissue 

diagnosis.  Electroanatomic mapping (EAM) guided EMB has the potential to improve test 

characteristics over conventional fluoroscopy guided EMB [52].  Also, biventricular EMB of the 

right ventricle (RV) and left ventricle (LV) has been shown to have increased yield of positive 

findings compared to either selective RV or LV biopsy alone [53]. 

 

3. Vascular Diseases 

Ladich and colleagues [7][54,55] have provided an overview of vascular diseases 

reflecting the consensus statements of the SCVP and AECVP on inflammatory and non-

inflammatory aortic degenerative disorders. Inflammatory aortic diseases include 

atherosclerosis, aortitis and periaortitis.  Although clinically uncommon, aortitis is increasingly 

recognized as an important cause of aortic aneurysms and dissections. IgG4-related aortitis is a 

relatively newly recognized entity in this category. Pathologic diagnosis of specific types of 
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aortitis is based on the pattern of inflammation and associated patient demographic and clinical 

findings.   

Aortic aneurysms are typically subdivided abdominal aortic aneurysms (AAA) versus 

thoracic aortic aneurysms (TAA), characteristically with different pathologies and etiologies [7].  

AAAs are the most common type of aortic aneurysm, and are attributed to underlying 

atherosclerotic pathology [7].  Some atherosclerotic aneurysms involve both the thoracic and 

abdominal aorta, i.e., throraco-abdominal aortic aneurysms (TAAA) [56]. Such atherosclerotic 

aortic aneurysms have distinct risk factors and genetic predisposition compared to usual 

atherosclerotic disease [57,58].  

The causes of TAA vary depending on the site of involvement, but medial degeneration 

is a common pathologic substrate, regardless of etiology [7,55].  Compared to TAAA and AAA, 

thoracic aneurysms are more commonly associated with systemic hypertension, likely causing 

compromise of the vasa vasorum perfusion of the media; patients with bicuspid aortic valves 

are also prone to root dilation, attributed to a combination of abnormal flow through the 

bicuspid valve, and subtle genetic effects on matrix synthesis that may be associated with the 

bicuspid valve development.  Mutations that affect transforming growth factor- (as in 

Marfan’s and Loeys-Dietz syndromes), primary matrix mutations (e.g., Ehlers-Danlos III), and 

endarteritis obliterans of the vasa vasorum vessels (luetic aortitis) are all less common causes 

of TAA—but nevertheless important (because they are amenable to therapeutic interventions).  

There is a genetic basis for most aortic aneurysms with prominent medial degeneration [59], 

and aortopathy is also a feature of several forms of congenital heart disease [60,61]. 
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Vascular calcification is now recognized as a highly regulated biological process [7].  

Calcification may involve the intima associated with atherosclerotic pathology or in the media 

secondary to metabolic disease.  Rarely, vascular calcification develops as a manifestation of 

genetic disorders.   

 

4. Atherosclerosis and Ischemic Heart Disease 

4.1. Atherosclerosis 

Pathologists have made landmark contributions to our understanding of the 

pathogenesis of atherosclerosis [62–64].The resultant comprehensive construct advanced by 

Russell Ross and colleagues - the response to injury theory of the pathogenesis of 

atherosclerosis - reflects a synthesis of extensive experimental evidence and correlation with 

disease expression in humans [65]. This theory posits that atherosclerosis develops as an 

inflammatory response of the arterial wall that is initiated by endothelial perturbation (damage) 

induced by multifactorial, chronic (repetitive) chemical and hemodynamic injury, and is 

followed by complex secondary changes in the evolving lesions [66–68].  Thus, fundamentally, 

atherosclerosis is conceived as a specialized inflammatory disease, and atherogenesis as a 

process driven by inflammation and innate and acquired immunological mechanisms [69–71]. 

