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ABSTRACT

Generative Adversarial Networks (GAN) are being increasingly
used to perform face aging due to their capabilities of automatically
generating highly-realistic synthetic images by using an adversar-
ial model often based on Convolutional Neural Networks (CNN).
However, GANs currently represent black box models since it is
not known how the CNNs store and process the information learned
from data. In this paper, we propose the first method that deals with
explaining GANs, by introducing a novel qualitative and quantitative
analysis of the inner structure of the model. Similarly to analyzing
the common genes in two DNA sequences, we analyze the common
filters in two CNNs. We show that the GANs for face aging par-
tially share their parameters with GANs trained for heterogeneous
applications and that the aging transformation can be learned using
general purpose image databases and a fine-tuning step. Results on
public databases confirm the validity of our approach, also enabling
future studies on similar models.

Index Terms— GAN, Face aging, CNN, Deep Learning

1. INTRODUCTION

Face aging (or age progression) techniques consist in modifying face
images to simulate the effect of aging. Aging is especially useful
when it is not possible to capture an up-to-date image of the indi-
vidual, for example in cross-age face verification or in finding lost
children [1], or to perform data augmentation [2].

Traditionally, methods for face aging are divided in two cat-
egories [3]: i) prototype approaches and ii) physical model ap-
proaches. Methods belonging to the first category aim at simulating
the aging by computing an average face (prototype) for each age
group, extracting a texture difference between the prototypes, and
applying the texture difference to the test image to simulate ag-
ing [4, 5]. Methods belonging to the second category try to generate
realistic aged images by determining a parametric model of the ag-
ing process that considers the physical structure of the skin, muscles,
and bones [6, 7].

Recently, computational intelligence methods based on Deep
Learning (DL) have been increasingly used due to their capabili-
ties of automatically learning data representations [11, 12, 13, 14].
Among DL methods, several approaches to face aging have con-
sidered Generative Adversarial Networks (GAN) [15], which have
shown high accuracy in automatically generating realistic synthetic
images. In particular, GANs represent a type of generative model
composed by a generator , that generates synthetic data, and a
discriminator , that classifies the data generated by as real or
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Fig. 1. Result of applying the DEX age estimator [8] on the CIFAR-
10 object dataset [9] and the CelebA face dataset [10]. In both cases
the age estimator correctly processes the images, since image char-
acteristics influencing apparent age are general and not exclusive to
face images.

synthetic. In most recent cases, both and are implemented as
Convolutional Neural Networks (CNN).

It is possible to divide GAN-based methods for face aging in
three main categories: i) methods based on conditional GANs, ii)
methods based on conditional GANs and autoencoders, and iii)
methods based on cycle GANs. Methods in the first category focus
on generating a realistic facial image of a particular person while
imposing the conditions of preserving the identity of the individual
and having the desired age [2, 16, 17, 18, 19]. Methods belonging to
the second category propose the combination of a conditional GAN
with an autoencoder, with the purpose of performing age progres-
sion as well as age regression (rejuvenating) [3, 15, 20]. Methods in
the third category perform facial aging by learning the image style
represented by age characteristics and then transferring the age style
on the target image [21].

The use of GANs for image synthesis and facial aging has
recently enabled to automatically generate highly-realistic im-
ages [22], with a simpler procedure with respect to handcrafted
approaches [23]. As a drawback, such approaches are often theoret-
ically intractable and in many cases represent black box models that
generate data in an unpredictable way. However, in some applica-
tions such as medical or forensic analyses, it is not possible to rely
on unexplainable decisions. For this reason, Explainable Artificial
Intelligence (XAI) techniques are emerging to obtain powerful yet
interpretable machine learning models [24, 25].

In the context of XAI, this paper introduces a novel qualitative
and quantitative analysis of the similarity of the inner structure of
the CNN-based generators in the GANs used for face aging1. By
performing the proposed analysis on different GANs trained for het-

1http://iebil.di.unimi.it/gansXaiAge/index.htm



erogeneous application scenarios, we observed that GANs for face
aging include general purpose image processing operators and par-
tially share their parameters with the other GANs. Fig. 1 describes
the application of a state-of-the-art age estimator on both object and
face images, showing that image characteristics influencing differ-
ent apparent ages are general and observable in many objects. We
evaluated the proposed method with transfer learning, by training
GANs on heterogeneous databases and fine-tuning them for face
aging, with results confirming our observations, showing that the
aging transformation can be learned using general purpose image
databases and a fine-tuning step.

