
On the nonexistence of degenerate phase-shift multibreathers
in a zigzag Klein-Gordon model

T. Penatia, V. Koukouloyannisb, M. Sansotteraa, P.G. Kevrekidisc, S. Palearia

aDepartment of Mathematics “F.Enriques”, Milano University, via Saldini 50, Milano, Italy, 20133
bDepartment of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar

cDepartment of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, USA

Abstract

In this work, we study the existence of low amplitude four-site phase-shift multibreathers for small values of the coupling ε in
Klein-Gordon (KG) chains with interactions longer than the classical nearest-neighbour ones. In the proper parameter regimes,
the considered lattices bear connections to models beyond one spatial dimension, namely the so-called zigzag lattice, as well as
the two-dimensional square lattice. We examine initially the persistence conditions of the system, in order to seek for vortex-
like waveforms. Although this approach provides useful insights, due to the degeneracy of these solutions, it does not allow us to
determine if they constitute true solutions of our system. In order to overcome this obstacle, we follow a different route. In the case
of the zigzag configuration, by means of a Lyapunov-Schmidt decomposition, we are able to establish that the bifurcation equation
for our model can be considered, in the small energy and small coupling regime, as a perturbation of a corresponding non-local
discrete nonlinear Schrödinger (NL-dNLS) equation. There, nonexistence results of degenerate phase-shift discrete solitons can
be demonstrated by exploiting the expansion of a suitable density current of the NL-dNLS, obtained in recent literature. Finally,
briefly considering a one-dimensional model bearing similarities to the square lattice, we conclude that the above strategy is not
efficient for the proof of the existence or nonexistence of vortices due to the higher degeneracy of this configuration.

1. Introduction

The study of nonlinear dynamical lattices of Klein-Gordon,
as well as Fermi-Pasta-Ulam and related types has received
considerable attention over the past two decades due to the
intense interest in waveforms which are exponentially local-
ized in space and periodic in time, namely the so-called dis-
crete breathers [7, 16]. These states have been recognized as
emerging rather generically in systems that combine discrete-
ness and nonlinearity. Relevant experimental examples abound
and range from Josephson junction arrays [41, 5] to electrical
transmission lines [14], from micro-mechanical cantilever arrays
[39, 38] to coupled torsion pendula [11], and from coupled an-
tiferromagnetic layers [40] to granular crystals [6, 9], to name
just a few examples.

Most of these studies concern fundamental localized states,
and most of them are predominantly in simpler, more con-
trollable one-dimensional settings [16]. However, optical [28],
atomic [20] and other settings suggest an interest in explor-
ing higher-dimensional settings. In the latter, novel structures
(such as discrete vortices, also referred to as phase-shift multi-
breathers) emerge [10, 12] and occasional surprises arise, such
as the existence of energy thresholds for breather existence [15]
or the potential of higher charge vortices to be more stable
than their lower charge counterparts under appropriate condi-
tions [21]. It has been argued that (as will also be discussed
further below) suitable adaptations of beyond-nearest-neighbor
interactions [23] and the so-called zigzag [13] chains share some
of the intriguing features of higher-dimensional settings, while
remaining effectively one-dimensional in their formulation. For
this reason, the latter will represent the starting point for our
study in what follows.

More specifically, in this work, we are interested in Klein-
Gordon (KG) models with range of interactions beyond nearest-
neighbour, with Hamiltonian

H =
∑
j∈Z

[
1

2
y2
j + V (xj)

]
+
∑
j∈Z

r∑
h=1

εh
(xj+h − xj)2

2
,

where V (xj) = 1
2
x2
j + 1

4
x4
j . This Hamiltonian describes an in-

finite chain of anharmonic oscillators with linear interactions
between them up to r neighbours and vanishing boundary con-
ditions at infinity limn→±∞ xn = limn→±∞ yn = 0, which are
automatically satisfied since we set `2(R)× `2(R) as the phase
space of the system. We will denote by E the energy of the
system, i.e. the (conserved along the dynamics) value of the
Hamiltonian.

In what follows we will limit our analysis to range of inter-
action r = 3. By considering εj = kjε, with k1 = 1, the above
Hamiltonian becomes

H = H0 + εH1 =

=
∑
j∈Z

(
y2
j

2
+ V (xj)

)
+
ε

2

∑
j∈Z

[
(xj − xj+1)2 + k2(xj − xj+2)2 + k3(xj − xj+3)2] .

(1)

We are interested in the existence, in the small coupling
limit (i.e., for values of the coupling close to the anti-continuum
limit [29] of ε → 0), of multibreather solutions. These consti-
tute a class of periodic orbits whose energy is spatially localized
on few oscillators (or sites). More precisely, in this paper we
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focus on solutions localized on four adjacent oscillators (namely
with indices j ∈ S = {1, 2, 3, 4}), for a reason that will be clear
in a while. If, in the uncoupled case ε = 0, they are given
the same energy (or action), any orbit is periodic (having the
oscillators moving with the same frequency), irrespectively of
the phase differences between them, forming in this way a com-
pletely resonant four-dimensional torus. Our investigation can
thus be seen to fall within the general question of the perturba-
tion of low-dimensional resonant tori in Hamiltonian dynamics.

When we consider only nearest neighbours interactions in
(1), i.e., setting k2 = k3 = 0, it is well known that only multi-
breathers with standard phase-differences (ϕ = 0 or π) between
adjacent oscillators survive the breaking of the resonant torus
[24]. If next-to-nearest (or longer range) neighbour interactions
are added, other solutions with non-standard phase differences
may survive: these are called phase-shift multibreathers (see
e.g. [26, 35]). The emergence of phase-shift multibreathers in
both one-dimensional KG and dNLS models with interactions
longer than these of the nearest-neighbours interactions, have
been investigated in some recent literature [23, 19, 8]. This
issue partially overlaps with the study of vortex structures in
two-dimensional lattices, like in [32, 12, 22]. Indeed, a suitable
long-range interaction in a one-dimensional lattice allows to re-

produce the local interactions involved in a two-dimensional
vortex, for example in a hexagonal or square lattice, thus pro-
viding an emulation of the two-dimensional object by a one-
dimensional one at leading order in the coupling perturbation
parameter ε; such an approximation clearly fails at higher or-
ders, due to the differences in terms of lattice shape and inter-
action among sites.

A special case of a two-dimensional lattice is the so-called
zigzag lattice [13]. This lattice consists of just two oscillator
chains which are connected as shown in Fig. 1. In this case,
we can easily see that vortex solutions of Fig. 1 correspond to
four-site multibreathers in the system of Fig. 2. The zigzag
system is described by a Hamiltonian

H110 =
∑
j∈Z

(
1

2
y2
j + V (xj)

)
+
ε

2

∑
j∈Z

[
(xj+1 − xj)2 + (xj+2 − xj)2] , (2)

that corresponds to a Hamiltonian (1) with k2 = 1 and k3 = 0.
Indeed, the subscript of H refers to the values of the coupling
constants k (including k1 which is always 1 in our notation).

1

2 4

3−1

0

5

6

7

Figure 1: The two-dimensional zigzag model: all the interactions are nearest neighbor ones with the same strength. The indexing indicates
the energy flow of the vortex solutions. Color online.

−1 0 1 2 3 4 5 6

Figure 2: The corresponding one-dimensional zigzag model. The numbers indicate the correspondance to the two-dimensional zigzag model.
Color online.

Both in the one-dimensional and in the two-dimensional
case, the existence of multibreathers is typically performed via
implicit function theorem arguments, which rely on the non-
degeneracy of some linearized equation. This is the case, for
example, of the classical result in [1], where true multibreather
solutions are obtained from approximate solutions which cor-
respond to critical points of an averaged (effective) Hamilto-
nian: in this context, an approximate solution has to satisfy
some persistence conditions (see e.g. [23]) which select admissi-
ble candidates of phase-differences for a possible continuation.
The same analytical tool, i.e., the implicit function theorem,
can be used also in a different scheme: approaching the orig-
inal problem with a Lyapunov-Schmidt decomposition (with
the torus being resonant), it is used to solve the Range equa-
tion, and then the use of some symmetry, like time-reversibility,
can remove the Kernel directions (see [35]). However, in some
degenerate cases, the candidate solutions we acquire from the

persistence conditions do not correspond to true solutions of
our systems. In such cases, a deeper analysis is required which
typically involves higher order terms of the bifurcation (kernel)
equation.

By studying the persistence conditions for the zigzag system
(2), we realize that the candidate vortex solutions of Fig.1 are
not isolated, but appear as two one-parameter families within
the three-dimensional manifold of phase-differences. These two
families intersect in what we call symmetric vortex configu-
ration, since it features the standard vortex phase differences
Φ(sv) ≡ ϕϕϕ = ±(π/2, π,−π/2)1, where ϕϕϕ ≡ (ϕ1, ϕ2, ϕ3), see (6).

1The reason that the Φ(sv) configuration is the one with
±(π/2, π,−π/2) and not the ±(π/2, π/2, π/2) as one could have
expected, is that, as we can see from Fig.1 the vortex-flow is
1 → 2 → 4 → 3 → 1 while the phase differences are calculated
using consecutive oscillators.
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On the other hand, we will call all the other solutions of these
two families, with ϕϕϕ 6= Φ(sv) as asymmetric vortices. Let us
note here that these families also include some of the standard
(ϕi ∈ {0, π}) multibreather solutions in addition to the isolated
standard solutions of the persistence conditions.

Due to the degeneracy, which manifests itself into the pres-
ence of families of candidate solutions, and even more in their
intersection points, we attempt to complement our analysis by
performing a numerical investigation of the persistence condi-
tions of the full problem (1) in the neighbourhood of the values
(k2, k3) = (1, 0), which correspond to the zigzag configuration.
In this study, we realize first of all that there exist families2

of solutions which are non-degenerate and consequently easily
continued to real solutions. In addition, there is a solution fam-
ily at k2 = 1 for all values of k3. As k3 → 0, we observe that
some of the non-degenerate families geometrically converge also
to the k2 = 1 family increasing in this way the degeneracy and
for k3 = 0 they become the two vortex families of solutions.
Thus, it is difficult to get a definitive answer on the existence
of true vortex solutions in the case of the Hamiltonian H110

only by the study of the persistence conditions.
To get a complete description of the continuation we thus fol-

low a different route, exploiting the corresponding dNLS model

H110 =
∑
j

|ψj |2 +
3

8

∑
j

|ψj |4

+
ε

2

∑
j

[
|ψj+1 − ψj |2 + |ψj+2 − ψj |2

]
,

(3)

as a bridge to H110. Indeed the former can be shown to be a
good approximation of the latter in the energy regime E � 1
and for couplings ε�

√
E (see, e.g., [3, 34] or Subsection 3.3).