In this regard, the beneficial effects of the statins are likely a consequence of their anti-

inflammatory pleotropic effects as much as from their lipid-lowering effect.  Other 

interventions aimed at affecting inflammatory and immunological drivers of atherosclerosis are 

also garnering increased interest [72]. 
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It also should be noted that the current iteration of the response to injury theory does 

not account for observations interpreted as early lesions developing as cell clones in the intima 

of blood vessels.  The clonal origin hypothesis remains the subject of investigation and 

speculation [73].  Remarkably, the expansion of myeloid cell clones in geriatric bone marrow 

(so-called clonal hematopoiesis of indeterminate potential or CHIP) has been correlated not 

only with an increased risk of hematologic malignancy (not too surprising), but also with 

atherosclerotic disease risk (extremely surprising) [74].  The relationship may be attributable to 

the selective expansion in inflammatory monocyte-macrophage lineages producing mediators 

such as interleukin-1 (IL-1) [75].  This becomes extremely clinically relevant in that IL-1 blockade 

has significant benefits against atherosclerotic disease burden and complications [76]. 

 In the cardiovascular pathology community, the characterization and classification of 

lesions of atherosclerosis, arteriosclerosis, arteriolosclerosis and vascular calcification continue 

to be discussed [77]. 

 

4.2. Ischemic Heart Disease and Acute Myocardial Infarction 

Buja and Vander Heide [5] provided a comprehensive perspective on the pathobiology 

of ischemic heart disease: past, present and future.  Topics covered included basic pathobiology 

of coronary artery disease, basic pathobiology of myocardial ischemic injury and acute 

myocardial infarction (AMI), importance of infarct size, the first phase of approaches to limit 

infarct size, basic pathobiology of myocardial reperfusion, clinical reperfusion therapy, 

myocardial stunning and hibernation, ischemic preconditioning, new insights into pathobiology 

with a focus on mitochondria, recent clinical trials for preservation of ischemic myocardium and 
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approaches to myocardial repair and regeneration [5,78].  Major knowledge gaps and future 

directions for ischemic heart disease (IHD) also were articulated (Table 1). 

There also has been an evolution in the thinking regarding the relationship of coronary 

atherosclerosis to the development of an acute coronary syndrome (ACS) [79].  The traditional 

view proposes that the clinical horizon of acute IHD occurs when progressively accumulating 

atherosclerosis causes critical luminal compromise -  usually involving multiple plaque 

formation. However, in the vulnerable plaque model, acute plaque change dominates the 

clinical decompensation.  Thus, an acute ischemic event is not closely linked to the severity of 

coronary atherosclerosis (due to positive vascular remodeling – the Glagov effect) but rather is 

triggered by the development of instability and thrombosis of a vulnerable plaque that is 

frequently not critically stenotic. A modulating perspective is provided by the atherosclerotic 

plaque burden hypothesis: an individual patient may have multiple vulnerable coronary 

plaques; instability and thrombosis of a single vulnerable plaque may or may not trigger an 

acute ischemic event; the total burden of atherosclerotic disease is of major importance in 

leading to an ACS.  This hypothesis reflects the complexity between the relationship of 

thrombosis of an atherosclerotic coronary artery and AMI.  Indeed, determination of the link 

between coronary thrombosis and acute myocardial infarction (AMI) has a long and convoluted 

history [63,80], although a causal role for coronary thrombosis has now been firmly established 

[5,78–80].  

Percutaneous coronary intervention (PCI) with angioplasty coupled with coronary stent 

placement is a well-established approach for managing ACS.  Coronary stents have evolved 

from bare metal stents (BMS) to drug eluting stents (DES) to fully bioresorbable scaffolds (BRS). 
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Virmani and colleagues [81–84] have performed extensive studies over more than a decade to 

characterize the vascular responses to implanted stents of various types and to elucidate 

clinical correlates of the pathobiology occurring in the stented segments . The pathological 

findings regarding vascular responses to BMS and DES clearly point to the importance of 

endothelization of the stented neointima; less than complete and effective endothelial covering 

will lead to adverse outcomes, including late thrombosis [85].  Adverse reactions to stents 

involve multiple interrelated mechanisms including stent characteristics, procedural factors, 

individual susceptibility influenced by genetic predisposition and clinical factors, and the 

inflammatory response.  This complex milieu can result in delayed or impaired re-

endothelialization, vascular perforation, or even focal aneurysm formation. Continued 

attention to the basic pathobiology of vascular responses to injury and interventions is of 

paramount importance in developing improved therapeutic interventions and optimal clinical 

outcomes [85]. 