This is the first method in the literature that deals with explaining
GAN models, by analyzing the similarity of the filters of the CNNs,
which are the main processing module and comprise the large ma-
jority of the parameters used in GANs. The paper is structured as
follows. Section 2 introduces GANs for face aging, Section 3 de-
scribes the methodology, and Section 4 presents the experimental
results. Finally, Section 5 concludes the work.

2. GANS FOR FACE AGING

Face aging based on GANs can be represented as a particular case
of style transfer, where the GAN learns the style that transforms im-
ages representing young people into images of older individuals

[21]. In this work, we consider the cycleGAN (cyGAN) model
[26], which has been successfully applied for image style transfer
by learning the transformation between images in the origin training
set and images in the destination training set . In particu-
lar, a cyGAN transforms an image from domain to domain by
simultaneously training two GANs: and

, where transforms , trans-
forms , discriminates between and ,

discriminates between and .
CyGANs have the advantages of training both the age progres-

sion ( ) and age regression ( ) GANs at
the same time, while not requiring an age estimator during the train-
ing process, not requiring multiple images of the same person, and
not requiring paired samples (e.g., a different number of images can
be present in the origin and destination sets).

3. METHODOLOGY

In this section, we describe the proposed novel methodology for ex-
plaining the use of GANs for face aging, based on both qualitative
and quantitative analyses. The approach consists of three steps: i)
similarity analysis of the CNNs in GANs. Similarly to analyzing
the common genes in two DNA sequences, we analyze the common
filters in two CNNs; ii) validation of the aging process. We use a
CNN-based age estimator to validate the accuracy of the GANs for
face aging; iii) fine-tuning. We train GANs on heterogeneous appli-
cation scenarios and fine-tune them to perform face aging.

3.1. Similarity Analysis of the CNNs in GANs

The proposed similarity analysis increases the explainability of face
aging by performing both a qualitative and quantitative examination
of the similarity of the filters in the CNNs of the generators and
of different cyGANs. In particular, our similarity analysis method-
ology is composed of three steps: i) filter extraction, ii) filter classi-
fication, and iii) Cross-GAN Filter Similarity Index (CGFSI).

3.1.1. Filter Extraction

In this step, we extract the two-dimensional filters from the CNN-
based generators and , represented by the weights of all the con-
volutional layers present in the network architecture. In this work,

(a) (b)

Fig. 2. Example of the qualitative similarity analysis on one layer
of the generator of two cyGANs trained on heterogeneous appli-
cation scenarios: (a) novel filters; (b) common filters. The majority
of the filters belong to the common category and consist in general
purpose image processing operators.

we focus only on convolutional layers since they comprise the large
majority of the parameters of and .

We analyze the set of filters for each network layer sep-
arately, since in many cases the different layers in a CNN process
images at different levels of abstraction [27]:

(1)

where is the ensemble of filters for the -th layer, is
the -th filter, is the number of filters in the -th layer, and is
the number of layers of the CNN. We extract the filters from both
and , obtaining , .

3.1.2. Filter Classification

To perform a qualitative analysis of the filters in the CNNs of two
different GANs, in this step we propose a method for classifying and
visually analyzing them based on their level of similarity. In partic-
ular, we compare the filters of the generators belonging to two
different GANs: and . The analysis determines
at each level and for each filter the corresponding

with the greatest level of similarity .
First, we extract the filters from the CNNs of ,

, obtaining , . Second, we analyze the fil-
ters separately for each layer , to determine the sets of matching
filters :

(2)

where represents the similarity function. In this work, we used
the two-dimensional cross-correlation function. We perform the
same analyses on the filters extracted from the generators and ,
obtaining , . Third, we apply a threshold on the
similarity values to separate the filters of , in two
categories:

novel if
common if

(3)

Fig. 2 describes the qualitative analysis of the filters , by
showing the novel filters and the common filters obtained by analyz-
ing a specific layer of the generator of two cyGANs trained on
heterogeneous application scenarios. In the figure, we considered

. In this case, the majority ( ) of the filters belong to
the common category, therefore the CNNs in the two GANs share

of filters with similarity . In most cases, the filters con-
sist of general purpose image processing operators. It is also possible
to observe a form of filter redundancy since some of the filters in



are either repeated or are highly similar to other filters in the same
cyGAN.