Moreover, although the system H110 shares the same degener-
acy as the original KG model, we are able to more straight-
forwardly derive the nonexistence of any phase-shift discrete
soliton of H110 following the scheme of [37] by exploiting the
expansion of an invariant quantity, i.e., the Density Current.
Since this efficient nonexistence strategy is based on some min-
imal smoothness assumption with respect to ε, to get nonexis-
tence assuming only continuity, we also expand the bifurcation
equation at leading orders showing that this H110 case is less
degenerate than the one studied in [37]. This weaker degener-
acy allows to deduce nonexistence of the continuation by verify-
ing a sufficient condition on the linearized bifurcation equation.
Since this sufficient condition is robust under small perturba-
tion, we are then able to transfer the nonexistence result ofH110

to the original system H110, showing the nonexistence of any
vortex solution (symmetric or asymmetric) for the degenerate
model (2), in the prescribed regime of the two main parameters
E and ε. We may claim that the nonexistence result itself, in
the presence of degeneracy, and the above mentioned indirect
strategy here applied, represents the key point of the paper.

In order to state such a result (which can be found in Sec-
tion 3 in a slightly more technical formulation), we introduce
the four-dimensional resonant torus filled by periodic orbits,
belonging to the possible solutions of H110 for ε = 0

ūj(τ) =

{
0 , j 6∈ S
x(τ + θj) , j ∈ S

, (4)

2Since now we consider the persistence conditions of the full prob-
lem (1), the families are considered in the (k2, k3)-space.

where S = {1, 2, 3, 4} and x(τ) is a nonlinear oscillation of

γ2x′′ + x+ x3 = 0 , x(0) = ρ , (5)

where τ := γt is the rescaled time induced by the frequency γ
associated to the (small) amplitude ρ of the oscillation, and ϕj
are phase differences between the above mentioned (which are
also called as “central”) successive oscillators with

ϕj := θj+1 − θj , j ∈ S∗ = {1, 2, 3}. (6)

We have then

Theorem 1.1. For ε small enough (ε 6= 0), the only four-
site unperturbed solutions (4) that can be continued, at fixed
frequency γ, to solutions uj(ρ, ε, τ) of (2), correspond to ϕj ∈
{0, π}.

Moreover, in all the cases which appear to be non-degenerate,
the “dNLS approximation” strategy, allows to derive any ex-
istence result for (1) from the existence result for the corre-
sponding dNLS model

H =
∑
j

|ψj |2 +
3

8

∑
j

|ψj |4

+
ε

2

∑
j

[
|ψj+1 − ψj |2 + k2|ψj+2 − ψj |2 + k3|ψj+3 − ψj |2

]
,

(7)

and provides explicit (though not sharp) estimates of the ap-
proximation of asymmetric vortices in (1) with the correspond-
ing phase-shift discrete solitons in (7) (cf. with Theorem 2.1 of
[3]).

The price one has to pay for the use of this strategy lies in
the restrictions in the regime of parameters for which the mod-
els (1) are well approximated by the corresponding averaged
normal forms (7). However, Hamiltonian normal form theory
provides the tools needed to modify the approximating models
in different regimes of the parameters E and ε, as in [30, 34],
thus leading to a new dNLS-type starting model for an indi-
rect approach. Such a new nonlocal dNLS normal form would
surely include additional linear and nonlinear corrections with
respect to those present in (7). We conclude this section by re-
marking that there exist even more degenerate models within
the family (1). One of these is the Hamiltonian H101 (see (14))
which has k2 = 0 and k3 = 1 and it is used for the study of
vortex-like configurations in two-dimensional square lattices.
This system admits, at the level of the persistence condition,
three vortex families, having the symmetric vortex configura-
tion in their triple intersection, giving thus a complete degener-
ation. We stress that the corresponding dNLS model is exactly
the one studied in [37], but within the scheme implemented in
the present paper, the higher degeneration of H101 does not al-
low us to transfer the nonexistence result proved in [37] to the
corresponding KG chain. We are presently exploring a differ-
ent normal form strategy which works directly on the original
KG model and interpret the problem in the classical sense of
breaking of a completely resonant low-dimensional torus [36].

This paper is structured as follows. The numerical explo-
rations are reported in Section 2, where we perform a study
of the persistence conditions of both the zigzag (2) and the
H101 system as well as of the full system (1) in the (k2, k3)-
parameter values neighborhood which correspond to the zigzag
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and the H101 systems. The mathematical strategy and the
main nonexistence result for the KG model (2) is given in Sec-
tion 3, while in Section 4 we use the first order expansion of
the Density Current and the sufficient condition on the lin-
earized bifurcation equation in order to prove nonexistence of
vortex solutions in the zigzag-dNLS system (3). Finally, Sec-
tion 5 includes some concluding remarks about possible future
directions on the topic.

2. Study of the persistence conditions

In the present Section we investigate the possibility of exis-
tence of multibreather solutions by following a procedure simi-
lar to the one introduced in [23] using the results of [25, 27, 26],
and by numerical calculations.

2.1. The zigzag system

The persistence conditions for the zigzag system are the
equations that provide the candidate configurations among the
ones in the anticontinuous limit ε = 0, that could be contin-
ued, for ε nonzero but small enough, to provide multibreather
solutions for this system. These equations are derived through
an averaging procedure which is described in [23] and the main
points will be presented in what follows. For ε = 0, we consider
four “central” oscillators moving (with the same frequency but
arbitrary initial phases) while the rest lie at their equilibrium.
The motion of each one of these central oscillators is described
by the cosine Fourier expansion

x(w, J) =

∞∑
n=1

A2n−1(J) cos[(2n− 1)w] , (8)

where (J,w) refer to the action-angle variables for the single
oscillator while the lack of the even terms A2n in the Fourier
expansion stems from the symmetry of the potential V .

Since we want to study structures with four central oscilla-
tors, only three phase differences ϕi between them are defined
as in (6). It has been proven in [1] that the configurations
ϕϕϕ = (ϕ1, ϕ2, ϕ3) that could be continued for ε 6= 0 to provide
multibreather solutions correspond to critical points of the ef-
fective Hamiltonian, which at first order of approximation is
given by H eff = H0(Ji) + ε〈H1〉(ϕi, Ji). The average value
of the coupling term of the Hamiltonian (1) 〈H1〉 is calculated
along the unperturbed orbit and reads

〈H1〉 = −1

2

∞∑
m=1

A2
m

(
cos(mφ1) + cos(mφ2) + cos(mφ3)+

+ k2

(
cos(m(φ1 + φ2)) + cos(m(φ2 + φ3))

)
+ k3 cos(m(φ1 + φ2 + φ3))

)
.

The persistence conditions are obtained from the relation
∂〈H1〉
∂ϕi

= 0 and for the case of the zigzag system (2), i.e., with
k2 = 1 and k3 = 0, read

P110(ϕϕϕ) ≡


M(ϕ1) +M(ϕ1 + ϕ2) = 0

M(ϕ2) +M(ϕ1 + ϕ2) +M(ϕ3 + ϕ2) = 0

M(ϕ3) +M(ϕ2 + ϕ3) = 0

(9)

with

M(ϕ) ≡
∞∑
m=1

(2m− 1)A2
2m−1 sin((2m− 1)ϕ) , (10)

with Ai as in (8).

Note that, in the dNLS case, the conditions (9) hold but
with

M(ϕ) ≡ sin(ϕ) , (11)

due to the rotational symmetry of the model, i.e., only the first
Fourier mode contributes.

Taking under consideration the symmetries of M(φ)

M(π + ϕ) = −M(ϕ) , M(−ϕ) = −M(ϕ) = M(2π − ϕ) ,

M(π − ϕ) = +M(ϕ) , M(0) = M(π) = 0 ,

it is straightforward to check that the persistence conditions
both for the zigzag-KG case, i.e., (9) and (10), as well as the
zigzag-DNLS case, i.e., (9) and (11), admit two families of so-
lutions

F1 : ϕϕϕ = (ϕ, π,−ϕ) , F2 : ϕϕϕ = (ϕ, π, π + ϕ) , (12)

in addition to the other four standard isolated solutions Fiso ={
(0, 0, 0), (0, 0, π), (π, 0, 0), (π, 0, π)

}
. In principle, all com-

binations of 0’s and π’s work trivially, since the persistence
conditions simply vanish. We have to note here that the rest
of the standard multibreather solutions are part of the F1 and
F2 families.

It is important to stress that conditions (9) are necessary
but not sufficient for the existence of multibreather solutions.
Indeed, in order to continue to real solutions of (2), the corre-
sponding Jacobian matrix Dϕ(P) needs to be non-degenerate.
The matrix Dϕ(P110) is given by(

M′(ϕ1)+M′(ϕ1+ϕ2) M′(ϕ1+ϕ2) 0

M′(ϕ1+ϕ2) M′(ϕ2)+M′(ϕ1+ϕ2)+M′(ϕ2+ϕ3) M′(ϕ2+ϕ3)

0 M′(ϕ2+ϕ3) M′(ϕ3)+M′(ϕ2+ϕ3)

)
,

where M ′(ϕ) ≡
∑∞
m=1(2m − 1)2A2

2m−1 cos((2m − 1)ϕ). By
using the symmetries of M ′(ϕ)

M ′(2π − ϕ) = M ′(ϕ) = M ′(−ϕ) ,

M ′(π − ϕ) = M ′(π + ϕ) = −M ′(ϕ) ,

M ′
(

3π

2

)
= M ′

(π
2

)
= 0 ,

it is easy to check that for the isolated solutions Fiso the matrix
Dϕ(P110) is non-degenerate so these solutions will be continued
for ε 6= 0 to provide multibreathers.

On the other hand, for the F1, F2 families, which correspond
to asymmetric vortices, Dϕ(P110) is degenerate possessing one
zero eigenvalue, reflecting the freedom of these solutions with
respect to variations in ϕ. So, we cannot know if these solutions
are also true multibreather solutions of the system.

In particular, for the configurations where the two families
cross each other and correspond to the two symmetric vortices,
i.e., ϕϕϕ = ±Φ(sv) ≡ ±(π/2, π,−π/2), the matrix Dφ(P101) reads

Dϕ(P101)|Φ(sv) =

0 0 0
0 M ′(π) 0
0 0 0

 .

This means that its degeneracy is even higher since the di-
mension of its kernel is exactly two, i.e., given by the tangent
directions to the two independent families in the vortex solu-
tions.
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2.2. The full system close to k2 = 1, k3 = 0

Given the above analysis, it seems interesting to study the
role of the two families F1 and F2 of vortex solutions of the
persistence conditions as the full system (1) tends to the zigzag
model (2). This occurs close to the (k2, k3) = (1, 0) point of
the k-parameter space.