Because of its importance in clinical decision making, documentation of the severity of 

coronary atherosclerosis has been a major focus of clinical research and cardiology practice for 

many years.  Stenosis severity has traditionally been assessed by direct angiographic 

visualization or functionally through measurements of fractional flow reserve (FFR) [86]. For 

both clinical and research purposes, histopathological assessment is important for correlation 

with angiographic and other assessments of the nature and extent of coronary artery disease.  

A variety of approaches have been used [87–89].  

The array of diagnostic modalities has grown to include qualitative coronary 

angiography, quantitative coronary angiography, computed tomographic angiography, 
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magnetic resonance imaging angiography, intravascular ultrasound (IVUS), and optical 

coherence tomography (OCT) [90–93].  A focus of ongoing development work is fluorescence 

lifetime imaging (FLIm). Various imaging modalities are purported to provide “virtual histology” 

of the coronary tree [90].  However, histopathology remains essential for validation of the 

accuracy of the imaging procedures [94-97].   

An improved method for mapping and registration of coronary arteries in longitudinal 

view on histopathology has recently been developed; this involves a three-dimensional 

alignment procedure for postmortem quantitative coronary plaque analyses [89]. This new 

procedure has been applied to calcified coronary plaque analyses comparing post-mortem 

computed tomography angiography (PMCTA), optical coherence tomography (OCT) and 

histopathology. In 338 specimens, the 3D fusion approach, aligning the images of PMCTA and 

OCT with histopathology as the gold standard allowed for a slice-based comparison of the 

different modalities. The results showed that PMCTA overestimates the calcified plaques while 

OCT underestimates these, compared to what is seen through the microscope.  

Acute myocardial infarction has now been classified into five types (Table 2) [98–100]; 

the scheme takes into account the advent of high sensitivity troponin measurements  and the 

underlying pathophysiology. Thus, a distinction is made between myocardial injury with 

elevated troponin due to non-ischemic causes (e.g., myocarditis) versus type 2 acute 

myocardial infarction with elevated troponin and clinical evidence of myocardial ischemia.  

Both may be associated with guarded prognosis.  However, utilizing strict criteria, type 2 acute 

myocardial infarction is currently being over diagnosed [101]. We recommend that pathologists 
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take this classification of AMI into account in evaluating and reporting AMIs along with the 

traditional characterizations regarding location, extend and age of the lesions.  

  

5. Sudden Cardiac Death (SCD), including Sudden Arrhythmic Death (SAD) 

5.1. Basic Structure-Function Relationships of the Electrical Heart [4,8] 

Saffitz and Corradi [4] have provided a perspective on the evolution of our 

understanding  of how altered tissue structure determined by classical pathology contributes to 

the pathogenesis of major heart rhythm disorders.  They reviewed the remarkable advances in 

our understanding of the genetic basis for cardiac rhythm disturbances and the elucidation of 

fundamental mechanisms of abnormal conduction and impulse formation.  Ottaviani and Buja 

[8] have provided a complementary review of advances in the study of anatomic and 

pathological changes of the conduction tissue in relationship to age of onset of sudden cardiac 

death (SCD) . 