3.1.3. Cross-GAN Filter Similarity Index

To perform a quantitative analysis of the similarity of the filters in
the CNNs of two different GANs, in this step we propose the Cross-
GAN Filter Similarity Index (CGFSI) as the average percentage of
the filters in the common category for each layer :

CGFSI
common

(4)

where indicates the cardinality of the set. We apply the proposed
to explain how much the filters of

the CNNs in are similar to the filters in .

3.2. Validation of the Aging Process

To validate the accuracy of the aging process performed using cy-
GANs in a quantitative way, contrarily to the method in the literature
that only proposes a qualitative evaluation of cyGANs for face ag-
ing [21], in this step we use a CNN-based age estimator to estimate
the apparent age of the generated face images. In this work, we used
the DEX age estimator proposed in [8].

First, we perform the face aging by applying the GAN:
, where represents the

GAN that transforms the image to the target age . Second,
we estimate the age of the generated image . Third, we evalu-
ate the accuracy of the aging transformation by computing the mean
of the Absolute Age Difference (AAD) between the target age
and the estimated age .

3.3. Fine-Tuning

To perform a qualitative and quantitative evaluation of how the sim-
ilarity of the filters in the CNNs enables transfer learning in two
GANs, in this step we consider a cyGAN trained on a different ap-
plication scenario and fine-tune it to perform age progression.

First, we consider , trained for age progression,
and , trained on a different application scenario (e.g.,
trained on the general purpose object database CIFAR-10). Second,
we perform a fine-tuning of on the translation domains

of the face aging problem, obtaining . Third,
we compare the results of face aging performed using
with the ones obtained using , both in a qualitative way
by comparing the apparent age of the images transformed by the two
GANs, and in a quantitative way by using the procedure described
in Section 3.2.

4. EXPERIMENTAL RESULTS

In this section, we introduce the databases used in our study and de-
scribe the result of the proposed approach. In particular, we present
the obtained CGFSI values, the validation of the aging process, and
the results of the face aging obtained by performing a fine-tuning of
GANs trained in different application scenarios.

4.1. Databases

To evaluate the proposed method, we considered two face databases
captured in the wild. First, we used the AgeDB face dataset [28],
composed of images with different sizes, each associated
with the verified real age of the person. Second, we used the CelebA
face dataset [10], composed of images with different sizes,
with no associated age. We used the method described in [29] to
detect the faces in the images and cropped all the images to the
same average size of pixels. To compute the CGFSI,
we used the general purpose image translation datasets horse2zebra

Table 1. Cross-GAN Filter Similarity Indexes (CGFSI): quantita-
tive results of the similarity between different GANs. The CGFSI
between and are always higher than the
CGFSI between and the other GANs, indicating that
the training process learns similar filters in the CNNs of the GANs,
even on heterogeneous application scenarios.

GAN name

-
-

-
-

-
-

Table 2. Validation of the aging process: quantitative results of the
accuracy of the cyGANs for face aging. The AAD values
describe the difference between the estimated age and the destination
aging class. The transformed images feature a high variation in their
estimated age.

GAN name Age class AAD
Orig. Dest. (MeanStd)

Notes. AAD: Absolute Age Difference.

and sat2map [30]. To perform the fine-tuning, we considered the
CIFAR-10 object database [9], composed of images with
size pixels, depicting everyday life objects and animals.

We used the DEX age estimator [8] to estimate the ages of the
CelebA database and we divided the dataset in classes based on
the age groups [21]: , , , , .
We discarded the class since it contains a limited number
of images. Also, we observed that performing face aging on individ-
uals in the class often results in unrealistic images because
the proportions of the face attributes are still in their development
phase and are not realistically aged by the cyGAN. Therefore, we
focused on the three middle classes , , . For
each class, we randomly selected images for training and
for testing, obtaining in total images for training and

for testing. Similarly, we applied the DEX age estima-
tor on the CIFAR-10 database and performed the same subdivision
based on their apparent age, obtaining in total images for
training and for testing.