The persistence conditions of the full system (1) read

P(ϕϕϕ) ≡


M(ϕ1) + k2M(ϕ1 + ϕ2) + k3M(ϕ1 + ϕ2 + ϕ3) = 0

M(ϕ2) + k2M(ϕ1 + ϕ2) + k2M(ϕ3 + ϕ2)

+k3M(ϕ1 + ϕ2 + ϕ3) = 0

M(ϕ3) + k2M(ϕ2 + ϕ3) + k3M(ϕ1 + ϕ2 + ϕ3) = 0

(13)

where M is defined as in (10).
The proper illustration of the solutions of (13) would re-

quire a three-dimensional plot for every phase-difference ϕi as
a function of both k2 and k3. Since this surface is difficult to be
properly illustrated, we prefer to present some sections, first for
fixed k3, varying k2, and then by reversing the roles between
k2 and k3.

2.2.1. The k3 < 0 case
A representative bifurcation diagram of this parameter re-

gion is shown in Fig. 3 where the solutions of the persistence
conditions (13) are depicted for k3 = −0.001 and 0.8 6 k2 6
1.2. In this diagram all the solution families are shown, where
we can distinguish both standard and phase-shift configura-
tions. The family of solutions F1 : ϕϕϕ = (ϕ, π,−ϕ) , discussed
in Section 2.1 (see (12)), exists also for the persistence condi-
tions of the full system for every value of k3 and k2 = 1 as
it is easy to realize by substituting the values of ϕϕϕ which cor-
respond to F1 into (13). This family is depicted as a vertical
line at k2 = 1 in the top panel of Fig. 3. In this diagram an-
other phase-shift solution family is shown which lies close to
ϕ1,3 = π, ϕ2 = 0. This family is not related to vortex solutions
in the sense that it does not converge to any of the F1 or F2

families as (k2, k3) → (1, 0): indeed, for F1,2 one has ϕ2 = π.
On the contrary it remains almost invariant in the parameter
region under consideration.

2.2.2. The k3 > 0 case
A representative example of this parameter region is depicted

in Fig. 4 for k3 = 0.01. We observe here that two new phase-
shift families appear, bifurcating from the symmetric vortex
configuration ϕϕϕ = Φ(sv) = (π/2, π,−π/2), as will become more
transparent through our parametric variations below. Indeed,
in order to acquire a better understanding of the bifurcating
families, in Fig. 5 we perform a magnification of the area around
the bifurcation point, for the values of k3 close to zero. Each
family is determined by its values of ϕi’s and it is detailed in
Table 1 (e.g., family 1 consists of the ϕ1 = 1©, ϕ2 = 2©, ϕ3 = 2©
in Fig. 5, etc.).

In this sequence of figures we can see that the bifurcation
points of the phase-shift families under consideration approach
Φ(sv) and the families themselves tend to coincide with the F2

family (12) as k3 → 0. For k3 = 0 the families coincide with F2

which visually coincides also with F1. The F1 and F2 families
really cross each other at Φ(sv).

0.8 0.9 1.0 1.1 1.2
-1.0

-0.5

0.0

0.5

1.0

k 2

j
1,

3�
Π

k 3 = -0.001

0.8 0.9 1.0 1.1 1.2
0.0

0.5

1.0

1.5

2.0

k 2
j

2�
Π

k 3 = -0.001

Figure 3: The complete bifurcation diagrams for k3 = −0.001. In
this diagrams all the solution families are shown. There are no
vortex-related families for k3 < 0 except the F1 one which exists
for every k3.

0.8 0.9 1.0 1.1 1.2
-1.0

-0.5

0.0

0.5

1.0

k 2

j
1,

3�
Π

k 3 = 0.01

0.8 0.9 1.0 1.1 1.2
0.0

0.5

1.0

1.5

2.0

k 2

j
2�
Π

k 3 = 0.01

Figure 4: The complete bifurcation diagrams for k3 = 0.01. In
addition to the already existing families which for k3 < 0, in the
k3 > 0 case two more phase-shift appear, which bifurcate from ϕϕϕ =
Φ(sv) (see also the figures below).
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] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 2© 2©
2 2© 1© 1©
3 3© 3© 4©
4 4© 4© 3©

Table 1: The solution families depicted in Fig. 5.

This is also suggested in Fig. 6, where the role of k2 and k3

has been reversed. Here, k2 has been chosen close to, but less
than, 1 and k3 left free to vary around 0. The two families which
are depicted in Fig. 6 are the ones shown in Table 2. We can
observe in a more clear way the difference between the k3 6 0
case and the k3 > 0 case, in terms of phase-shift solutions.
When k3 > 0 there are branches connecting (apparently) to
0 and π: although the situation very close to k3 = 0 is not
perfectly shown, it is anyway evident that the branches in the
upper and lower parts of the frames get closer and closer as
k2 → 1, like converging to a curve which emerges from Φ(sv).
At exactly k2 = 1, one should observe a full band for the phase
differences ϕ1,3. The picture is completely symmetrical to the
one of Fig. 6 in the k2 > 1 case.

] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 2© 1©
2 2© 1© 2©

Table 2: The solution families depicted in Fig. 6.

The overall picture emerging from the above numerical ex-
ploration is the following. Whenever k2 6= 1, solutions appear
to be isolated, thus non-degenerate and suitable to be con-
tinued. Nonetheless, as k2 → 1, their non-degeneration gets
weaker and weaker, so that the domain of continuation in the
coupling parameter ε is expected to vanish, according to the
standard estimate given by the implicit function theorem. The
degenerate scenario which appears at k2 = 1, due to the ex-
istence of a one-parameter family of solutions F1 for generic
values of k3, becomes richer at k3 = 0, since a second fam-
ily F2 arises which intersects the already existing F1 at Φ(sv).
The possibility to continue such degenerate solutions requires
a more accurate mathematical analysis, that we develop in the
forthcoming Sections 3 and 4.

2.3. The H101 system
Before entering the more mathematical part of the paper, in

the present section we will study the persistence conditions of
the H101 model, i.e., the model (1) with k2 = 0 and k3 = 1
which is described by the Hamiltonian

H101 =
∑
j∈Z

(
1

2
y2
j + V (xj)

)
+
ε

2

∑
j∈Z

[
(xj+1 − xj)2 + (xj+3 − xj)2] . (14)

Such a system represents a first order approximation of a square
NN lattice and a four-site multibreather solution of (14) can
be thought of as representing a one-dimensional analogue of a
four-site vortex for the two-dimensional square KG lattice and
as it will be shown it constitutes a more degenerate case then
the one of the H110 model.

In order to begin our investigation, we consider the persis-
tence conditions for this system, which, following again [23],
are given by

P101(ϕϕϕ) ≡


M(ϕ1) +M(ϕ1 + ϕ2 + ϕ3) = 0

M(ϕ2) +M(ϕ1 + ϕ2 + ϕ3) = 0

M(ϕ3) +M(ϕ1 + ϕ2 + ϕ3) = 0

(15)

where M(ϕ) is given by (10). The corresponding NL-dNLS
system

H101 =
∑
j

|ψj |2 +
3

8

∑
j

|ψj |4

+
ε

2

∑
j

[
|ψj+1 − ψj |2 + |ψj+3 − ψj |2

]
,

(16)

has been the subject of a detailed investigation performed in
[37]. Note that (16) possesses the same persistence conditions
(15) but with M(ϕ) ≡ sin(ϕ), see (11). In [37], it is showed that
Eqs. (15) and (11) admit three families of asymmetric vortex
solutions

F1 : ϕϕϕ = (ϕ,ϕ, π − ϕ) ,

F2 : ϕϕϕ = (ϕ, π − ϕ,ϕ) ,

F3 : ϕϕϕ = (ϕ, π − ϕ, π − ϕ) ,

(17)

in addition to the two isolated standard solutions Fiso : ϕ ={
(0, 0, 0), (π, π, π)

}
. Again, the rest of the standard config-

urations of this case are part of the F1, F2, F3 families. By
using the symmetries of M(ϕ), it is easy to prove that also the
persistence equations (15) and (10) admit the same families of
solutions. These families are degenerate since the correspond-
ing Jacobian Dϕ(P101) possesses a zero eigenvalue, while the
symmetric vortex solutions

Φ
(sv)
101 ≡ ϕϕϕ = ±

(π
2
,
π

2
,
π

2

)
are fully degenerate, since Dϕ(P101) equals the null matrix.
The latter can be seen both by a direct computation, or by
observing that in these solutions we have three independent
Kernel directions, one for each family passing through the so-
lution.

2.4. The full system close to k2 = 0, k3 = 1
In order to understand how the three above families merge,

we numerically study the persistence of the full problem (1) in
the region of the parameter point (k2, k3) = (0, 1) around the

Φ
(sv)
101 configuration. Since we consider low amplitude solutions

the results for the two models (Klein-Gordon and dNLS) are
equivalent both qualitatively as well as quantitatively, since the
differences in the solutions are negligible3.

In order to showcase the relevant results, we consider first
some specific values of k3 (close to 1) and we perform a scan
for solutions in an interval of k2 (close to 0) and then we reverse
the roles of k2 and k3.

3This fact holds of course also for the H110 model studied before.
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Figure 5: The bifurcation diagrams in the neighborhood k2 = 1 and ϕϕϕ = Φ(sv) are shown, for k3 = 0.01, 0.001, 0.0001, 0, respectively. The
family F1 : ϕϕϕ = (ϕ, π,−ϕ) is degenerate (possesses one 0 eigenvalue) and it is represented by a dotted line at k2 = 1.

2.4.1. The k3 < 1 case

In order to examine this parameter region we consider the
values k3 = 0.9, 0.99 and 0.999. The corresponding solution
families are shown in Fig. 7. In the top row the values of the
angles ϕ1 and ϕ3 are shown while the bottom row depicts the
values of ϕ2. Although, the ϕ1 and ϕ3 angles are depicted in
the same diagram, this does not mean that ϕ1 = ϕ3 for every
value of k2. The four families which are shown in Fig. 7 are
labeled with encircled numbers and are summarized in Table
3 below (e.g., family 1 is defined as ϕ1 = 1© of the upper
row of the figure, ϕ2 = 1© of the lower row and ϕ3 = 2© of the
upper row panels). We see in these diagrams how these families
converge to the k2 = 0 asymptote. In particular, families 1 and
4 converge to F3, while families 2 and 3 converge to F1 (17).
The different line symbols denote different linear stability of
the families. In particular a solid line corresponds to a family
with one unstable eigenvalue while the dashed line corresponds
to two unstable eigenvalues. As the families converge one of
their stability eigenvalue converges to zero and it changes sign
when k2 crosses zero. Since the stability discussion lies outside
the scope of the present manuscript we will not refer further to
these facts.

] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 1© 2©
2 2© 1© 1©
3 3© 2© 4©
4 4© 2© 3©

Table 3: The solution families depicted in Fig. 7.

2.4.2. The k3 > 1 case

The bifurcation-diagram for this case is depicted in Fig. 8.
We can clearly observe that families 1 and 4 of Table 4 below
converge into F3 as k3 → 1 while families 2 and 3 converge
to F1. The main difference of this diagrams, with respect to
the ones of the k3 < 1 case, is that in this case there exist
also the two new phase-shift solution families 5 and 6, where
the families 1-4 bifurcate from through pitchfork bifurcations.
These families have also the characteristic that they are the
only ones that exist for k2 = 0 and for all k3 > 0.

7



1

2

-0.01 0.00 0.01 0.02 0.03
0.2

0.3

0.4

0.5

0.6

0.7

0.8

k 3

j
1�
Π

k 2 = 0.99

1

2

-0.01 0.00 0.01 0.02 0.03

0.96

0.98

1.00

1.02

1.04

k 3

j
2�
Π

k 2 = 0.99

1

2

-0.01 0.00 0.01 0.02 0.03
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

k 3

j
3�
Π

k 2 = 0.99

1

2

-0.01 0.00 0.01 0.02 0.03
0.2

0.3

0.4

0.5

0.6

0.7

0.8

k 3

j
1�
Π

k 2 = 0.999

1

2

-0.01 0.00 0.01 0.02 0.03

0.96

0.98

1.00

1.02

1.04

k3

j
2
�Π

k2 = 0.999

1

2

-0.01 0.00 0.01 0.02 0.03
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

k 3

j
3�
Π

k 2 = 0.999

1

2

-0.01 0.00 0.01 0.02 0.03
0.2

0.3

0.4

0.5

0.6

0.7

0.8

k 3

j
1�
Π

k 2 = 0.9999

1

2

-0.01 0.00 0.01 0.02 0.03

0.96

0.98

1.00

1.02

1.04

k3

j
2
�Π

k2 = 0.9999

1

2

-0.01 0.00 0.01 0.02 0.03
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

k 3

j
3�
Π

k 2 = 0.9999

Figure 6: The bifurcation diagrams are shown, for three different values of k2 close to 1, respectively k2 = 0.99, 0.999 and 0.9999.

] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 1© 2©
2 2© 1© 1©
3 3© 2© 4©
4 4© 2© 3©
5 5© 3© 5©
6 6© 4© 6©

Table 4: The solution families depicted in Fig. 8.

2.4.3. The k3 = 1 case
For k3 = 1, the Jacobian is highly degenerate and hence we

show no frame for this value of k3. Nevertheless, it is straight-
forward to see that the three families F1, F2 and F3 coincide at
k3 = 1.

In order to demonstrate this fact better, as well as to better
show the role of the families 5 and 6 of the k3 > 1 case, we
reverse that role of k2 and k3 in the diagrams.

2.4.4. The k2 6= 0 case
We consider now specific values of k2 close to k2 = 0

(i.e., k2 = −0.001,−0.0001, 0.0001, 0.001) and an interval of
values around k3 = 1. We numerically seek for solutions of the
persistence conditions (13) and the results are shown in Fig. 9.
First of all we can see the family F2 : ϕϕϕ = (ϕ, π − ϕ,ϕ) which
exists for k3 = 1 and every value of k2. Since this family is
degenerate it is depicted as a dotted line. The rest of the fam-

ilies depicted there are shown in Table 5 below. We can see
that families 1 and 4 tend to F1 while families 2 and 3 tend
to F3 as k2 → 0. Geometrically this means that both tend to
the k3 = 1 asymptote. On the other hand, there exist families
5 and 6 which correspond to the families 5 and 6 of Fig. 8.
We see that they exist only for k3 > 1 being a product of a
saddle-node bifurcation occurring at k3 = 1. Although these
are k2, k3-parameter solution families for (13), they constitute
an isolated solution of Eqs. (15).

] of
Family

Branch description

ϕ1 ϕ2 ϕ3

1 1© 1© 2©
2 2© 1© 1©
3 3© 2© 4©
4 4© 2© 3©
5 5© 3© 5©
6 6© 4© 6©

Table 5: The solution families depicted in Fig. 9.

2.4.5. The k2 = 0 case
To complement the picture set forth in the previous subsec-

tions, we separately consider the special case k2 = 0. For this
value of k2 the only families that exist for k3 6= 0 are the fam-
ilies 5 and 6 of Fig. 9 as it can be shown better in Fig.8. The
resulting bifurcation diagram is shown in Fig. 10 since for this
particular case it holds that ϕ1 = ϕ2 = ϕ3.
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Figure 7: The bifurcation diagrams in the neighborhood k2 = 0, ϕi = π/2 are shown, for k3 = 0.9, 0.99 and 0.999. We can observe how the
various solution families converge to the k2 = 1 asymptote.

1

2

3

4

5

6

-0.2 -0.1 0.0 0.1 0.2

0.3

0.4

0.5

0.6

0.7

k2

j
1
,3
�Π

k3 = 1.1

1

2

3

4

5

6

-0.2 -0.1 0.0 0.1 0.2

0.3

0.4

0.5

0.6

0.7

k2

j
1
,3
�Π

k3 = 1.01

1

2

3

4

5

6

-0.2 -0.1 0.0 0.1 0.2

0.3

0.4

0.5

0.6

0.7

k2

j
1
,3
�Π

k3 = 1.001

1

2 4

3

-0.2 -0.1 0.0 0.1 0.2

0.3

0.4

0.5

0.6

0.7

k2

j
2
�Π

k3 = 1.1

1

2

3

4

-0.2 -0.1 0.0 0.1 0.2

0.3

0.4

0.5

0.6

0.7

k2

j
2
�Π

k3 = 1.01

1

2

3

4

-0.2 -0.1 0.0 0.1 0.2

0.3

0.4

0.5

0.6

0.7

k2

j
2
�Π

k3 = 1.001

Figure 8: The bifurcation diagrams in the neighborhood k2 = 0, ϕi = π/2 are shown, for k3 = 1.1, k3 = 1.01 and 1.001. As k3 → 1 The
families converge to the vortex families as k3 → 1.
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Figure 9: The bifurcation diagrams in the neighborhood k3 = 0 and ϕϕϕ = Φ(sv)
101 are shown, for k2 = −0.001,−0.0001, 0.0001, 0.001,

respectively. The family F2 : (ϕ, π − ϕ,ϕ) is degenerate and it is represented by a dotted line at k3 = 1.
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Figure 10: The bifurcation diagram for k2 = 0 in the neighborhood
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The fact that for this choice of k2 and for k3 = 1 we get the
symmetric vortex solution Φ(sv)

101 both as a member of the
vertical families and as a member of the “parabolic” family,
numerically poses the question of the existence of the symmet-
ric vortex solution in the real system. This question is also
triggered by the fact that the two-dimensional analogue of our
system in the dNLS limit it has been proven to suport vortex
solutions [32].

We summarize the results of the previous numerical investi-
gation, by saying that the persistence conditions provide three
one-parameter families of candidate MBs, instead of the two
families for the H110 case. Each family carries two stan-
dard in-phase/out-of-phase solutions (whose existence is guar-
anteed via other approaches,[35]) and the three intersect in

two highly symmetric objects, having ϕϕϕ = Φ
(sv)
101 and emulat-

ing two-dimensional vortices. The same kind of scenario and
consequent degeneracy is shared by its non-local discrete NLS
(NL-dNLS) approximation

H101 =
∑
j

|ψj |2 +
3

8

∑
j

|ψj |4

+
ε

2

∑
j

[
|ψj+1 − ψj |2 + |ψj+3 − ψj |2

]
,

(18)

examined systematically in [37]. It is thus natural to attempt
transfering the nonexistence results there obtained to the cor-
responding H110 model, by means of an accurate mathematical
analysis. However, the techniques developed in the present pa-
per in the subsequent sections are tailored for less degenerate
models. More comments on this are reported in Section 3.6.

3. The zigzag KG model

Motivated by the numerical results detailed in Section 2, we
present here a complete description of the problem of continu-
ing, from the anti-continuous limit ε = 0, the phase shift solu-
tions obtained from the persistence condition (9), thus focusing
on the zigzag model (2). We first develop a Lyapunov-Schmidt
decomposition (see [2]), which enables to link time-periodic so-
lutions of the general class of KG models (1) to time-periodic
solutions of the corresponding resonant normal forms (7); there
the continuation problem can be formulated, and solved, in a
simpler way due to the rotational symmetry. To relate (1)

with (7) we follow essentially the scheme developed in [3]. The
proof will be divided in several steps, the last one illustrated
in a separated Section. Here we will also provide the more
detailed version of Theorem 1.1; the corresponding statements
(Theorems 3.1 and 3.2) are presented after the first step of the
proof in order to make reference to the objects introduced at
that stage. In particular, Theorem 3.1 is formulated for the
general class of Hamiltonians (1), while Theorem 3.2 applies
in the restricted context of the zigzag KG model (2) and its
normal form (3).

Let us consider the KG Hamiltonian (1) and its equations of
motion

ẍj = −xj − x3
j + ε(Lx)j , (19)

with

L := ∆1 + k2∆2 + k3∆3 ,

(∆mx)j := xj−m − 2xj + xj+m .

We look for a periodic orbit with frequency γ; hence by intro-
ducing the time scaling uj(τ) := xj(t), where τ := γt, we get

γ2u′′ + u+ u3 − εLu = 0 . (20)

We define

L0 := γ2∂2
τ + I , Lε := L0 − εL , N(u) := u3 . (21)

The equation for a generic periodic orbit becomes

F (ε, u) := Lεu+N(u) = 0 , (22)

with

F : R×X2 := H2([0, 2π], `2
)
→ X0 := L2([0, 2π], `2

)
,

where X0,2 are endowed with the usual norms (see Sections 3.2
and 3.3 of [3]).

As it is stated in the Introduction, we consider, in the un-
perturbed case ε = 0, a periodic orbit ū(τ) which lies on the
four-dimensional completely resonant torus (4) with amplitude
ρ (see (5)). We wish to continue this periodic orbit for ε 6= 0,
thus we look for a function u(ρ, ε, τ) such that u(ρ, 0, τ) = ū(τ)
and (22) is solved for ε small enough

F (ε, u(ρ, ε, τ)) = 0 , |ε| < ε∗(ρ) , (23)

with γ kept fixed.