SCD is defined as the unexpected death without an obvious non-cardiac cause that 

occurs within one hour of witnessed onset of symptoms (established SCD) or within 24 hours of 

unwitnessed onset of clinical manifestations (probable SCD). The incidence in the USA is 

reported as 69/100,000 per year [8]. SCD appears in 13.4% of death certificates. The incidence 

of SCD has a peak in infancy, decreases in older children, then in adults it increases 

exponentially with age, surpassing the risk for infants by the age of 40 [102]..  
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5.2. Perinatal and Infant Deaths [8] 

The focus of investigation of perinatal deaths has been expanded based on convincing 

evidence for a continuum involving sudden infant death syndrome (SIDS), sudden perinatal 

unexpected death (SPUD), and sudden intrauterine death syndrome (SIUDS). SIDS, also called 

crib death, is the most frequent form of death in the first year of life, striking one baby in every 

1,700–2,000. Despite advances in maternal-neonatal care, SIUDS has an incidence 6-8 times 

greater than that of SIDS [103–105]. The SIDS–SIUDS complex [105] has been defined as the 

sudden death of a fetus after the 25th gestational week or infant under one year of age which is 

unexpected by history and remains unexplained after a thorough case investigation, including 

examination of the death scene, performance of a general autopsy and examination of the 

placenta, umbilical cord, and membranes.  A complete and careful autopsy examination is 

required to rule out various causes and to document subtle changes associated with 

unexplained perinatal and infant deaths. An evolving understanding of the pathogenesis of SIDS 

and related conditions is based on postulated cardio-respiratory and respiratory-reflexogenic 

mechanisms, related to minute lesions of the central nervous system, particularly of the 

brainstem, together with involvement of the cardiac nervous and conduction system. Frequent 

congenital abnormalities, are likely morphological substrates for SIDS–SIUDS; these are mainly 

represented by alterations of the cardiac conduction system, such as accessory pathways and 

abnormal resorptive degeneration, along with hypoplasia, agenesis or neuronal immaturity of 

vital brainstem structures [8,103–105]. A novel hypothesis has recently been advanced linking 

SIDS to C02 retention [106]. 
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5.2. Sudden Death of Adolescents and Adults [5] 

SCD includes deaths due to non-arrhythmic, mechanical causes, such as ruptured acute 

myocardial infarction, and deaths due to fatal ventricular arrhythmia, i.e., sudden arrhythmic 

death (SAD) and sudden arrhythmic death syndrome (SADS) [107,108]  . Dysfunctions of the 

cardiac conduction and autonomic nervous systems are known to contribute to SCD 

pathogenesis, as are ventricular arrhythmias triggered by ectopic foci in hypertrophied hearts 

and those with acute ischemia [4,8].  

Guidelines have been published for autopsy investigation of sudden cardiac death 

[109,110].  Many cases have ischemic heart disease as the pathological substrate [111].  Other 

causes are more common in younger individuals including coronary artery anomalies, 

hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy [108].  

Acute aortic dissection is reported to have an outside-of-hospital death rate of 20% [112]. 

Genetic factors contributing to SCD and SADS are now recognized to be important 

[113,114].    Subjects with primary arrhythmias, including prolonged QT syndromes and 

channelopathies, typically have hearts with no gross or histopathological findings.  The only 

pathological finding in other subjects may be significant left ventricular hypertrophy.  Left 

ventricular hypertrophy is a well-documented, independent risk factor for SCD [115-118].  Post-

mortem genetic testing can contribute significant information in determining the substrate for 

SCD and SADS [24,25,30–35].  
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6. Congenital Heart Disease 

The in-depth characterization of the anatomic pathology and pathophysiology of 

congenital heart disease (CHD) contributed by expert pathologists has led to accurate early 

diagnosis and effective surgical treatments for CHD [104,119,120].  Advances also have been 

made in understanding the developmental biology and molecular pathogenesis of CHD [121–

123].  A symposium on CHD has been published in this journal addressing anatomic and 

pathophysiological classification and postoperative pathology of CHD as well as challenges and 

opportunities for CHD in adults [124–127]. 

Specific environmental risk factors, such as maternal smoking, air and water pollution, 

food concentration, pesticides, etc., can interact with the individual genetic constitution in 

complex ways, which may lead to polymorphisms and/or mutations of specific diseases leading 

to abnormal cardiac morphogenesis and CHD. Success in diagnosis and surgical correction of 

CHD has led to the development of the new subspecialty of adult congenital heart disease. 