4.2. Cross-GAN Filter Similarity Index

We considered the cyGAN implementation with the parameters
available at [30] and trained a different , for epochs
each, for each pair of age classes of the CelebA database. The
training process took approximately hours for each cyGAN. Sim-
ilarly, we trained a different for each of the general
purpose image translation datasets horse2zebra and sat2map. As a
comparison, we considered also , which is not trained
on any database and in which the filters are initialized with random
numbers following a normal distribution.

For each pair of GANs, we performed a quantitative evaluation
of their similarity by computing the CGFSI using the threshold value

. Table 1 shows the values of the CGFSI for the different
pairs of GANs. It is possible to observe that the CGFSI between

and is always higher than the CGFSI
between and the other GANs. This indicates that the
training process learns similar filters in the CNNs of GANs and that



Fig. 3. Validation of the aging process: quantitative results of the
DEX age estimator on the AgeDB dataset. The estimated age is
highly correlated with the real age .

Fig. 4. Validation of the aging process: quantitative results of the
age estimation after applying to transform the
images of CelebA from the age class to . The ag-
ing process increased the apparent age of the majority of the images,
however the transformed images feature a high variation in the esti-
mated age.

different GANs could share their parameters even if trained on het-
erogeneous imaging applications.
4.3. Validation of the Aging Process

To validate the aging process, first we performed a quantitative eval-
uation of the accuracy of the DEX age estimator using the AgeDB
dataset, by comparing the real ages with the ones obtained by DEX.
We obtained AAD years, with a standard deviation of

years, similar to the results published in [8]. The estimated age
is highly correlated with the real age , with the correlation coef-

ficient . Fig. 3 shows the distribution of estimated ages
against the real ages .

Second, we performed a quantitative evaluation of the accu-
racy of the aging process performed using cyGANs, by applying
the on the testing subset of the CelebA database and
computing the AAD between the age estimated by DEX and
the target aging class. Table 2 shows the AAD for all the

. From the table, it is possible to observe that the trans-
formed images feature a high variation in their estimated age , with
AAD . Fig. 4 shows the distribution of the es-
timated ages of the original images and the transformed
images . From the figure, it
is possible to observe that the aging process increased the apparent
age differently for every image.

4.4. Fine-Tuning

We trained a different , for epochs each, for each
pair of age classes of the CIFAR-10 database, obtaining

(20,40) (60,80) (20,40) (60,80)

Fig. 5. Fine-tuning: qualitative example of the results of the aging
progress obtained using and . First row:
images obtained using trained on CelebA database;
second row: images obtained using trained on CIFAR-
10 database and fine-tuned on CelebA database. The images ob-
tained using exhibit the same realistic face aging as
the ones obtained with .

Table 3. Fine-tuning: quantitative results, expressed in terms of
AAD, of the accuracy of , trained on the CelebA
database, compared with the accuracy of , trained on
the CIFAR-10 database and fine-tuned on the CelebA database.

GAN name Age class AAD
Orig. Dest. (MeanStd)

Notes. AAD: Absolute Age Difference.

. Then, we performed a fine-
tuning, for epochs each, of each cyGAN on the corresponding age
classes of the CelebA database, obtaining

.
Fig. 5 shows a qualitative evaluation of the fine-tuning pro-

cess, by comparing the images generated by and by
. Table 3 shows the quantitative evaluation by compar-

ing the results of AAD and AAD , obtained by comparing
the difference in the desired and estimated age both on the im-
ages transformed using and using the corresponding

. From the figure and the table, it is possible to observe
that the obtained results comparable to ,
showing that the aging transformation is not exclusively dependent
on attributes of the face and can be learned using general purpose
object image databases and a fine-tuning step. The results indicate
that the training process of GANs produces similar filters even if ap-
plied on heterogeneous application scenarios and that is possible to
perform transfer learning procedures to obtain similar transformed
images even by training on different databases.

5. CONCLUSIONS

In this paper, we proposed a novel approach for increasing the ex-
plainability of current GAN models. Our method is based on an in-
novative qualitative and quantitative analysis of the inner structure of
GANs for face aging, which shows that GANs partially share their
parameters also when trained in heterogeneous application scenar-
ios. To evaluate our approach, we trained GANs on general purpose
object databases and performed a fine-tuning on the face database,
with results showing that the aging transformation does not depend
entirely on face-specific features. Future works should consider dif-
ferent transformations and generative models.
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