The problem has been partially solved in [35] by restricting
to time-reversible solutions u(−τ) = u(τ); i.e., by considering
only standard phase-differences ϕj = {0, π} for all j ∈ S. In-
deed, with this strategy the problem reduces to non-degenerate
critical points where the implicit function theorem can be ap-
plied, like in the averaging approach of [1, 26, 25]. In the case
of other phase-differences, like the vortex (or phase-shift multi-
breather) solutions we consider here, it is not possible to make
such a restriction, which ensures invertibility of the linearized
operator Fu(0, ū) on the subspace of even periodic solutions. In
other words, in our case, the approximate solution ū is a degen-
erate critical point; thus a small perturbation may in principle
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destroy the solution. In order to see that the linearized oper-
ator Fu(0, ū) has a non-trivial Kernel, let us recall some facts
presented in the first part of [35]4.

First, notice that

Fu(0, ū)[ζ] =

{
L0ζj j 6∈ S ,

L0ζj + 3ū2(τ)jζj j ∈ S .

The non-resonant condition jγ 6= ±1 allows to invert L0 on the
space of 2π-periodic functions. On the other hand, differenti-
ating the nonlinear oscillation equation w.r.t. both τ and the
energy E, one sees that

Ker
(
γ2∂2

τ + 3x2(τ + ϕj)
)

=

〈
x′(τ + ϕj), τ

∂γ

∂E
x′(τ + ϕj)

〉
;

as a consequence, the non-degeneracy condition of the fre-
quency ∂γ

∂E
6= 0 guarantees that only the time derivatives

x′(τ + ϕj) are 2π-periodic solutions. Thus the differential
Fu(0, ū) has a four-dimensional Kernel

Ker(Fu(0, ū)) = 〈fj(τ)〉 , j ∈ S ,

generated by the velocities of the nonlinear oscillations5

fj =
[
0
∣∣x′(τ + ϕj)

∣∣0] .
For the above reason an implicit function theorem cannot be
applied, unless (as in [35]) we restrict6 to ϕj ∈ {0, π}, and
a Lyapunov-Schmidt decomposition represents a natural ap-
proach to the problem.

3.1. The first Lyapunov-Schmidt decomposition

We consider (20) and we introduce the time-Fourier expan-
sion for the solution of the uncoupled anharmonic oscillator
x(τ) in (5)

x(τ) =
∑
k>1

ak cos(kτ) ; (24)

then, from (4), we get

ūj(τ) =

{
0 j 6∈ S∑
k>1 ak cos(kτ + kϕj) j ∈ S

,

thus we can write ūj =
∑
k>1 ak

(
cos(kϕj) cos(kτ) −

sin(kϕj) sin(kτ)
)

, for any j ∈ S. Let us now introduce the

Fourier base

ek(τ) =

{
cos(kτ) k > 0

− sin(kτ) k < 0
; (25)

4 Geometrically, the main idea is that a small displacement on
the four-dimensional torus from a given unperturbed periodic solu-
tion, leads to a new unperturbed periodic solution with the same
frequency.

5We will use the notation [. . . |·, ·, ·, ·| . . .] to denote values along
the chain: in particular, the two vertical bars enclose the sites be-
longing to S.

6Indeed, let us set u(τ) := x′(τ +π). Using 2π periodicity of x(τ)
and its even-parity we immediately get u(−τ) = x′(−(τ − π)) =
−x′(τ − π) = −x′(τ + π) = −u(τ). Hence the velocities x′(τ + ϕj)
are not even functions, i.e., the Kernel is transversal to the subspace
of even solutions.

we can decompose u ∈ `2(R) in its Fourier components7

u(τ) =
∑

k∈Z\{0}

ukek(τ) , (26)

and introduce the Lyapunov-Schmidt decomposition8 which
splits the first harmonics from the rest of the Fourier expansion

u = v + w , v = u−1e−1(τ) + u1e1(τ) ; (27)

in other words v solves the harmonic oscillator equation d2v
dt2

+
v = 0. We define

V2 := 〈e1, e−1〉 = ker
(
∂2
τ + I

)
, W2 := V {

2 . (28)

If we consider the unperturbed reference solution ū, we have
for any j ∈ S

ūj =
∑
k∈Z

ūj,kek(τ) , ūj,k =


ak cos(kϕj) k > 0

0 k = 0

−ak sin(kϕj) k < 0

,

thus we get

v̄j = a1 cos(ϕj)e1(τ)− a1 sin(ϕj)e−1(τ) . (29)

We rewrite the frequency as γ2 = 1 − ω . Indeed, in the
small energy regime, the frequency γ is close to one, and its
displacement ω is of order O(ρ2). The equation (20) thus reads

F (ε, v,w) = Lεw− ωv− εLv +N(v + w) = 0 . (30)

When we project (30) on the Range W0 ⊂ X0 of ∂2
τ + I, and

its complement V0, we get9

{
ΠWF (ε, v,w) = Lεw + ΠWN(v + w) = 0 (R)

ΠV F (ε, v,w) = −ωv− εLv + ΠVN(v + w) = 0 (K)
.

(31)

Proceeding as in Section 4 of [3], the Range equation (R), writ-
ten as w = −L−1

ε ΠWN(v + w), can be locally solved and ap-
proximated by w̃(v, ε)

w̃(v, ε) := −L−1
ε ΠWN(v) = O(‖v‖3X2

) ,

with

‖w− w̃‖X2
6 C ‖v‖5X2

.

We move now to the Kernel equation (K), i.e., −ωv − εLv +
ΠV (v + w(v, ε))3 = 0. Since w(v) = O(‖v‖3X2

), we can expand

ΠV (v + w(v, ε))3 = ΠV (v)3 +
[
ΠV (v + w(v, ε))3 −ΠV (v)3]

= ΠV (v)3 +O(‖v‖5X2
).

7We will always use the subscript k to denote the Fourier index,
and the subscript j for the site index.

8Please notice the use of the sans serif font for the present decom-
position variables: v and w. From subsection 3.4, the letters v and
w, with the usual font, will have a different meaning.

9For an easier notation we drop the zero subscript in the projec-
tors ΠV ≡ ΠV0

and ΠW ≡ ΠW0
.

12



We compute explicitly the Kernel projection of the leading term
of the nonlinear part. First we have, by definition

ΠV (v)3 =

(
1

2π

∫ 2π

0

v3(τ) cos(τ)dτ

)
e1+(

1

2π

∫ 2π

0

v3(τ) sin(τ)dτ

)
e−1 ,

and since, omitting the τ dependence, we have

v3 = u3
1e

3
1 + 3u2

1u−1e
2
1e−1 + u3

−1e
3
−1 + 3u1u

2
−1e1e

2
−1 ,

trigonometric formulas give immediately

ΠV (v)3 =
3

4

((
u2

1 + u2
−1

)
u1 cos(τ) +

(
u2

1 + u2
−1

)
u−1 sin(τ)

)
=

3

4

(
u2

1 + u2
−1

)
v .

(32)

By defining the remainder as

R(v, ε) := ΠV (v + w(v, ε))3 −ΠV (v)3 , (33)

we can rewrite the Kernel equation as

−ωv− εLv +
3

4

(
u2

1 + u2
−1

)
v + R(v, ε) = 0 . (34)

The Kernel equation, due to its dimension (v is a two-
dimensional vector of sequences), is equivalent to the system

−ωu1 − εLu1 +
3

4

(
u2

1 + u2
−1

)
u1 + 〈R(v, ε), e1〉 = 0

−ωu−1 − εLu−1 +
3

4

(
u2

1 + u2
−1

)
u−1 + 〈R(v, ε), e−1〉 = 0

.

Introducing the complex variable φ

φ := u1 + iu−1 , (35)

equation (34) takes the form

−ωφ− εLφ+
3

4
φ|φ|2 + R(φ, ε) = 0 , (36)

using again the letter R to denote the corresponding term
of (34). It turns out that in the small energy regime (i.e., for ρ
small enough) (36) looks as a ρ2-perturbation of the NL-dNLS
stationary problem

−ωφ− εLφ+
3

4
φ|φ|2 = 0 ; (37)

in other words, the term R(φ, ε) can be treated as a perturba-
tion. Moreover, since also the remainder R is equivariant under
the rotational symmetry and conjugation, the whole (36) ac-
tually represents the stationary equation for a non-local dNLS
model. We are now ready to give more detailed statements;
Theorem 1.1 can be seen as their corollary.

3.2. Reformulation of the main results

The first statement allows to derive an existence and ap-
proximation result for a solution of (20), u(ρ, ε, τ), from the
existence of a non-degenerate NL-dNLS solution v(ε, τ ′), pre-
cisely

Theorem 3.1. Let φ(ε) be a non-degenerate ε-family of solu-
tions for (37) and let v(ε, τ ′) be the corresponding real solution
in V2, see (28). Then, there exist E∗ and ε∗ and a constant
C1, such that, for E < E∗ and ε < E ε∗, there exists a non-
degenerate two parameter family u(ρ, ε, τ), solutions of (22),
which fulfills

‖u(ρ, ε, ·)− v(ε, ·)‖X2
< C1ρ

3 . (38)

Several remarks are in order:

• Theorem 3.1 applies to any discrete soliton solution of the
dNLS model (7), which is obtained as isolated solution of
the corresponding persistence condition via implicit func-
tion theorem. In particular, it applies to those standard
phase-difference solitons of the model H110 (but also in
the more degenerate case H101) which do not belong to
the 1-parameter families of solutions of (9), provided (11)
holds.

• The true solution and its approximation are of order
O(ρ) ∼ O(

√
E), thus the bound (38) on their difference,

being O(ρ3), is meaningful.

• The non-degeneracy assumption in Theorem 3.1 for the
NL-dNLS solution is related to the constrained Hessian
D2E1(φ(0)), being E1 the ε-depending part of the Hamil-
tonian (7) (see [17, 19, 33]). This condition is equivalent
(through the variational formulation of (37)) to the non-
degeneracy of the linearized bifurcation equation we will
use in Proposition 3.1.

• The distinct time variables, i.e., τ and τ ′, reflect the differ-
ent frequencies of the two unperturbed reference solutions.
Indeed, since the ε-continuation is performed at fixed fre-
quency, the two solutions keep this frequency difference.
The different time variables permit to normalize the pe-
riod to 2π.