Multidisciplinary teams, including obstetricians, pediatric and adult cardiologists, 

anesthesiologists, cardiac surgeons, and above all, cardiovascular pathologists, are essential for 

understanding, managing and treating CHD to provide optimal outcomes. Further studies are 

needed to identify more precise etiologies, preventive measures, and standardized diagnostic 

and therapeutic guidelines, to improve the survival and quality of life for CHD in fetuses, 

children, young adults and geriatrics [119,120] .  
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7. Valvular Heart Disease 

Schoen and Gotlieb have reviewed major advances in the understanding of the 

structure, function, and biology of native valves and the pathobiology and clinical management 

of valvular heart disease [6,128].  In high income countries today, the two major causes of 

clinically significant acquired valvular disease are degenerative valve diseases led by calcific 

aortic valve disease (CAVD) and myxomatous mitral valve prolapse disease (MVP) [6,128]. 

Conversely, in low income countries, rheumatic heart disease remains a major problem 

[129,130]. CAVD leads to aortic stenosis (AS)/calcific aortic stenosis (CAS) [131,132]. MVP leads 

to mitral valve prolapse with variable mitral regurgitation, and in syndromic form, susceptibility 

to potentially fatal arrhythmias [133,134]. Regarding pathogenesis, transcriptional regulation of 

heart valve development and disease is being defined, as is the role of hemodynamics and 

cellular and subcellular dynamics of the valve components [6,128,135–138].  Perturbations of 

valvular interstitial cells (VIC) figure prominently in the pathobiology of both conditions [6,128]. 

The two categories of prosthetic valves utilized in valve replacement are mechanical 

valves and tissue valves [6,128]. Open chest valve replacement under cardiopulmonary bypass 

is increasingly being superceded by minimally invasive catheter-based valve replacement 

procedures, particularly transcatheter aortic valve implantation (TAVI).  Similarly, total mitral 

valve replacement is being supplanted when possible by mitral valve sparing procedures, 

including the use of various mitral valve clip devices.  Pathology associated with these devices 

and procedures have been described [6,10,128,139–144]. 
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8. Cardiomyopathies and Myocarditis 

The cardiomyopathies, or heart muscle diseases, received formal recognition and 

classification by the World Health Organization in 1980 [145].  Subsequently, research has led 

to more refined definitions and increased understanding of these entities [146–148].  Working 

groups of the American Heart Association and the European Society of Cardiology have 

developed complimentary classifications of the cardiomyopathies which recognize primary 

genetic, primary acquired and mixed etiologies of cardiomyopathies [149–151]. These 

principles are recognized in an approach linking etiologic to clinicopathological features (Figure 

1).  A cardiomyopathy compendium was published in the September 15, 2017 issue of 

Circulation Research presenting important advances in the pathobiology, pathogenesis, clinical 

recognition, diagnostic imaging, and natural history of these conditions [25,152–162]. 

 

9. Cardiac Repair and Regeneration 

The field of cardiac regenerative medicine has developed over the past decade  based 

on intense interest in the biology and potential therapeutic applications of myocardial and 

vascular stem cells [163]. There was an initial siren call that such preparations could bypass the 

non-regenerative properties of mammalian myocardium and pointed tantalizingly to the 

potential for significant myocardial restoration and sustained functional improvement following 

acute or chronic injury [164–166]. The rationale for cell-based therapy is based on an overly 

optimistic goal that this therapy can effectively modulate the basic pathobiology of the 

myocardium during stages of compensatory hypertrophy and failure in response to stressors, as 

elucidated by detailed quantitative studies conducted by pathologists and experimental 
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biologists. However, recent developments have tempered much of the initial enthusiasm for 

cardiac cell-based therapy with a recalibration of expectations. 

Millions of dollars have been expended on clinical trials of cardiac stem cell therapy 

yielding unconvincing results regarding the efficacy of stem cell therapy to produce sustained 

improvement of cardiac structure.  The clincal and experimental studies show that  

mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CSC) do not impart signficant 

remuscularization of infarcted myocardium and are associated with only modest short-term 

enhancement of cardiac function at best  More promising candidates for cell based therapy for 

ischemic heart disease are cardiomyocytes derived from embronic stem cells (ESC) or inducible 

pleuripotential stem cells (iPSC), but the durablility and arrhythmogenicity of these 

preparations remain concerns [163–166]. The same reservations apply to the proposed 

utilization of various tissue engineering methods for application of stem cells to the heart [167].  

Regarding the underlying issues of regenerative capacity  and the mechanism(s) 

responsible, a strong consensus has emerged that the  limited regenerative capability of 

mamalian myocardium is primarily a consequence of  low level re-entry of mature 

cardiomyocytes into the cell cycle, and not, as previously asserted on the differentiation of 

stem cells into cardiomyocytes [168]. This consensus is grounded in detailed quantitative 

studies conducted by pathologists and experimental biologists [163–166].  

Based on the overall poor results and at best modest cardiac functional improvement 

with exogenous stem cell therapy, further investment of human and financial resources in such 

therapy does not currently appear warranted.  However, investigating  the molecular basis for 

the limited replicative capacity of cardiomyocytes likely represents a more fruitful line of 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

21 
 

investigation for potential therapeutic intervention [123,169–171].   The current bottom line is 

that the ability of exogenously administered stem cells to produce biologically and clinically 

significant enhancement of myocardial repair – much less regeneration – after injury remains 

unproven; cardiovascular pathologists can help clear the murkiness of the field by providing 

rigorous tissue evaluations [164,172]. 

 

10. Heart Failure 

Halushka, Mitchell and Padera [9] reviewed the concepts and treatments of heart failure 

from the last 25 years, highlighting some of the new directions in non-pharmacologic therapy. 

Previous reports in this journal have focused on the pathophysiology and pathobiology of heart 

failure as well as biomarkers for monitoring this condition [173–177]. Whether acute or 

chronic, heart failure remains a major health care crisis affecting over 6 million Americans and 

over 23 million people worldwide. Roughly half of those affected will die within 5 years, and the 

annual cost exceeds $30 billion in the US alone[102]. Although medical therapy has made some 

modest inroads in partially stemming the heart failure tsunami, there remains a significant 

population for whom medication is unsuccessful or has ceased being effective; such patients 

can benefit from heart transplantation or mechanical circulatory support [9].  Indeed, in the 

past quarter century (and as covered in Cardiovascular Pathology over those years), significant 

improvements in clinicopathologic understanding [176,177] and in engineering design have 

materially enhanced the toolkit of options for such refractory patients. Mechanical devices, 

whether total artificial hearts or ventricular assist devices, have been reengineered to reduce 

basic wear and tear, thus extending device longevity, while minimizing thromboses and other 
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complications.  Transplant survival has also been extended through a better comprehension of 

and improved therapies for transplant vasculopathy and antibody-mediated rejection. 

Recent developments have led to  a convergence of cardiovascular medicine and 

oncology, and   the emergence of a new  cardio-oncology subspecialty [178]. Significantly, 

excluding demise due to the malignancy itself, treatment-induced adverse cardiovascular 

events are the leading cause of death in cancer patients. In calculating the relative risks and 

benefits of anti-cancer therapy, it is therefore important to consider the morbidity and 

mortality associated with antitumor therapy itself. Chemotherapy, targeted therapies, immune 

checkpoint blockade, and radiation therapy can all adversely impact cardiac function; their 

effects can also be synergistic. Consequently, it is important that possible therapeutic side 

effects be recognized and effectively controlled. Glass and Mitchell  [178] have reviewed the 

mechanisms and histopathologic findings associated with common forms of potentially 

cardiotoxic cancer therapy including anthracyclines, tyrosine kinase inhibitors, and most 

recently immune checkpoint inhibitors [49]. Although the histologic findings in many cases are 

nonspecific, in the appropriate clinical context, therapeutic cardiotoxicity can be inferred and 

the treatment approach refined appropriately.  
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11. Tumors of the Heart and Blood Vessels 