The second statement claims the nonexistence of four-site
vortices in the zigzag case KG model (2), at least in the regime
of small enough energy E:

Theorem 3.2. For any ϕ ∈ (0, 2π), ϕ 6= π, there exists E∗(ϕ)
such that, for E < E∗, the solutions (12) of (9) cannot be
continued at ε 6= 0.

Here we also have to stress that:

• The nonexistence statement is based on the analogous re-
sult for the zigzag-dNLS model (3), where the impossibil-
ity to solve the linearized bifurcation equation is sufficient
to conclude the proof. The same holds if the linearized bi-
furcation equation is slightly perturbed, which is exactly
what happens in the model (2) if the energy E is taken
small enough. This is discussed in Section 3.5.2.

• It turns out that E∗(ϕ) ↘ 0 as ϕ → 0, π, in agreement
with the fact that for ϕ = {0, π} the four-sites MBs exist.

• Theorem 3.2 does not exclude that four-sites asymmetric
vortices appear for ε > ε∗(ρ, ϕ). It only claims that it does
not exist a continuous (in ε) branch which locally arises
at ε = 0.
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3.3. Approximation of the Kernel equation

Let us first remark the following;

Notation. Since there are two small parameters, the coupling
ε and the amplitude ρ (introduced in (5) in order to maintain
a notation as similar as possible with the paper [37]), in what
follows we will indicate the dependence with respect to ε as an
argument of the related quantities, and the dependence on ρ
(absent in [37]) as a subscript. We also stress that, where it
will be clear from the context, the absence of the subscript ρ will
mean ρ = 0, i.e., for a generic quantity Zρ we will set Z ≡ Z0.

At ε = 0, we denote by vρ the unperturbed solution of (36),
corresponding to the Kernel projection v̄ in (29)

vj = a1 cos(ϕj)− ia1 sin(ϕj) = a1e
−iϕj , j ∈ S . (39)

Recalling that R(v, ε) = O(||v||5X2
), introducing the vector field

XN (φ) := 3
4
φ|φ|2 and the following ρ-scaling

φ =: ρφ̃ , ε =: ρ2ε̃ , ω =: ρ2ω̃ , (40)

and immediately dropping the tildes, equation (36) reads

ρ3
[
− ωφ− εLφ+XN (φ) + ρ2Rρ(φ, ρ

2ε)
]

= 0 . (41)

Thus we have shown that, in the small energy regime, i.e., for ρ
small enough, equation (41) (equivalent to (36)) looks as a ρ2-
perturbation of the NL-dNLS problem (37). We remark that
also the first three terms in the square brackets depend on ρ, so
that in the following we will systematically add the correspond-
ing subscript; it has been omitted here to help the comparison
with formula (37) and to emphasize that those terms, though
depending on ρ, do not vanish with ρ, so that the last term
in (41) is really a small correction.

Remark 3.1. Starting from (41), ε won’t be anymore exactly
the KG coupling (remember we are dropping the tildes of the
scaling (40)), but it will represent the coupling of the (perturbed)
dNLS associated to the original KG.

We introduce10 the scaled unperturbed solution of (41), vρ,
(again dropping the tildes), that has amplitude a1/ρ = O(1)
and uniquely defines the frequency detuning ωρ from the har-
monic frequency, namely

ωρ =
3

4
|vρ|2 + ρ2 Rρ(vρ, 0)

vρ
.

By definition, v has to solve the uncoupled NL-dNLS problem,
i.e., (41) with ε = 0 and ρ = 0,

−ωv +
3

4
v|v|2 = 0 ⇒ ω =

3

4
R2 , R := lim

ρ→0

a1

ρ
6= 0 .

Analyzing the leading order expansion of a1(ρ), we provide an
estimate for the distance between the two unperturbed solu-
tions, vρ and v in

Lemma 3.1. There exists ρ∗ < 1 and two constants C0 and
c0 such that, for ρ < ρ∗, one has

‖vρ − v‖`2(C) < C0ρ
2 , |ωρ − ω| < c0ρ

2 . (42)

10We will follow again paper [37], decomposing φ in a reference
solution v and a correction w.

Once we focus on a particular solution vρ of the uncoupled
problem, we ask for its continuation for ε 6= 0; we thus look for
a correction wρ(ε) around vρ, that is continuous in ε, namely

wρ(vρ, ε) := φρ(ε)− vρ , with wρ(vρ, 0) = 0 ,

so that φρ(ε) solves (41).
Inserting the above definition, and exploting that vρ is a

solution for ε = 0, the Kernel equation (41) takes the form

0 = F(vρ;wρ, ρ, ε) := F (v;w, ε) +R(vρ;wρ, ρ, ε) , (43)

where

Fρ(vρ;wρ, ε) := −ωρwρ − εL(vρ + wρ)

+ [XN (vρ + wρ)−XN (vρ)]

R(vρ;wρ, ρ, ε) := [Fρ(vρ;wρ, ε)− F (v;w, ε)]

+ ρ2[Rρ(vρ + wρ, ε)−Rρ(vρ, 0)]

. (44)

In contrast with (41), in (43) we have a term completely
independent of ρ, i.e., F(vρ;wρ, ρ, ε)|ρ=0 ≡ F (v;w, ε), which is
indeed the O(1) leading term in ρ of (37), and is the dNLS
model analyzed in Section 4.

The usual strategy to solve the kernel equation is to probe
the applicability of the implicit function theorem. Thus we
consider the linear operator

Λρ := (DwF) (vρ; 0, ρ, 0) . (45)

Following the same arguments shown in [37] it is not difficult
to check that Λρ has a four-dimensional kernel which inhibits
the application of the implicit function theorem.

3.4. The second Lyapunov-Schmidt decomposition

Given the above comment on the non-applicability of the
implicit function theorem in the case of Λρ, we have to proceed
(as in the NL-dNLS case developed in [37]) with a Lyapunov-
Schmidt decomposition of

wρ = kρ + hρ , kρ ∈ Ker(Λρ) , hρ ∈ Range(Λρ) .

The equation (43) then becomes{
FH(vρ; kρ + hρ, ρ, ε) = 0

FK(vρ; kρ + hρ, ρ, ε) = 0
,

where the subscripts H and K denote the corresponding pro-
jections over Range(Λρ) and Ker(Λρ), respectively. The Range
equation FH = 0 can be solved locally by the implicit function
theorem and provides

hρ = hρ(vρ; kρ, ε) ; (46)

inserting (46) into FK = 0 we get the bifurcation equation,
redefining FK as

0 = FK(vρ; kρ, ρ, ε) := FK(vρ; kρ + h(vρ, kρ, ε), ρ, ε) , (47)

where now

FK : R4 × R× R→ R4 ,

is defined once given the unperturbed reference solution vρ.
The following lemmas allow us to then properly treat (47) as
a ρ-perturbation of the corresponding bifurcation equation for
its normal form (7).
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Lemma 3.2. The function FK(vρ; k, ρ, ε) is smooth in ρ and

FK(v; k, 0, ε) = FK(v; k, ε) ,

where FK is the corresponding bifurcation equation for (7) de-
fined in (44).

Proof: For the proof it is simply necessary to show that
the Lyapunov-Schmidt decomposition commutes with the limit
ρ → 0. As already observed, if ρ = 0, then equation (43) re-
duces to F (v; k, ε) = 0. For such an equation, the Lyapunov-
Schmidt decomposition is performed with respect to the linear
operator Λ0. The smoothness in ρ of all the involved functions
(including the ρ-family of isomorphism between the spaces of
the Lyapunov-Schmidt decompositions) concludes the proof.
�

A further important characterization of the Kernel projec-
tion of both F and F is that they vanish with ε, so that it is
possible to introduce

FK(v∗ρ ; kρ, ρ, ε) =: εPρ(v
∗
ρ ; kρ, ρ, ε) ,

FK(v∗; k, ε) =: εP (v∗; k, ε) .
(48)

In [37] we checked the corresponding property by a direct cal-
culation. Here we limit to remark that it has to be true since,
when ε = 0, it corresponds to the existence of the “coordinates”
(kρ, hρ) describing the four-dimensional torus around the cho-
sen v∗ρ . The additional property we have here is the continuity
with respect to ρ, i.e.,

ρ→ 0 ⇒ Pρ(v
∗
ρ ; kρ, ρ, ε)→ P (v∗; k, ε) (49)

which reduces to

Pρ(v
∗
ρ ; kρ, ρ, ε) = 0 (50)

for which we look for local solutions ‖kρ(ε)‖ � 1, with |ε| � 1
and |ρ| � 1.

3.5. Continuation from the persistence conditions
We will now concentrate on those particular solutions of the

uncoupled system which satisfy the persistence conditions, that
we connote with a star superscript. In particular let ū∗ be an
unperturbed solution given by (4) whose phases θj satisfy the
persistence conditions (9) and (10); then we denote by

v∗ρ :=
1

ρ
(ū∗1 + iū∗−1) (51)

its unique rescaled projection on V2, according to (27),(35) and
(40); as already noted in general, v∗ρ solves (41) with ε = 0.
Since the whole previous construction is continuous in ρ, we
also have that v∗ = limρ→0 v

∗
ρ , and

v∗j =

{
Re−iθj , j ∈ S
0 , j 6∈ S

,

where the phase-differences ϕj = θj+1 − θj , introduced in
(6), satisfy the corresponding NL-dNLS persistence conditions
given by (9) and (11) Indeed, in the limit of vanishing ampli-
tude, i.e., for ρ→ 0, the KG persistence condition (9) converges
to the NL-dNLS persistence condition, (see (65)), in view of the
exponential decay of the Fourier components.

At the present stage of our construction it is worth recalling
that the persistence conditions take the form

Pρ(v
∗
ρ ; 0, ρ, 0) = 0 and P (v∗; 0, 0) = 0 ,

respectively for the KG and dNLS cases, since by continuity
the “correction” k has to vanish with ε.

3.5.1. Proof of Theorem 3.1
The first part of Theorem 3.1 follows from

Proposition 3.1. Let v∗ρ be as in (51). If the corresponding
v∗ is linearly non-degenerate, which means that the Linearized
Bifurcation Equation

ε∂εP (v∗; 0, 0) +DkP (v∗; 0, 0)[k] = 0 ,

can be uniquely solved (apart from the Gauge direction), then
there exists ρ∗ such that, for |ρ| < ρ∗ the same holds true for
the ρ-perturbed Linearized Bifurcation Equation

ε∂εPρ(v
∗
ρ ; 0, ρ, 0) +DkPρ(v

∗
ρ ; 0, ρ, 0)[k] = 0 .