Tumors of the heart and blood vessels, while uncommon, continue to fascinate 

pathologists.  This is reflected in the large number of case reports and review articles published 

in CVP [3]. These reports often feature unusual features and presentations of primary cardiac 

tumors as well as the more common metastatic tumors. The review articles include several 

longitudinal experiences of major medical centers [179–187].  Collectively these articles provide 

a comprehensive analysis of tumors of the heart and blood vessels.  In recent years, a major 

monograph and an updated atlas on this topic have been published [188,189]. 
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Table 1. Ischemic heart disease: Major knowledge gaps and future research directions 

Gaps Research directions 

Reliable clinical identification of vulnerable 
plaques leading to acute coronary syndrome (ACS) 
and understanding of the underlying initiating 
mechanisms are inadequate. 

Continued work is needed on noninvasive 
methods for distinguishing different types of 
plaques and identifying initiating mechanisms in 
clinical situations. 

Successive generations of coronary stents have 
resulted in long-term patency of previously 
stenotic segments of coronary arteries; however, 
segments with drug-eluting stents are subject to 
late thrombosis and atherosclerosis. 

Develop new strategies to retard intimal 
thickening due to proliferation of 
myofibroblasts and to promote endothelial 
regeneration. 
 

The progression from reversible to irreversible 
cardiomyocyte injury involves oncotic and 
apoptotic pathways, but the complex interactions 
are not fully understood. 

Further define these pathways while 
investigating possible targets for therapeutic 
interventions. 
 

While components of the trigger phase of IP have 
been well established, the ultimate effector of the 
protective effect of preconditioning has not been 
determined. 

Continue to investigate biochemical and 
molecular mechanisms of the mediator/effector 
phase of IP. 
 

While experimental studies have provided 
evidence that a number of pharmacological agents 
and pathophysiological interventions can exert 
protective effects on the evolution of myocardial 
infarction, application of these approaches in 
clinical trials have yielded generally equivocal 
results, including the most recent trials combining 
pharmacological agents and conditioning 
protocols. 

Continue to refine the design of clinical trials 
with the aim of extending proof of principle into 
practical clinical application for improvement in 
morbidity and mortality of patients with IHD. 
 

While advances in the last 50 years have resulted 
in major reduction in the morbidity and mortality 
from ACS, there has been a progressive increase in 
the incidence of patients with chronic IHD 
requiring advanced therapies 

Since progression of chronic heart failure is 
caused by progressive pathological remodeling 
of the myocardium, further research is needed 
to gain a better understanding of pathological 
remodeling and to develop approaches to 
modulating its development and progression. 

While a rationale for cell-based therapy for salvage 
and repair of ischemic myocardium and reversal of 
chronic heart failure has been advanced, the 
clinical trials of such therapy have yielded only 
modest results particularly in relationship to 
consideration of return on investment. 

Develop new paradigms with a stronger 
experimentally grounded basis for continuation 
of cell-based therapeutic interventions. 
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ACS, acute coronary syndrome; IHD, ischemic heart disease; IP, ischemic preconditioning 

 

Adapted from: Buja LM, Vander Heide RS. Pathobiology of ischemic heart disease: past, present 

and future. Cardiovasc Pathol 2016;25:214–20. doi:10.1016/j.carpath.2016.01.007 [5]. 
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Table 2. Clinical classification of different types of myocardial infarction 

 

Infarction Types Clinical Features 

Type 1 MI Spontaneous myocardial infarction related to 
ischemia due to a primary coronary event 
such as plaque erosion and/or rupture, 
fissuring, or dissection 

Type 2 MI Myocardial infarction secondary to ischemia 
due to either increased oxygen demand or 
decreased supply, e.g. coronary artery 
spasm, coronary embolism, anaemia, 
arrhythmias, hypertension, or hypotension 

Type 3 MI Sudden unexpected cardiac death, including 
cardiac arrest, often with symptoms 
suggestive of myocardial ischemia, 
accompanied by presumably new ST 
elevation, or new LBBB, or evidence of fresh 
thrombus in a coronary artery by 
angiography and/or at autopsy, but death 
occurring before blood samples could be 
obtained, or at a time before the appearance 
of cardiac biomarkers in the blood 

Type 4A MI Myocardial infarction associated with PCI 

Type 4B MI Myocardial infarction associated with stent 
thrombosis as documented by angiography 
or at autopsy 

Type 5 MI Myocardial infarction associated with CABG 

 

MI, myocardial infarction; LBBB, left bundle branch block; PCI, percutaneous coronary 

intervention; CABG, coronary artery bypass grafting. 

 

 

Adapted from: Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the 

Redefinition of Myocardial Infarction, Jaffe AS, Apple FS, et al. Universal definition of 

myocardial infarction. Circulation 2007;116:2634-53. 

doi:10.1161/CIRCULATIONAHA.107.187397 [98].  
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Figure Legend 

Figure 1. Combined etiologic, molecular and pathologic classification of cardiomyopathies. 

Modified from:  

Thiene G, Basso C, Calabrese F, Angelini A, Valente M. Twenty years of progress and beckoning 

frontiers in cardiovascular pathology: cardiomyopathies. Cardiovasc Pathol 2005;14:165-9 

doi:10.1016/j.carpath.2005.03.008 [146]. 

Poller W, Kühl U, Tschoepe C, Pauschinger M, Fechner H, Schultheiss H-P. Genome–

environment interactions in the molecular pathogenesis of dilated cardiomyopathy. J Mol Med 

(Berl) 2005;83:579–86. doi:10.1007/s00109-005-0664-2 [147]. 
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Figure 1. Combined etiologic, molecular and pathologic classification of cardiomyopathies 

 

Etiology 

 Primary gene mutation 

 Primary environmental acquired insult – virus, drug, toxin, stress 

 Gene-environment interaction 

 

Molecular Pathotype                           Pathophysiological Type 

 Cytoskeletal CMP Dilated CMP 
 (Sarcolemma/sarcomere linkage) Non-compaction LV CMP 

 Cell Junction CMP ARVD/C, cardiocutaneous 
 syndromes 

 Sarcomeric CMP Hypertrophic CMP and 
 Restrictive CMP 

 Ion Channel CMP Long and short QT 
 syndromes,   
 Brugada syndrome,  
 catecholaminergic 
 polymorphic VT 

 

CMP, cardiomyopathy; ARVD/C, arrhythmogenic right ventricular dysplasia/cardiomyopathy: 

LV, left ventricle; VT, ventricular tachycardia. 

 

Modified from:  

Thiene G, Basso C, Calabrese F, Angelini A, Valente M. Twenty years of progress and beckoning 

frontiers in cardiovascular pathology: cardiomyopathies. Cardiovasc Pathol 2005;14:165-9 

doi:10.1016/j.carpath.2005.03.008 [146]. 

Poller W, Kühl U, Tschoepe C, Pauschinger M, Fechner H, Schultheiss H-P. Genome–

environment interactions in the molecular pathogenesis of dilated cardiomyopathy. J Mol Med 

(Berl) 2005;83:579–86. doi:10.1007/s00109-005-0664-2 [147]. 
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Highlights 

This article introduces the Second Special Issue of Cardiovascular Pathology (CVP), the official 

journal of the Society for Cardiovascular Pathology (SCVP).   

This CVP Special Issue showcases a series of commemorative review articles commemorating  

the 25th anniversary of CVP originally published in 2016. 

  This overview also provides updates on the major categories of cardiovascular diseases from 

the perspective of cardiovascular pathologists. 
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