Hence, there exists ε∗(ρ) such that, for |ε| < ε∗ the bifurcation
equation (50) can be locally solved and

‖kρ(ε)− k(ε)‖ < Cρ2 . (52)

Proof: the proof is based on the same ideas of Theorem C.1
of [3]. From the definitions (43), (44) and (48), and by exploit-
ing (42) and the Lipschitz-continuity of Pρ, it is possible to
show that

Pρ − P = O(ρ2) .

The non-degeneracy of the Linearized Bifurcation Equation
for the NL-dNLS model, which is equivariant under the action
of the Gauge symmetry, can be translated into the condition
that the Kernel of the four-dimensional squared matrix

DkPρ(v
∗, 0, ρ, 0)

is given only by the Gauge direction, being invertible in the
three-dimensional orthogonal complement11. As we remarked
already, the whole bifurcation equation Pρ(v

∗
ρ , k, ρ, ε) = 0 is

still Gauge equivariant, hence invertibility isn’t lost under a
continuous, and small enough, ρ2-perturbation. Hence also
DkPρ(v

∗
ρ , 0, ρ, 0) is invertible in the Gauge-orthogonal subspace

and estimate (52) is a standard by-product of the implicit func-
tion theorem. �

In order to conclude the proof of Theorem 3.1, we still have
to show that estimate (38) holds true. Let now w∗ρ(v∗ρ ; ε) be
the solution of

F(v∗ρ ;w∗ρ, ρ, ε) = 0 ,

and, in a similar way, let w∗(v∗; ε) be the solution of

F(v∗;w∗, 0, ε) = 0 .

Lemma 3.3. There exists ρ∗ and ε∗ and a constant C2 such
that, for |ρ| < ρ∗ and ε < ρ2ε∗ one has∥∥w∗ρ(v∗ρ ; ε)− w∗(v∗; ε)

∥∥
`2
< C2ρ

2 . (53)

11This is a delicate point and involves the preservation of a sym-
metry under the Lyapunov-Schmidt reduction. The equivariance
of equation (36) reflects the Gauge invariance of the corresponding
Hamiltonian: this is a common variational interpretation of the Ker-
nel equation in the first LS reduction (see [4]). At a second stage, if
the Kernel and Range projections commute with the symmetry, then
also (47) is equivariant and it is enough to restrict to the transversal
directions.

15



Proof: As in the proof of the previous Lemma, it is possible
to show that

FH(v∗ρ ;h+ k, ρ, ε)− FH(v∗;h+ k, ε) = O(ρ2) ;

then, again from (42) one can deduce∥∥h(v∗ρ ; k, ρ, ε)− h(v∗; k, ε)
∥∥ < Cρ2 , (54)

which combined with (52) gives the desired estimate. �
Going back to (27), let v∗(ρ, ε, τ) and v∗(0, ε, τ ′) be the scaled

real solutions (belonging to the Kernel V2) built respectively
with φ∗ρ(ε) = v∗ρ + w∗ρ(v∗ρ ; ε) and φ∗(ε) = v∗ + w∗(v∗; ε), and

u∗(ρ, ε, τ) = v∗(ρ, ε, τ) + w(v∗(ρ, ε, τ), ε) , (55)

the reconstructed solution of the original perturbed problem
(23). Following the same steps developed in [3] one gets (38).

3.5.2. Proof of Theorem 3.2
The proof of Theorem 3.2 is essentially based on a necessary

condition for the solvability of the bifurcation equation which
is shown to be violated. Precisely, as before, we first show that
the same property is violated in the dNLS model (3) and then
we extend the result to the system under investigation. Let v∗

represent an element of the families (12) with ϕ 6∈ {0, π}. The
first step — deferred to Section 4.2 — consists in showing that
the linearized bifurcation equation of the dNLS system (ρ = 0)

ε∂εP (v∗; 0, 0) +DkP (v∗; 0, 0)[k] = 0

cannot be solved, because the necessary condition

∂εP (v∗; 0, 0) ∈ Range(DkP (v∗; 0, 0))

does not hold. Once the above is proven, as a consequence, the
whole nonlinear equation cannot be solved for (k, ε) close to
the origin, thus v∗ cannot represent a bifurcation point. The
last implication, namely the relationship between the linearized
equation and the nonlinear equation, can be understood again
in terms of bifurcation theory, and is included in the more gen-
eral statement of Proposition 2.10 of [32] (remark that, using
the notation as in [32], in the zigzag case g(2)(θ∗) 6= 0). In
qualitative terms, the main idea is that if ∂εP (v∗; 0, 0) 6= 0 and
the linearized equation cannot be solved, then close enough to
the origin P (v∗; k, ε) 6= 0, since higher order corrections are
negligible.

To add some details, one can follow Lemma 4.4 and Re-
mark 4.4 of [37], where a similar condition on the second order
term ∂2

εP (ϕ∗, kg, 0, 0) can be derived for ∂εP (ϕ∗, kg, 0, 0) = 0.
In brief, one can implement a further Lyapunov-Schmidt de-
composition, by splitting again the (four dimensional) space
into the subspace Ker(DkP (v∗; 0, 0)), given by the tangent
directions to the ϕ-family and the Gauge-symmetry, and
the remaining Range(DkP (v∗; 0, 0)). In terms of variables,
one simply introduces kK and kR, the set of coordinates
of Ker(DkP (v∗; 0, 0)) and Range(DkP (v∗; 0, 0)), respectively,
such that k = kK+kR. After Taylor-expanding and projecting
the equation P (v∗; kK, kR, ε) = 0 onto the Range, one imme-
diately realizes that kR = O(ε). Thus, at leading order in the
Kernel equation one has

ΠK[∂εP (v∗, 0, 0)] = 0

which is equivalent to

∂εP (v∗; 0, 0) ∈ Range(DkP (v∗; 0, 0)) .

By continuity in ρ, the same conclusions can be derived in the
regime of small ρ via the equation

ε∂εPρ(v
∗
ρ ; 0, ρ, 0) +DkPρ(v

∗
ρ ; 0, ρ, 0)[k] = 0

due to the following

Proposition 3.2. Let v∗ρ as in (51). If the corresponding v∗

is such that

∂εP (v∗; 0, 0) 6= 0 ∧ ∂εP (v∗; 0, 0) 6⊥ Ker(DkP (v∗; 0, 0)) , (56)

then there exists ρ∗ such that, for |ρ| < ρ∗ one has

∂εPρ(v
∗
ρ , 0, ρ, 0) 6= 0 ∧ ∂εPρ(v∗ρ , 0, ρ, 0) 6⊥ Ker

(
DkPρ(v

∗
ρ , 0, ρ, 0)

)
.

As previously said, this Proposition shows that, also for the
Klein-Gordon model, the nonlinear equation cannot be solved
for (k, ε) close to the origin, therefore v∗ cannot represent a
bifurcation point.

3.6. A note on the more degenerate model: H101

The technique developed in this Section is not sufficient to
deal with the more degenerate model examined in Section 2.3,
i.e., H101 in (14). Actually this kind of degeneracy in a dNLS
model was already examined systematically in [37], where we
were able to prove the nonexistence of any four-sites phase-shift
discrete soliton for ε small enough. The crucial point is that
the higher non-degeneracy required the analysis of higher or-
der expansions of the Bifurcation Equation: this is exactly the
reason that prevents the application of the tecniques used in
the present paper. Indeed the small perturbation due to the
energy, which “measures” the distance among the model (14)
and its dNLS-type normal form (16), could be enough to intro-
duce small linear terms in the bifurcation equation allowing for
non-trivial solutions, which otherwise would not exist. This,
however, depends on the magnitude of the linear term in ε in-
troduced by the perturbation. Since the obstruction to nonex-
istence comes out from the ε2 term in the Kernel equation, the
corrections of order ρ2 would not be relevant for ρ2 � ε. How-
ever, as we are considering the regime ε . ρ2 (due to our initial
scaling (40)), we cannot exclude the existence of solutions for
the perturbed problem.

4. Nonexistence results for the zigzag-dNLS model

In the present Section we give the nonexistence results for the
corresponding dNLS model upon which are based the proofs of
the previous Section. Since we will closely follow the scheme
of [37], many details will be omitted.

Let us rewrite explicitly the model we consider here, i.e.,

ωφj = − ε
2

[
(∆1 +∆2)φ

]
j
+

3

4
φj |φj |2 , where ω := λ−1 , (57)

and consider the unperturbed solutions

φ
(0)
j =

{
Reiθj , j ∈ S ,

0 , j 6∈ S ,
(58)

where S = {1, 2, 3, 4} and R > 0.
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4.1. C1 nonexistence result

We first state a finite regularity nonexistence result. For
this purpose, we assume to deal with a continuation {φj(ε)}j∈Z
which is at least C1 in ε. Hence we expand the solution variables
φj in ε

φj = φ
(0)
j + εφ

(1)
j + o(ε) , (59)

where o(ε) is a continuous function. The continuation is as-
sumed to be performed at fixed period (frequency). With the
perturbative approach, we are able to prove

Theorem 4.1. For ε small enough, the only unperturbed solu-
tions (58) that can be continued to C1 solutions φ(ε) of (57),
(with ε 6= 0), correspond to ϕj ∈ {0, π}.

In the proof of the above Theorem, a key point is the fact
that the discrete map (57) preserves

Jj := =
(
φj−1φj + φj−2φj + φj−1φj+1

)
. (60)

The conservation of this quantity, the so-called current, Jj ≡ J ,
together with the hypothesis {φj}j∈Z ∈ `2(C), imply

Jj = 0 , ∀j ∈ Z . (61)

As in our previous paper, in what follows we take a look at
the general structure of the expansion, in the present case up to
order one, of both the equations and the conserved quantity;
moreover, from the zero order expansion, we determine the
candidate solutions.

The strategy is then to investigate directly such equations
evaluated into the candidate solutions; and to exclude all the
solutions prohibited by Theorem 4.1 looking for the incompat-
ibility of the conserved quantity with the equations.

4.1.1. Zero-order expansion and candidate solutions
The stationary equation (57) at order zero gives the uncou-

pled system

ωφ
(0)
j =

3

4
φ

(0)
j

∣∣∣φ(0)
j

∣∣∣2 , (62)

which is invariant under the action of eiτ . By using (58), it
provides the frequency λ of the orbit, and its detuning ω from
the linear frequency 1, namely

ω =
3

4
R2 and λ = 1 +

3

4
R2 . (63)

The conservation law (61) at order zero gives

J
(0)
j := =

(
φ

(0)
j−1φ

(0)

j + φ
(0)
j−2φ

(0)

j + φ
(0)
j−1φ

(0)

j+1

)
= 0 . (64)

If we take only 4 oscillators not at rest (as in our ansatz (58)),
then (64) is identically satisfied for j 6 0 and j > 5. For
the remaining variables site j ∈ S, by recalling the definition
ϕj := θj+1 − θj of the phase-differences as in (6), equations
(64) give

sin (ϕ1) = − sin (ϕ1 + ϕ2) ,

sin (ϕ2) = sin (ϕ1) + sin (ϕ3) ,

sin (ϕ3) = − sin (ϕ2 + ϕ3) .

(65)

Remark 4.1. The above system of equations for the phase-
differences coincides with (9) and (11).

As already anticipated in Section 2, the solutions of the sys-
tem (65) provide the two families F1 : ϕϕϕ = (ϕ, π,−ϕ) and
F2 : ϕϕϕ = (ϕ, π, ϕ + π), respectively (see (12)). Their inter-
sections give the two phase-shift solutions F1 ∩ F2 = Φ(sv) =
±
(
π
2
, π,−π

2

)
, while they include some in/out-of-phase solu-

tions, i.e.,
{

(0, π, 0), (π, π, π)
}
∈ F1 and

{
(0, π, π), (π, π, 0)

}
∈

F2. The remaining possible in/out-of-phase solutions (those
with ϕ2 = 0) are not included in the above families, i.e.,
Fiso : ϕϕϕ =

{
(0, 0, 0), (0, 0, π), (π, 0, 0), (π, 0, π)

}
.

4.1.2. First order expansions
The first order expansions of both the stationary equation

(57) and the density current (60) are easily deduced and take
the form

ωφ
(1)
j =− 1

2

[
φ

(0)
j+2 + φ

(0)
j+1 + φ

(0)
j−1 + φ

(0)
j−2

]
+ 2φ

(0)
j

+
3

4

[
2φ

(1)
j |φ

(0)
j |

2 +
(
φ

(0)
j

)2

φ
(1)
j

]
;

(66)

0 = =
(
φ

(0)
j−1φ

(1)

j + φ
(0)
j−2φ

(1)

j + φ
(0)
j−1φ

(1)

j+1

+ φ
(1)
j−1φ

(0)

j + φ
(1)
j−2φ

(0)

j + φ
(1)
j−1φ

(0)

j+1

)
.

(67)

4.1.3. Second order expansion and conclusion
To get the nonexistence result, the solutions of the equations

are inserted into the conserved current.
Starting with the two families of asymmetric vortex solu-

tions, F1 and F2, with the exclusion of the Fiso and Φ(sv) solu-
tions, we end up, for the first family, with the following set of
linear equations

B + C = 2 sinϕ

(1 + cosϕ)(B + C) + cos2 ϕ(A+D) = 0

B + C = −2 sinϕ

(68)

where A,B,C,D are left free at previous order. The system is
clearly impossible once we exclude ϕ = 0, π. The second family
is treated in the same way.

Concerning the symmetric vortex solutions Φ(sv), by similar
calculations we have again that the conservation law at order
zero is identically satisfied, and at order one is equivalent to

4i = 0 , B + C = 0 , −4i = 0 , (69)

which is impossible independently of the four free parameters
left from the equation.

4.2. C0 nonexistence result

Following again [37], we want to complete the nonexistence
result to C0 solutions. The strategy is based on a Lyapunov-
Schmidt decomposition, where suitable expansions are per-
formed mainly at the level of the (regular) equations, without
assumptions on the regularity of the solutions. We recall that
this stronger result is technically needed, as already mentioned
in the proof of Theorem 3.2, in order to obtain the similar re-
sult for the Klein-Gordon model in the small energy regime: in
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fact, we are going to show here that condition (56) assumed in
Proposition 3.2 holds true. However, since the scheme is ex-
actly the same of [37], we only sketch the key points. The main
difference is that in such a paper we considered the case H101

while here we are dealing with the case H110, so that

L := ∆1 + ∆2 .

The key part of the analysis is in the bifurcation (kernel)
equation, and in the application of Lemma 4.4 and Remark 4.4
of [37]; to this purpose we check the projection of

∂εP (v∗, 0, 0) = ΠKLh
(1,0)(v∗, 0, 0) ,

where

h(1,0)(v∗, 0, 0) := −Λ−1ΠHLv
∗

onto the Kernel of the differential operator

DkP (v∗, 0, 0)[k] = ΠKLk −
3

2
<
(
v∗h(1,0)

)
k ,

where v∗ is in one of the families F1 and F2, and ΠK and
ΠH are the projectors onto respectively the Kernel and the
Range of Λ. We deal explicitly with one family only; tak-
ing F1 : ϕ = (ϕ, π,−ϕ), and setting θ0 = 0, we have
θ = (0, ϕ, π + ϕ, π), which gives the following representation
of v∗ in complex variables

v∗
∣∣∣
S

(ϕ) = R
(

1, eiϕ,−eiϕ,−1
)
.

As a consequence, the Kernel’s basis reads

ej

∣∣∣
S

= iR{(1, 0, 0, 0), (0, eiϕ, 0, 0), (0, 0,−eiϕ, 0), (0, 0, 0,−1)} .

An easy computation gives Lv∗, precisely[
. . . , 0, 1, 1 + eiϕ

∣∣∣− 4,−5eiϕ, 5eiϕ, 4
∣∣∣− (1 + eiϕ),−1, 0, . . .

]
;

using the scalar product ΠKLv
∗ =

∑4
j=1 <(Lv∗ej)ej , one gets

ΠKLv
∗ = 0, since <(Lv∗ej) = 0 for all j = 1, . . . , 4. Hence

ΠHLv
∗ = Lv∗. Since

Λh =

{
−2ωh , j ∈ S
ωh , j 6∈ S

,

then −Λ−1ΠHLv
∗ takes the form

1

ω

[
. . . , 0,−1,−(1 + eiϕ)

∣∣∣− 2,−5

2
eiϕ,

5

2
eiϕ, 2

∣∣∣(1 + eiϕ), 1, 0, . . .

]
.

Given that our last operation is a projection onto the Ker-
nel, we limit the next computation on the core sites, precisely

−
(
LΛ−1ΠHLv

∗)∣∣∣
s

reads

1

ω

[
6− eiϕ, 23

2
eiϕ − 1,−23

2
eiϕ + 1,−6 + eiϕ

]
.

We finally get

∂εP (v∗, 0, 0) = −i sin(ϕ)
[
0
∣∣∣1,−eiϕ, eiϕ,−1

∣∣∣0] .
Upon verifying that the four-dimensional matrix representing
the linear operator DkP (v∗, 0, 0)[k] has rank 2, we know for
free the Kernel generators, since the Gauge direction and the

direction tangent to the family for sure belong to it; these are
respectively

∂ϕv
∗(ϕ) =

[
0
∣∣∣0, ieiϕ,−ieiϕ, 0∣∣∣0] , ∂θ0e

iθ0v∗(ϕ) = ieiθ0v∗(ϕ) .

Since the Gauge symmetry is preserved along the whole con-
struction, we have ∂εP ⊥ ∂θ0eiθ0v∗, which can even be checked
by the direct computation of ∂θ0e

iθ0v∗(ϕ) · ∂εP (v∗, 0, 0) = 0.
The other scalar product gives instead

∂ϕv
∗(ϕ) · ∂εP (v∗, 0, 0) = − sin(ϕ)

[
<
(
ieiϕ(ie−iϕ)

)
+ <

(
−ieiϕ(−ie−iϕ)

)]
= 2 sin(ϕ) ,

which is different from zero, apart from the cases ϕ = 0, π.
Thus, we can conclude that the projection of ∂εP (v∗(ϕ), 0, 0)
onto the Kernel of DkP (v∗, 0, 0) is different from zero on any
phase-shift discrete soliton considered in the family. This repre-
sents a sufficient condition for nonexistence of the continuation.

5. Conclusions - Future Directions

The present paper represents a natural follow up of [37],
where we studied the related problem of the nonexistence of
degenerate phase-shift discrete solitons in a non-local dNLS
lattice. We recall that in [37] the nonexistence of phase-shift
discrete solitons, which was not easily achievable by means of
averaging methods due to the degeneracy of the problem, was
obtained in an efficient way exploting the rotational symmetry
of the model and the density current conservation along the
spatial profile of any candidate soliton. The absence of these
ingredients in Klein-Gordon models represents an additional
layer of difficulty to the degeneracy that one has to face in the
continuation problem that we here address.

Keeping in mind the connections among these two classes of
Hamiltonian models (KG and dNLS), a natural (although indi-
rect) way to proceed is to transfer the results which are acces-
sible in the dNLS context to similar results which are expected
to be valid in the KG context, keeping track of the relevant
correction terms. In this work we examined mainly KG sys-
tems with interactions beyond nearest neighbors interactions
(bearing also in mind connections with higher dimensional lat-
tices), focusing principally on the zigzag model for our ana-
lytical considerations. In this model, by means of Lyapunov-
Schmidt techniques, we showed that that this approach actually
works provided some smallness assumptions are made on the
main physical parameters of the models: the energy E and the
coupling strength ε.

However, the strategy presented here, is based on a first order
normal form approximation of the KG model, and thus it has
some limitations in cases where higher order degeneracies occur.
In order to showcase this fact we shortly examine a model that
exhibits next-to-next nearest neighbors interactions namely the
H101 model. Although the previously described methodology
cannot be applied, the numerical exploration performed in the
Section 2.3 shows elements which strongly overlap with those
that one can obtain in the corresponding dNLS normal form
H101, for which a rigorous answer has been given already in
[37]. This naturally leads us to conjecture that a corresponding
nonexistence statement of phase-shift four-sites multibreathers
holds true also for H101.
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In order to prove such a conjecture, one could still follow
this indirect approach by increasing the accuracy of the nor-
mal form approximation by adding further non-local linear and
nonlinear terms to the dNLS H101, in the spirit of a more gen-
eral dNLS approximation (see [30, 31]). Alternatively, one can
use a more direct approach and perform a local normal form
technique around the low-dimensional resonant torus, with the
advantage of working directly in the original KG model without
passing from the dNLS approximation (see [36] for the maxi-
mal tori case). With this scheme we expect to derive a normal
form which naturally extends the effective Hamiltonian method
introduced in [1]. In any case, and whatever the perturbation
method one prefers to apply may be, it appears natural that
the accuracy required in the approximation is directly related
to the order of the degeneracy of the problem: hence, for highly
degenerate problems the help of a computer assisted manipu-
lation may be unavoidable and the choice of the method can
become extremely relevant.

A related comment is that in the present work we have
limited our considerations to one-dimensional settings with
long-range interactions. Extending relevant ideas to genuinely
higher-dimensional KG settings, where again the understand-
ing built on the basis of the dNLS [32, 18] may be useful, is
another natural avenue for future work.
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